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Abstract

Variable Neighborhood Search (VNS) is a recent metaheuristic, or framework for
building heuristics, which exploits systematically the idea of neighborhood change,
both in the descent to local minima and in the escape from the valleys which contain
them. In this tutorial we first present the ingredients of VNS, i.e., Variable Neighbor-
hood Descent (VND) and Reduced VNS (RVNS) followed by the basic and then the
general scheme of VNS itself which contain both of them. Extensions are presented,
in particular Skewed VNS (SVNS) which enhances exploration of far away valleys and
Variable Neighborhood Decomposition Search (VNDS), a two-level scheme for solu-
tion of large instances of various problems. In each case, we present the scheme, some
illustrative examples and questions to be addressed in order to obtain an efficient im-
plementation.

Keywords: metaheuristics, heuristics, descent, valley, Variable Neighborhood Search,
decomposition.

Résumé

La Recherche à Voisinage Variable (RVV) est une métaheuristique récente, ou cadre
général pour bâtir des heuristiques, qui exploite systématiquement l’idée de change-
ment de voisinage tant dans la descente vers des optimas locaux que dans la sortie
des vallées qui les contiennent. Dans cet article introductif nous présentons d’abord
les ingrédients de la RVV, c’est-à-dire la Descente à Voisinage Variable (DVV) et la
Recherche à Voisinage Variable Réduite (RVVR) suivis des schémas de base et général
de la RVV. Des extensions sont ensuites présentées, en particulier la Recherche à
Voisinage Variable Biaisée (RVVB) qui améliore l’exploration de vallées éloignées et
la Recherche à Voisinage Variable avec Décomposition (RVVD), un schéma à deux
niveaux pour la résolution d’instances de grande taille de divers problèmes. Dans
chaque cas, on présente le schéma, un exemple et des questions à considérer pour une
implémentation efficace.

Mots-clés: métaheuristique, heuristique, descente, vallée, Recherche à Voisinage
Variable, décomposition.
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1 Introduction

Let us consider a combinatorial or global optimization problem

min f(x) (1)

subject to
x ∈ X (2)

where f(x) is the objective function to be minimized and X the set of feasible solutions. A
solution x∗ ∈ X is optimal if

f(x∗) ≤ f(x), ∀x ∈ X; (3)

an exact algorithm for problem (1)-(2), if one exists, finds an optimal solution x∗, together
with the proof of its optimality, or shows that there is no feasible solution, i.e., X = ∅.
Moreover, in practice, the time to do so should be finite (and not too large); if one deals
with a continuous function one must admit a degree of tolerance i.e., stop when a feasible
solution x∗ has been found such that

f(x∗) < f(x) + ε, ∀x ∈ X (4)

or
f(x∗) − f(x)

f(x∗)
< ε, ∀x ∈ X (5)

for some small positive ε.

Numerous instances of problems of the form (1) (2), arising in Operational Research
and other fields, are too large for an exact solution to be found in reasonable time. It is
well-known from complexity theory (Garey and Johnson, 1979; Papadimitriou, 1994) that
thousands of problems are NP-hard, that no algorithm with a number of steps polynomial
in the size of the instances is known and that finding one for any such problem would entail
obtaining one for any and all of them. Moreover, in some cases where a problem admits
a polynomial algorithm, the power of this polynomial may be so large that realistic size
instances cannot be solved in reasonable time in worst case, and sometimes also in average
case or most of the time.

So one is often forced to resort to heuristics, which yield quickly an approximate solu-
tion, or sometimes an optimal solution but without proof of its optimality. Some of these
heuristics have a worst-case guarantee, i.e., the solution xh obtained satisfies

f(xh) − f(x)
f(xh)

≤ ε, ∀x ∈ X (6)

for some ε, which is however rarely small. Moreover, this ε is usually much larger than the
error observed in practice and may therefore be a bad guide in selecting a heuristic. In
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addition to avoiding excessive computing time, heuristics address another problem: local
optima. A local optimum xL of (1)-(2) is such that

f(xL) ≤ f(x), ∀x ∈ N(xL) ∩ X (7)

where N(xL) denotes a neighborhood of xL (ways to define such a neighborhood will be
discussed below). If there are many local minima, the range of values they span may be
large. Moreover, the globally optimum value f(x∗) may differ substantially from the av-
erage value of a local minimum, or even from the best such value among many, obtained
by some simple heuristic (a phenomenon called by Baum (1986), the Tchebycheff catas-
trophe). There are, however, many ways to get out of local optima and, more precisely,
the valleys which contain them (or set of solutions from which the descent method under
consideration leads to them).

Metaheuristics are general framework to build heuristics for combinatorial and global op-
timization problems. They have been the subject of intensive research since Kirkpatrick,
Gellatt and Vecchi (1983) proposed Simulated Annealing as a general scheme for building
heuristics which get out of local minima. Several other metaheuristics were soon proposed.
For discussion of the best-known of them the reader is referred to the books of surveys
edited by Reeves (1993), Glover and Kochenberger (2003) as well as to the tutorials of
the present volume. Some of the many successful applications of metaheuristics are also
mentioned there.

Variable Neighborhood Search (VNS) (Mladenović and Hansen, 1997, Hansen and Mlade-
nović 1999, 2001c, 2003) is a recent metaheuristic which exploits systematically the idea
of neighborhood change, both in descent to local minima and in escape from the valleys
which contain them. VNS exploits systematically the following observations:

Fact 1 A local minimum with respect to one neighborhood structure is not necessary so
for another;

Fact 2 A global minimum is a local minimum with respect to all possible neighborhood
structures.

Fact 3 For many problems local minima with respect to one or several neighborhoods are
relatively close to each other.

This last observation, which is empirical, implies that a local optimum often provides
some information about the global one. This may for instance be several variables with the
same value in both. However, it is usually not known which ones are such. An organized
study of the neighborhood of this local optimum is therefore in order, until a better one is
found.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions are
simple and require few, and sometimes no parameters. Therefore in addition to providing
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very good solutions, often in simpler ways than other methods, VNS gives insight into the
reasons for such a performance, which in turn can lead to more efficient and sophisticated
implementations.

The tutorial is organized as follows. In the next section, we examine the preliminary
problem of gathering information about the problem under study, and evaluating it. In
Section 3 the first ingredient of VNS, i.e., Variable Neighborhood Descent (VND), which is
mostly or entirely deterministic, is studied. Section 4 is devoted to the second ingredient,
i.e., Reduced Variable Neighborhood Search (RVNS), which is stochastic. Both ingredients
are merged in the basic and the general VNS schemes, described in Section 5. Extensions
are then considered. Skewed Variable Neighborhood Search (SVNS), which addresses the
problem of getting out of very large valleys is discussed in Section 6. Very large instances
of many problems cannot be solved globally in reasonable time; Variable Neighborhood
Decomposition Search (VNDS) studied in Section 7 is a two-level scheme which merges VNS
with successive approximation (including a two-level VNS). Various tools for analyzing
in detail the performance of a VNS heuristic, and then streamlining it are presented in
Section 8. They include distance-to-target diagrams and valley profiles. In each of these
sections basic schemes, or tools, are illustrated by examples from papers by a variety of
authors. Questions to be considered in order to get an efficient implementation of VNS
are also systematically listed. Promising areas of research are outlined in Section 9. Brief
conclusions complete the tutorial in Section 10. Sources of further informations are listed
in an Appendix.

2 Preliminaries: Documentation

Once a problem of the form (1) (2) has been selected for study and approximate solution
by VNS, a preliminary step is to gather in a thorough way the papers written about it
or closely related problems. Note that this may be a difficult task as papers are often
numerous, dispersed among many journals and volumes of proceedings and the problem
may appear (usually under different names) in several fields. Tools such as the ISI Web
of Knowledge, NEC Research’s Citeseer or even general web browsers such as Google may
prove to be very useful.

There are several reasons for studying the literature on the selected problem:

(i) Evaluating its difficulty: is it NP-hard? Is it strongly NP-hard? (and hence admits
no fully polynomial approximation scheme). If it is in P, what is the complexity of
the best-known exact algorithm, and is it sufficiently low for realistic instances to be
solvable in reasonable time?

(ii) Evaluating the performance of previous algorithms: are there some instances of (prefer-
ably real-word) data for the problem available (e.g. at http://www.informs.org/
Resources/Resources/Problem Instances/)? What are the largest instances solved
exactly?
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(iii) Evaluating the performance of previous heuristics: which metaheuristics have been
applied to this problem? What are the performances of the resulting heuristics, in
terms of size of problems solved, error and computing time (assuming comparison
among computing environments, if needed, can be done in a fairly realistic way)?

(iv) What steps are used in the heuristics already proposed? What are the corresponding
neighborhoods of the current solution? Are codes for these heuristics available? Are
codes for simple descent methods available?

Question (i)’s role is to help to assess the need for a VNS (or others) heuristic for
the problem considered. Question (ii) and (iii) aim at obtaining a benchmark to evaluate
the performance of the VNS heuristic when it will be designed and implemented: a good
heuristic should obtain optimal solutions for most and preferably all instances solved by an
exact algorithm (which suffers from the additional burden of having to prove optimality).
Moreover, the new heuristic should do as well as previous ones on most or all instances
and substantially better than them on quite a few instances to be viewed as a real progress
(doing slightly better on a few instances is just not sufficient).

Question (iv) aims at providing ingredients for the VNS heuristic, notably in its VND
component; it also inquires indirectly about directions not yet explored. Accessorily, it
raises the question of possible re-use of software, which is reasonable for standard steps,
e.g., a descent with Newton’s method or a variant thereof.

3 Variable Neighborhood Descent

A steepest descent heuristic (known also as best improvement local search) consists of choos-
ing an initial solution x, finding a direction of steepest descent from x, within a neighbor-
hood N(x), and moving to the minimum of f(x) within N(x) along that direction; if there
is no direction of descent, the heuristic stops, and otherwise it is iterated. This set of rules
is summarized in Figure 1.

Initialization.
Choose f , X, neighborhood structure N(x), initial solution x;

Current step (Repeat).
(1) Find x′ = argminx∈N(x)f(x);
(2) If f(x′) < f(x) set x′ ← x′′ and iterate; otherwise, stop.

Figure 1. Steepest descent heuristic.

Observe that a neighborhood structure N(x) is defined for all x ∈ X; in discrete optimiza-
tion problems it usually consists of all vectors obtained from x by some simple modification,
e.g. complementing one or two components of a 0-1 vector. Then, at each step, the neigh-
borhood N(x) of x is explored completely. As this may be time-consuming, an alternative
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is to use the first descent heuristic. Vectors x′ ∈ N(x) are then enumerated systemati-
cally and a move is made as soon as a descent direction is found. This is summarized in
Figure 2.

Initialization.
Choose f , X, neighborhood structure N(x), initial solution x;

Current step (Repeat).
(1) Find first solution x′ ∈ N(x);
(2) If f(x′) > f(x), find next solution x′′ ∈ N(x); set x′ ← x′′ and iterate
(2); otherwise, set x ← x′ and iterate (1);
(3) If all solutions of N(x) have been considered, stop.

Figure 2. First descent heuristic.

VND is based on Fact 1 of the Introduction, i.e., a local optimum for a first type of move
x ← x′ (or heuristic, or within the neighborhood N1(x)) is not necessary one for another
type of move x ← x̃ (within neighborhood N2(x))). It may thus be advantageous to
combine descent heuristics. This leads to the basic VND scheme presented in Figure 3.

Initialization. Select the set of neighborhood structures N�, for � = 1, . . . , �max,
that will be used in the descent; find an initial solution x (or apply the rules to
a given x);

Repeat the following sequence until no improvement is obtained:
(1) Set � ← 1;
(2) Repeat the following steps until � = �max:

(a) Exploration of neighborhood. Find the best neighbor x′ of x (x′ ∈
N�(x));
(b) Move or not. If the solution x′ thus obtained is better than x, set
x ← x′ and � ← 1; otherwise, set � ← � + 1;

Figure 3. Steps of the basic VND.

Caution should be exercised when applying that scheme. In particular one should consider
the following questions:

(i) what complexity do the different moves have?

(ii) what is the best order in applying them?

(iii) are the moves considered sufficient to ensure a thorough exploration of the region
containing x?

(iv) how precise a solution is desired?
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Question (i) aims at selecting and ranking moves: if they involve too many elementary
changes (e.g. complementing 3 components or more of a 0-1 vector), the resulting heuristic
may be very slow and often take more time than an exact algorithm on small or medium
size examples.

Question (ii) also bears upon computing times in relation to the quality of solutions
obtained. A frequent implementation consists of ranking moves by order of complexity of
their application (which is often synonymous with by size of their neighborhoods |N�(x)|),
and returning to the first one each time a direction of descent is found and a step made in
that direction. Alternatively, all moves may be applied in sequence as long as descent is
made for some neighborhood in the series.

Question (iii) is a crucial one: for some problems elementary moves are not sufficient
to leave a narrow valley, and heuristics using them only can give very poor results. This
is illustrated in Example 2 below.

Finally, the precision desired, as asked for in question (iv) will depend upon whether
VND is used alone or within some larger framework, such as VNS itself. In the former
case, one will strive to obtain the best solution possible within the allocated computing
time; in the latter, one may prefer to get a good solution fairly quickly by the deterministic
VND and to improve it later by faster stochastic search in VNS.

Example 1. Simple Plant Location (see e.g. Cornuejols, Fisher and Nemhauser, 1990,
for a survey). The simple (or uncapacitated) plant location problem consists of locating a
set of facilities i among a given set I of m potential locations, with fixed costs fi, in order
to minimize total costs for satisfying the demand of a given set of users J with delivery
costs cij , i ∈ I, j ∈ J . It is expressed as follows:

min
x,y

zP =
m∑

i=1

fiyi +
m∑

i=1

n∑
j=1

cijxij (8)

s.t.
m∑

i=1

xij = 1, ∀j ∈ J ; (9)

yi − xij ≥ 0, ∀i ∈ I, ∀j ∈ J ; (10)
yi ∈ {0, 1}, ∀i ∈ I; (11)

xij ≥ 0, ∀i ∈ I, ∀j ∈ J. (12)

where yi = 1 if a facility is located at i, and 0 otherwise; xij = 1 if demand of user j is
satisfied from facility i and 0 otherwise. Note that for fixed yi, the best solution is defined
by

xij =
{

1 if cij = min�|y�=1 c�j (with minimum index � in case of ties);
0 otherwise



Les Cahiers du GERAD G–2003–46 7

Therefore neighborhoods can be defined on the yi, e.g. by Hamming distance (or number
of components with complementary values). A first heuristic, greedy, proceeds by opening
a facility � with minimum total cost:

f� +
∑

j

c�j = min
i
{fi +

∑
j

cij} (13)

then letting
crj = min

i|yi=1
cij , ∀j (14)

computing the gains gi obtained by opening a facility at i

gi =
∑

j

max{crj − cij , 0} − fi (15)

and iteratively opening the facility for which the gain is larger, as long as it is positive.
Each iteration takes O(mn) time.

Once the greedy heuristic has been applied, an improved solution may be obtained by
the interchange heuristic which proceeds iteratively to the relocation of one facility at a
time in the most profitable way. With an efficient implementation, the idea of which was
suggested by Whitaker (1983) for the closely related p-median problem, an iteration of
interchange can also be made in O(mn) time.

Applying in turn Greedy and Interchange is a simple case of VND. Further moves in
which one facility would be closed and two opened, or two closed and one opened, or two
opened and two closed would be too costly if all possible exchanges are examined.

Example 2. Minimum sum-of-squares clustering (MSSC): given N points a� ∈ IRp

the minimum sum-of-squares clustering problem consists of partitioning them in M classes
(or clusters) Cj such as to minimize the sum of squared distances between the points and
the centroids xi of their clusters:

min
m∑

i=1

∑
�:a�∈Ci

‖a� − xi‖2, (16)

where
xi =

1
|Ci|

∑
�:a�∈Ci

a�, (17)

and ‖.‖ denotes the Euclidean norm.

Traditional heuristics for MSSC are: (i) H-Means, which proceeds from an initial par-
tition by moving one entity x� from its cluster to another one, in a greedy way, until no
further move decreases the objective function value, and (ii) K-Means, which proceeds from
an initial partition by, alternatingly, finding the centroids of its clusters, and reassigning
entities to the closest centroid, until stability is attained.
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Computational experiments (Hansen and Mladenović, 2001) show that both H-Means
and K-Means may lead to very poor results for instances with large M and N (the relative
error being sometimes greater than 100%). This is due to bad exploration of X, or in other
words, to difficulties in leaving valleys. A new “jump” move, defined as the displacement
of a centroid to a point a� which does not coincide with a centroid, leads to a new VND
heuristic, called J-Means, which improves very substantially on both H-Means and K-
Means.

4 Reduced Variable Neighborhood Search

Assume a local minimum x of f has been reached. One would then like to leave its valley,
and find another deeper one. In the standard versions of Variable Neighborhood Search,
no previous knowledge of the landscape is assumed, or exploited. (Note that interesting
hybrids could be built, using also values of f(x) at previous iteration points x). Then, the
questions to be asked are:

(i) in which direction to go?

(ii) how far?

(iii) how should one modify moves if they are not successful?

Question (i) bears upon the possibility of reaching any feasible point x ∈ X, or every
valley; the simplest answer is to choose a direction at random. For problems in 0-1 variables
this will amount to complementing some variables; for continuous Euclidean problems,
drawing angular coefficients at random (or, in other words, choosing at random a point on
the unit ball around x) takes all points of X into account.

Question (ii) is crucial. Indeed one wants to exploit to the limit Fact 2 of the Introduc-
tion, i.e., in many combinatorial and global optimization problems, local optima tend to
be close one to another and situated in one (or sometimes several) small parts of X. So
once a local optimum has been reached, it contains implicit information about close better,
and perhaps globally optimum, ones. It is then natural to explore first its vicinity. But, if
the valley surrounding the local optimum x is large, this may not be sufficient, and what
to do next is asked for in question (iii). Again a natural answer is to go further.

These aims are pursued in the Reduced Variable Neighborhood scheme, presented in
Figure 4. A set of neighborhoods N1(x), N2(x), . . . , Nkmax(x) will be considered around
the current point x (which may be or not a local optimum). Usually, these neighborhoods
will be nested, i.e., each one contains the previous. Then a point is chosen at random in the
first neighborhood. If its value is better than that of the incumbent (i.e., f(x′) < f(x)), the
search is recentered there (x ← x′). Otherwise, one proceeds to the next neighborhood.
After all neighborhoods have been considered, one begins again with the first, until a
stopping condition is satisfied (usually it will be maximum computing time since the last
improvement, or maximum number of iterations).
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Due to the nestedness property the size of successive neighborhoods will be increasing.
Therefore one will explore more thoroughly close neighborhoods of x than farther ones,
but nevertheless search within these when no further improvements are observed within
the first, smaller ones.

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . . , kmax,
that will be used in the search; find an initial solution x; choose a stopping
condition;

Repeat the following sequence until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x));
(b) Move or not. If this point is better than the incumbent, move
there (x ← x′), and continue the search with N1 (k ← 1); otherwise, set
k ← k + 1;

Figure 4. Steps of the Reduced VNS.

Example 3. p-Median (see e.g. Labbé, Peeters and Thisse, 1995 for a survey). This is
a location problem very close to Simple Plant Location. The differences are that there are
no fixed costs, and that the number of facilities to be opened is set at a given value p. It
is expressed as follows:

min
m∑

i=1

n∑
j=1

cijxij (18)

subject to

m∑
i=1

xij = 1, ∀j, (19)

yi − xij ≥ 0, ∀i, j, (20)
m∑

i=1

yi = p, (21)

xij , yi ∈ {0, 1}. (22)

The Greedy and Interchange heuristics described above for Simple Plant Location are
easily adapted to the p-Median problem and, in fact, the latter was early proposed by Teitz
and Bart (1967).

Fast interchange, using Whitaker’s (1983) data structure applies here also (Hansen and
Mladenović, 1997). Refinements have recently been proposed by Resende and Werneck
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(2002). A comparison between that approach and RVNS is made in Hansen et al. (2001),
and results summarized in Table 1. It appears that RVNS gives better results than Fast
Interchange in 40 times less time.

Obj. value CPU times % Error
p Best known FI RVNS VNDS FI RVNS VNDS

100 2733817.25 6637.48 510.20 6087.75 0.36 0.15 0.00
200 1809064.38 14966.05 663.69 14948.37 0.79 0.36 0.00
300 1394715.12 20127.91 541.76 17477.51 0.65 0.51 0.00
400 1145669.38 23630.95 618.62 22283.04 0.82 0.59 0.00
500 974275.31 29441.97 954.10 10979.77 0.98 0.51 0.00
700 752068.38 36159.45 768.84 32249.00 0.64 0.50 0.00
800 676846.12 38887.40 813.38 20371.81 0.61 0.53 0.00
900 613367.44 41607.78 731.71 27060.09 0.55 0.53 0.00

1000 558802.38 44176.27 742.70 26616.96 0.73 0.66 0.00
Average 28403.90 705.00 19786.00 0.68 0.48 0.00

Table 1: 5934-customer p-Median problem.

5 Basic and General Variable Neighborhood Search

In the previous two sections, we examined how to use variable neighborhoods in descent to
a local optimum and in finding promising regions for near-optimal solutions. Merging the
tools for both tasks leads to the General Variable Neighborhood Search scheme. We first
discuss how to combine a local search with systematic changes of neighborhoods around
the local optimum found. We then obtain the Basic VNS scheme presented in Figure 5.

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . . , kmax,
that will be used in the search; find an initial solution x; choose a stopping
condition;
Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x));
(b) Local search. Apply some local search method with x′ as initial
solution; denote with x′′ the so obtained local optimum;
(c) Move or not. If the local optimum x′′ is better than the incumbent
x, move there (x ← x′′), and continue the search with N1 (k ← 1);
otherwise, set k ← k + 1;

Figure 5. Steps of the basic VNS.
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According to this basic scheme, a series of neighborhood structures, which define neigh-
borhoods around any point x ∈ X of the solution space, are first selected. Then the local
search is used and leads to a local optimum x. A point x′ is selected at random within the
first neighborhood N1(x) of x and a descent from x′ is done with the local search routine.
This leads to a new local minimum x′′. At this point, three outcomes are possible: (i)
x′′ = x, i.e., one is again at the bottom of the same valley; in this case the procedure is
iterated using the next neighborhood Nk(x), k ≥ 2; (ii) x′′ 
= x but f(x′′) ≥ f(x), i.e.,
another local optimum has been found, which is not better than the previous best solution
(or incumbent); in this case too the procedure is iterated using the next neighborhood;
(iii) x′′ 
= x and f(x′′) < f(x) i.e., another local optimum, better than the incumbent has
been found; in this case the search is recentered around x′′ and begins again with the first
neighborhood. Should the last neighborhood be reached without a solution better than
the incumbent being found, the search begins again at the first neighborhood N1(x) until a
stopping condition, e.g., a maximum time or maximum number of iterations or maximum
number of iterations since the last improvement, is satisfied.

If instead of simple local search, one uses Variable Neighborhood Descent and if one
improves the initial solution found by Reduced VNS, one obtains the General Variable
Neighborhood Search scheme. This scheme is presented in Figure 6.

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used
in the shaking phase, and the set of neighborhood structures N� for � = 1, . . . , �max that will be
used in the local search; find an initial solution x and improve it by using RVNS; choose a stopping
condition;

Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood Nk(x) of x;

(b) Local search by VND.
(b1) Set � ← 1;
(b2) Repeat the following steps until � = �max;
· Exploration of neighborhood. Find the best neighbor x′′ of x′ in N�(x

′);
· Move or not. If f(x′′) < f(x′) set x′ ← x′′ and � ← 1; otherwise set � ← � + 1;

(c) Move or not. If this local optimum is better than the incumbent, move there (x ← x′′),
and continue the search with N1 (k ← 1); otherwise, set k ← k + 1;

Figure 6. Steps of the General VNS.

Several questions about selection of neighborhood structures are in order:

(i) What properties of the neighborhoods are mandatory for the resulting scheme to be
able to find a globally optimal or near-optimal solution?

(ii) What properties of the neighborhoods will be helpful in finding a near-optimal solu-
tion?
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(iii) Should neighborhoods be nested? Otherwise how should they be ordered?

(iv) What are desirable properties of the sizes of neighborhoods?

The first two questions bear upon the ability of the VNS heuristic to find the best valleys,
and to do so fairly quickly. To avoid being blocked in a valley, while there may be deeper
ones, the union of the neighborhoods around any feasible solution x should contain the
whole feasible set:

X ⊆ N1(x) ∪N2(x) ∪ · · · ∪ Nkmax(x), ∀x ∈ X.

These sets may cover X without necessarily partitioning it, which is easier to implement,
e.g. when using nested neighborhoods, i.e.,

N1(x) ⊂ N2(x) ⊂ · · · ⊂ Nkmax(x), X ⊂ Nkmax(x), ∀x ∈ X.

If these properties do not hold, one might still be able to explore X completely, by
traversing small neighborhoods around points on some trajectory, but it is no more guar-
anteed. To illustrate, as mentioned before in minimum sum-of-squares clustering, the
neighborhoods defined by moving an entity (or even a few entities) from one cluster to
another one are insufficient to get out of many local optima. Moving centers of clusters
does not pose a similar problem.

Nested neighborhoods are easily obtained for many combinatorial problems by defining
a first neighborhood N1(x) by a type of move (e.g. 2-opt in the traveling salesman problem)
and then iterating it k times to obtain neighborhoods Nk(x) for k = 2, . . . , kmax. They
have the property that their sizes are increasing. Therefore if, as is often the case, one goes
many times through the whole sequence of neighborhoods the first ones will be explored
more thoroughly than the last ones. This is desirable in view of Fact 3 mentioned in the
Introduction, i.e., that local optima tend to be close one from another.

Restricting moves to the feasible set X may be too constraining, particularly if this
set is disconnected. Introducing some or all constraints in the objective function with
Lagrangian multipliers, allows moving to infeasible solutions. A variant of this idea is to
penalize infeasibilities, e.g. pairs of adjacent vertices to which the same color is assigned
in Graph coloring, see Zufferey, Hertz and Avanthay (2003).

Example 4. Scheduling workover rigs for onshore oil production.

Many oil wells in onshore fields rely on artificial lift methods. Maintenance services such
as cleaning and others, which are essential to these wells, are performed by workover rigs.
They are slow mobile units and, due to their high operation costs, there are relatively few
workover rigs when compared with the number of wells demanding service. The problem
of scheduling workover rigs consists in finding the best schedule Si (i = 1, . . . , m) of the m
workover rigs to attend all wells demanding maintenance services, so as to minimize the
oil production loss (production before maintenance being reduced).
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In Aloise et al. (2003) a basic VNS heuristic is developed for solving the Scheduling
of Workover Rigs Problem (WRP). Initial schedule Si (where Si is an ordered set of wells
serviced by workover rig i), are obtained by a Greedy constructive heuristic. For the
shaking step kmax = 9 neighborhoods are constructed: (1) Swap routes (SS): the wells and
the associated routes assigned to two workover rigs are interchanged; (2) Swap wells from
the same workover rig (SWSW): the order in which two wells are serviced by the same rig
is swapped; (3) Swap wells from different workover rig (SWDW): two wells assigned to two
different workover rigs are swapped; (4) Add/Dropp (AD): a well assigned to a workover rig
is reassigned to any position of the schedule of another workover rig; (5) (SWSW)2: apply
twice the SWSW move; (6) (SWDW)2: apply twice the SWDW move; (7) (SWDW)3:
apply three times the SWDW move; (8) (AD)2: successively apply two (AD) moves; (9)
(AD)3: successively apply three (AD) moves.

For local search, the neighborhood consists of all possible exchanges of pairs of wells,
i.e., the union of (SWSW) and (SWDW) from above are used.

A basic VNS is compared with Genetic algorithm, Greedy randomized Adaptive Pro-
cedure (GRASP) and two Ant colony methods (AS and MMAS) on synthetical and real
life problems from Brasilian onshore fields. Some results on synthetical data are given in
Table 2. On 27 possible scenarios in generating data sets (denoted by P-111, P-112, P-113,
P-121,..., P333), VNS was better than others in 85% of the cases and MMAS in 15%.
On real life problems, results were much better than the gains expected. For example, a
daily reduction of 109 m3 (equivalent to 685.6 bbl) in the production losses along 15 days
was obtained by VNS compared with Petrobras’ previous solution. That leads to a total
savings estimated at 6,600,000 US dollars per year.

Problem GA GRASP AS MMAS VNS
P-111 16791.87 16602.51 15813.53 15815.26 15449.50
P-211 20016.14 19726.06 19048.13 19051.61 18580.64
P-311 20251.93 20094.37 19528.93 19546.10 19434.97

Table 2: Average results with eight workover rigs over 20 runs of each synthetic test
problem and three possible scenarios (from Aloise et al., 2003).

6 Skewed Variable Neighborhood Search

VNS gives usually better or as good solutions than multistart, and much better ones when
there are many local optima. This is due to Fact 3 of the Introduction: many problems
have clustered local optima; often, their objective function is a globally convex one plus
some noise. However, it may happen that some instances have several separated and
possibly far apart valleys containing near-optimal solutions. If one considers larger and
larger neighborhoods, the information related to the currently best local optimum dissolves
and VNS degenerates into multistart. Moreover if the current best local optimum is not
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in the deepest valley this information is in part irrelevant. It is therefore of interest to
modify VNS schemes in order to explore more fully valleys which are far away from the
incumbent solution. This will be done by accepting to recenter the search when a solution
close to the best one known, but not necessarily as good, is found, provided that it is far
from this last solution. The modified VNS scheme for this variant, called Skewed Variable
Neighborhood Search (SVNS) is presented in Figure 7. The relaxed rule for recentering uses
an evaluation function linear in the distance from the incumbent, i.e., f(x′′) is replaced by

f(x′′) − αρ(x, x′′)

where ρ(x, x′′) is the distance from x to x′′ and α a parameter. A metric for distance
between solutions is usually easy to find, e.g. the Hamming distance when solutions are
described by boolean vectors or the Euclidean distance in the continuous case.

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will
be used in the search; find an initial solution x and its value f(x); set xopt ← x, fopt ← f(x):
choose a stopping condition and a parameter value α;

Repeat the following until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a)Shaking. Generate a point x′ at random from the kth neighborhood of x;
(b)Local search. Apply some local search method with x′ as initial solution; denote
with x′′ the so obtained local optimum;
(c) Improvement or not. If f(x′′) < fopt set fopt ← f(x) and xopt ← x′′;
(d) Move or not. If f(x′′) − αρ(x, x′′) < f(x) set x ← x′′ and k ← 1; otherwise set
k ← k + 1.

Figure 7. Steps of the Skewed VNS.

Clearly, more complicated formulas could be used for recentering; possibly, one might take
into account known values at points already visited in the valley being explored.

Questions to be answered when applying SVNS are the following:

(i) does the problem under consideration have a roughly convex objective function, or are
there several far apart deep valleys?

(ii) how should α be chosen?

These questions can be answered, to some extent, by first using a multistart version of
VNS, i.e., starting VNS from various random points and running it for a short time. Then
one can look at the position of the best local optima found and see if they are clustered
or dispersed. Further, one can plot values in function of distance from the corresponding
local optima to the best known solution and choose α as a fraction of the average slope.
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Example 6. Weighted Maximum satisfiability (WMAX-SAT). The satisfiability
problem, in clausal form, consists in determining if a given set of m clauses (all in disjunc-
tive or all in conjunctive form) built upon n logical variables has a solution or not. The
maximum satisfiability problem consists in finding a solution satisfying the largest possible
number of clauses. In the weighted maximum satisfiability problem (WMAXSAT) positive
weights are assigned to the clauses and a solution maximizing the sum of weights of satis-
fied clauses is sought. Results of comparative experiments with VNS and TS heuristics on
instances having 500 variables, 4500 clauses and 3 variables per clause, in direct or com-
plemented form, are given in Table 3 from Hansen et al. (2001). It appears that using a
restricted neighborhood consisting of a few directions of steepest descent or mildest ascent
in the Shaking step does not improve results, but using this idea in conjunction with SVNS
improves notably upon results of basic VNS and also upon those of a TS heuristic.

VNS VNS-low SVNS-low TS

Number of instances where
best solution is found 6 4 23 5
% Average error in 10 trials 0.2390 0.2702 0.0404 0.0630
% Best error in 10 trials 0.0969 0.1077 0.0001 0.0457
Total number of instances 25 25 25 25

Table 3: Results for GERAD test problems for WMAXSAT (n = 500).

7 Variable Neighborhood Decomposition Search

The Variable Neighborhood Decomposition Search (VNDS) method (Hansen et al.,
2001) extends the basic VNS into a two-level VNS scheme based upon decomposition of
the problem. Its steps are presented on Figure 8.

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will
be used in the search; find an initial solution x; choose a stopping condition;

Repeat the following sequence until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈
Nk(x)); in other words, let y be a set of k solution attributes present in x′ but not
in x (y = x′ \ x).
(b) Local search. Find a local optimum in the space of y either by inspection or by
some heuristic; denote the best solution found with y′ and with x′′ the corresponding
solution in the whole space S (x′′ = (x′ \ y) ∪ y′);
(c) Move or not. If the solution thus obtained is better than the incumbent, move
there (x ← x′′), and continue the search with N1 (k ← 1); otherwise, set k ← k + 1;

Figure 8. Steps of the basic VNDS.
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Note that the only difference between the basic VNS and VNDS is in step 2b: instead
of applying some local search method in the whole solution space S (starting from x′ ∈
Nk(x)), in VNDS we solve at each iteration a subproblem in some subspace Vk ⊆ Nk(x)
with x′ ∈ Vk. When the local search used in this step is also VNS, the two-level VNS-
scheme arises.

VNDS can be viewed as embedding the classical successive approximation scheme in
the VNS framework.

8 Analyzing Performance

When a first VNS heuristic has been obtained and tested, the effort should not stop there.
Indeed, it is often at this point that the most creative part of the development process
takes place. It exploits systematically Fact 2 of the Introduction, i.e., that global minima
are local minima for all possible neighborhoods simultaneously. The contrapositive is that
if a solution x ∈ X is a local minimum (for the current set of neighborhoods) and not a
global one there are one or several neighborhoods (or moves) to be found, which will bring
it to this global optimum.

The study then focuses on instances for which an optimal solution is known (or, if
none or very few are available, on instances with a presumably optimal solutions, i.e., the
best one found by several heuristics) and compares it with the heuristic solution obtained.
Visualization is helpful and make take the form of a Distance-to-target diagram (Hansen
and Mladenović, 2003). Then, the heuristic solutions, the optimal one and their symmetric
difference (e.g., for the Traveling Salesman Problem, TSP for short) are represented on
screen. Moreover, an interactive feature allows a follow how the heuristic works step by
step. The information thus gathered is much more detailed than what one would get just
from objective values and computer times if, as is often the case, the heuristic is viewed
as a black box. For instance, this clearly shows that 2-opt is not sufficient to get a good
solution for the TSP, that moves involving 3 or 4 edges are needed and that those edges
leading to an improvement may be far apart along the tour. For another application of
VNS to the TSP see Burke et al. (1999).

Similarly, for location problems, one can focus on those facilities which are not at their
optimal location and study why, in terms of distributions of nearby users.

Another point is to study how to get out of a large valley if there exists another promising
one. Valley (or mountain) profiles are then useful (Hansen et al., 2001). They are obtained
by drawing many points x′ at random within nested neighborhoods N1(x),N2(x), . . . (or,
which is equivalent, at increasing distance of a local minimum x) then performing one VND
descent and plotting probabilities to get back to x, to get to another local minimum x′′
with a value f(x′′) ≥ f(x) or to get to an improved local minimum x′ with f(x′′) < f(x).
Alternately one may also study the probabilities to go in the direction of x, i.e., ρ(x, x′′) ≤
ρ(x, x′) or towards another valley i.e., ρ(x, x′′) > ρ(x, x′).
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9 Promising areas of research

Research on Variable Neighborhood Search and its applications is currently very active.
We review some of the promising areas in this section; these include a few which are barely
explored yet.

A first set of areas concerns enhancements of the VNS basic scheme and ways to make
various steps more efficient.

(a) Initialization. Both VND and VNS, as many other heuristics, require an initial
solution. Two questions then arise: How best to choose it? and Does it matter? For
instance, many initialization rules have been proposed for the k-Means heuristic for
minimum sum-of-squares clustering, described above, 25 such rules are compared in
Hansen et al. (2003). It appears that while sensitivity of k-Means to the initial solu-
tion is considerable (best results being obtained with Ward’s hierarchical clustering
method), VNS results depend very little on the chosen rule. The simplest one is
thus best. It would be interesting to extend and generalize this result by conducting
similar experiments for other problems.

(b) Inventory of neighborhoods. As mentioned above, a VNS study begins by gath-
ering material on neighborhoods used in previous heuristics for the problem under
study. A systematic study of moves (or neighborhoods) used for heuristics for whole
classes of problems (e.g. location, network design, routing, ...) together with the
data-structures most adequate for their implementation should be of basic interest
for VNS as well as for other metaheuristics. Several researchers, e.g. Ahuja et al.
(2000) are working in that direction.

(c) Distribution of neighborhoods. When applying a General VNS scheme, neigh-
borhoods can be used in the local search phase, in the shaking phase or in both.
A systematic study of their best distribution between phases could enhance perfor-
mance and provide further insight in the solution process. In particular, the trade-off
between increased work in the descent, which provides better local optima, and in
shaking which leads to better valleys should be focussed upon.

(d) Ancillary tests. VNS schemes use randomization in their attempts to find better
solutions. This also avoids possible cycling. However, many moves may not lead to
any improvement. This suggests to add ancillary test (Hansen, 1974, 1975) the role
of which is to decide if a move should be used or not, in its general or in a restricted
form. Considering again minimum sum-of-squares clustering, one could try to select
better the centroid to be removed from the current solution (a possible criterion being
that its cluster contains a few entities only or is close to another centroid) as well
as the position where it will be assigned (e.g., the location of an entity far from any
other centroid and in a fairly dense region).
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A second set of areas concerns changes to the basic scheme of VNS.

(e) Use of memory. VNS in its present form relies only on the best solutions currently
known to center the search. Knowledge of previous good solutions is forgotten, but
might be useful to indicate promising regions not much explored yet. Also charac-
teristics common to many or most good solutions, such as variables taking the some
value in all or most such solutions could be used to better focus the shaking phase.
Use of memory has been much studied in Tabu search and other metaheuristics. The
challenge for VNS would be to introduce memory while keeping simplicity.

An interesting way to use memory to enhance performance is Reactive VNS, explored
by Braisy [?] for the Vehicle routing problem with time windows. If some constraints
are hard to satisfy their violation may be penalized more frequently than for others
in the solution process.

(f) Parallel VNS. Clearly, there are many natural ways to parallelize VNS schemes. A
first one, within VND, is to perform local search in parallel. A second one, within
VNS, is to assign the exploration of each neighborhood of the incumbent to a different
processor. A third one, within VNDS, is to assign a different subproblem to each
processor. Lopez et al. (2002) explore several options in designing a parallel VNS.

(g) Hybrids. Several researchers, e.g. Rodriguez et al. (1999), Festa et al. (2001),
Ribeiro et al. (2001), Drezner (2003a, 2003b) have combined VNS with other meta-
heuristics for various problems. Again, this is not always easy to do without losing
VNS’ simplicity but may lead to excellent results particulary if the other metaheuris-
tics are very different from VNS.

At a more general level one might wish to explore combinations of VNS with con-
straint programming, instead of its development within mathematical programming
as in the applications described above. This could be done in two directions: on
the one hand, techniques from constraint programming could be applied to enhance
VND; on the other hand, VNS could be applied to constraint programming by min-
imizing a sum of artificial variables measuring infeasibility and possibly weighted by
some estimate of the difficulty of satisfying the corresponding constraints.

A third set of areas concerns new aims for VNS, i.e., non-standard uses.

(h) Solutions with bounds on the error. VNS, as other metaheuristics, most often
provides near-optimal solutions to combinatorial problems, without bounds on their
error. So while such solutions may be optimal or very close to optimality, this fact
cannot be recognized. One approach to obtain such bounds is to find with VNS a
heuristic solution of the primal problem, deduce from it a solution to the dual (or its
continuous relaxation) and then improve this dual solution by another application
of VNS. Moreover, complementary slackness conditions can be used to simplify the
dual. For problems with a small duality gap this may lead to near optimal solution
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guaranteed to be very close to optimality. To illustrate, recent work of Hansen et al.
(2003) on the Simple Plant Location Problem gave solutions to instances with up to
15,000 users and 15,000 possible facilities with an error bounded by 0.05%.

(i) Using VNS within exact algorithms for mixed-integer programming. So-
phisticated algorithms for mixed-integer programming often contain various phases
where heuristics are applied. This is illustrated e.g. by Desaulniers, Desrosiers and
Solomon (2001) for the airline crew scheduling problem.

Extending the results described in the previous subsection, in the branch-and-bound
framework led to solve exactly SPLP instances with up to 7,000 users (Hansen et al.,
2003).

A different approach, called Local branching, has been recently proposed by Fischetti
and Lodi (2003) and Fischetti et al. (2003), both for exact and approximate resolution
of large mixed-integer programs. At various branches in the branch-and-bound tree,
cuts (which are not valid in general) are added; they express that among a given set
of 0-1 variables, already at an integer value, only a few may change their value. They
thus corresponds to neighborhoods defined by the Hamming distance. Then CPLEX
is used to find the optimal solution within the neighborhood and in this way feasible
solutions are more easily obtained. Improved solutions were obtained for a series of
large mixed-integer programming instances from various sources.

(j) Artificial intelligence: enhancing graph theory with VNS. VNS, as other
metaheuristics has been extensively used to solve a variety of optimization problems
in graph theory. However, it may also be used to enhance graph theory per se, fol-
lowing an Artificial Intelligence approach. This is done by the AutoGraphiX (AGX)
system developed by Caporossi and Hansen (2000, 2003). This system considers a
graph invariant (i.e., a quantity defined for all graphs of the class under study and
independent of vertex and edge labelings) or a formula involving several invariants
(which is itself a graph invariant). Then AGX finds extremal or near-extremal graphs
for that invariant parameterizing on a few variables, often the order n (or number
of vertices) and the size m (of number of edges) of the graph. Analyzing automat-
ically or interactively these graphs and the corresponding curves of invariant values
leads to find new conjectures, refute, corroborate or strengthen existing ones and
get hints about possible proof from the minimal list of moves needed to find the
extremal graphs. To illustrate, the energy E of a graph is the sum of absolute values
of the eigenvalues of its adjacency matrix. The following relations were obtained by
Caporossi et al. (1999) with AGX: E ≥ 2

√
m and E ≥ 4m

n and were easily proved.
Over 70 new relations have now been obtained, in mathematics and in chemistry.
Three ways to attain full automation based on the mathematics of principal compo-
nent analysis, linear programming and recognition of extremal graphs together with
formula manipulations are currently being studied.
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10 Conclusions

The general schemes of Variable Neighborhood Search have been presented, discussed
and illustrated by examples. References to many further successful applications are given
in the Appendix. In order to evaluate the VNS research program, one needs a list of
desirable properties of metaheuristics. The following eight ones are presented in Hansen
and Mladenović (2003):

(i) Simplicity: the metaheuristic should be based on a simple and clear principle, which
should be largely applicable;

(ii) Precision: steps of the metaheuristic should be formulated in precise mathematical
terms, independent from the possible physical or biological analogy which was an
initial source of inspiration;

(iii) Coherence: all steps of heuristics for particular problems should follow naturally from
the metaheuristic’s principle;

(iv) Efficiency: heuristics for particular problems should provide optimal or near-optimal
solutions for all or at least most realistic instances. Preferably, they should find
optimal solutions for most problems of benchmarks for which such solutions are
known, when available;

(v) Effectiveness: heuristics for particular problems should take moderate computing
time to provide optimal or near-optimal solutions;

(vi) Robustness: performance of heuristics should be consistent over a variety of instances,
i.e., not just fine-tuned to some training set and less good elsewhere;

(vii) User-friendliness: heuristics should be clearly expressed, easy to understand and,
most important, easy to use. This implies they should have as few parameters as
possible and ideally none;

(viii) Innovation: preferably, the metaheuristic’s principle and / or the efficiency and ef-
fectiveness of the heuristics derived from it should lead to new types of applications.

As argued there, as well as in the more recent among the surveys listed in the Appendix,
VNS possesses, to a large extend, all of those properties. This has led to heuristics among
the very best ones for several problems, but more importantly to insight into the solution
process and some innovative applications.

Appendix. Sources of Additional Information about VNS

Some of Web addresses with sources of information about Variable Neighborhood Search
include
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- http://www.mi.sanu.ac.yu/VNS/VNS.HTM
This is a working web presentation of VNS, developed by Tatjana Davidović, PhD
student at University of Belgrade;

- VNSHeuristic.ull.es
Another web page for the VNS designed by Professor’s Moreno research group from
University of La Laguna.

- http://www.gerad.ca/en/publications/cahiers.php
If one choose the option “search for papers” and in the “Abstract” box type “Variable
Neighborhood Search”, 23 papers for downloading will appear at the screen;

- http://smg.ulb.ac.be
There are several papers on VNS in “Preprints” by Hansen, Labbé, Mélot, Mladen-
ović, etc.

Survey papers are: P. Hansen and N. Mladenović (1999, 2001a, 2001c, 2002a, 2002b, 2003),
Hansen, Mladenović and Moreno-Perez (2003), and Kochetov, Hansen and Mladenović
(2003).
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