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Abstract. In this paper we propose a modification of the 
threshold accepting heuristic by Dueck and Scheuer. Instead 
of using discrete threshold values a threshold function sim- 
ilar to the cooling schedule of simulated annealing is used. 
Furthermore, the number of iterations during each step of the 
heuristic is a function of the current and the initial threshold 
value. Using this scheme, we investigate the trade-off be- 
tween solution quality and convergence speed on different 
instances of the well known quadratic assignment problem. 
In a second set of experiments the results of a multistart- 
version of TA are compared with the results of unique long 
runs at identical CPU-requirements to identify the better 
optimization strategy. Since, generally, in the literature the 
number of starting solutions for QAP-heuristics appears to 
be chosen on a rather arbitrary basis, we also highlight how 
varying this number influences the TA-results. 

Zusammenfassung. Im vorliegenden Beitrag wird eine Mo- 
difizierung der Threshold Accepting Heuristik von Dueck 
und Scheuer vorgeschlagen. Anstelle diskreter Schwellen- 
werte wird eine Schwellenwertfunktion verwendet, die vom 
AbkiJhlungsplan beim Simulated Annealing inspiriert ist. 
Desweiteren ist die Iterationszahl auf jeder Ebene des Ver- 
fahrens nunmehr eine Funktion des aktuellen sowie des Aus- 
gangsschwellenwertes. Anhand dieses Vorgehensschemas un- 
tersuchen wir den Trade-off yon L6sungsqualit~it und Kon- 
vergenzgeschwindigkeit bei verschiedenen Standardbeispie- 
fen des bekannten Quadratischen Zuordnungsproblems. Auch 
die Qualit/it und Zuverl~issigkeit einer Multistart-Version 
kurzer TA-Laufe wird mit den Ergebnissen ausftihrlicher 
Laufe bei gleichen CPU-Zeiten verglichen, um Rtickschltisse 
auf die sinnvollere Optimierungsstrategie zu erhalten. In der 
Literatur verwenden unterschiedliche Autoren h~iufig sehr 
verschiedene Anzahlen zuf~illiger Startl6sungen in ihren nu- 
merischen Experimenten. Wir untersuchen daher auch, wie 
sich eine Variation dieser Anzahl auf die TA-Ergebnisse 
auswirkt. 
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1. Introduction 

Threshold accepting (TA) is a simplification of the well 
known simulated annealing (SA) method [10] that was pro- 
posed by Dueck and Scheuer [4]. TA is a local search 
method. Starting from an initial solution each TA-step con- 
sists of a slight change of the old solution in a new one. Then 
the qualities of the two solutions are compared with respect 
to the given objective function. TA accepts any new solution 
that is not much worse than the old one. More specifically, 
TA accepts every solution that is either better than the cur- 
rent solution or that deteriorates the old objective function 
value by less than a given threshold level T. The new solu- 
tion then replaces the current old solution as a basis for the 
next TA-step. The threshold T will be relatively large in the 
beginning of the search process to allow for a full explo- 
ration of the solution space. As the search continues, T is 
lowered in a stepwise manner. Generally, an incrasing num- 
ber of trials is performed at successive levels since lower 
thresholds will expand the time required to reach some form 
of equilibrium or ground state. The search process termi- 
nates when a minimum threshold level is reached or some 
other termination criterion holds. 

We apply a modified TA to the quadratic assignment 
problem (QAP) - one of the most difficult problems in com- 
binatorial optimization. We first describe our modified ver- 
sion of TA in the following section before defining the QAP 
formally in Sect. 3. Then, empirical results for a test suite 
of QAPs with very different size and structure are given. 
Emphasis is on the trade-off between solution quality and 
convergence speed when exogeneous strategy parameters of 
the heuristic are being changed. We also investigate the in- 
fluence of varying the number of random starting solutions 
on the TA-statistics, and compare the performance of a TA 
multistart-version to the results achieved with unique long 
runs at approx, identical CPU-requirements. The last section 
summarizes our findings. 
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2. A modified TA-scheme 

In their implementation Dueck and Scheuer use a prespec- 
ified vector of threshold values. This is a rather inflexible 
method that is particulary inconvenient during the test phase 
on a given problem. Moreover, extra tuning of the thresh- 
old vector seems necessary when the heuristic is applied to 
different problem classes. 

We propose to use the following threshold function in- 
stead. It resembles the cooling schedule of SA: 

Tt = . Tt-l t 2 , . . .  

where To : initial threshold value 
Tt : threshold value at level t 
a : lowering factor a=]0,1[. 

The factor a is a stategy parameter of our TA implemen- 
tation that should be set to values between 0.8 and 0.995. 
The initial threshold value To may be calculated from a ran- 
dom sample of m solution trials as 

To=ft .  --1 ~--~ f ~ (2) 
i=1 

where f i  : objective function value of trial i 
/3 : constant scalar 

(/3 = 0.05, m = 3 in all experiments). 

For each level of the TA search process the number of iter- 
ations I t  (i.e. evaluated trial solutions) must be determined. 
Since locating improved solutions and leaving suboptima be- 
comes increasingly difficult with time, It  should be higher 
in later search phases than in the beginning. The following 
iteration function is used: 

{ ~ e .  To < Tt <_ To (3) 
I t =  ima T~ else 

where It : iterations to be performed at level t 
/max : maximum number of iterations 

(strategy parameter) 
c : weighting factor 

(c = 0.1 in all experiments). 

With this function the number of iterations at a given level 
of TA depends on the current threshold value T~ as well 
as on the initial To. A maximum number of iterations/max 
was set to avoid excessive CPU-requirements. Finally, a new 
solution is obtained from a given configuration by a simple 
two-exchange (swap) of solution elements. In our implemen- 
tation, the solution elements to be swapped are randomly de- 
termined to minimize stagnation due to circular swapping. 
The TA search terminates when either Tt has fallen below 
some minimal threshold level Tmin = 1, the complete neigh- 
borhood (points reachable by a simple swap) of a given 
solution has been unsuccessfully evaluated, or no improve- 
ment has been achieved for ten successive levels. Note that 
in the second case a further lowering of the threshold would 
be pointless since no improvements are possible. The third 
termination criterion prevents excessive calculations if cir- 
cular swapping occurs. An overview of the modified TA 
implementation is given in Fig. 1. 
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Start 
Choose a ,  t ,  c and/max as strategy parameters 
Generate initial threshold To 
Determine initial solution and save as current best_solution 
t = 0  
Repeat 

t = t + l  
calculate Tt and I t  
Iteration_count = 0 
Repeat 

Iteration_count = Iteration_count + 1 
Generate new solution by random two-exchange 
Calculate difference Az  between objective function 
values 

(new solution - old solution) 
If Az  < Tt then accept new solution 
If new solution better than best_solution 

then update best_solution 
until (Iteration_count = I t )  or (entire neighborhood searched 
without success) 

until (Tt < Tmin) or (entire neighborhood searched 
without success) or (no improvement for ten successive levels) 
print best_solution 
Stop 

Fig. 1. Modified threshold accepting in pseudo code (minimization) 

3. The quadratic assignment problem (QAP) 

Locating facilities with material flow between them is a dif- 
ficult layout problem. Koopmans and Beckmann [11] were 
the first to model this in a way which is now known as the 
quadratic assignment problem. Formally, it can be stated as a 
permutation problem [2]. Given a set N={1,2,...,n} and real 
numbers e~k, a~k, bik for i,k= 1,2 ..... n, find a permutation 
of the set N which minimizes: 

Z = E ai~(i) + aikb~p(i),~(k) �9 
i=l i=l k=l 

(4) 

The linear part may be viewed as installation costs. The 
quadratic part accounts for interaction between facilities, 
summing the product of material flow between each two 
facilities and the cost of transferring a material unit between 
their respective locations. 

Vollmann and Buffa [20] introduced the concept of flow- 
dominance as a measure of the variation of values in the 
flow matrix. It is given by 100 x std.dev./mean of the ma- 
trix elements. Simply stated, high flow-dominance indicates 
that few facilities with high interaction tend to dominate the 
problem. 

As a generalization of the TSP the QAP is NP-hard. 
Sahni and Gonzales showed that even finding an e-approxi- 
mation for the QAP is NP-hard. Many solution methods have 
been developed to address the QAP because of its consider- 
able practical importance in facility layout, machine schedul- 
ing and other areas of application. Even with large comput- 
ers, exact (implicit enumeration) algorithms such as branch- 
and-bound methods [6] are only able to globally solve rather 
small QAPs (n~lS) in a reasonable amount of time. There- 
fore, researchers have concentrated on developing effective 
heuristics for the QAP. 
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Fig. 2. Representation of a QAP-solution in TA (n=7) 

The diverse QAP-heuristics are not reviewed here. Ex- 
tensive reviews of the QAP and associated solution tech- 
niques can be found in [2, 13]. Recent developments in fa- 
cility layout are also covered in [8]. 

4. Empirical results with TA 

The modified TA-scheme was tested on a number of well 
known problems taken from [ 14] (NUG 15, NUG20, NUG30), 
[18] (STE36a, STE36c), [5] (ELS19), [12] (KRA30a, 
KRA30b) and [17] (SKO64, SKOS1, SKO90). The testprob- 
lems vary in size between 15 and 90 facilities. The instances 
by Nugent et al. and Skorin-Kapov are randomly generated 
with low flow-dominance. The other appear to be practi- 
cal applications with higher flow-dominance values. Hence 
the problems are very different in size and structure making 
them a good test suite. These and other problem instances 
are collected in the QAPLIB problem library described in 
[31. 

The solution representation of our TA is a straightfor- 
ward permutation coding (see Fig. 2). Each position on a 
solution vector represents a facility location. Integer values 
are assigned as numbered facilities. 

Three different settings for the exogeneous parameters c~ 
and Im~ are used, specifying threshold and iteration function 
respectively. These settings are given in Table 1. Strategy 
one (TA I) aims at achieving high quality solutions, allow- 
ing a rather intensive search. Strategy three (TA III) is a 
quick optimizer, but sacrifices some of the attainable solu- 
tion quality. Strategy two (TA II) is a compromise between 
the other two. 

All parameters are determined on the basis of some 
pretests but no extensive testing was done, and, thus, no 
claim is made as to their optimality. In a hybridized TA ver- 
sion we also employ 2-Opt to finally improve the generated 
TA solution. 2-Opt is a simple local search heuristic that 
sequentially considers pairwise exchange between the posi- 
tions of facilities. The swap is made whenever it leads to 
a lower objective function value and then the search starts 
again from the new solution. This procedure continues un- 
til no exchange in the current solution results in a further 
improvement. Ten trials are performed on each problem in- 
stance in all experiments. Results are given in Table 2. 

To give an idea of the quality of TA-results we present 
data from the well-known Tabu Search implementation of 
Taillard in Table 3. Since different hardware and program- 
ming languages are employed it is more appropriate to re- 
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Table 1. Three different parameter settings used in our TA-implementation 
for the QAP. The first strategy optimizes quality, the third convergence 
speed while the second strategy is a compromise between these two 

[Problem ] Strat.1 I Strat.2 I Strat.3 I 

/max Ot 

NUG15 250 0,995 
NUG20 280 0,995 
NUG30 420 0,995 
ELS19 300 0,995 

KRA30a 400 0,995 
KRA30b 400 0,995 
STE36a 800 0,995 
STE36b 800 0,995 
SKO64 700 0,995 
SKO81 900 0,995 
SKO90 1000 0,995 

/max @ /max 

190 0,975 130 0,8 
210 0,975 140 0,8 
310 0,975 200 0,8 
230 0,975 150 0,8 
300 0,975 200 0,8 
300 0,975 200 0,8 
600 0,975 400 0,8 
600 0,975 400 0,8 
530 0,975 350 0,8 
650 0,975 450 0,8 
750 0,975 500 0,8 

late solution quality to function evaluations than to CPU- 
requirements when comparing TA and TS. One should, how- 
ever, be careful to note that TS may be implemented in such 
a way [19, 21] that it has a lower time complexity to evalu- 
ate the quality of a single swap than has TA. In other words, 
a given number of function evaluations requires less time 
for TS than it does for TA on identical hardware. 

The three TA-strategies demonstrate expected behavior. 
A slower lowering of the threshold-value combined with 
more iterations at each level allows for more intensive search 
and better chances to escape from local optima. This leads to 
increased solution quality and generally more reliable opti- 
mization (lower standard deviations) at the expense of more 
function evaluations. However, it is noteworthy that even the 
very fast schedule of TA III produces solutions of reasonable 
quality. TA III is a good choice when optimization must pro- 
ceed rapidly - as in real-time applications - or when each 
function evaluation is time-consuming or costly. Adding a 
2-Opt post-processing may slightly improve the TA III-result 
at very low cost. 

TA I and TA II tend to produce locally optimal results 
so that an additional 2-Opt becomes rather superfluous. The 
average quality of TA I solutions is always better than for 
TA II. TA I is an efficient QAP-heuristic that produces good 
results on a suite of test problems with very different size 
and structure. It is particularly strong on the large problem 
instances. Not surprisingly, the TA performance is better on 
problems with low flow-dominance. High flow-dominance 
values tend to make it more difficult for a 2-swap based 
heuristic to escape from local optima. It should be noted 
that an even slower lowering of the TA threshold and/or a 
larger value for/max can be expected to further increase the 
solution quality. 

Our TA implementation uses only one problem-specific 
parameter (/max) and may directly be applied to other combi- 
natorial problems, possibly allowing for a change in the em- 
ployed search operator (neighborhood structure). This makes 
the modified TA an efficient, easily implementable and user- 
friendly heuristic of broad applicability. It also has moderate 
CPU-requirements on a serial computer and may be tuned 
for either speed or solution quality or any compromise be- 
tween these objectives. 

We were wondering whether, given a fixed amount of 
CPU-time, it would be more successful to conduct some long 
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Table 2. Empirical results with the three different TA-strategies. Results averaged over 10 runs on a DEC-c~-workstation. The starting solutions were 
randomly generated and identical for all TA-versions 

Testproblem 

NUG 15 

NUG20 

NUG30 

ELS19 

KRA30a 

KRA30b 

STE36a 

STE36b 

SKO64 

SKO81 
SKO90 

Average objective function values and function evaluations 

TA I AFE TA II AFE TA III AFE 

(+ 2-Opt) (+ 2-Opt) (+ 2-Opt) 

1,156.2 
1,155.0 
2,584.8 
2,583.6 
6,148.4 
6,147.6 

18,684,375.0 
18,684,139.2 

90,109.0 
90.109.0 
92,019.0 
91,999.0 

9,614.6 
9,605.8 

16,057.2 
16,057.2 
48,747.0 
48,745.6 
91,299.6 

115,981.2 

29,863.1 
29,971.1 
72,001.9 
72,224A 

225,157.1 
225,657.5 
269,592.0 
269,770.9 
180,220.3 
180,655.3 
179,316.2 
179,785.5 
516,420.7 
517,115.5 
574,154.8 
574,784.8 
764,803.3 
767,236.2 

1,096,761.4 
1,210,810.2 

1,160.6 
1,160.6 
2,604.2 
2,603.4 
6,178.6 
6,178.6 

21,404,362.4 
21,401,541.6 

91.171.0 
91,171.0 
93,019.0 
93,019.0 
9,833.6 
9,831.6 

16,738.2 
16,727.4 
48,919.2 
48,919.0 
91,662.0 

116,418.8 

6,602.7 
6,707.7 

17,787.0 
17,986.6 
35,997.4 
36,432.4 
52,478.2 
52,678.6 
30,639.4 
31,074.4 
31,620.0 
32,055.0 
97,359.1 
97,985.6 

I03,081.8 
103,742.1 
121,263.2 
123,451.4 
163,972.7 
194,475.6 

1,172.2 1,164.1 
1,172.2 1,269.1 
2,649.0 1,876.1 
2,647.8 2,088.7 
6,330.0 3,457.6 
6,304.4 4,293.1 

21,593,135.0 6,036.4 
21,593,135.0 6,207.4 

93,632.0 5,400.3 
93,632.0 5,835.3 
93,998.0 5,510.1 
93,998.0 5,945.1 
10,245.2 8,854.0 
10,230.4 9,722.1 
17,245.0 11,321.5 
17,245.0 11,951.5 
4r 9,206.2 
49,308.6 38,226.8 
93,552.0 13,184.7 

118,613.2 15,121.1 

AFE = average function evaluations 

Table 3. Numerical results of the TS-implementation by Taillard [19]. According to personal communication with E. Taillard, the number of function 
evaluations in one TS iteration is given by n .  (n - 1)/2. TS was run on a 10-node T800C-G20S transputer system. CPU-time per iteration is given by 
approx. 6, 2 �9 n2/zs 

Testproblem 

NUG15 
NUG20 
NUG30 
ELS19 

KRA30a 
KRA30b 
STE36a 
STE36b 
SKO64 
SKOS1 
SKO90 

Best known 

solution b 

1,150 
2,570 
6,124 

17,212,548 
88,900 
91,420 
9,526 

15,852 
48,498 
91,008 

115,534 

i = 4 N  

1,162 
2,606 
6,228 

21,154,221 
92,901 
94,071 
10,145 
18,452 
49,225 
92,100 

117,036 

Average objective function value a after i TS-iterations 

AFE e 

6,300 
15,200 
52,200 
12,996 
52,200 
52,200 
90,720 
90,720 

516,096 
1,049,760 
1,441,800 

i = n  z 

1,152 
2,580 
6,148 

19,174,778 
91,567 
92,426 

9,869 
17,199 
48,692 
91,372 

115,996 

AFE d 

23,625 
76,000 

391,500 
61,731 

391,500 
391,500 
816,480 
816,480 

8,257,536 
21,257,640 
32,440,500 

i = 1000 

1,150 
2,573 
6,142 

17,780,562 
91,478 
92,334 

9,917 
17,310 
48,837 
91,736 

116,574 

AFE e 

105,000 
190,000 
435,000 
171,000 
435,000 
435,000 
630,000 
630,000 

2,016,000 
3,240,000 
4,005,000 

AFE = average function evaluations 
aThe values are approximate. Taillard gives 
bSee [19, 21] 
c 4n.  n ,  (n - 1)/2 
d n2 . 'r/,. (n -- 1)/2 
e i000. n -  (n--  1)/2 

pars per mille above best known solutions 

runs of  TA I or  to start the much  quicker  TA III over  and over  
again f rom different  initial points  (TA III multistart-version).  
Results  for a set o f  four  Q A P s  of  different  size and structure 
are g iven  in Table 4. Ten runs are conducted  for TA I, whi le  
the number  of  TA III restarts varies with p rob lem size. The  
total amount  o f  C P U - t i m e  for the runs o f  TA I and multistart  
TA III respect ive ly  is approx,  identical.  Numer ica l  results 
clearly indicate that TA I is a more  rel iable opt imizer  ( lower  
std. dev.)  that achieves  much  better  average  performance.  
The  ex t reme complex i ty  o f  the Q A P  search space demands 

a rather s low cool ing schedule  to rel iably ach ieve  excel lent  
solutions. 

One can argue that in practical  applicat ions not  the av- 
erage per formance  but only the best solut ion found is of  
importance,  since jus t  this solut ion wil l  be implemented .  Fo-  
cussing solely on the best  result,  the mul t is tar t -vers ion o f  TA 
III can be a reasonable choice  for small  Q A P s  l ike ELS19,  
but, in general,  appears to be inferior  to TA I wi th  respect  

to this cri terion as well.  
Finally,  a set o f  exper iments  is conduc ted  to invest igate  

how the number  o f  starting solutions (equivalent  to test runs) 
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Table 4. Empirical comparison of TA I and a multistart version of TA III at approx, identical CPU-requirements 

209 

Test- 
problem 

NUG30 6,124 
ELS19 17,937,024 
STE36b 15,852 
SKO90 115,694 

TA I TA III Multistart 

Best Std.dev. Best Worst Mean Std.dev. Worst Mean 

6,190 6148.4 
20,510,786 18,684,375.0 

16,470 16,057.2 
116,242 115,981.2 

19.6 
1,143,338.1 

191.5 
158.7 

6172 
17,212,548 

15,852 
117,122 

6530 6323.0 
28,412,188 21,608,555.3 

19,914 17,577.4 
119,816 118,549.8 

65.7 
2,959,917 

801.8 
465.7 

Table 5. Varying the number of randomly generated starting solutions (= test runs) for TA I. The resulting differences in QAP-statistics indicate no advantage 
in choosing a large number of starting solutions to evaluate algorithmic performance 

5 starting solutions 10 starting solutions 30 starting solutions 

Testproblem Mean Std.dev. 

NUG30 
ELS19 

KRA30a 
STE36b 
SKO64 
SKO90 

Mean Std.dev. 

6,156.8 22.8 
18,966,057.2 1,260,303.4 

90,696.0 1,417.2 
16,050.8 139.0 
48,872.0 260.0 

116,013.2 130.5 

Mean Std.dev. 

6148.4 19.6 
18,684,375.0 1,143,338.1 

90,109.0 1,290.6 
16,057.2 191.5 
48,747.0 229.6 

115,981.2 158.7 

6154.9 
19,198,436.0 

90,494.7 
16,120.3 
48,699.1 

115,902.9 

26.2 
1,136,244.3 

1,042.3 
261.5 
154.0 
163.1 

influences the TA I statistics (mean, std. dev.). In the liter- 
ature this number seems to be chosen on a rather arbitrary 
basis when a QAP-heuristic is being evaluated in numerical 
experiments. Heragu and Alfa [9] conduct five runs, while 
Burkard and Rendl [1] mostly use ten restarts. Taillard [19] 
employs 30 different starting solutions, while Paulli [15] 
even evaluates 100 runs. 

Additional runs are costly with respect to CPU-time. Un- 
der practical considerations this time might be well invested 
when one aims at identifying a single good solution while all 
other results are being discarded. However, if one wishes to 
investigate the effectiveness and quality of a QAP-heuristic 
in general, mean performance measures are of interest. We 
perform experiments using five, ten and 30 random initial 
solutions for TA I. The results (Table 5) indicate no advan- 
tage, from a methodological point of view, in using a large 
number (> 10) of starting solutions. We recommend to av- 
erage results for a given QAP-heuristic over ten runs, but 
even five runs might suffice. 

One should be careful to note that in this final experiment 
we have used the TA in a version which allows for rather 
intensive search and, thus, optimizes reliably. The picture 
might change when one employs a faster but less accurate 
optimizer. Though, results in Table 4 indicate that this would 
not be a very sensible strategy for QAP-optimization any- 
way. 

5. Conclusions 

We have presented a modified TA scheme that utilizes a 
flexible threshold function instead of a prespecified vector 
of threshold values. The initial threshold value is determined 
by a random sample of solution trials. Also, an iteration func- 
tion was intoduced to allow for more iterations in later search 
phases when improvements are more difficult to achieve. 
Three different parameter settings for the threshold and iter- 
ation function were tested, resulting in a very fast optimizer, 
a high quality optimizer and a compromise between these 
two. The three TA strategies were tested on a set of QAPs 

varying in size and structure. Numerical experiments con- 
firmed that our modified TA scheme is an efficient, easily 
implementable heuristic which may be adapted for speed, 
solution quality or any compromise between these objec- 
tives. 

A second set of experiments demonstrated that, given a 
fixed amount of CPU-time, it is more useful to allow for a 
few runs of intensive TA-search instead of restarting over 
and over again from different initial solutions with a quick 
TA-verslon. 

Finally, the numerical results indicated that it suffices to 
investigate algorithmic performance on the basis of ten ran- 
dom starting solutions. Using more initial points (i.e. runs) 
does not appear to change the relevant QAP-statistics (mean, 
std. dev.) of the solution method significantly, while it does, 
of course, increase CPU-requirements. 
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