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Abstract Variable neighborhood search (VNS) is a metaheuristic for solving
combinatorial and global optimization problems whose basic idea is a systematic
change of neighborhood both within a descent phase to find a local optimum and
in a perturbation phase to get out of the corresponding valley. In this chapter we
present the basic schemes of VNS and some of its extensions. We then describe a
recent development, i.e., formulation space search. We then present five families of
applications in which VNS has proven to be very successful: (i) exact solution of
large-scale location problems by primal–dual VNS; (ii) generation of feasible so-
lutions to large mixed integer linear programs by hybridization of VNS and local
branching; (iii) generation of good feasible solutions to continuous nonlinear pro-
grams; (iv) generation of feasible solutions and/or improved local optima for mixed
integer nonlinear programs by hybridization of sequential quadratic programming
and branch and bound within a VNS framework, and (v) exploration of graph theory
to find conjectures, refutations, and proofs or ideas of proofs.
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IUDR and DEIOC, Universidad de La Laguna, 38271 La Laguna, Santa Cruz de Tenerife, Spain
e-mail: jamoreno@ull.es

M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics, 61
International Series in Operations Research & Management Science 146,
DOI 10.1007/978-1-4419-1665-5 3, c© Springer Science+Business Media, LLC 2010
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3.1 Introduction

Optimization tools have greatly improved during the last two decades. This is due
to several factors: (i) progress in mathematical programming theory and algorithmic
design; (ii) rapid improvement in computer performances; (iii) better communica-
tion of new ideas and integration in widely used complex softwares. Consequently,
many problems long viewed as out of reach are currently solved, sometimes in very
moderate computing times. This success, however, has led researchers and prac-
titioners to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of papers
describing, evaluating, and comparing new heuristics appear each year. Keeping
abreast of such a large literature is a challenge. Metaheuristics, or general frame-
works for building heuristics, are therefore needed in order to organize the study of
heuristics. As evidenced by this handbook, there are many of them. Some desirable
properties of metaheuristics [64, 67, 68] are listed in the concluding section of this
chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of the
present authors a dozen years ago [85]. Earlier work that motivated this approach
can be found in [28, 41, 44, 82]. It is based on the idea of a systematic change of
neighborhood both in a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. Originally designed for approximate
solution of combinatorial optimization problems, it was extended to address mixed
integer programs, nonlinear programs, and recently mixed integer nonlinear pro-
grams. In addition VNS has been used as a tool for automated or computer-assisted
graph theory. This led to the discovery of over 1500 conjectures in that field, the
automated proof of more than half of them as well as the unassisted proof of about
400 of them by many mathematicians.

Applications are rapidly increasing in number and pertain to many fields: loca-
tion theory, cluster analysis, scheduling, vehicle routing, network design, lot-sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliabil-
ity, geometry, telecommunication design, etc. (see, e.g., [20, 21, 31, 38, 39, 66,
77, 99]). References are too numerous to be all listed here, but many others can be
found in [69] and special issues of IMA Journal of Management Mathematics [81],
European Journal of Operational Research [68], and Journal of Heuristics [89] are
devoted to VNS.

This chapter is organized as follows. In the next section we present the basic
schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS (RVNS),
basic VNS (BVNS), and general VNS (GVNS). Two important extensions are
presented in Section 3.3: skewed VNS and variable neighborhood decomposition
search (VNDS). A further recent development called formulation space search
(FSS) is discussed in Section 3.4. The remainder of this chapter describes appli-
cations of VNS to several classes of large scale and complex optimization prob-
lems for which it has proven to be particularly successful. Section 3.5 is devoted
to primal–dual VNS (PD-VNS) and its application to location and clustering prob-
lems. Finding feasible solutions to large mixed integer linear programs with VNS



3 Variable Neighborhood Search 63

is discussed in Section 3.6. Section 3.7 addresses ways to apply VNS in continuous
global optimization. The more difficult case of solving mixed integer nonlinear
programming by VNS is considered in Section 3.8. Applying VNS to graph the-
ory per se (and not just to particular optimization problems defined on graphs) is
discussed in Section 3.9. Brief conclusions are drawn in Section 3.10.

3.2 Basic Schemes

A deterministic optimization problem may be formulated as

min{ f (x)|x ∈ X ,X ⊆S }, (3.1)

where S , X , x, and f denote the solution space, the feasible set, a feasible solution,
and a real-valued objective function, respectively. If S is a finite but large set, a
combinatorial optimization problem is defined. If S = R

n, we refer to continuous
optimization. A solution x∗ ∈ X is optimal if

f (x∗)≤ f (x), ∀x ∈ X .

An exact algorithm for problem (3.1), if one exists, finds an optimal solution x∗,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X = /0, or the solution is unbounded. Moreover, in practice, the time needed to do
so should be finite (and not too long). For continuous optimization, it is reasonable
to allow for some degree of tolerance, i.e., to stop when sufficient convergence is
detected.

Let us denote Nk (k = 1, . . . ,kmax), a finite set of pre-selected neighborhood struc-
tures, and with Nk(x) the set of solutions in the kth neighborhood of x. Most local
search heuristics use only one neighborhood structure, i.e., kmax = 1. Often succes-
sive neighborhoods Nk are nested and may be induced from one or more metric (or
quasi-metric) functions introduced into a solution space S. An optimal solution xopt

(or global minimum) is a feasible solution where a minimum is reached. We call
x′ ∈ X a local minimum of Equation (3.1) with respect to Nk (w.r.t. Nk for short),
if there is no solution x ∈Nk(x′)⊆ X such that f (x) < f (x′). Metaheuristics (based
on local search procedures) try to continue the search by other means after finding
the first local minimum. VNS is based on three simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood
structures;

Fact 3 For many problems, local minima w.r.t. one or several Nk are relatively
close to each other.
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This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. For instance, it might be several vari-
ables with the same value in both solutions. However, it is usually not known which
variables are such. Since these variables usually cannot be identified in advance, one
should conduct an organized study of the neighborhoods of the local optimum until
a better solution is found.

In order to solve Equation (3.1) by using several neighborhoods, facts 1 to 3 can
be used in three different ways: (i) deterministic, (ii) stochastic, (iii) both determin-
istic and stochastic.

We first give in Algorithm 1 the solution move and neighborhood change function
that will be used later.

Algorithm 1 Neighborhood change
Function NeighborhoodChange (x,x′,k)

if f (x′) < f (x) then1
x ← x′ // Make a move2
k ← 1 // Initial neighborhood3

else
k ← k +1 // Next neighborhood4

return x,k

Function NeighborhoodChange() compares the incumbent value f (x) with
the new value f (x′) obtained from the kth neighborhood (line 1). If an improvement
is obtained, the new incumbent is updated (line 2) and k is returned to its initial
value (line 3). Otherwise, the next neighborhood is considered (line 4).

(i) The variable neighborhood descent (VND) method is obtained if a change of
neighborhoods is performed in a deterministic way. It is presented in Algorithm 2,
where neighborhoods are denoted as Nk,k = 1, . . . ,kmax.

Algorithm 2 Variable neighborhood descent
Function VND (x,kmax)

k ← 11
repeat2

x′ ← argminy∈Nk(x) f (y) // Find the best neighbor in Nk(x)3

x,k ← NeighborhoodChange (x,x′,k) // Change neighborhood4

until k = kmax
return x

Most local search heuristics use a single or sometimes two neighborhoods for
improving the current solution (i.e., kmax ≤ 2). Note that the final solution should
be a local minimum w.r.t. all kmax neighborhoods, and thus a global optimum is
more likely to be reached than with a single structure. Beside this sequential order
of neighborhood structures in VND, one can develop a nested strategy. Assume,
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for example, that kmax = 3; then a possible nested strategy is to perform VND with
Algorithm 2 for the first two neighborhoods from each point x′ that belongs to the
third one (x′ ∈ N3(x)). Such an approach is successfully applied in [22, 27, 65].

(ii) The reduced VNS (RVNS) method is obtained if random points are selected
from Nk(x) and no descent is made. Rather, the values of these new points are com-
pared with that of the incumbent and an update takes place in case of improvement.
We also assume that a stopping condition has been chosen like the maximum CPU

time allowed tmax or the maximum number of iterations between two improvements.
To simplify the description of the algorithms we always use tmax below. Therefore,
RVNS uses two parameters: tmax and kmax. It is presented in Algorithm 3.

Algorithm 3 Reduced VNS
Function RVNS(x,kmax, tmax)

repeat1
k ← 12
repeat3

x′ ← Shake(x,k)4
x,k ← NeighborhoodChange (x,x′,k)5

until k = kmax

t ← CpuTime()6

until t > tmax
return x

The function Shake in line 4 generates a point x′ at random from the kth neigh-
borhood of x, i.e., x′ ∈ Nk(x). It is given in Algorithm 4, where it is assumed that
points from Nk(x) are {x1, . . . ,x|Nk(x)|}. RVNS is useful for very large instances

Algorithm 4 Shaking function
Function Shake(x,k)

w ← [1+Rand(0,1)×|Nk(x)|]1
x′ ← xw2

return x′

for which local search is costly. It can be used as well for finding initial solutions
for large problems before decomposition. It has been observed that the best value
for the parameter kmax is often 2 or 3. In addition, a maximum number of iterations
between two improvements is usually used as the stopping condition. RVNS is akin
to a Monte Carlo method, but is more systematic (see, e.g., [86] where results ob-
tained by RVNS were 30% better than those of the Monte Carlo method in solving
a continuous min–max problem). When applied to the p-Median problem, RVNS
gave equally good solutions as the Fast Interchange heuristic of [98] while being 20
to 40 times faster [70].
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(iii) The basic VNS (BVNS) method [85] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local search
heuristic. It consists in (i) choosing an initial solution x, (ii) finding a direction of
descent from x (within a neighborhood N(x)), and (iii) moving to the minimum
of f (x) within N(x) along that direction. If there is no direction of descent, the
heuristic stops, otherwise it is iterated. Usually the steepest descent direction, also
referred to as best improvement, is used. This is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local minimum,
also denoted by x, and its value. As the Steepest descent heuristic may be time-

Algorithm 5 Best improvement (steepest descent) heuristic
Function BestImprovement(x)

repeat1
x′ ← x2
x ← argminy∈N(x) f (y)3

until ( f (x)≥ f (x′))
return x

consuming, an alternative is to use the first descent heuristic. Vectors xi ∈ N(x) are
then enumerated systematically and a move is made as soon as a direction for the
descent is found. This is summarized in Algorithm 6.

Algorithm 6 First improvement (first descent) heuristic
Function FirstImprovement(x)

repeat1
x′ ← x; i ← 02

repeat3
i ← i+14

x ← argmin{ f (x), f (xi)}, xi ∈ N(x)5

until ( f (x) < f (x′) or i = |N(x)|)
until ( f (x)≥ f (x′))

return x

The stochastic phase is represented by the random selection of one point from
the kth neighborhood. The BVNS is given in Algorithm 7.

Note that point x′ is generated at random in step 5 in order to avoid cycling, which
might occur with a deterministic rule.

Example. We illustrate the basic steps on a minimum k-cardinality tree instance
taken from [76], see Figure 3.1. The minimum k-cardinality tree problem on graph
G (k-card for short) consists in finding a subtree of G with exactly k edges whose
sum of weights is minimum.

The steps of BVNS for solving the 4-card problem are illustrated in Figure 3.2.
In step 0 the objective function value, i.e., the sum of edge weights, is equal to 40;
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Algorithm 7 Basic VNS
Function BVNS(x,kmax, tmax)

t ← 01
while t < tmax do2

k ← 13
repeat4

x′ ← Shake(x,k) // Shaking5
x′′ ← BestImprovement(x′) // Local search6
x,k ← NeighborhoodChange(x,x′′,k) // Change neighborhood7

until k = kmax

t ← CpuTime()8

return x
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it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that way, the optimal solution with an objective function
value equal to 36 is obtained in step 8.

(iv) General VNS. Note that the local search step (line 6 in BVNS, Algorithm 7)
may also be replaced by VND (Algorithm 2). This general VNS (VNS/VND) ap-
proach has led to some of the most successful applications reported in the literature
(see, e.g., [2, 27, 30, 32, 34, 36, 37, 65, 71, 92, 93]). The general VNS (GVNS) is
given in Algorithm 8 below.

Algorithm 8 General VNS
Function GVNS (x, �max,kmax, tmax)

repeat1
k ← 12
repeat3

x′ ← Shake(x,k)4
x′′ ← VND(x′, �max)5
x,k ← NeighborhoodChange(x,x′′,k)6

until k = kmax

t ← CpuTime()7

until t > tmax
return x

3.3 Some Extensions

(i) The skewed VNS (SVNS) method [59] addresses the problem of exploring val-
leys far from the incumbent solution. Indeed, once the best solution in a large region
has been found, it is necessary to go quite far to obtain an improved one. Solutions
drawn at random in far-away neighborhoods may differ substantially from the in-
cumbent, and VNS may then degenerate, to some extent, into the multistart heuristic
(in which descents are made iteratively from solutions generated at random, which
is known not to be very efficient). So some compensation for distance from the
incumbent must be made and a scheme called skewed VNS is proposed for that
purpose. Its steps are presented in Algorithms 9, 10, and 11. The KeepBest(x,x′)
function (Algorithm 9) in SVNS simply keeps the best of solutions x and x′. The
NeighborhoodChangeS function (Algorithm 10) performs the move and neigh-
borhood change for the SVNS.

SVNS makes use of a function ρ(x,x′′) to measure the distance between the
incumbent solution x and the local optimum x′′. The distance function used to define
Nk, as in the above examples, could be used also for this purpose. The parameter
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Algorithm 9 Keep best solution
Function KeepBest(x,x′)

if f (x′) < f (x) then1
x ← x′2

return x

Algorithm 10 Neighborhood change for the skewed VNS
Function NeighborhoodChangeS(x,x′,k,α)

if f (x′)−αρ(x,x′) < f (x) then1
x ← x′2
k ← 13

else
k ← k +14

return x,k

Algorithm 11 Skewed VNS
Function SVNS (x,kmax, tmax,α)

xbest ← x1
repeat2

k ← 13
repeat4

x′ ← Shake(x,k)5
x′′ ← FirstImprovement(x′)6
x,k ← NeighborhoodChangeS(x,x′′,k,α)7

until k = kmax

xbest ← KeepBest (xbest ,x)8
x ← xbest9
t ← CpuTime()10

until t > tmax
return x

α must be chosen to allow movement to valleys far away from x when f (x′′) is
larger than f (x) but not too much larger (otherwise one will always leave x). A good
value for α is to be found experimentally in each case. Moreover, in order to avoid
frequent moves from x to a close solution one may take a smaller value for α when
ρ(x,x′′) is small. More sophisticated choices of a function of αρ(x,x′′) could be
made through some learning process.

(ii) The variable neighborhood decomposition search (VNDS) method [70] ex-
tends the basic VNS into a two-level VNS scheme based on decomposition of the
problem. It is presented in Algorithm 12, where td is an additional parameter that
represents the running time allowed for solving decomposed (smaller sized) prob-
lems by basic VNS (line 5).

For ease of presentation, but without loss of generality, we assume that the solu-
tion x represents a set of some attributes. In step 4 we denote by y a set of k solution
attributes present in x′ but not in x (y = x′ \ x). In step 5 we find the local optimum
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Algorithm 12 Variable neighborhood decomposition search
Function VNDS (x,kmax, tmax, td)

repeat1
k ← 12
repeat3

x′ ← Shake (x,k); y ← x′ \ x4
y′ ← BVNS(y,k, td); x′′ = (x′ \ y)∪ y′5
x′′′ ← FirstImprovement(x′′)6
x,k ← NeighborhoodChange(x,x′′′,k)7

until k = kmax

until t > tmax
return x

y′ in the space of y; then we denote with x′′ the corresponding solution in the whole
space S (x′′ = (x′ \y)∪y′). We notice that exploiting some boundary effects in a new
solution can significantly improve solution quality. That is why, in step 6, the local
optimum x′′′ is found in the whole space S using x′′ as an initial solution. If this is
time consuming, then at least a few local search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the 1960s,
see, e.g., [52]) in the VNS framework.

3.4 Variable Neighborhood Formulation Space Search

Traditional ways to tackle an optimization problem consider a given formulation
and search in some way through its feasible set X . Given that the same problem can
often be formulated in different ways, it is possible to extend search paradigms to
include jumps from one formulation to another. Each formulation should lend itself
to some traditional search method, its “local search” that works totally within this
formulation, and yields a final solution when started from some initial solution. Any
solution found in one formulation should easily be translatable to its equivalent so-
lution in any other formulation. We may then move from one formulation to another
by using the solution resulting from the local search of the former as an initial so-
lution for the local search of the latter. Such a strategy will of course only be useful
when local searches in different formulations behave differently.

This idea was recently investigated in [87] using an approach that systematically
alternates between different formulations for solving the circle packing problem
(CPP). It is shown there that a stationary point for a nonlinear programming formu-
lation of CPP in Cartesian coordinates is not necessarily a stationary point in polar
coordinates. A method called Reformulation Descent (RD) that alternates between
these two formulations until the final solution is stationary with respect to both
formulations is suggested. Results obtained were comparable with the best known
values, but were achieved some 150 times faster than with an alternative single



3 Variable Neighborhood Search 71

formulation approach. In the same paper the idea suggested above of Formulation
Space Search (FSS) is also introduced, using more than two formulations. Some
research in that direction has also been reported in [74, 83, 88, 90]. One method-
ology that uses the variable neighborhood idea when searching through the formu-
lation space is given in Algorithms 13 and 14. Here φ (φ ′) denotes a formulation
from a given space F , x (x′) denotes a solution in the feasible set defined with that
formulation, and � ≤ �max is the formulation neighborhood index. Note that Algo-
rithm 14 uses a reduced VNS strategy in the formulation space F . Note also that
the ShakeFormulation() function must provide a search through the solution
space S ′ in order to get a new solution x′. Any appropriate method can be used for
this purpose.

Algorithm 13 Formulation change
Function FormulationChange(x,x′,φ ,φ ′, �)

Set �min and �step1
if f (φ ′,x′) < f (φ ,x) then2

φ ← φ ′3
x ← x′4
�← �min5

else
�← �+ �step6

return x,φ , �7

Algorithm 14 Reduced variable neighborhood FSS
Function VNFSS(x,φ , �max)

repeat1
�← 1 // Initialize formulation in F2
while �≤ �max do3

x′,φ ′, �← ShakeFormulation(x,x′,φ ,φ ′,�) // (φ ′,x′)∈(N�(φ),N (x)) at random4
x,φ , �← FormulationChange(x,x′,φ ,φ ′,�) // Change formulation5

until some stopping condition is met
return x6

3.5 Primal–Dual VNS

For most modern heuristics the difference in value between the optimal solution and
the one obtained is completely unknown. Guaranteed performance of the primal
heuristic may be determined if a lower bound on the objective function value is
known. To this end, the standard approach is to relax the integrality condition on the
primal variables, based on a mathematical programming formulation of the problem.
However, when the dimension of the problem is large, even the relaxed problem may
be impossible to solve exactly by standard commercial solvers. Therefore, it seems
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to be a good idea to solve dual relaxed problems heuristically as well. In this way
we get guaranteed bounds on the primal heuristic’s performance. The next problem
arises if we want to get an exact solution within a branch and bound framework
since having the approximate value of the relaxed dual does not allow us to branch
in an easy way, for example, by exploiting complementary slackness conditions.
Thus, the exact value of the dual is necessary.

In primal–dual VNS (PD-VNS) [58] one possible general way to get both the
guaranteed bounds and the exact solution is proposed. It is given in Algorithm 15.

Algorithm 15 Basic PD-VNS
Function PD-VNS (x,kmax, tmax)

BVNS (x,kmax, tmax) // Solve primal by VNS1
DualFeasible(x,y) // Find (infeasible) dual such that fP = fD2
DualVNS(y) // Use VNS do decrease infeasibility3
DualExact(y) // Find exact (relaxed) dual4
BandB(x,y) // Apply branch-and-bound method5

In the first stage a heuristic procedure based on VNS is used to obtain a near-
optimal solution. In [58] it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15,000
facilities and 15,000 users. In the second phase the objective is to find an exact solu-
tion of the relaxed dual problem. Solving the relaxed dual is accomplished in three
stages: (i) find an initial dual solution (generally infeasible) using the primal heuris-
tic solution and complementary slackness conditions; (ii) find a feasible solution
by applying VNS to the unconstrained nonlinear form of the dual; and (iii) solve
the dual exactly starting with the found initial feasible solution using a customized
“sliding simplex” algorithm that applies “windows” on the dual variables, thus sub-
stantially reducing the problem size. On all problems tested, including instances
much larger than those previously reported in the literature, the procedure was able
to find the exact dual solution in reasonable computing time. In the third and final
phase, armed with tight upper and lower bounds obtained from the heuristic primal
solution in phase 1 and the exact dual solution in phase 2, respectively, a standard
branch-and-bound algorithm is applied to find an optimal solution of the original
problem. The lower bounds are updated with the dual sliding simplex method and
the upper bounds whenever new integer solutions are obtained at the nodes of the
branching tree. In this way it was possible to solve exactly problem instances of
sizes up to 7000×7000 for uniform fixed costs and 15,000 × 15,000 otherwise.

3.6 Variable Neighborhood Branching—VNS for Mixed Integer
Linear Programming

The mixed integer linear programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints, and
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integrality restrictions on some of the variables. The mixed integer programming
problem (MILP) can be expressed as follows:

(MILP)

⎡
⎢⎢⎢⎢⎣

min ∑n
j=1 c jx j

s.t. ∑n
j=1 ai jx j ≥ bi ∀i ∈ M = {1,2, . . . ,m}

x j ∈ {0,1} ∀ j ∈B �= /0 ,
x j ≥ 0,integer ∀ j ∈ G
x j ≥ 0 ∀ j ∈ C

where the set of indices N = {1,2, . . . ,n} is partitioned into three subsets B,G , and
C , corresponding to binary, general integer, and continuous variables, respectively.

Numerous combinatorial optimization problems, including a wide range of prac-
tical problems in business, engineering and science, can be modeled as MILP prob-
lems. Several special cases, such as knapsack, set packing, cutting and packing,
network design, protein alignment, traveling salesman, and other routing problems,
are known to be NP-hard [48].

There are several commercial solvers such as CPLEX [75] for solving MILPs.
Methods included in such software packages are usually of branch-and-bound
(B&B) or of branch-and-cut (B&C) types. Basically, those methods enumerate all
possible integer values in some order and perform some restrictions for the cases
where such enumeration cannot improve the current best solution.

The connection between local search-based heuristics and exact solvers may be
established by introducing the so-called local branching constraint [43]. By adding
just one constraint into (MILP), the kth neighborhood of (MILP) is defined. This
allows the use of all local search-based metaheuristics, such as tabu search, simulat-
ing annealing, VNS. More precisely, given two solutions x and y of the (MILP), the
distance between x and y is defined as follows:

δ (x,y) = ∑
j∈B

| x j − y j |.

Let X be the solution space of the (MILP) considered. The neighborhood structures
{Nk | k = 1, . . . ,kmax} can be defined, knowing the distance δ (x,y) between any
two solutions x,y ∈ X . The set of all solutions in the kth neighborhood of y ∈ X is
denoted as Nk(y) where

Nk(y) = {x ∈ X | δ (x,y) ≤ k}.

For the pure 0-1 MILP given above (G = /0), δ (., .) represents the Hamming distance
and Nk(y) may be expressed by the following local branching constraint

δ (x,y) = ∑
j∈S

(1− x j)+ ∑
j∈B\S

x j ≤ k, (3.2)

where S = { j ∈B | y j = 1}.
In [71] we developed a general VNS procedure for solving 0-1 MILPs. An ex-

act MILP solver (CPLEX) is used as a black box for finding the best solution in
the neighborhood, based on the given formulation (MILP) plus the added local
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Algorithm 16 VNS branching
Function VnsBra(total time limit, node time limit, k step, x opt)

TL := total time limit; UB := ∞; first := true1
stat := MIPSOLVE(TL, UB, first, x opt, f opt)2
x cur:=x opt; f cur:=f opt3
while (elapsedtime < total time limit) do4

cont := true; rhs := 1; first := false5
while (cont or elapsedtime < total time limit) do6

TL = min(node time limit, total time limit-elapsedtime)7
add local br. constr. δ (x,x cur)≤ rhs; UB := f cur8
stat := MIPSOLVE(TL, UB, first, x next, f next)9
switch stat do10

case ”opt sol found”:11
reverse last local br. const. into δ (x,x cur)≥ rhs+112
x cur := x next; f cur := f next; rhs := 1;13

case ”feasible sol found”:14
reverse last local br. constr. into δ (x,x cur)≥ 115
x cur := x next; f cur := f next; rhs := 1;16

case ”proven infeasible”:17
remove last local br. constr.; rhs := rhs+1;18

case ”no feasible sol found”:19
cont := false20

if f cur < f opt then21
x opt := x cur; f opt := f cur; k cur := k step;22

else
k cur := k cur+k step;23

remove all added constraints; cont := true24
while cont and (elapsedtime < total time limit) do25

add constraints k cur ≤ δ (x,x opt) < k cur +k step26
TL := total time limit-elapsedtime; UB := ∞; first := true27
stat := MIPSOLVE(TL, UB, first, x cur, f cur)28
remove last two added constraints; cont =false29
if stat = ”proven infeasible” or ”no feasible” then30

cont :=true; k cur := k cur+k step31

branching constraints. Shaking is performed using the Hamming distance defined
above. A detailed description of this VNS branching method is provided in Algo-
rithm 16. The variables and constants used in the algorithm are defined as follows
[71]:

. UB—input variable for CPLEX solver which represents the current upper bound.

. f irst—logical input variable for CPLEX solver which is true if the first solution
lower than UB is asked for in the output; if f irst = false, CPLEX returns the best
solution found so far.
. TL—maximum time allowed for running CPLEX.
. rhs—right-hand side of the local branching constraint; it defines the size of the
neighborhood within the inner or VND loop.
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. cont—logical variable which indicates if the inner loop continues (true) or not
(false).
. x opt and f opt—incumbent solution and corresponding objective function value.
x cur, f cur, k cur—current solution, objective function value and neighborhood
from where VND local search starts.
. x next and f next—solution and corresponding objective function value obtained
by CPLEX in inner loop.

3.7 Variable Neighborhood Search for Continuous Global
Optimization

The general form of the continuous constrained nonlinear global optimization prob-
lem (GOP) is given as follows:

(GOP)

⎡
⎢⎢⎣

min f (x)
s.t. gi(x)≤ 0 ∀i ∈ {1,2, . . . ,m}

hi(x) = 0 ∀i ∈ {1,2, . . . ,r}
a j ≤ x j ≤ b j ∀ j ∈ {1,2, . . . ,n}

,

where x∈ Rn, f : Rn → R, gi : Rn → R, i = 1,2, . . . ,m, and hi : Rn → R, i = 1,2, . . . ,r,
are possibly nonlinear continuous functions, and a,b ∈ Rn are the variable bounds.
A box constraint GOP is defined when only the variable bound constraints are
present in the model.

The GOP naturally arises in many applications, e.g., in advanced engineering de-
sign, data analysis, financial planning, risk management, scientific modeling. Most
cases of practical interest are characterized by multiple local optima and, therefore,
a search effort of global scope is needed to find the globally optimal solution.

If the feasible set X is convex and objective function f is convex, then (GOP)
is relatively easy to solve, i.e., the Karush–Kuhn–Tucker conditions can be applied.
However, if X is not a convex set or f is not a convex function, we can have many
local optima and the problem may not be solved with classical techniques.

For solving (GOP), VNS has been used in two different ways: (i) with neighbor-
hoods induced by using an �p norm and (ii) without using an �p norm.

(i) VNS with �p norm neighborhoods [42, 79, 84, 86]. A natural approach in ap-
plying VNS for solving GOPs is to induce neighborhood structures Nk(x) from an
�p metric such as

ρ(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

(1 ≤ p < ∞) (3.3)

or
ρ(x,y) = max

1≤i≤n
|xi − yi| (p → ∞). (3.4)
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The neighborhood Nk(x) denotes the set of solutions in the kth neighborhood of x,
and using the metric ρ , it is defined as

Nk(x) = {y ∈ X | ρ(x,y)≤ ρk} (3.5)

or
Nk(x) = {y ∈ X | ρk−1 < ρ(x,y)≤ ρk}, (3.6)

where ρk, known as the radius of Nk(x), is monotonically increasing with k.
For solving box constraint GOPs, both [42] and [79] use neighborhoods as

defined in Equation (3.6). The basic differences between the two are as follows:
(1) in the procedure suggested in [79] the �∞ norm is used, while in [42] the choice
of metric is either left to the analyst or changed automatically in some predefined
order; (2) the commercial solver SNOPT [49] is used as a local search procedure
within VNS in [79], while in [42], the analyst may choose one out of six different
convex minimizers. A VNS-based heuristic for solving the generally constrained
GOP is suggested in [84]. There, the problem is first transformed into a sequence of
box constrained problems within the well-known exterior point method:

min
a≤x≤b

Fμ,q(x) = f (x)+
1
μ

m

∑
i=1

(max{0,gi(x)})q +
r

∑
i=1

|hi(x)|q, (3.7)

where μ and q ≥ 1 are a positive penalty parameter and penalty exponent, respec-
tively. Algorithm 17 outlines the steps for solving the box constraint subproblem as
proposed in [84]:

Algorithm 17 VNS using a �p norm
Function Glob-VNS (x∗,kmax, tmax)

Select the set of neighborhood structures Nk, k = 1, . . . ,kmax1
Select the array of random distributions types and an initial point x∗ ∈ X2
x ← x∗, f ∗ ← f (x), t ← 03
while t < tmax do4

k ← 15
repeat6

for all distribution types do7
y ← Shake(x∗,k) // Get y ∈Nk(x∗) at random8
y′ ← BestImprovment(y) // Apply LS to obtain a local minimum y′9
if f (y′) < f ∗ then10

x∗ ← y′, f ∗ ← f (y′), go to line 511

k ← k +112

until k = kmax
t ← CpuTime()13

The Glob-VNS procedure from Algorithm 17 contains the following param-
eters in addition to kmax and tmax: (1) Values of radii ρk, k = 1, . . . ,kmax. Those
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values may be defined by the user or calculated automatically in the minimizing
process; (2) Geometry of neighborhood structures Nk, defined by the choice of met-
ric. Usual choices are the �1, �2, and �∞ norms; (3) Distribution used for obtaining
the random point y from Nk in the Shaking step. Uniform distribution in Nk is
the obvious choice, but other distributions may lead to much better performance on
some problems. Different choices of geometric neighborhood shapes and random
point distributions lead to different VNS-based heuristics.

(ii) VNS without using �p norm. Two different neighborhoods, N1(x) and N2(x),
are used in the VNS-based heuristic suggested in [97]. In N1(x), r (a parameter)
random directions from the current point x are generated and a one-dimensional
search along each direction is performed. The best point (out of r) is selected as
a new starting solution for the next iteration, if it is better than the current one.
If not, as in VND, the search is continued within the next neighborhood N2(x).
The new point in N2(x) is obtained as follows. The current solution is moved for
each x j ( j = 1, . . . ,n) by a value Δ j, taken at random from interval (−α,α), i.e.,

x(new)
j = x j + Δ j or x(new)

j = x j −Δ j. Points obtained by the plus or minus sign for
each variable define the neighborhood N2(x). If a relative increase of 1% in the value

of x(new)
j produces a better solution than x(new), the + sign is chosen; otherwise the −

sign is chosen.
Neighborhoods N1 and N2 are used for designing two algorithms. The first, called

VND, iterates over these neighborhoods until there is no improvement in the solu-
tion value. In the second variant, a local search is performed with N2 and kmax is
set to 2 for the shaking step. In other words, a point from the neighborhood N2 is
obtained by generating a random direction followed by a line search along it (as
prescribed for N1) and then by changing each of the variables (as prescribed for N2).

It is interesting to note that computational results reported by all VNS-based
heuristics were very promising. They usually outperformed other recent approaches
from the literature.

3.8 Mixed Integer Nonlinear Programming (MINLP) Problem

The problems we address here are cast in the following general form:

(MINLP)

⎡
⎢⎢⎢⎢⎢⎢⎣

min f (x)
s.t. �i ≤ gi(x)≤ ui ∀i ∈ {1, . . . ,m}

a j ≤ x j ≤ b j ∀ j ∈ N
x j ∈ {0,1} ∀ j ∈B �= /0 ,
x j ≥ 0,integer ∀ j ∈ G
x j ≥ 0 ∀ j ∈ C

where the set of indices N = {1,2, . . . ,n}, as in the formulation of MILP, is parti-
tioned into three subsets B,G and C , corresponding to binary, general integer and
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continuous variables, respectively. Therefore, in the above formulation, the x j are
the decision variables, f : Rn → R is a possibly nonlinear function, g : Rn → Rm is
a vector of m possibly nonlinear functions (assumed to be differentiable), �,u ∈ Rm

are the constraint bounds (which may be set to ±∞), and a,b ∈ Rn are the variable
bounds.

In order to apply VNS for solving (MINLP), one needs to answer three questions:
(i) how to define the set of neighborhoods around any solution x; (ii) how to perform
(local) search starting from any point and finishing with a feasible solution; (iii) how
to get a feasible solution starting from an infeasible point.

(i) Neighborhoods. Naturally, for the set of binary variables x j, j∈B, the Hamming
distance, expressed by local branching constraints (3.2), can be used. For the set of
continuous variables x j, j ∈ G one can use the �p norm (3.3) or (3.4); for the set of
integer variables, either an extension of formula (3.2) given in [43] or (3.6) can be
used. The point x′ ∈Nk(x) denotes a kth neighborhood solution of combined binary,
continuous, and integer parts.

(ii) Local search. The local search phase mainly depends on available software.
The simplest way is just to use an existing commercial solver for MINLP by adding
constraints that define neighborhood Nk. Such an approach for solving (MILP) is ap-
plied in the local branching [43] and VNS branching [71] methods explained earlier.
Since such a solver for MINLP does not exist on the market, it becomes necessary
to split the problem at any branching node into easier subproblems and alternately
solve these subproblems until an improved feasible solution is hopefully found. For
example, integrality conditions may be relaxed in one subproblem, and continu-
ous variables fixed in the next. The partition into subproblems depends mostly on
existing solvers and their qualities. By relaxing all binary and integer variables, a
NLP problem is obtained, whose complexity depends on the properties of f (x) and
gi(x), i ∈ {1, . . . ,m}. If all functions are convex, the problem may be much easier to
solve. The relaxed solution is then used to get a lower bound within a branch and
bound (BB) enumerative procedure. Thus, the quality of the solution obtained in
this local search phase mostly depends on the way different solvers are combined
and on the quality of such solvers.

(iii) Feasible solution. Realistically sized MINLPs can often have thousands (or
tens of thousands) of variables (continuous and integer) and nonconvex constraints.
With such sizes, it becomes a difficult challenge to even find a feasible solution,
and BB algorithms become almost useless. Some good solvers targeting convex
MINLPs exist in the literature [1, 24, 26, 45, 46, 78]; and although they can all be
used on nonconvex MINLPs as well (forsaking the optimality guarantee), their qual-
ity varies wildly in practice with the instance of the problem being solved, resulting
in a high fraction of “false negatives” (i.e., feasible problems for which no feasible
solution was found). The feasibility pump (FP) idea was recently extended to con-
vex MINLPs [25], but again this does not work so well when applied to unmodified
nonconvex MINLPs.

In a recent paper [80] an effective and reliable MINLP heuristic based on
VNS is suggested, called Relaxed-Exact Continuous-Integer Problem Exploration
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(RECIPE for short). RECIPE puts together a global search phase based on VNS
and a local search phase based on a BB-type heuristic. The VNS global phase relies
on neighborhoods defined as hyperrectangles for the continuous and general inte-
ger variables and by local branching constraints for the binary variables. The local
phase employs a BB solver for convex MINLPs [46], which is applied to non-
convex MINLPs heuristically. A local NLP solution using a sequential quadratic
programming (SQP) algorithm [49] supplies an initial constraint-feasible solution
to be employed by the BB as initial upper bound. RECIPE (see Algorithm 18) is
an efficient, effective, and reliable general-purpose algorithm for solving complex
MINLPs of small and medium scale. The original contribution of RECIPE is the
particular combination of some well-known and well-tested tools to produce a very
powerful global optimization method. It turns out that RECIPE, acting on the whole
MINLPLib library [29], is able to find optima equal to or better than those reported
in the literature for 55% of the instances. The closest competitor is SBB+CONOPT
with 37%. The known optima are improved in 7% of the cases.

Algorithm 18 The RECIPE heuristic for solving MINLP
Function RECIPE (a,b,kmax, tmax,x∗)

x∗ = (a+b)/2; t ← 01
while t < tmax do2

k ← 13
while k ≤ kmax do4

i ← 15
while i ≤ b do6

Sample x̄ ∈Nk(x∗) at random7
x ← SQP(x̄)8
if x not feasible then9

x ← x̄10

x′ ← BB (x,k,kmax)11
if x′ is better than x∗ then12

x∗ ← x′; k ← 0; Exit loop i13

i ← i+114

k ← k +115

t ← CpuTime()16

3.9 Discovery Science

In all the above applications, VNS is used as an optimization tool. It can also lead
to results in “discovery science,” i.e., help in the development of theories. This has
been done for graph theory in a long series of papers with the common title “Vari-
able neighborhood search for extremal graphs” that report on the development and
applications of the AutoGraphiX (AGX) system [4, 36, 37]. This system addresses
the following problems:
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• Find a graph satisfying given constraints.
• Find optimal or near optimal graphs for an invariant subject to constraints.
• Refute a conjecture.
• Suggest a conjecture (or repair or sharpen one).
• Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea is then to address all of these problems as parametric combina-
torial optimization problems on the infinite set of all graphs (or in practice some
smaller subset) using a generic heuristic to explore the solution space. This is done
by applying VNS to find extremal graphs with a given number n of vertices (and
possibly also a given number of edges). Extremal graphs may be viewed as a family
of graphs that maximize some invariant such as the independence number or chro-
matic number, possibly subject to constraints. We may also be interested in finding
lower and upper bounds on some invariant for a given graph G. Once an extremal
graph is obtained, VND with many neighborhoods may be used to build other such
graphs. Those neighborhoods are defined by modifications of the graphs such as the
removal or addition of an edge, rotation of an edge. Once a set of extremal graphs,
parameterized by their order, is found, their properties are explored with various
data mining techniques, leading to conjectures, refutations, and simple proofs or
ideas of proof.

The current list of references in the series “VNS for extremal graphs” is given by
[3–8, 10–12, 17–19, 23, 32, 34, 36, 37, 40, 47, 53, 61–63, 72, 73, 94, 95]. Another
list of papers, not included in this series is given in [9, 13–16, 33, 35, 54–57, 60, 96].
Papers in these two lists cover a variety of topics:

(i) Principles of the approach [36, 37] and its implementation [4];
(ii) Applications to spectral graph theory, e.g., bounds on the index for various

families of graphs, graphs maximizing the index subject to some conditions
[3, 17, 23, 40, 57];

(iii) Studies of classical graph parameters, e.g., independence, chromatic num-
ber, clique number, average distance [5, 9–12, 94, 95];

(iv) Studies of little known or new parameters of graphs, e.g., irregularity, prox-
imity, and remoteness [13, 62];

(v) New families of graphs discovered by AGX, e.g., bags, which are obtained
from complete graphs by replacing an edge by a path, and bugs, which are
obtained by cutting the paths of a bag [8, 72];

(vi) Applications to mathematical chemistry, e.g., study of chemical graph
energy, and of the Randić index [18, 19, 34, 47, 53–56, 61];

(vii) Results of a systematic study of 20 graph invariants, which led to almost
1500 new conjectures, more than half of which were proved by AGX and over
300 by various mathematicians [7];

(viii) Refutation or strengthening of conjectures from the literature [6, 33, 56];
(ix) Surveys and discussions about various discovery systems in graph theory,

assessment of the state of the art and the forms of interesting conjectures to-
gether with proposals for the design of more powerful systems [35, 60].
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3.10 Conclusions

The general schemes of variable neighborhood search have been presented and dis-
cussed. In order to evaluate research development related to VNS, one needs a list
of the desirable properties of metaheuristics. Eight of these are presented in Hansen
and Mladenović (2003):

(i) Simplicity: the metaheuristic should be based on a simple and clear principle,
which should be widely applicable;

(ii) Precision: the steps of the metaheuristic should be formulated in precise math-
ematical terms, independent of possible physical or biological analogies which
may have been the initial source of inspiration;

(iii) Coherence: all steps of the heuristics for solving a particular problem should
follow naturally from the metaheuristic principles;

(iv) Effectiveness: heuristics for particular problems should provide optimal or
near-optimal solutions for all or at least most realistic instances. Preferably,
they should find optimal solutions for most benchmark problems for which
such solutions are known;

(v) Efficiency: heuristics for particular problems should take a moderate comput-
ing time to provide optimal or near-optimal solutions, or comparable or better
solutions than the state of the art;

(vi) Robustness: the performance of the metaheuristics should be consistent over a
variety of instances, i.e., not merely fine tuned to some training set and not so
good elsewhere;

(vii) User friendliness: the metaheuristics should be clearly expressed, easy to
understand and, most importantly, easy to use. This implies they should have
as few parameters as possible, ideally none;

(viii) Innovation: the principle of the metaheuristic and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
application.

This list has been completed with three more items added by one member of the
present team and his collaborators:

(ix) Generality: the metaheuristic should lead to good results for a wide variety of
problems;

(x) Interactivity: the metaheuristic should allow the user to incorporate his knowl-
edge to improve the resolution process;

(xi) Multiplicity: the metaheuristic should be able to produce several near-optimal
solutions from which the user can choose.

As shown above, VNS possesses, to a great extent, all of the above properties.
This has led to heuristics which are among the very best ones for many problems.
Interest in VNS is growing quickly. This is evidenced by the increasing number of
papers published each year on this topic (10 years ago, only a few; 5 years ago,
about a dozen; and about 50 in 2007). Moreover, the 18th EURO mini-conference
held in Tenerife in November 2005 was entirely devoted to VNS. It led to special
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issues of IMA Journal of Management Mathematics in 2007 [81], European Journal
of Operational Research [68], and Journal of Heuristics [89] in 2008. In retrospect,
it appears that the good shape of VNS research is due to the following perspec-
tives, strongly influenced by Karl Popper’s philosophy of science [91]: (i) in devis-
ing heuristics favor insight over efficiency (which comes later) and (ii) learn from
heuristic failures.
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81. Melián, B., Mladenović, N.: (eds.) IMA J. Manage. Math. 18, 99–100 (2007)
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