
OR Spektrum (1995) 17:205-210 ORSpektmm
�9 Springer-Verlag 1995

A modification of threshold accepting
and its application to the quadratic assignment problem
Volker Nissen, Henrik Paul

Institut ftir Wirtschaftsinformatik, Abt.I, Universit~it G~Sttingen, Platz der G6ttinger Sieben 5 (MZG), D-37073 G&tingen, Germany

Received: 27 August 1993 / Accepted in revised form: 1 July 1994

Abstract. In this paper we propose a modification of the
threshold accepting heuristic by Dueck and Scheuer. Instead
of using discrete threshold values a threshold function sim-
ilar to the cooling schedule of simulated annealing is used.
Furthermore, the number of iterations during each step of the
heuristic is a function of the current and the initial threshold
value. Using this scheme, we investigate the trade-off be-
tween solution quality and convergence speed on different
instances of the well known quadratic assignment problem.
In a second set of experiments the results of a multistart-
version of TA are compared with the results of unique long
runs at identical CPU-requirements to identify the better
optimization strategy. Since, generally, in the literature the
number of starting solutions for QAP-heuristics appears to
be chosen on a rather arbitrary basis, we also highlight how
varying this number influences the TA-results.

Zusammenfassung. Im vorliegenden Beitrag wird eine Mo-
difizierung der Threshold Accepting Heuristik von Dueck
und Scheuer vorgeschlagen. Anstelle diskreter Schwellen-
werte wird eine Schwellenwertfunktion verwendet, die vom
AbkiJhlungsplan beim Simulated Annealing inspiriert ist.
Desweiteren ist die Iterationszahl auf jeder Ebene des Ver-
fahrens nunmehr eine Funktion des aktuellen sowie des Aus-
gangsschwellenwertes. Anhand dieses Vorgehensschemas un-
tersuchen wir den Trade-off yon L6sungsqualit~it und Kon-
vergenzgeschwindigkeit bei verschiedenen Standardbeispie-
fen des bekannten Quadratischen Zuordnungsproblems. Auch
die Qualit/it und Zuverl~issigkeit einer Multistart-Version
kurzer TA-Laufe wird mit den Ergebnissen ausftihrlicher
Laufe bei gleichen CPU-Zeiten verglichen, um Rtickschltisse
auf die sinnvollere Optimierungsstrategie zu erhalten. In der
Literatur verwenden unterschiedliche Autoren h~iufig sehr
verschiedene Anzahlen zuf~illiger Startl6sungen in ihren nu-
merischen Experimenten. Wir untersuchen daher auch, wie
sich eine Variation dieser Anzahl auf die TA-Ergebnisse
auswirkt.

Key words: Optimization, local search, heuristic, threshold
accepting, quadratic assignment problem

Correspondence to: V. Nissen

Schliisselwiirter: Optimierung, lokale Suchverfahren, Heuri-
stik, Threshold Accepting, Quadratisches Zuordnungspro-
blem

1. Introduction

Threshold accepting (TA) is a simplification of the well
known simulated annealing (SA) method [10] that was pro-
posed by Dueck and Scheuer [4]. TA is a local search
method. Starting from an initial solution each TA-step con-
sists of a slight change of the old solution in a new one. Then
the qualities of the two solutions are compared with respect
to the given objective function. TA accepts any new solution
that is not much worse than the old one. More specifically,
TA accepts every solution that is either better than the cur-
rent solution or that deteriorates the old objective function
value by less than a given threshold level T. The new solu-
tion then replaces the current old solution as a basis for the
next TA-step. The threshold T will be relatively large in the
beginning of the search process to allow for a full explo-
ration of the solution space. As the search continues, T is
lowered in a stepwise manner. Generally, an incrasing num-
ber of trials is performed at successive levels since lower
thresholds will expand the time required to reach some form
of equilibrium or ground state. The search process termi-
nates when a minimum threshold level is reached or some
other termination criterion holds.

We apply a modified TA to the quadratic assignment
problem (QAP) - one of the most difficult problems in com-
binatorial optimization. We first describe our modified ver-
sion of TA in the following section before defining the QAP
formally in Sect. 3. Then, empirical results for a test suite
of QAPs with very different size and structure are given.
Emphasis is on the trade-off between solution quality and
convergence speed when exogeneous strategy parameters of
the heuristic are being changed. We also investigate the in-
fluence of varying the number of random starting solutions
on the TA-statistics, and compare the performance of a TA
multistart-version to the results achieved with unique long
runs at approx, identical CPU-requirements. The last section
summarizes our findings.

206 V. Nissen, H. Paul: A modification of threshold accepting heuristic

2. A modified TA-scheme

In their implementation Dueck and Scheuer use a prespec-
ified vector of threshold values. This is a rather inflexible
method that is particulary inconvenient during the test phase
on a given problem. Moreover, extra tuning of the thresh-
old vector seems necessary when the heuristic is applied to
different problem classes.

We propose to use the following threshold function in-
stead. It resembles the cooling schedule of SA:

Tt = . Tt-l t 2 , . . .

where To : initial threshold value
Tt : threshold value at level t
a : lowering factor a=]0,1[.

The factor a is a stategy parameter of our TA implemen-
tation that should be set to values between 0.8 and 0.995.
The initial threshold value To may be calculated from a ran-
dom sample of m solution trials as

To=ft . --1 ~--~ f ~ (2)
i=1

where f i : objective function value of trial i
/3 : constant scalar

(/3 = 0.05, m = 3 in all experiments).

For each level of the TA search process the number of iter-
ations I t (i.e. evaluated trial solutions) must be determined.
Since locating improved solutions and leaving suboptima be-
comes increasingly difficult with time, It should be higher
in later search phases than in the beginning. The following
iteration function is used:

{ ~ e . To < Tt <_ To (3)
I t = ima T~ else

where It : iterations to be performed at level t
/max : maximum number of iterations

(strategy parameter)
c : weighting factor

(c = 0.1 in all experiments).

With this function the number of iterations at a given level
of TA depends on the current threshold value T~ as well
as on the initial To. A maximum number of iterations/max
was set to avoid excessive CPU-requirements. Finally, a new
solution is obtained from a given configuration by a simple
two-exchange (swap) of solution elements. In our implemen-
tation, the solution elements to be swapped are randomly de-
termined to minimize stagnation due to circular swapping.
The TA search terminates when either Tt has fallen below
some minimal threshold level Tmin = 1, the complete neigh-
borhood (points reachable by a simple swap) of a given
solution has been unsuccessfully evaluated, or no improve-
ment has been achieved for ten successive levels. Note that
in the second case a further lowering of the threshold would
be pointless since no improvements are possible. The third
termination criterion prevents excessive calculations if cir-
cular swapping occurs. An overview of the modified TA
implementation is given in Fig. 1.

10
20
30
40
50
60
70
80
90
100
110
120
130

140
150

160

170

180
190

Start
Choose a , t , c and/max as strategy parameters
Generate initial threshold To
Determine initial solution and save as current best_solution
t = 0
Repeat

t = t + l
calculate Tt and I t
Iteration_count = 0
Repeat

Iteration_count = Iteration_count + 1
Generate new solution by random two-exchange
Calculate difference Az between objective function
values

(new solution - old solution)
If Az < Tt then accept new solution
If new solution better than best_solution

then update best_solution
until (Iteration_count = I t) or (entire neighborhood searched
without success)

until (Tt < Tmin) or (entire neighborhood searched
without success) or (no improvement for ten successive levels)
print best_solution
Stop

Fig. 1. Modified threshold accepting in pseudo code (minimization)

3. The quadratic assignment problem (QAP)

Locating facilities with material flow between them is a dif-
ficult layout problem. Koopmans and Beckmann [11] were
the first to model this in a way which is now known as the
quadratic assignment problem. Formally, it can be stated as a
permutation problem [2]. Given a set N={1,2,...,n} and real
numbers e~k, a~k, bik for i,k= 1,2 n, find a permutation
of the set N which minimizes:

Z = E ai~(i) + aikb~p(i),~(k) �9
i=l i=l k=l

(4)

The linear part may be viewed as installation costs. The
quadratic part accounts for interaction between facilities,
summing the product of material flow between each two
facilities and the cost of transferring a material unit between
their respective locations.

Vollmann and Buffa [20] introduced the concept of flow-
dominance as a measure of the variation of values in the
flow matrix. It is given by 100 x std.dev./mean of the ma-
trix elements. Simply stated, high flow-dominance indicates
that few facilities with high interaction tend to dominate the
problem.

As a generalization of the TSP the QAP is NP-hard.
Sahni and Gonzales showed that even finding an e-approxi-
mation for the QAP is NP-hard. Many solution methods have
been developed to address the QAP because of its consider-
able practical importance in facility layout, machine schedul-
ing and other areas of application. Even with large comput-
ers, exact (implicit enumeration) algorithms such as branch-
and-bound methods [6] are only able to globally solve rather
small QAPs (n~lS) in a reasonable amount of time. There-
fore, researchers have concentrated on developing effective
heuristics for the QAP.

V. Nissen, H. Paul: A modification of threshold accepting heuristic

Location #3

1 4 1 3 1 i l 2 5 l 7
|

Facility #6

Fig. 2. Representation of a QAP-solution in TA (n=7)

The diverse QAP-heuristics are not reviewed here. Ex-
tensive reviews of the QAP and associated solution tech-
niques can be found in [2, 13]. Recent developments in fa-
cility layout are also covered in [8].

4. Empirical results with TA

The modified TA-scheme was tested on a number of well
known problems taken from [14] (NUG 15, NUG20, NUG30),
[18] (STE36a, STE36c), [5] (ELS19), [12] (KRA30a,
KRA30b) and [17] (SKO64, SKOS1, SKO90). The testprob-
lems vary in size between 15 and 90 facilities. The instances
by Nugent et al. and Skorin-Kapov are randomly generated
with low flow-dominance. The other appear to be practi-
cal applications with higher flow-dominance values. Hence
the problems are very different in size and structure making
them a good test suite. These and other problem instances
are collected in the QAPLIB problem library described in
[31.

The solution representation of our TA is a straightfor-
ward permutation coding (see Fig. 2). Each position on a
solution vector represents a facility location. Integer values
are assigned as numbered facilities.

Three different settings for the exogeneous parameters c~
and Im~ are used, specifying threshold and iteration function
respectively. These settings are given in Table 1. Strategy
one (TA I) aims at achieving high quality solutions, allow-
ing a rather intensive search. Strategy three (TA III) is a
quick optimizer, but sacrifices some of the attainable solu-
tion quality. Strategy two (TA II) is a compromise between
the other two.

All parameters are determined on the basis of some
pretests but no extensive testing was done, and, thus, no
claim is made as to their optimality. In a hybridized TA ver-
sion we also employ 2-Opt to finally improve the generated
TA solution. 2-Opt is a simple local search heuristic that
sequentially considers pairwise exchange between the posi-
tions of facilities. The swap is made whenever it leads to
a lower objective function value and then the search starts
again from the new solution. This procedure continues un-
til no exchange in the current solution results in a further
improvement. Ten trials are performed on each problem in-
stance in all experiments. Results are given in Table 2.

To give an idea of the quality of TA-results we present
data from the well-known Tabu Search implementation of
Taillard in Table 3. Since different hardware and program-
ming languages are employed it is more appropriate to re-

207

Table 1. Three different parameter settings used in our TA-implementation
for the QAP. The first strategy optimizes quality, the third convergence
speed while the second strategy is a compromise between these two

[Problem] Strat.1 I Strat.2 I Strat.3 I

/max Ot

NUG15 250 0,995
NUG20 280 0,995
NUG30 420 0,995
ELS19 300 0,995

KRA30a 400 0,995
KRA30b 400 0,995
STE36a 800 0,995
STE36b 800 0,995
SKO64 700 0,995
SKO81 900 0,995
SKO90 1000 0,995

/max @ /max

190 0,975 130 0,8
210 0,975 140 0,8
310 0,975 200 0,8
230 0,975 150 0,8
300 0,975 200 0,8
300 0,975 200 0,8
600 0,975 400 0,8
600 0,975 400 0,8
530 0,975 350 0,8
650 0,975 450 0,8
750 0,975 500 0,8

late solution quality to function evaluations than to CPU-
requirements when comparing TA and TS. One should, how-
ever, be careful to note that TS may be implemented in such
a way [19, 21] that it has a lower time complexity to evalu-
ate the quality of a single swap than has TA. In other words,
a given number of function evaluations requires less time
for TS than it does for TA on identical hardware.

The three TA-strategies demonstrate expected behavior.
A slower lowering of the threshold-value combined with
more iterations at each level allows for more intensive search
and better chances to escape from local optima. This leads to
increased solution quality and generally more reliable opti-
mization (lower standard deviations) at the expense of more
function evaluations. However, it is noteworthy that even the
very fast schedule of TA III produces solutions of reasonable
quality. TA III is a good choice when optimization must pro-
ceed rapidly - as in real-time applications - or when each
function evaluation is time-consuming or costly. Adding a
2-Opt post-processing may slightly improve the TA III-result
at very low cost.

TA I and TA II tend to produce locally optimal results
so that an additional 2-Opt becomes rather superfluous. The
average quality of TA I solutions is always better than for
TA II. TA I is an efficient QAP-heuristic that produces good
results on a suite of test problems with very different size
and structure. It is particularly strong on the large problem
instances. Not surprisingly, the TA performance is better on
problems with low flow-dominance. High flow-dominance
values tend to make it more difficult for a 2-swap based
heuristic to escape from local optima. It should be noted
that an even slower lowering of the TA threshold and/or a
larger value for/max can be expected to further increase the
solution quality.

Our TA implementation uses only one problem-specific
parameter (/max) and may directly be applied to other combi-
natorial problems, possibly allowing for a change in the em-
ployed search operator (neighborhood structure). This makes
the modified TA an efficient, easily implementable and user-
friendly heuristic of broad applicability. It also has moderate
CPU-requirements on a serial computer and may be tuned
for either speed or solution quality or any compromise be-
tween these objectives.

We were wondering whether, given a fixed amount of
CPU-time, it would be more successful to conduct some long

208 V. Nissen, H. Paul: A modification of threshold accepting heuristic

Table 2. Empirical results with the three different TA-strategies. Results averaged over 10 runs on a DEC-c~-workstation. The starting solutions were
randomly generated and identical for all TA-versions

Testproblem

NUG 15

NUG20

NUG30

ELS19

KRA30a

KRA30b

STE36a

STE36b

SKO64

SKO81
SKO90

Average objective function values and function evaluations

TA I AFE TA II AFE TA III AFE

(+ 2-Opt) (+ 2-Opt) (+ 2-Opt)

1,156.2
1,155.0
2,584.8
2,583.6
6,148.4
6,147.6

18,684,375.0
18,684,139.2

90,109.0
90.109.0
92,019.0
91,999.0

9,614.6
9,605.8

16,057.2
16,057.2
48,747.0
48,745.6
91,299.6

115,981.2

29,863.1
29,971.1
72,001.9
72,224A

225,157.1
225,657.5
269,592.0
269,770.9
180,220.3
180,655.3
179,316.2
179,785.5
516,420.7
517,115.5
574,154.8
574,784.8
764,803.3
767,236.2

1,096,761.4
1,210,810.2

1,160.6
1,160.6
2,604.2
2,603.4
6,178.6
6,178.6

21,404,362.4
21,401,541.6

91.171.0
91,171.0
93,019.0
93,019.0
9,833.6
9,831.6

16,738.2
16,727.4
48,919.2
48,919.0
91,662.0

116,418.8

6,602.7
6,707.7

17,787.0
17,986.6
35,997.4
36,432.4
52,478.2
52,678.6
30,639.4
31,074.4
31,620.0
32,055.0
97,359.1
97,985.6

I03,081.8
103,742.1
121,263.2
123,451.4
163,972.7
194,475.6

1,172.2 1,164.1
1,172.2 1,269.1
2,649.0 1,876.1
2,647.8 2,088.7
6,330.0 3,457.6
6,304.4 4,293.1

21,593,135.0 6,036.4
21,593,135.0 6,207.4

93,632.0 5,400.3
93,632.0 5,835.3
93,998.0 5,510.1
93,998.0 5,945.1
10,245.2 8,854.0
10,230.4 9,722.1
17,245.0 11,321.5
17,245.0 11,951.5
4r 9,206.2
49,308.6 38,226.8
93,552.0 13,184.7

118,613.2 15,121.1

AFE = average function evaluations

Table 3. Numerical results of the TS-implementation by Taillard [19]. According to personal communication with E. Taillard, the number of function
evaluations in one TS iteration is given by n . (n - 1)/2. TS was run on a 10-node T800C-G20S transputer system. CPU-time per iteration is given by
approx. 6, 2 �9 n2/zs

Testproblem

NUG15
NUG20
NUG30
ELS19

KRA30a
KRA30b
STE36a
STE36b
SKO64
SKOS1
SKO90

Best known

solution b

1,150
2,570
6,124

17,212,548
88,900
91,420
9,526

15,852
48,498
91,008

115,534

i = 4 N

1,162
2,606
6,228

21,154,221
92,901
94,071
10,145
18,452
49,225
92,100

117,036

Average objective function value a after i TS-iterations

AFE e

6,300
15,200
52,200
12,996
52,200
52,200
90,720
90,720

516,096
1,049,760
1,441,800

i = n z

1,152
2,580
6,148

19,174,778
91,567
92,426

9,869
17,199
48,692
91,372

115,996

AFE d

23,625
76,000

391,500
61,731

391,500
391,500
816,480
816,480

8,257,536
21,257,640
32,440,500

i = 1000

1,150
2,573
6,142

17,780,562
91,478
92,334

9,917
17,310
48,837
91,736

116,574

AFE e

105,000
190,000
435,000
171,000
435,000
435,000
630,000
630,000

2,016,000
3,240,000
4,005,000

AFE = average function evaluations
aThe values are approximate. Taillard gives
bSee [19, 21]
c 4n. n , (n - 1)/2
d n2 . 'r/,. (n -- 1)/2
e i000. n - (n-- 1)/2

pars per mille above best known solutions

runs of TA I or to start the much quicker TA III over and over
again f rom different initial points (TA III multistart-version).
Results for a set o f four Q A P s of different size and structure
are g iven in Table 4. Ten runs are conducted for TA I, whi le
the number of TA III restarts varies with p rob lem size. The
total amount o f C P U - t i m e for the runs o f TA I and multistart
TA III respect ive ly is approx, identical. Numer ica l results
clearly indicate that TA I is a more rel iable opt imizer (lower
std. dev.) that achieves much better average performance.
The ex t reme complex i ty o f the Q A P search space demands

a rather s low cool ing schedule to rel iably ach ieve excel lent
solutions.

One can argue that in practical applicat ions not the av-
erage per formance but only the best solut ion found is of
importance, since jus t this solut ion wil l be implemented . Fo-
cussing solely on the best result, the mul t is tar t -vers ion o f TA
III can be a reasonable choice for small Q A P s l ike ELS19,
but, in general, appears to be inferior to TA I wi th respect

to this cri terion as well.
Finally, a set o f exper iments is conduc ted to invest igate

how the number o f starting solutions (equivalent to test runs)

V. Nissen, H. Paul: A modification of threshold accepting heuristic

Table 4. Empirical comparison of TA I and a multistart version of TA III at approx, identical CPU-requirements

209

Test-
problem

NUG30 6,124
ELS19 17,937,024
STE36b 15,852
SKO90 115,694

TA I TA III Multistart

Best Std.dev. Best Worst Mean Std.dev. Worst Mean

6,190 6148.4
20,510,786 18,684,375.0

16,470 16,057.2
116,242 115,981.2

19.6
1,143,338.1

191.5
158.7

6172
17,212,548

15,852
117,122

6530 6323.0
28,412,188 21,608,555.3

19,914 17,577.4
119,816 118,549.8

65.7
2,959,917

801.8
465.7

Table 5. Varying the number of randomly generated starting solutions (= test runs) for TA I. The resulting differences in QAP-statistics indicate no advantage
in choosing a large number of starting solutions to evaluate algorithmic performance

5 starting solutions 10 starting solutions 30 starting solutions

Testproblem Mean Std.dev.

NUG30
ELS19

KRA30a
STE36b
SKO64
SKO90

Mean Std.dev.

6,156.8 22.8
18,966,057.2 1,260,303.4

90,696.0 1,417.2
16,050.8 139.0
48,872.0 260.0

116,013.2 130.5

Mean Std.dev.

6148.4 19.6
18,684,375.0 1,143,338.1

90,109.0 1,290.6
16,057.2 191.5
48,747.0 229.6

115,981.2 158.7

6154.9
19,198,436.0

90,494.7
16,120.3
48,699.1

115,902.9

26.2
1,136,244.3

1,042.3
261.5
154.0
163.1

influences the TA I statistics (mean, std. dev.). In the liter-
ature this number seems to be chosen on a rather arbitrary
basis when a QAP-heuristic is being evaluated in numerical
experiments. Heragu and Alfa [9] conduct five runs, while
Burkard and Rendl [1] mostly use ten restarts. Taillard [19]
employs 30 different starting solutions, while Paulli [15]
even evaluates 100 runs.

Additional runs are costly with respect to CPU-time. Un-
der practical considerations this time might be well invested
when one aims at identifying a single good solution while all
other results are being discarded. However, if one wishes to
investigate the effectiveness and quality of a QAP-heuristic
in general, mean performance measures are of interest. We
perform experiments using five, ten and 30 random initial
solutions for TA I. The results (Table 5) indicate no advan-
tage, from a methodological point of view, in using a large
number (> 10) of starting solutions. We recommend to av-
erage results for a given QAP-heuristic over ten runs, but
even five runs might suffice.

One should be careful to note that in this final experiment
we have used the TA in a version which allows for rather
intensive search and, thus, optimizes reliably. The picture
might change when one employs a faster but less accurate
optimizer. Though, results in Table 4 indicate that this would
not be a very sensible strategy for QAP-optimization any-
way.

5. Conclusions

We have presented a modified TA scheme that utilizes a
flexible threshold function instead of a prespecified vector
of threshold values. The initial threshold value is determined
by a random sample of solution trials. Also, an iteration func-
tion was intoduced to allow for more iterations in later search
phases when improvements are more difficult to achieve.
Three different parameter settings for the threshold and iter-
ation function were tested, resulting in a very fast optimizer,
a high quality optimizer and a compromise between these
two. The three TA strategies were tested on a set of QAPs

varying in size and structure. Numerical experiments con-
firmed that our modified TA scheme is an efficient, easily
implementable heuristic which may be adapted for speed,
solution quality or any compromise between these objec-
tives.

A second set of experiments demonstrated that, given a
fixed amount of CPU-time, it is more useful to allow for a
few runs of intensive TA-search instead of restarting over
and over again from different initial solutions with a quick
TA-verslon.

Finally, the numerical results indicated that it suffices to
investigate algorithmic performance on the basis of ten ran-
dom starting solutions. Using more initial points (i.e. runs)
does not appear to change the relevant QAP-statistics (mean,
std. dev.) of the solution method significantly, while it does,
of course, increase CPU-requirements.

Acknowledgements. We wish to thank the anonymous referees for their
helpful comments as well as Dr. Finn Kirstein, Uwe Maurer and Claudia
Rott for their technical assistance. The first author gratefully acknowledges
financial support by the Stiftung Volkswagenwerk, Germany.

References

1. Burkard RE, Rendl F (1984) A Thermodynamically Motivated Simu-
lation Procedure for Combinatorial Optimization Problems. EJOR 17:
169-174

2. Burkard RE (1990) Locations with Spatial Interactions: The Quadratic
Assignment Problem. In Mirchandani PB, Francis RL (eds) Discrete
Location Theory. John Wiley & Sons, New York

3. Burkard RE, Karisch S, Rendl F (1991) QAPLIB - A Quadratic As-
signment Problem Library. EJOR 55:115-119

4. Dueck G, Scheuer T (1990) Threshold Accepting: A General Purpose
Optimization Algorithm Appearing Superior to Simulated Annealing.
J Comput Phys 90:161-175

5. Elshafei AN (1977) Hospital Layout as a Quadratic Assignment Prob-
lem. Oper Res Q 28 (lii): 167-179

6. Hadley SW, Rendl F, Wolkowicz H (1992) A New Lower Bound via
Projection for the Quadratic Assignment Problem. Math Oper Res 17:
727-739

210

7. Heragn SS, Kusiak A (1991) Efficient Models for the Facility Layout
Problem. EJOR 53:1-13

8. Heragu SS (guest ed.) (1992) Facility Layout (Special Issue). EJOR
57 (2): 135-304

9. Heragu SS, Alfa AS (1992) Experimental Analysis of Simulated An-
nealing Based Algorithms for the Layout Problem. EJOR 57 (2): 190-
202

10. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simu-
lated Annealing. Science 220:671-680

11. Koopmans TC, Beckmann MJ (1957) Assignment Problems and the
Location of Economic Activities. Econometrica 25:53-76

12. Krarup J, Pruzan PM (1978) Computer-Aided Layout Design. Math
Program Stud 9:75-94

13. Kusiak A, Heragu SS (1987) The Facility Layout Problem. EJOR 29:
229-251

14. Nugent EN, Vollmann TE, Rumi J (1968) An Experimental Compari-
son of Techniques for the Assignment of Facilities to Locations. Oper
Res 16:150-173

15. Paulli J. (1993) Information Utilization in Simulated Annealing and
Tabu Search. Committee on Algorithms Bulletin 22:28-34

V. Nissen, H. Paul: A modification of threshold accepting heuristic

16. Sahni S, Gonzales T (1976) P-complete Approximation Problem. ACM
J 23:556-565

17. Skorin-Kapov J (1990) Tabu Search Applied to the Quadratic Assign-
ment Problem. ORSA J Comput 2 (1): 33-45

18. Steinberg L (1961) The Backboard Wiring Problem. SIAM Rev 3:
37-50

19. Taillard E (1991) Robust TABU Search for the Quadratic Assignment
Problem. Parallel Comput 17:443-455

20. Vollmann TE, Buffa ES (1966) The Facility Layout Problem in Per-
spective. Manag Sci 12 (10): B450-B468

21. VoB S (1994) Solving Quadratic Assignment Problems Using the Re-
verse Elimination Method. IN: Nash SG, Sofer A (eds) The impact of
emerging technologies on computer science and operations research.
Kluwer, Dordrecht

This article was processed by the author using the ~TEX style file pljour2
from Springer-Verlag.

