
UNIVERSITÀ DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica Pura ed Applicata

Dottorato di Ricerca in

Matematica Computazionale

XVIII Ciclo

Exact and Heuristic Methods for
Mixed Integer Linear Programs

Tesi di Dottorato di:
Livio Bertacco

Il Coordinatore Il Supervisore
Ch.mo Prof. Michelangelo Conforti Ch.mo Prof. Matteo Fischetti

Padova, 30 Dicembre 2005

Contents

Acknowledgments iii

List of figures v

List of tables vii

1 Mixed-Integer Programming 1
1.1 Introduction . 1
1.2 Definitions . 1
1.3 Preprocessing . 2
1.4 Valid Inequalities and Cutting Planes 4
1.5 Branch-and-Bound . 5

1.5.1 Branching . 7
1.5.2 Node selection . 8

1.6 Branch-and-Cut . 8
1.7 Primal Heuristics . 9
1.8 Truncated search . 10

2 Feasibility Pump 13
2.1 Introduction . 13
2.2 The Feasibility Pump for general MIPs 15

2.2.1 Binary and general-integer stages 16
2.2.2 Enumeration stage . 17

2.3 Computational experiments . 18
2.4 Improving feasible solutions . 25
2.5 Conclusions . 27

3 Linear Ordering Problem with Cumulative Costs 31
3.1 Introduction . 31
3.2 Motivation . 33
3.3 Complexity of the LOP-CC . 37
3.4 A MIP model . 40
3.5 An exact enumerative algorithm 41
3.6 Computational analysis (exact methods) 43
3.7 Heuristics . 46

i

ii CONTENTS

3.8 Conclusions . 49

4 Branching on General Disjunctions 51
4.1 Introduction . 51
4.2 Slicing . 52

4.2.1 A MIP model . 53
4.3 Maximizing the son-node bounds 55
4.4 Computational experiments . 57
4.5 Conclusions . 60

Bibliography 61

Acknowledgments

Many people have taught, encouraged, supported, helped, and advised me during
the time in which I worked on this thesis. I wish to express my deepest gratitude
to all of them.

First of all, my thanks go to my advisor, Matteo Fischetti; he introduced me
to the Operations Research and Combinatorial Optimization, helping me with
suggestions and encouragements which have been indispensable for the realiza-
tion of this work. He has been able to set up, during the years, a research group
in which an exciting scientific activity is performed in a really special and friendly
surrounding. I am indebted to all the members of this enlarged group. A spe-
cial thank goes to Andrea Lodi and Lorenzo Brunetta, for their friendship and
support; they have helped me with many discussions on aspects of this thesis.
Thanks also to my friends and colleagues, Tatiana Bassetto and Cristiano Saturni,
for the numerous brainstorming sessions and all the time spent together.

Particular thanks to Prof. Robert Wiesmantel and all the ADONET network
for the excellent doctoral schools and workshops organized throughout Europe.
Not only these have always proved of unsurpassed scientific level, with a highly
enjoyable international atmosphere, but also have given me the chance to meet
so many inspiring people working on Discrete Optimization.

I don’t want to forget all the people at the Department of Mathematics and
at DEI, and their work supporting the research activity. Thanks for doing this
so kindly.

Finally, I warmly want to thank my family.

Padova, December 30, 2005
Livio Bertacco

iii

iv Acknowledgments

List of Figures

1.1 Generic cutting plane algorithm 5
1.2 Generic branch-and-bound algorithm 7

2.1 The basic FP scheme for general-integer MIPs 16
2.2 Probability distribution and density of the rounding threshold . . 17
2.3 Incumbent solution over time (instance atlanta-ip) 28
2.4 Incumbent solution over time (instance msc98-ip) 29
2.5 Incumbent solution over time (instance icir97 tension) 29
2.6 Incumbent solution over time (instance rococoC10-100001) 30

3.1 Acyclic tournaments as an Hamiltonian path (thick arcs) plus its
transitive closure (thin arcs) . 32

3.2 The average raw bit error rate BER vs. the number f active users
for synchronous (top) and asynchronous (bottom) transmissions,
with scrambling (thin line) and without scrambling (bold line) . . 35

3.3 The expected total transmission power ratio η vs. the number
of active users for synchronous (top) and asynchronous (bottom)
transmissions, with scrambling (thin line) and without scrambling
(bold line) . 36

3.4 The worst-case “good” path used in the complexity proof 38
3.5 The basic method . 42
3.6 The overall enumerative algorithm 43
3.7 Dynamic programming state and recursion 47

v

vi LIST OF FIGURES

List of Tables

2.1 Test bed of MIPs with general integer variables 20
2.2 Convergence to a first feasible solution using Xpress Optimizer . 21
2.3 Convergence to a first feasible solution using ILOG Cplex 22
2.4 Comparison of FP with and without binary stage 23
2.5 Time spent in each stage . 24
2.6 Solution quality with respect to ILOG Cplex (emp=1) 26

3.1 Computational analysis of the exact methods 45
3.2 Overall statistics for the exact methods 46
3.3 Performance of the dynamic programming heuristic 48
3.4 Performance of the GRASP heuristic 49

4.1 Comparison of tree size for slicing branching 58
4.2 Comparison of tree size for best bound branching 59

vii

viii LIST OF TABLES

Chapter 1

Mixed-Integer Programming

1.1 Introduction

Many problems in science, technology, business, and society can be modeled as
mixed integer programming (MIP) problems and, as a matter of fact, in the
last decade the use of integer programming models and software has increased
dramatically. Nowadays, thanks to the progress of computer hardware and, even
more, advances in the solution techniques and algorithms, it is possible to solve
problems with thousands of integer variables on personal computers, and to obtain
high quality solutions to problems with millions of variables (for example, set
partitioning problems) often in a matter of minutes.

Among the currently most successful methods, to solve MIP problems, are
linear programming (LP, for short) based branch-and-bound algorithms, where
the underlying linear programs are possibly strengthened by cutting planes.

Todays codes, however, have become increasingly complex with the incorpo-
ration of sophisticated algorithmic components, such as preprocessing and prob-
ing techniques, cutting plane algorithms, advanced search strategies, and primal
heuristics.

1.2 Definitions

A mixed integer program (MIP) is a system of the following form:

zMIP = min cT x
subject to Ax ≤ b

x ≤ x ≤ x
x ∈ ZG × RC,

(1.1)

where A ∈ QM×(G∪C), c ∈ QG∪C, b ∈ QM. Here, cT x is the objective function,
Ax ≤ b are the constraints of the MIP, and M, G and C are non-empty, finite
sets with G and C disjoint. Without loss of generality, we may assume that the
elements of M, G and C are represented by numbers, i.e., M = {1, . . . , m},

1

2 Chapter 1. Mixed-Integer Programming

G = {1, . . . , p} and C = {p + 1, . . . , n}. The vectors x ∈ (Q ∪ {−∞})G∪C, andx ∈
(Q ∪ {∞})G∪C are called lower and upper bounds on x, respectively. A variable
xj, j ∈ G ∪C, is unbounded from below (above), if xj = −∞ (xj = ∞). An integer
variable xj ∈ Z with xj = 0 and xj = 1 is called binary. If G = ∅ then (1.1)
is called linear program or LP. If C = ∅ then (1.1) is called integer program or
IP. A 0-1 MIP is a MIP where all the integer variables are binary. A vector x
that satisfies all constraints is called a feasible solution. An optimal solution is a
feasible solution for which the objective function achieves the smallest value.

From a complexity point of view mixed integer programming problems belong
to the class ofNP-hard problems (see Garey and Johnson [26], for example) which
makes it unlikely that efficient, i.e., polynomial time, algorithms for their solution
exist.

The linear programming (LP) relaxation of a MIP is the problem obtained
from (1.1) by dropping the integrality restrictions, i.e., replacing x ∈ ZG × RC
with x ∈ RG∪C. The optimal value of the LP relaxation provides a lower bound
on the optimal value of the MIP. Therefore, if an optimal solution to the LP
relaxation satisfies the integrality restrictions, then that solution is also optimal
for the MIP. If the LP relaxation is infeasible, then the MIP is also infeasible,
and if the LP relaxation is unbounded, then the MIP is either unbounded or
infeasible. If the MIP is feasible and its LP relaxation is bounded, then the MIP
has optimal solution(s)1.

A common approach to solving a MIP consists of solving its LP relaxation2 in
the hope of finding an optimal solution x∗ which happens to be integer. If this is
not the case, there are two main ways to proceed. In the cutting-plane approach,
one enters the separation phase, where a linear inequality (cut) αT x ≤ α0 is
identified which separates x∗ from the feasible solutions of the MIP. The cut is
appended to the current LP relaxation, and the procedure is iterated. In the
branch-and-bound approach, instead, the MIP is replaced by two subproblems
obtained, e.g., by imposing an additional restriction of the type xj ≤ bx∗jc and
xj ≥ dx∗je, respectively, where xj is an integer-constrained variable with fractional
value in x∗. The procedure is then recursively applied to each of the subproblems.

1.3 Preprocessing

Preprocessing is the name for a number of techniques, employed by MIP solvers,
aimed at reducing the size of an instance and strengthen its LP bound [71]. Pre-
processing can alter a given formulation quite significantly by fixing, aggregating,

1This is in general not true when the problem is not rational. Consider for example the
problem max{x1 −

√
2x2 : x1 ≤

√
2x2, x1, x2 integer}; this has feasible solutions with negative

objective values arbitrarily close to 0, but none equal to 0.
2Linear programs can efficiently be solved using Dantzig’s simplex algorithm or interior point

methods. For an introduction to linear programming see, for instance, Nemhauser and Wolsey
[59], or Bertsimas and Tsitsiklis [14].

1.3. Preprocessing 3

and/or substituting variables and constraints of the problem, as well as changing
the coefficients of the constraints and the objective function.

As an example (taken from Martin [55]), consider the following bounds strength-
ening technique, where we exploit the bounds on the variables to detect so-called
forcing and dominated rows. Given some row i, let

Li =
∑
j∈Pi

aijxj +
∑
j∈Ni

aijxj,

Ui =
∑
j∈Pi

aijxj +
∑
j∈Ni

aijxj

(1.2)

where Pi = {j : aij > 0} and Ni = {j : aij < 0}. Obviously, Li ≤
∑n

j=1 aijxj ≤
Ui. The following cases might come up. An inequality i is an infeasible row if
Li > bi. In this case the entire problem is infeasible. An inequality i is a forcing
row if Li = bi. In this case all variables in Pi can be fixed to their lower bound
and all variables in Ni to their upper bound. Row i can be deleted afterwards.
An inequality i is a redundant row if Ui < bi. In this case i can be removed.

This row bound analysis can also be used to strengthen the lower and upper
bounds of the variables. Compute for each variable xj and each inequality i

uij =

{
(bi − Li)/aij + xj, if aij > 0
(Li − Ui)/aij + xj, if aij < 0

lij =

{
(Li − Ui)/aij + xj, if aij > 0
(bi − Li)/aij + xj, if aij < 0.

(1.3)

Let uj = mini uij and lj = maxi lij. If uj ≤ xj and lj ≥ xj we speak of an
implied free variable. The simplex method might benefit from not updating the
bounds but treating variable xj as a free variable (note that setting the bounds
of xj to −∞ and +∞ will not change the feasible region). Free variables will
commonly be in the basis and are thus useful in finding a starting basis. For
mixed integer programs however, if the variable xj is integer, it is better in general
to update the bounds by setting xj = min{xj, uj} and xj = max{xj, lj}, because
the search region of the variable within an enumeration scheme is reduced. In
case xj is an integer (or binary) variable we round uj down to the next integer
and lj up to the next integer. For example consider the following inequality:

−45x6 − 45x30 − 79x54 − 53x78 − 53x102 − 670x126 ≤ −443 (1.4)

Since all variables are binary we get Li = −945 and Ui = 0. For j = 126 we
obtain lij = (−443+945)/−670+1 = 0.26. After rounding up it follows that x126

must be 1. Note that with these new lower and upper bounds on the variables it
might pay to recompute the row bounds Li and Ui, which again might result in
tighter bounds on the variables.

Techniques that are based on checking infeasibility are called primal reduction
techniques. Dual reduction techniques make use of the objective function and
attempt to fix variables to values that they will take in any optimal solution.

4 Chapter 1. Mixed-Integer Programming

One preprocessing technique that may have a big impact in strengthening the
LP relaxation of a MIP formulation is coefficient improvement. This technique
updates the coefficients of the formulation so that the constraints define a smaller
LP relaxation, hence leading to improved LP bounds (see Nemhauser and Wolsey
[59], for example).

Probing is another technique that considers the implications of fixing a variable
to one of its bounds. For instance, if fixing a binary variable x1 to one, forces
a reduction in the upper bound of x2, then one can use this information in all
constraints in which x2 appears and possibly detect further redundancies, bound
reductions, and coefficient improvements.

See, for example, Savelsbergh [71] or Martin [55] for a survey of these and
other preprocessing techniques.

Finally, all these techniques can be applied not only before solving the initial
formulation at the root node, but also before each sub-problem in the branching
tree. However, since the impact of node preprocessing is limited to only the
subtree defined by the node, one should take into consideration whether the time
spent on node preprocessing is worthwhile.

1.4 Valid Inequalities and Cutting Planes

A valid inequality for a MIP is an inequality that is satisfied by all feasible solu-
tions. A cutting plane, or simply cut, is a valid inequality that is not satisfied by
all feasible points of the LP relaxation. Thus, if we find a cut, we can add it to
the formulation and strengthen the LP relaxation.

In the late 50’s, Gomory [30] pioneered the cutting-plane approach, proposing
a very elegant and simple way to derive cuts for an IP by using information
associated with an optimal LP basis. This was later generalized by Chvátal [16]
(see also Wolsey [76], for instance).

We can construct a valid inequality for the set X := P ∩Zn, where P := {x ∈
Rn

+ : Ax ≤ b}, and A is an m×n matrix, as follows. Let u be an arbitrary vector
in Rm

+ . Then the inequality

uT Ax ≤ uT b (1.5)

is a valid inequality for P . Since x ≥ 0 in P , we can round down the coefficients
of the left-hand side of (1.5) and obtain that the inequality

buT Acx ≤ uT b. (1.6)

Finally, as x is integer in X, we can also round down the right-hand side and
get

buT Acx ≤ buT bc (1.7)

as a valid inequality for X.

1.5. Branch-and-Bound 5

Generic cutting plane algorithm:

1. repeat

2. solve the current LP relaxation

3. if the optimal solution x∗ is integer feasible then

4. return x∗

5. else

6. find a cutting plane (π, π0) violated by x∗

7. add the cut πT x ≤ π0 to the current formulation

8. endif

9. until stopping criterion reached

Figure 1.1: Generic cutting plane algorithm

Quite surprisingly, all valid inequalities for an integer program can be gener-
ated by applying repeatedly this procedure a finite number of times (for a proof
see Chvátal[16], Schrijver [72], or Wolsey [76]).

In principle MIPs can be solved to optimality using the cutting plane algo-
rithm of Figure 1.1, however practical experience with Gomory’s algorithm shows
that the quality of the cuts generated becomes rather poor after a few iterations,
which causes the so called tailing-off phenomenon: a long sequence of iterations
without significant improvements towards integrality. Adding too many cutting
planes also leads to numerical problems, thus a stopping criterion is used to ter-
minate the generation of cuts, even if a feasible solution is not reached.

The first successful application of a cutting plane algorithm is due to Dantzig,
Fulkerson, and Johnson [20] who used it to solve large (for that time) instances
of the traveling salesman problem.

The cutting planes implemented in MIP solvers can be classified into two
broad categories. The first are general cuts that are valid for any MIP problem;
these include Gomory mixed-integer and mixed-integer rounding cuts [54, 60].
The second category includes strong polyhedral cuts from knapsack [6, 11, 36,
39, 63], fixed-charge flow [37, 66] and path [74], and vertex packing [62] relax-
ations of MIPs. Strong inequalities for these simpler substructures are usually
quite effective in improving LP relaxations of more complicated sets. MIP solvers
automatically identify such substructures by analyzing the constraints of the for-
mulation and try to add appropriate cuts.

1.5 Branch-and-Bound

Branch-and-bound algorithms for mixed integer programming use a “divide and
conquer” strategy to explore the set of all feasible mixed integer solutions. These
algorithms build a search tree, in which the nodes of the tree represent subprob-
lems defined over subsets of the feasible region. According to Wolsey [76] the

6 Chapter 1. Mixed-Integer Programming

first paper presenting a branch-and-bound strategy for the solution of integer
programs is due to Land and Doig [47].

Let P0 be a mixed-integer programming problem of the form (1.1). Let X0 :=
{x ∈ Zp×Qn−p : Ax ≤ b, x ≤ x ≤ x} be the set of feasible mixed integer solutions
of problem P0. If it is too difficult to compute

zMIP = min cT x
subject to x ∈ X0,

(1.8)

then we can split X0 into a finite number of disjoint subsets X1, . . . , Xk ⊂ X,
such that ∪k

j=1Xj = X0, and try to solve separately each of the subproblems

min cT x
subject to x ∈ Xj, ∀ j = 1, . . . , k.

(1.9)

Afterwards we compare the optimal solutions of the subproblems and choose
the best one. Since each subproblem is usually only slightly easier than the
original problem, this idea is iterated recursively splitting the subproblems again
into further subproblems. The (fast-growing) list of all subproblems is usually
organized as a tree, called a branch-and-bound tree and we say that a father
or parent problem is split into two or more son or child problems. This is the
branching part of the branch-and-bound method.

For the bounding part of this method we assume that we can efficiently com-
pute a lower bound z∗(P) of each subproblem P (with feasibility set X), so that
z∗(P) ≤ minx∈X cT x. In the case of mixed integer programming this lower bound
can be obtained by using the LP relaxation.

During the exploration of the search tree we can find that the optimal solution
x∗ of the LP relaxation of a subproblem P is also a feasible mixed integer point,
i.e., x∗ ∈ X. When x∗ is not feasible, it is sometimes possible to obtain a feasible
point by rounding the integer variables, or using more advanced heuristics. The
feasible solution with the smallest objective value, zbest, found so far is called the
incumbent solution. This allows us to maintain an upper bound on the optimal
solution value zMIP of P0, as zMIP ≤ zbest. Having a good upper bound is crucial
in a branch-and-bound algorithm, because it keeps the branching tree small. In
fact, suppose the solution of the LP relaxation of some other subproblem P ′

satisfies z∗(P ′) ≥ zbest, then the subproblem P ′ can be pruned, without further
processing, because the optimal solution of this subproblem cannot be better than
the incumbent one.

The algorithm of Figure 1.2 summarizes the whole branch-and-bound proce-
dure for mixed-integer programs.

Initially the active node list L contains only the root node. Then, whenever
a node is processed, its LP relaxation is solved and the node is either pruned
or split into sub-problems which are added back to the list. Therefore, at any
given time, the nodes in the list L correspond to the unsolved problems in the
branch-and-bound tree, which are the leaves of the tree.

1.5. Branch-and-Bound 7

Generic branch-and-bound algorithm:

1. let L := {P0}
2. let zbest := +∞
3. repeat

4. select a problem P from L
5. remove P from L
6. solve the LP relaxation of P
7. if LP feasible then

8. let x∗ be an optimal solution of P
9. let z∗(P) := cT x∗

10. if x∗ feasible (for P0) then

11. if zbest > zopt(P) then

12. let zbest := z∗(P)
13. let x̃ := x∗

14. delete from L all subproblems P with z∗(P) ≥ zbest

15. end if

16. else

17. split problem P into subproblems and add them to L
18. endif

19. endif

20. until L = ∅
21. return zbest and x̃

Figure 1.2: Generic branch-and-bound algorithm

Within this general framework, there are two aspects that requires a choice
to be taken. The first one is how to perform the branching at step 17, that is how
split a problem P into subproblem. And the second one is how to choose which
problem to process next at step 4 (node selection).

1.5.1 Branching

A natural way to divide the feasible region of a MIP problem is to choose a
variable xi that is fractional in the current linear programming solution x∗ and
create two subproblems, one with the updated bound xi ≤ bx∗i c and the other
with xi ≥ dx∗i e. This type of branching is referred to as variable dichotomy.

In general there are several fractional variables to choose from. Since the
effectiveness of the branch-and-bound algorithm depends heavily on the conver-
gence of upper and lower bounds, we would like to choose the variable that leads
to the highest bound improvement. However this has been proved to be “diffi-
cult” so what is typically done is select a list of “candidate” branching variables,
among those that are most fractional, and then, for each of these, estimate the
LP bound that a branching on that variable would lead to. One of the methods
used to estimate the bound improvement consists in performing a small number

8 Chapter 1. Mixed-Integer Programming

of pivots and observe what happens to the objective function (strong branching).
Chapter 4 presents a more general approach where branching is performed on

general disjunctions rather than on individual variables.

1.5.2 Node selection

There are two main possible strategies to visit the branching tree. In the best-
first search, the node P with the lowest z∗(P) is chosen, since it is supposed to
be closer to the optimal solution. At the other extreme is the depth-first search:
nodes are ordered according to their depth in the branching tree, and the deepest
pending node is processed first.

For a fixed branching rule, best-first search minimizes the number of nodes
evaluated before completing the search. However, there are two main drawbacks:
one is that the search tends to stay in the higher levels of the branching tree,
where problems are less constrained and, thus, hardly lead to improvements of the
incumbent solution. The second one is that the search tree tends to be explored
in a breadth-first fashion, so subsequent linear programs have little relation to
each other, leading to longer evaluation times. One way to mitigate this second
issue could be to save the basis information at all the nodes, but in this case the
memory requirements for searching the tree in a best-first manner might become
prohibitive.

Depth-first is easier to implement, has lower memory requirement, and changes
in the linear program, from one node to the next, are minimal (only a variable
bound). It also usually finds feasible solutions more quickly than with best-first
search as feasible solutions are typically found deep in the search tree. One disad-
vantage is that, when a “bad” branch (i.e., not containing good feasible solutions)
is visited, this strategy searches exhaustively the whole sub-tree before backtrack-
ing to different areas. Also, it can spend a lot of time solving nodes that could
have been pruned if a better incumbent had been known.

Most integer programming solvers employ a hybrid of best-first search and
depth-first search, trying to benefit from the strengths of both, regularly switching
between the two strategies during the search. In the beginning the emphasis is
usually more on depth-first, to find high quality solutions quickly, whereas in the
later stages of the search, the emphasis is usually more on best-first, to improve
the lower bounds.

1.6 Branch-and-Cut

Combination of cutting-plane and branch-and-bound techniques was attempted
since the early 70’s. Initially, however, the constraint generators were used only
at the root node, as a simple preprocessor, to obtain a tighter LP relaxation
of the original MIP formulation. In the mid 80’s, Padberg and Rinaldi [64, 65]
introduced a new methodology for an effective integration of the two techniques,
which they named branch-and-cut. This is an overall solution scheme whose main

1.7. Primal Heuristics 9

ingredients include: the generation at every node of the branching tree of (facet-
defining) cuts globally valid along the tree; efficient cut management by means of
a constraint pool structure; column/row insertion and deletion from the current
LP; variable fixing and setting; and the treatment of inconsistent LP’s.

Branch-and-cut has a number of advantages over pure cutting-plane and
branch-and-bound schemes. With respect to the branch-and-bound approach,
the addition of new cuts improves the LP relaxation at every branching node.
With respect to the pure cutting-plane technique, one can resort to branching as
soon as tailing-off is detected. As the overall convergence is ensured by branch-
ing, the cut separation can be of heuristic type, and/or can restrict to subfamilies
of problem-specific cuts which capture some structures of the problem in hand.
Moreover, the run-time variable pricing and cut generation/storing mechanisms
allow one to deal effectively with tight LP relaxations having in principle a huge
number of variables and constraints.

While a branch-and-cut algorithm spends more time in solving the LP relax-
ations, the resulting improved LP bounds usually leads to a significantly smaller
search tree. Naturally, as with all techniques designed to improve the performance
of the basic branch-and-bound algorithm, the time spent on cut generation must
be contained in order not to outweigh the speed-up due to improved LP bounds.

For more information about branch-and-bound and branch-and-cut see also
Nemhauser and Wolsey [59], for instance.

1.7 Primal Heuristics

In order to reduce the size of the branching tree, it is very useful to find good
incumbent solutions as soon as possible. On the other hand, waiting to find
feasible solutions at a node just by solving its LP relaxations can take a very
long time. Therefore MIP solvers attempt to find feasible solutions early in the
search tree by means of simple and quick heuristics. As an extreme example, if
the optimal solution would be known at the root node, then branch-and-bound
would be used only to prove the optimality of the solution. In this case, for a
fixed branching rule, any node selection rule would produce the same tree with
the minimum number of nodes.

While cutting planes (and, to some extent, bounds) are used to strengthen the
lower bound on the optimal solution, primal heuristics have the complementary
role of improving the upper bound, given by incumbent solutions, and help close
the gap between the two.

Finding a feasible solution of a given MIP model is, however, a very impor-
tant (NP-complete) problem that can be extremely hard in practice. Several
techniques are typically used, involving simple rounding, partial enumeration,
diving (into the branching-tree) and variable fixing. Once one feasible solution
has been found, other improvement algorithms can be used to iteratively try to
obtain a better solution. Neighborhood search algorithms (alternatively called
local search algorithms) are a wide class of improvement algorithms where at

10 Chapter 1. Mixed-Integer Programming

each iteration an improving solution is found by searching the “neighborhood” of
the current solution.

Since these procedures can be quite time consuming, it seems reasonable to
spend more effort on finding good feasible solutions early in the search tree, since
this would have the most impact on the solution process. Very recently, Fischetti,
Glover and Lodi proposed a heuristic scheme for finding a feasible solution to 0-1
MIPs, called Feasibility Pump (FP). In this Chapter 2, this technique is further
elaborated and extended in two main directions, namely (i) handling as effectively
as possible MIP problems with both binary and general-integer variables, and (ii)
exploiting the FP information to drive a subsequent enumeration phase.

1.8 Truncated search

While mixed-integer linear programming plays a central role in modeling difficult-
to-solve (NP-hard) combinatorial problems of practical interest, the exact solu-
tion of the resulting models often cannot be carried out (in a reasonable time) for
the problem sizes of interest in real-world applications, hence one is interested in
effective heuristic methods.

Although several heuristics have been proposed in the literature for specific
classes of problems, only a few papers deal with general-purpose MIP heuristics,
including [8, 9, 27, 28, 29, 42, 52, 53, 58] among others.

Exact MIP solvers are nowadays very sophisticated tools designed to hopefully
deliver, within acceptable computing time, a provable optimal solution of the
input MIP model, or at least a heuristic solution with a practically-acceptable
error. In fact, what matters in many practical cases is the possibility of finding
reasonable solutions as early as possible during the computation.

In this respect, the “heuristic behavior” of the MIP solver plays a very impor-
tant role: an aggressive solution strategy that improves the incumbent solution at
very early stages of the computation is strongly preferred to a strategy designed
for finding good solutions only at the late steps of the computation (that, for
difficult problems, will unlikely be reached within the time limit).

Many commercial MIP solvers allow the user to have a certain control on
their heuristic behavior through a set of parameters affecting the visit of the
branching tree, the frequency of application of the internal heuristics, the fact
of emphasizing the solution integrality rather than its optimality, etc. Some
recently proposed techniques (Local Branching [24] and RINS [19]), have provided
a considerable improvement in this direction enhancing the heuristic behavior of
MIP solvers through appropriate diversification mechanisms borrowed from local
search paradigms.

Therefore, even if branch-and-cut algorithms are NP-hard, it may be reason-
able to model a problem as a MIP instance and search for “heuristic” solutions
by means of a black-box general purpose MIP solver with a truncated search -
thus exploiting the level of sophistication reached nowadays by these tools.

This same idea is also used, for example, in Chapter 2, when resorting to

1.8. Truncated search 11

enumeration for finding a feasible solution, and in Chapter 4 for searching good
branching disjunctions.

12 Chapter 1. Mixed-Integer Programming

Chapter 2

Feasibility Pump

2.1 Introduction

In this chapter we address the problem of finding heuristic solutions of a generic
MIP problem of the form

(MIP) min cT x (2.1)

Ax ≥ b (2.2)

xj integer ∀j ∈ I (2.3)

where A is an m × n matrix and I is the nonempty index-set of the integer
variables. We assume without loss of generality that the MIP constraints Ax ≥ b
include the variable bounds

lj ≤ xj ≤ uj ∀j ∈ N

(possibly lj = −∞ and/or uj = +∞ for some j), where N denotes the set of all
(continuous and integer) variables.

Finding any feasible MIP solution is an NP-complete problem that can be
extremely hard in practice. As a matter of fact, state-of-the-art MIP solvers
may spend a very large computational effort before initializing their incumbent
solution. Therefore, heuristic methods aimed at finding (and then refining) any
feasible solution for hard MIPs are very important in practice; see [8], [9], [27],
[28], [29], [40], [42], [52], [53], [58], [24], [19], and [10] among others.

Very recently, Fischetti, Glover and Lodi [23] proposed a heuristic scheme for
finding a feasible solution to general MIPs, called Feasibility Pump (FP), that
works as follows. Let P := {x : Ax ≥ b} denote the polyhedron associated with
the LP relaxation of the given MIP. With a little abuse of notation, we say that
a point x is integer if xj is integer ∀j ∈ I (no matter the value of the other
components). Analogously, the rounding x̃ of a given x is obtained by setting
x̃j := [xj] if j ∈ I and x̃j := xj otherwise, where [·] represents scalar rounding to
the nearest integer. The (L1-norm) distance between a generic point x ∈ P and

13

14 Chapter 2. Feasibility Pump

a given integer x̃ is defined as

∆(x, x̃) =
∑
j∈I

|xj − x̃j|

Notice that x̃ is assumed to be integer; moreover, the continuous variables xj

with j 6∈ I, if any, do not contribute to the distance function ∆(x, x̃). For any
given integer x̃, the distance function can be written as1:

∆(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

dj (2.4)

where variables dj(= |xj − x̃j|) satisfy constraints

dj ≥ xj − x̃j and dj ≥ x̃j − xj ∀j ∈ I : lj < x̃j < uj (2.5)

It then follows that the closest point x∗ ∈ P to x̃ can easily be determined by
solving the LP

min{∆(x, x̃) : Ãx ≥ b̃} (2.6)

where Ãx ≥ b̃ is the original system Ax ≥ b possibly amended by constraints
(2.5). If ∆(x∗, x̃) = 0, then x∗j (= x̃j) is integer ∀j ∈ I, so x∗ is a feasible MIP
solution. Conversely, given a point x∗ ∈ P , the integer point x̃ closest to x∗ is
easily determined by just rounding x∗. The FP heuristic works with a pair of
points (x∗, x̃) with x∗ ∈ P and x̃ integer, that are iteratively updated with the
aim of reducing as much as possible their distance ∆(x∗, x̃). To be more specific,
one starts with any x∗ ∈ P , and initializes a (typically infeasible) integer x̃ as the
rounding of x∗. At each FP iteration, called pumping cycle, x̃ is fixed and one
finds through linear programming the point x∗ ∈ P which is as close as possible
to x̃. If ∆(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and the heuristic stops.
Otherwise, x̃ is replaced by the rounding of x∗ so as to further reduce ∆(x∗, x̃),
and the process is iterated.

The FP scheme (as stated) tends to stop prematurely due to stalling issues.
This happens whenever ∆(x∗, x̃) > 0 is not reduced when replacing x̃ by the
rounding of x∗, meaning that all the integer-constrained components of x̃ would
stay unchanged in this iteration. In this situation, a few components x̃j are
heuristically chosen and modified, even if this operation increases the current
value of ∆(x∗, x̃). The reader is referred to [23] for a detailed description of this
(and related) anti-stalling mechanisms.

According to the computational analysis reported in [23], FP is quite effective
in finding feasible solutions of hard 0-1 MIPs. However, as observed in the conclu-
sions of that paper, MIPs with general-integer variables are much more difficult
to solve by using the FP approach. This can be explained by observing that, for

1This expression is slightly different from the one proposed in [23]; both definitions assume
an objective function that tends to minimize the value of the dj variables.

2.2. The Feasibility Pump for general MIPs 15

a general integer variable, one has to decide not just the rounding direction (up
or down), as for binary variables, but also the new value of the variable; e.g., if
a variable xj is between 0 and 10 and takes value 6.7 (say) in the LP relaxation,
the decision of “moving up” its value still leaves four values (7, 8, 9, and 10) to
choose from. The same difficulty arises in case of stalling: in the binary case, one
only needs to choose the variables to flip (from 0 to 1 or viceversa), whereas for
general integer variables one also has to decide their new value.

In this chapter we build on the ideas presented in [23] for 0-1 MIPs and extend
them in two main directions. The first one is to handle effectively MIP problems
with both binary and general integer variables. The second is to exploit the
information obtained from the feasibility pump to drive an enumeration stage.

The chapter is organized as follows. In Section 2.2 we propose an FP exten-
sion to deal with MIPs with general-integer variables. Computational results are
presented in Section 2.3, where we compare the FP performance with that of the
commercial solvers Xpress Optimizer 16.01.05 and ILOG Cplex 9.1 on a set of
hard general MIPs taken from MIPLIB 2003 library [5] and other sources. Sec-
tion 2.4 considers the important issue of improving the quality of the first solution
found by FP. Finally, we draw some conclusions in Section 2.5.

2.2 The Feasibility Pump for general MIPs

The basic scheme of our FP implementation for general MIPs is illustrated in
Figure 2.1. As already stated, the method generates two (hopefully convergent)
trajectories of points x∗ and x̃ that satisfy feasibility in a complementary but
partial way—one satisfies the linear constraints, the other the integer requirement.
The current pair (x∗, x̃) is initialized at steps 1-2. The while-do loop at step
4 is executed until the distance ∆(x∗, x̃) becomes zero (in which case, x∗ is a
feasible MIP solution), or the current iteration counter nIter reaches a given
limit (maxIter). At each pumping cycle, at step 6 we fix x̃ and re-define x∗ as
the closest point in P , so as to hopefully reduce the current distance ∆(x∗, x̃). At
step 7 we check whether ∆(x∗, x̃) = 0, in which case x∗ is feasible and we stop.
Otherwise, at step 9 we replace x̃ by [x∗] (the rounding of x∗), and repeat. In
case the components of the new x̃ indexed by I would coincide with the previous
ones, however, a more involved computation is needed to avoid entering a loop.
We first compute, at step 11, a score σj = |x∗j − x̃j|, j ∈ I, giving the likelihood
of component x̃j to move, i.e., to change its current value from x̃j to x̃j + 1 (if
x∗j > x̃j) or to x̃j−1 (if x∗j < x̃j). Then, at step 12 we update x̃ by performing the
TT (say) moves with largest score, where TT is generated as a uniformly-random
integer in range (T/2, 3T/2), and T is a given parameter.

In order to avoid cycling, at step 13 we check whether one of the following
situations occurs:

• the current point x̃ is equal (in its components indexed by I) to the one
found in a previous iteration;

16 Chapter 2. Feasibility Pump

The Feasibility Pump for general MIPs (basic scheme):

1. initialize x∗ := argmin{cT x : Ax ≥ b}
2. x̃ := [x∗] (:= rounding of x∗)
3. nIter := 0

4. while (∆(x∗, x̃) > 0 and nIter < maxIter) do

5. nIter := nIter+1
6. x∗ := argmin{∆(x, x̃) : Ãx ≥ b̃}
7. if ∆(x∗, x̃) > 0 then

8. if [x∗j] 6= x̃j for at least one j ∈ I then

9. update x̃ := [x∗]
10. else

11. for each j ∈ I define the score σj := |x∗j − x̃j|
12. move the TT=rand(T/2, 3T/2) components x̃j with largest σj

13. if cycling is detected, perform a restart operation

14. endif

15. endif

16. enddo

Figure 2.1: The basic FP scheme for general-integer MIPs

• distance ∆(x∗, x̃) did not decrease by at least 10% in the last KK (say)
iterations.

If this is the case, we perform a restart operation (to be detailed later), consisting
in a random perturbation of some entries of x̃.

As a further step to reduce the likelihood of cycling, we found it useful to
also perturb the rounding function used at step 2 of Figure 2.1. Indeed, the
rounded components are typically computed as [xj] := bxj + τc with τ fixed
at 0.5. However, in our tests we obtained better results by taking a random τ
defined as follows:

τ(ω) :=

{
2ω(1− ω) if ω ≤ 1

2

1− 2ω(1− ω) if ω > 1
2

where ω is a uniform random variable in [0, 1). Using the definition above, thresh-
old τ can take any value between 0 and 1, but values close to 0.5 are more likely
than those near 0 or 1; see Figure 2.2 for an illustration of the probability distri-
bution and density for τ(ω).

2.2.1 Binary and general-integer stages

Difficult MIPs often involve both binary and general-integer variables playing
a quite different role in the model. A commonly-used rule in MIP solvers is
to branch first on binary variables, then on general integers. This corresponds
to the “smallest domain first” rule in constraint programming: branching on a
variable with a large domain (e.g., a general integer variable) will not enforce

2.2. The Feasibility Pump for general MIPs 17

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

2

4

6

8

Figure 2.2: Probability distribution and density of the rounding threshold

as powerful constraints as branching on a variable with a small domain (e.g., a
binary variable), therefore it is postponed to the bottom of the tree. Following
this approach, we found useful to split the FP execution in two stages.

At Stage 1 (binary stage), we concentrate on the binary variables xj with
j ∈ B (say), defined as the integer variables xj with uj − lj = 1, and relax the
integrality condition on all other xj, j ∈ I \ B. This produces an easier MIP,
with a distance function ∆(x, x̃) that does not involve any additional variable dj.
The purpose of the binary stage is to reach as soon as possible a solution that
is feasible with respect to the binary variables, with the hope that the general-
integer ones are also “almost integer” and only a few of them will require the
introduction of the additional variables dj and of the associated constraints (2.5).

At Stage 2, instead, the integrality condition on all (binary and non-binary)
variables xj, j ∈ I, is restored, and the FP method continues by taking into
account all the integrality requirements (this requires the introduction, at each
iteration, of the additional variables dj needed to express the distance function
with respect to the current point x̃).

During Stage 1, the restart operation at step 13 is only performed in case of
cycling (i.e., when the same x̃ is found in different iterations), and consists in a
random flip of the binary variables that did not change in the last iteration, with
probability |x∗j − [x∗j]|+ ρ, where ρ = 0.03 is an hardwired parameter.

The algorithm exits Stage 1 and moves to Stage 2 when: (a) a “feasible”
(with respect to the binary variables only) solution x∗ has been found, or (b) the
incumbent minimum ∆(x∗, x̃) has not been updated in the last KK = 70 iterations,
or (c) an iteration limit has been reached. The point x̃ that produced the smallest
∆(x∗, x̃) during Stage 1 is stored and passed to Stage 2 as the initial x̃.

2.2.2 Enumeration stage

For some difficult instances, FP (as stated) turns out to be unable to find a feasible
solution within acceptable computing time. In this case, instead of insisting with
the classical FP scheme one can think of resorting to a sort of “enumeration stage”
based on the information provided by the previous FP execution. Following this
idea, we have implemented the following simple scheme.

Let xB (B for best) be the LP point x∗ computed at step 6 of the algo-

18 Chapter 2. Feasibility Pump

rithm of Figure 2.1 which is as close as possible to its rounding x̃. Even in case
xB is not feasible, we typically have that the infeasibility measure ∆(xB, x̃) is
small. Therefore it seems reasonable to concentrate on x̃ and use a (possibly
heuristic) enumerative MIP method in the attempt of finding a feasible integer
solution which is close to x̃. In our implementation, this is obtained by apply-
ing a general-purpose (truncated) MIP solver to the original problem (2.1), after
having replaced the original objective function cT x by the distance function (2.4),
where x̃ := [xB] is the “almost feasible” solution available after Stage 2. The idea
here is to exploit the full power of the MIP solver, but with an objective function
that penalizes the solutions that are far from the available “almost feasible” FP

solution x̃.
As the enumeration phase above is applied at the end of Step 2, it will be

referred to as the Stage 3 of the overall FP method.

2.3 Computational experiments

In this section we report computational results comparing the performance of
the proposed FP method with that of the two state-of-the-art commercial solvers,
namely, Xpress Optimizer 16.01.05 [18] and ILOG Cplex 9.1 [43]. Of course, the
heuristic performance of a MIP solver depends heavily on the branching rule (as
discussed, e.g., in [15]), on the tree-exploration strategy [19], and on the tuning
of specific parameters of the MIP solver at hand. In our experiments, however,
we decided to use as much as possible the default parameter values of the codes
under comparison. To be specific, in our FP implementation we used the following
parameters:

• iteration limit set to 10000 and 2000 for Stage 1 and 2, respectively;

• parameter TT set to 20;

• parameter KK set to 70 for stage 1 and 600 for Stage 2;

• in the perturbation phase of steps 11-12 of Figure 2.1, we consider only
variables with fractional value (defined as |xj− [xj]|) greater than 0.02, and
always leave the other variables unmodified.

In order to have a fair comparison, the LP/MIP functions used within FP are
the same used by the method under comparison. To be more specific, we ran
Xpress Optimizer against an FP implementation based on Xpress Optimizer

procedures (called FP-xpress in the sequel), and ILOG Cplex against an FP im-
plementation based on ILOG Cplex procedures (called FP-cplex in the sequel).
Within our FP code, we used the ILOG Cplex function CPXoptimize and Xpress

Optimizer function XPRSminim to solve the initial LP (thus leaving to the solver
the choice of the actual LP algorithm to invoke), with the default parameter set-
ting except for disabling the presolver. For the subsequent LPs with the modified
objective function, we forced the use of the primal simplex algorithm. The reason

2.3. Computational experiments 19

for this choice is that, from iteration to iteration, the feasibility of the current
basis is always preserved during stage 1 and, quite often, also during stage 2
(according to our computational tests, using the primal simplex yields to better
computing times on 31 out of 35 instances and, on average, to a 25% performance
improvement). Finally, within the enumeration Stage 3 we set the ILOG Cplex

parameter MIP emphasis to 4 (i.e., Emphasize hidden feasible solutions, so as to
activate the RINS heuristic [19]), in order to bias the search towards feasibility
rather than optimality. All other solver parameters were left at their default
values.

The MIP solvers compared against FP have been run in their default set-
tings (with presolver enabled), except the ILOG Cplex parameter MIP mphasis

(set to 1, i.e., Emphasize integer feasibility) and the Xpress Optimizer param-
eter XPRScutstrategy (set to 3, i.e., Aggressive cut strategy). According to our
computational experience, these settings gave the best average results, for the
respective solvers, on the instances we considered.

Our testbed is made by general-integer MIP instances drawn from these four
sources:

1. instances from MIPLIB 2003 [5];

2. instances from MILPlib [56];

3. the periodic scheduling instances described in [68];

4. the network design and multicommodity routing instances described in [19].

Pure 0-1 instances from all sets have been excluded from the comparison, as they
have been addressed in [23].

Table 2.1 reports the instance name, the corresponding number of variables
(n), of 0-1 variables (|B|), of general-integer variables (|G| = |I| − |B|) and of
constraints (m).

The results of our experiments are reported in Table 2.2 (Xpress Optimizer

vs FP-xpress) and in Table 2.3 (ILOG Cplex vs FP-cplex). The focus was to
evaluate the capability of the compared methods to converge to an initial feasible
solution, hence all methods were stopped as soon as the first feasible solution
was found. For the MIP solvers, the tables report the computing time to get the
first feasible solution (time) and the corresponding number of branching nodes
(nodes).

As to FP, we report the computing time to get the first feasible solution
(time), the stage where this solution was found (stage), the overall number of FP
iterations (iter) and of restarts (restarts) in stages 1 and 2. The last column of
the tables gives the computing time speedup of FP over the compared methods
(a value greater than 1 meaning that FP was faster). Finally, the last rows of the
tables report the total computing time needed to process the whole testbed, and
the average speedup of FP over the compared method.

20 Chapter 2. Feasibility Pump

Name n |B| |G| m source
arki001 1388 415 123 1048 [5]
atlanta-ip 48738 46667 106 21732 [5]
gesa2 1224 240 168 1392 [5]
gesa2-o 1224 384 336 1248 [5]
manna81 3321 18 3303 6480 [5]
momentum2 3732 1808 1 24237 [5]
momentum3 13532 6598 1 56822 [5]
msc98-ip 21143 20237 53 15850 [5]
mzzv11 10240 9989 251 9499 [5]
mzzv42z 11717 11482 235 10460 [5]
noswot 128 75 25 182 [5]
roll3000 1166 246 492 2295 [5]
rout 556 300 15 291 [5]
timtab1 397 64 107 171 [5]
timtab2 675 113 181 294 [5]
neos10 23489 23484 5 46793 [56]
neos16 377 336 41 1018 [56]
neos20 1165 937 30 2446 [56]
neos7 1556 434 20 1994 [56]
neos8 23228 23224 4 46324 [56]
ic97 potential 728 450 73 1046 [68]
ic97 tension 703 176 4 319 [68]
icir97 potential 2112 1235 422 3314 [68]
icir97 tension 2494 262 573 1203 [68]
rococoB10-011000 4456 4320 136 1667 [19]
rococoB10-011001 4456 4320 136 1677 [19]
rococoB11-010000 12376 12210 166 3792 [19]
rococoB11-110001 12431 12265 166 8148 [19]
rococoB12-111111 9109 8910 199 8978 [19]
rococoC10-001000 3117 2993 124 1293 [19]
rococoC10-100001 5864 5740 124 7596 [19]
rococoC11-010100 12321 12155 166 4010 [19]
rococoC11-011100 6491 6325 166 2367 [19]
rococoC12-100000 17299 17112 187 21550 [19]
rococoC12-111100 8619 8432 187 10842 [19]

Table 2.1: Test bed of MIPs with general integer variables

2.3. Computational experiments 21

Computing times are expressed in CPU seconds, and refer to an Intel Pentium
IV 2.4GHz personal computer with 512 Mbyte of main memory. A time limit of
1 hour of CPU time was imposed for all methods.

Xpress Optimizer FP-xpress
name time nodes time stage iter restarts speedup
arki001 7.03 1 66.70 3 1132 100 0.11
atlanta-ip 962.36 220 191.83 1 53 12 5.02
gesa2 0.05 1 0.06 2 5 0 0.75
gesa2-o 0.07 1 0.14 2 25 5 0.50
manna81 0.16 1 3.78 2 3 0 0.04
momentum2 1996.14 295 > 3600.00 3 442 123 < 0.55
momentum3 > 3600.00 1 1479.75 3 350 128 > 2.43
msc98-ip 303.23 334 23.91 1 30 6 12.68
mzzv11 251.56 194 26.66 1 1 0 9.44
mzzv42z 8.45 1 19.52 1 2 0 0.43
noswot 0.02 1 0.00 2 4 0 5.21
roll3000 12.45 72 0.84 2 7 0 14.80
rout 0.06 1 0.05 1 25 9 1.33
timtab1 3.75 1819 0.77 2 293 31 4.90
timtab2 124.58 65387 6.97 3 806 60 17.88
neos10 19.41 1 13.31 1 2 0 1.46
neos16 > 3600.00 1154567 > 3600.00 3 726 70 1.00
neos20 12.11 634 9.95 3 685 82 1.22
neos7 0.20 1 0.17 2 3 0 1.21
neos8 19.30 1 45.08 1 1 0 0.43
ic97 potential 0.05 1 4.75 3 991 35 0.01
ic97 tension 2.92 1325 2.13 2 659 47 1.38
icir97 potential > 3600.00 99765 13.75 3 767 17 > 261.82
icir97 tension 10.20 714 22.74 3 775 116 0.45
rococoB10-011000 0.69 1 1.13 1 18 1 0.61
rococoB10-011001 0.66 1 0.83 1 27 2 0.79
rococoB11-010000 2.03 1 2.33 1 25 1 0.87
rococoB11-110001 5.47 1 4.95 1 14 0 1.10
rococoB12-111111 1520.30 2376 > 3600.00 3 736 102 < 0.42
rococoC10-001000 0.20 1 0.75 1 63 13 0.27
rococoC10-100001 0.95 1 3.44 1 63 10 0.28
rococoC11-010100 2.08 1 2.45 1 19 1 0.85
rococoC11-011100 1.03 1 1.82 1 20 1 0.57
rococoC12-100000 8.39 1 8.08 1 14 0 1.04
rococoC12-111100 3.06 1 2.02 1 13 0 1.52
Total times 16078.96 12760.64 Geometric mean 1.14

Table 2.2: Convergence to a first feasible solution using Xpress Optimizer

According to the tables, FP compares favorably with both MIP solvers. In-
deed, both FP-xpress and Xpress Optimizer found a feasible solution for all
but 3 instances, but FP-xpress was 14% (in geometric mean) faster than Xpress

Optimizer in finding its first solution. As to the ILOG Cplex implementation,
FP-cplex found a feasible solution to all but one instance, thus solving one in-
stance more than ILOG Cplex and was 2.00 times (geometric mean) faster than
ILOG Cplex. Also to be noted is that 25 out of the 35 instances have been solved

22 Chapter 2. Feasibility Pump

ILOG Cplex FP-cplex
name time nodes time stage iter restarts speedup
arki001 2.83 474 46.53 3 937 74 0.06
atlanta-ip 1562.58 230 113.64 1 5 0 13.75
gesa2 0.05 0 0.02 2 4 0 3.00
gesa2-o 0.25 90 0.03 2 6 0 8.00
manna81 0.22 0 0.34 2 3 0 0.64
momentum2 > 3600.00 0 > 3600.00 3 585 131 1.00
momentum3 > 3600.00 0 1248.13 3 393 125 > 2.88
msc98-ip 1330.23 120 97.09 1 37 4 13.70
mzzv11 243.34 80 214.83 1 3 0 1.13
mzzv42z 46.58 50 68.56 1 2 0 0.68
noswot 0.00 0 0.00 2 3 0 1.00
roll3000 7.05 300 0.83 2 6 0 8.51
rout 0.34 90 0.05 1 29 5 7.33
timtab1 0.88 752 0.08 2 37 3 11.20
timtab2 129.31 49264 2.14 2 631 64 60.41
neos10 6.88 0 8.28 1 2 0 0.83
neos16 1272.05 400000 1660.88 3 755 99 0.77
neos20 2.17 194 7.41 3 696 93 0.29
neos7 0.64 50 1.84 3 296 139 0.35
neos8 6.80 0 5.00 1 1 0 1.36
ic97 potential 0.52 40 2.98 3 775 18 0.17
ic97 tension 5.11 4730 2.67 3 1110 99 1.91
icir97 potential 3.48 120 61.09 3 787 7 0.06
icir97 tension 2380.35 464527 4.38 2 344 54 544.08
rococoB10-011000 1.14 0 1.41 1 23 1 0.81
rococoB10-011001 8.06 70 0.89 1 23 1 9.05
rococoB11-010000 1.86 0 3.20 1 22 0 0.58
rococoB11-110001 5.75 0 7.80 1 22 0 0.74
rococoB12-111111 1808.09 3590 718.55 3 899 101 2.52
rococoC10-001000 0.28 0 0.50 1 53 11 0.56
rococoC10-100001 558.73 1520 2.03 1 58 8 275.07
rococoC11-010100 1.48 0 3.34 1 27 1 0.44
rococoC11-011100 2.13 0 2.39 1 26 1 0.89
rococoC12-100000 51.72 20 7.13 1 21 0 7.26
rococoC12-111100 2.00 0 3.30 1 13 0 0.61
Total times 16642.90 7897.33 Geometric mean 2.00

Table 2.3: Convergence to a first feasible solution using ILOG Cplex

2.3. Computational experiments 23

by FP-cplex either in Stage 1 or 2, i.e., without the enumeration of Stage 3.
To test the effectiveness of the binary stage, we also ran FP-cplex with its

Stage 1 disabled. The results are reported in Table 2.4 and show that the binary
stage has a really big impact on the overall performance: without Stage 1, 4
more instances could not be solved by FP-cplex, whose computing time was on
average 9 times worse due to the increased number of iterations and of auxiliary
variables (the latter reported in column aux var) required.

FP with binary stage FP without binary stage
aux iter aux var

Name time iter vars time ratio iter diff vars diff
arki001 46.53 937 96 30.33 0.652 685 -252 95 -1
atlanta-ip 113.64 5 0 168.47 1.482 223 218 68 68
gesa2 0.02 4 35 0.09 6.000 13 9 26 -9
gesa2-o 0.03 6 25 0.08 2.500 11 5 27 2
manna81 0.34 3 2497 0.44 1.273 3 0 2504 7
momentum2 > 3600.00 585 1 > 3600.00 1.000 616 31 1 0
momentum3 1248.13 393 1 > 3600.00 2.884 441 48 1 0
msc98-ip 97.09 37 0 105.50 1.087 72 35 49 49
mzzv11 214.83 3 0 873.75 4.067 638 635 131 131
mzzv42z 68.56 2 0 488.70 7.128 662 660 141 141
noswot 0.00 3 4 0.02 19 16 12 8
roll3000 0.83 6 27 64.20 77.528 900 894 466 439
rout 0.05 29 0 0.11 2.333 41 12 7 7
timtab1 0.08 37 88 0.17 2.200 67 30 91 3
timtab2 2.14 631 163 1.72 0.803 421 -210 160 -3
neos10 8.28 2 0 7.31 0.883 1 -1 0 0
neos16 1660.88 755 41 874.41 0.526 978 223 41 0
neos20 7.41 696 30 9.67 1.306 978 282 30 0
neos7 1.84 296 20 1.91 1.034 197 -99 20 0
neos8 5.00 1 0 5.66 1.131 1 0 0 0
ic97 potential 2.98 775 68 4.81 1.613 1183 408 73 5
ic97 tension 2.67 1110 4 1.95 0.731 938 -172 4 0
icir97 potential 61.09 787 291 96.58 1.581 713 -74 292 1
icir97 tension 4.38 344 556 11.31 2.586 431 87 573 17
rococoB10-011000 1.41 23 0 629.59 447.711 633 610 134 134
rococoB10-011001 0.89 23 0 91.72 102.982 632 609 134 134
rococoB11-010000 3.20 22 0 2146.19 670.029 632 610 166 166
rococoB11-110001 7.80 22 0 > 3600.00 461.723 636 614 166 166
rococoB12-111111 718.55 899 173 > 3600.00 5.010 612 -287 193 20
rococoC10-001000 0.50 53 0 22.59 45.188 456 403 124 124
rococoC10-100001 2.03 58 0 2012.59 990.815 416 358 122 122
rococoC11-010100 3.34 27 0 1234.38 369.159 524 497 165 165
rococoC11-011100 2.39 26 0 527.63 220.706 621 595 163 163
rococoC12-100000 7.13 21 0 > 3600.00 505.263 574 553 187 187
rococoC12-111100 3.30 13 0 > 3600.00 1091.943 518 505 186 186

mean 8.986 224 69

Table 2.4: Comparison of FP with and without binary stage

Table 2.5 reports the total time and percent time spent by FP-cplex in each
individual stage.

24 Chapter 2. Feasibility Pump

times percentages
Name stage 1 stage 2 stage 3 stage 1 stage 2 stage 3
arki001 0.17 39.30 8.31 0.36% 82.24% 17.40%
atlanta-ip 8.73 100.00%
gesa2 0.00 0.02 0.00% 100.00%
gesa2-o 0.00 0.03 0.00% 100.00%
manna81 0.00 0.27 0.00% 100.00%
momentum2 175.77 224.83 3199.41 4.88% 6.25% 88.87%
momentum3 160.08 432.44 160.77 21.25% 57.41% 21.34%
msc98-ip 7.81 100.00%
mzzv11 2.13 100.00%
mzzv42z 1.09 100.00%
noswot 0.00 0.00
roll3000 0.52 0.06 89.19% 10.81%
rout 0.06 100.00%
timtab1 0.02 0.08 16.67% 83.33%
timtab2 0.14 2.02 6.52% 93.48%
neos10 4.72 100.00%
neos16 0.55 1.94 1713.63 0.03% 0.11% 99.86%
neos20 0.45 4.17 2.95 5.98% 55.05% 38.97%
neos7 0.28 1.52 0.08 15.00% 80.83% 4.17%
neos8 1.67 100.00%
ic97 potential 0.52 2.47 0.13 16.58% 79.40% 4.02%
ic97 tension 0.19 2.00 0.52 6.94% 73.99% 19.08%
icir97 potential 1.73 8.98 52.67 2.74% 14.17% 83.09%
icir97 tension 0.95 3.47 21.55% 78.45%
rococoB10-011000 0.30 100.00%
rococoB10-011001 0.33 100.00%
rococoB11-010000 0.94 100.00%
rococoB11-110001 1.28 100.00%
rococoB12-111111 45.13 79.66 608.11 6.16% 10.87% 82.97%
rococoC10-001000 0.39 100.00%
rococoC10-100001 1.42 100.00%
rococoC11-010100 1.02 100.00%
rococoC11-011100 0.66 100.00%
rococoC12-100000 1.55 100.00%
rococoC12-111100 0.53 100.00%

mean over all instances 54.68% 29.33% 13.14%
mean over instances performing the stage 54.68% 57.02% 93.31%

Table 2.5: Time spent in each stage

2.4. Improving feasible solutions 25

Finally, in order to validate the effectiveness of our approach we compared
these results with the performance of the original FP algorithm [23]. Since this
method can only handle 0-1 MIPs, we converted each model in our testbed to a 0-
1 problem by replacing each general-integer variable with a set of binary variables
representing the binary encoding of the integer values. More precisely, we replaced
each general-integer variable xi, where 0 ≤ xi ≤ ui, with ni := dlog2(ui + 1)e
binary variables xik such that xi =

∑ni−1
k=0 2kxik. The original FP applied to the

resulting 0-1 MIPs turned out to be faster in reaching its first feasible solution
on just 3 instances (namely, arki001, neos10, and rococoC11-011100), whereas,
on all other instances, it took much longer or could not find any solution at all.

2.4 Improving feasible solutions

As already mentioned, in the previous experiments our main attention was on
the computing time spent to find a first feasible solution. In this respect, the FP

results were very satisfactory. However, the quality of the solution delivered by
FP is often considerably worse than that computed (in a typically longer time)
by ILOG Cplex or Xpress Optimizer. This can be explained by noting that
the FP method uses the original objective function only at step 1, when the
solution of the LP relaxation is used to initialize x∗, while the original costs
are completely disregarded during the next iterations. As a consequence, the
quality of x∗ and x̃ tends to deteriorate rapidly with the number of iterations
and of restarts performed. This explains why the same behavior is much less
pronounced in the binary case studied in [23], where driving the pair (x∗, x̃)
towards feasibility turns out to be much easier than in the general-integer case
and requires a considerably smaller number of iterations and of restarts.

In this section we investigate three simple FP strategies aimed at improving
the quality of the solutions found by the method.

The first strategy is based on the idea of adding an artificial upper bound con-
straint cT x ≤ UB to the LP solved at step 6, where UB is updated dynamically
each time an improved feasible solution is found. To be more specific, right after
step 1 we initialize z∗LP = cT x∗ (= LP relaxation value) and UB = +∞. Each
time an improved feasible MIP solution x∗ of value zH = cT x∗ is found at step
6, we update UB = αz∗LP + (1 − α)zH for a certain α ∈ (0, 1), and continue the
while-do loop. We observed that, due to the additional constraint cT x ≤ UB, it
is often the case that the integer components of x̃ computed at step 9 define a
feasible point of the original system Ax ≥ b, but not of the current one. In order
to improve the chances of updating the incumbent solution, we therefore apply
(right after step 9) a simple post-processing of x̃ consisting in solving the LP
min{cT x : Ax ≥ b, xj = x̃j ∀j ∈ I} and comparing the corresponding solution
x (if any) with the incumbent one–solution x being guaranteed to be feasible for
the original problem, as all the integer-constrained variables have been fixed at
their corresponding value in x̃.

In the other two strategies, we stop FP as soon as it finds a feasible solution,

26 Chapter 2. Feasibility Pump

and pass this solution either to a Local Branching heuristic [24], or to a MIP
solver using RINS strategy [19].

(Ref) Cplex Cplex
name emp=1 emp=4 FP-20% FP-30% FP-lb FP-rins
arki001 7.581E+06 1.0000 1.0007 1.0006 0.9999 * 1.0000
atlanta-ip 1.000E+02 N/A 0.9600 0.9800 0.9600 0.9500 *
gesa2 2.578E+07 * 1.0000 * 1.0004 1.0004 1.0000 1.0000 *
gesa2-o 2.578E+07 * 1.0000 * 1.0011 1.0013 1.0000 * 1.0000 *
manna81 -1.316E+04 * 1.0000 * 1.0000 * 1.0005 1.0000 * 1.0000 *
msc98-ip 2.250E+07 N/A 0.8993 0.8984 * 0.9529 0.9699
mzzv11 -2.172E+04 * 1.0000 * 1.2209 1.0950 1.1144 1.0018
mzzv42z -2.054E+04 * 1.0000 1.0235 1.0188 1.0118 1.0000
noswot -4.100E+01 * 1.0000 * 1.0000 * 1.0000 * 1.0000 * 1.0000 *
roll3000 1.343E+04 0.9596 * 1.0708 1.1188 0.9800 0.9657
rout 1.078E+03 1.0000 1.0151 1.0061 1.0000 * 1.0000 *
timtab1 7.927E+05 0.9647 * 1.3123 1.1528 1.0034 1.6313
timtab2 1.232E+06 0.8990 * 1.3245 1.1675 1.0224 0.9648
neos10 -1.135E+03 * 1.0000 * 4.4862 2.9481 1.0000 * 1.0000 *
neos16 4.510E+02 N/A 1.0067 1.0067 1.0067 0.9978 *
neos20 -4.340E+02 * 1.0000 * 4.1731 4.1731 1.0383 1.0000
neos7 7.219E+05 * 1.0000 1.0582 1.0028 1.0000 1.0000
neos8 -3.719E+03 1.0000 1.0005 3.1570 1.0000 * 1.0000 *
ic97 potential 3.961E+03 0.9965 * 1.0106 1.0155 0.9970 0.9965 *
ic97 tension 3.942E+03 * 1.0003 1.0018 1.0032 1.0000 * 1.0000 *
icir97 potential 6.410E+03 0.9964 1.0264 1.0434 1.0034 0.9945 *
icir97 tension 6.418E+03 0.9949 0.9948 0.9996 0.9956 0.9938 *
rococoB10-011000 1.951E+04 0.9967 * 1.1947 1.0873 1.0365 1.0593
rococoB10-011001 2.131E+04 * 1.0501 1.2451 1.2443 1.0037 1.1349
rococoB11-010000 3.348E+04 0.9901 * 1.1968 1.0978 1.0138 1.1833
rococoB11-110001 4.947E+04 0.9738 * 1.5647 1.2136 1.0573 1.2941
rococoB12-111111 4.623E+04 0.8589 * 2.0923 2.0923 1.0035 1.0372
rococoC10-001000 1.146E+04 * 1.0004 1.1645 1.0883 1.0013 1.0013
rococoC10-100001 1.943E+04 0.9336 * 1.5803 1.7790 0.9377 1.0649
rococoC11-010100 2.163E+04 * 1.0189 1.1680 1.0668 1.0389 1.3361
rococoC11-011100 2.192E+04 0.9561 * 1.1306 1.2290 1.0410 1.1887
rococoC12-100000 3.753E+04 * 1.0177 1.6447 1.4960 1.0742 1.0775
rococoC12-111100 4.097E+04 0.9138 * 1.0858 1.0176 0.9794 0.9448

Geometric means 0.9833 (+) 1.2352 1.2292 1.0078 1.0469

(+) not counting the 3 cases of failure

Table 2.6: Solution quality with respect to ILOG Cplex (emp=1)

Table 2.6 compares the quality of the best solution returned by ILOG Cplex

with that of the solution found (within a 3600-second time limit) by FP-cplex

and then improved by means of one of the three strategies above. In the table,
the first four columns report the instance name (name), the value of the LP
relaxation (LP relax) and of best feasible solutions found within the 3600-second
time limit by ILOG Cplex (Cplex) with two different settings of its MIP emphasis

parameter, namely “emp=1” for integer feasibility and “emp=4” for hidden feasible

2.5. Conclusions 27

solutions (i.e., RINS heuristic). As to FP-cplex with the artificial upper bound, it
was run with the same settings described earlier, by requiring a 20% (respectively,
30%) improvement at each main iteration (i.e., with α ∈ {0.2, 0.3}); see columns
FP-XX%. Tests with α = 0.1 and α = 0.4 led to slightly worse solutions (with
an average quality ratio of about 1.26) and are not shown in the table.

Column FP-lb refers to the Local Branching implementation available in ILOG

Cplex 9.1 by activating its local branching flag, whereas column FP-rins refers to
ILOG Cplex with MIP emphasis 4 (that activates the internal RINS improvement
heuristics). For both FP-lb and FP-rins, the incumbent solution is initialized,
via an MST file, by taking the first FP-cplex solution.

For all strategies, the table gives the solution ratio with respect to the best
solution found by ILOG Cplex (emp=1). Ratios were computed as the value of
the best solution found by the various methods over the value of the solution
found by ILOG Cplex (emp=1); if the values were negative, the problem was
viewed as a maximization one and the ratio was inverted, hence a ratio smaller
than 1.0 always indicates an improvement over ILOG Cplex. In the last line of
the table, the average ratio (geometric mean) is reported; the average does not
take into account the instances where FP succeeded in finding a solution, while
ILOG Cplex did not. For each instance, we marked with an asterisk the method
that produced the best feasible solution.

According to the table, all the FP methods are able to improve significantly
the quality of their incumbent solution. The most effective FP strategies seem
to be FP-lb and FP-rins, that produced the best solutions in 8 and 13 cases,
respectively.

ILOG Cplex (emp=1) ranked first 14 times. As to ILOG Cplex (emp=4), it
produced the best solution in 18 cases but failed in 3 cases to find any solution
within the 3600-second time limit. Moreover, pure ILOG Cplex methods seem to
be particularly suited for exploiting the structure of rococo* instances–if these
11 instances were removed from the testbed, FP-rins would have ranked first 13
times, thus outperforming both ILOG Cplex (emp=1, that ranked first 10 times)
and ILOG Cplex (emp=4, first 11 times but with 3 failures).

Among the compared FP-XX% methods, the one requiring 30% improvement
at each main iteration is the more effective one, though its performance is still
inferior to the one of the LB/RINS local search methods.

Finally, Figures 2.3, 2.4, 2.5, and 2.6 plot the value of the best feasible so-
lution over time, for the four instances atlanta-ip, msc98-ip, icir97 tension, and
rococoC10-100001.

2.5 Conclusions

In this chapter we addressed the problem of finding a feasible solution of a given
MIP model, which is a very important (NP-complete) problem that can be ex-
tremely hard in practice.

28 Chapter 2. Feasibility Pump

 85

 90

 95

 100

 105

 0 500 1000 1500 2000 2500 3000 3500

atlanta-ip (best known obj=95.01; LB=83.16)

FP-20%
FP-30%

FP-lb
FP-rins

Cplex emp=1

Figure 2.3: Incumbent solution over time (instance atlanta-ip)

We elaborated the Feasibility Pump (FP) heuristic presented in [23], and ex-
tended it in two main directions, namely (i) handling as effectively as possible
MIP problems with both binary and general-integer variables, and (ii) exploiting
the FP information to drive an effective enumeration phase.

We presented extensive computational results on large sets of test instances
from the literature, showing the effectiveness of our improved FP scheme for find-
ing feasible solutions to hard MIPs with general-integer variables.

As to the solution quality, it appears to be rather poor when the very first
feasible solution is found, but it can be improved considerably by integrating FP

with improvement tools such as Local Branching or RINS.
Future directions of work include extending the FP idea by using a nonlinear

(quadratic) distance function, to be applied to linear and (even more interest-
ingly) to nonlinear problems with integer variables. Also interesting is the in-
corporation of the original objective function (through an adaptive scaling mul-
tiplier) in the definition of the FP distance function; interesting results in this
directions have been recently reported by Achterberg and Berthold [3] and used
in the non-commercial MIP solver SCIP [2].

Finally, a topic to be investigated is the integration of FP within an overall
enumerative solution scheme. In this context, the FP heuristic can of course be
applied at the root node, so as to hopefully initialize the incumbent solution.
But one can also think of running FP (possibly without its time-consuming stage
3) from the LP relaxation of different nodes in the branch-and-cut tree, thus
increasing the chances of finding improved feasible solutions.

2.5. Conclusions 29

 2e+07

 2.2e+07

 2.4e+07

 2.6e+07

 2.8e+07

 3e+07

 0 500 1000 1500 2000 2500 3000 3500

msc98-ip (best known obj=1.984e+07; LB=1.970e+07)

FP-20%
FP-30%

FP-lb
FP-rins

Cplex emp=1

Figure 2.4: Incumbent solution over time (instance msc98-ip)

 6400

 6500

 6600

 6700

 6800

 6900

 7000

 0 500 1000 1500 2000 2500 3000 3500

icir97_tension (best known obj=6378; LB=6348)

FP-20%
FP-30%

FP-lb
FP-rins

Cplex emp=1
Cplex emp=4

Figure 2.5: Incumbent solution over time (instance icir97 tension)

30 Chapter 2. Feasibility Pump

 50000

 100000

 150000

 200000

 250000

 0 500 1000 1500 2000 2500 3000 3500

rococoC10-100001 (best known obj=16664; LB=14829)

FP-20%
FP-30%

FP-lb
FP-rins

Cplex emp=1
Cplex emp=4

Figure 2.6: Incumbent solution over time (instance rococoC10-100001)

Chapter 3

Linear Ordering Problem with
Cumulative Costs

3.1 Introduction

Several optimization problems require finding a permutation of a given set of items
that minimizes a certain cost function. These problems are naturally modeled
in graph-theory terms by introducing a complete (loopless) digraph G = (V,A)
whose vertices v ∈ V := {1, · · · , n} correspond to the n items to be sorted.
By construction, there is a 1-1 correspondence between the Hamiltonian paths
P = {(k1, k2), · · · , (kn−1, kn)} in G (viewed as arc sets) and the item permutations
K = 〈k1, · · · , kn〉.

Depending on the cost function to be be used, different optimization problems
can be defined on G. The most familiar one arises when the cost of a given
permutation K only depends on the consecutive pairs (ki, ki+1), i = 1, · · · , n− 1.
In this case, one can typically associate a cost cuv with each arc (u, v) ∈ A, and
the problem reduces to finding a min-cost Hamiltonian Path (HP) in G, a relative
of the famous Traveling Salesman Problem (TSP) [50, 38]. Note however that
this model is only appropriate when the overall cost is simply the sum of the
“direct costs” of putting an item right after another in the final permutation. A
more complex situation arises when a given cost guv has to be paid whenever item
u is ranked before item v in the final permutation. In this case, a feasible solution
can be more conveniently associated with an acyclic tournament, defined as the
transitive closure of an Hamiltonian path P = {(k1, k2), · · · , (kn−1, kn)}:

[P] := {(ki, kj) ∈ A : i = 1, · · · , n− 1, j = i + 1, · · · , n}

see Figure 3.1 for an illustration. The resulting problem then calls for a min-cost
acyclic tournament in G, and is known as the Linear Ordering Problem (LOP)
[32, 33, 34, 70]. Both HP and LOP are known to be NP-hard problems.

In some applications, both the HP and the LOP frameworks are unappropriate
to describe the cost function. In this chapter we introduce and study, for the first
time, a relevant case arising when the overall permutation cost can be expressed

31

32 Chapter 3. Linear Ordering Problem with Cumulative Costs

Figure 3.1: Acyclic tournaments as an Hamiltonian path (thick arcs) plus its
transitive closure (thin arcs)

as the sum of terms αu associated with each item u, each defined as a linear
combination of the values αv of all items v that follow u in the permutation. To
be more specific, we address the following problem:

Definition 3.1.1 (LOP-CC). Given a complete digraph G = (V,A) with non-
negative node weights pv and nonnegative arc costs cuv, the Linear Ordering
Problem with Cumulative Costs (LOP-CC) is to find an Hamiltonian path P =
{(k1, k2), · · · , (kn−1, kn)} and the corresponding node values αv that minimize the
total cost

π(P) =
n∑

v=1

αv

under the constraints

αki
= pki

+
n∑

j=i+1

ckikj
αkj

, for i = n, n− 1, · · · , 1 (3.1)

Constraints (3.1) imply a cumulative “backward propagation” of the value of
variables αv for v = n, n− 1, · · · , 1, hence the name of the problem. We will also
address a constrained version of the same problem, namely:

Definition 3.1.2 (BLOP-CC). The Bounded Linear Ordering Problem with Cu-
mulative Costs (BLOP-CC) is defined as the problem LOP-CC above, plus the
additional constraints:

αi ≤ U ∀i ∈ V (3.2)

where U is a given nonnegative bound.

Notice that BLOP-CC can be infeasible. As shown in the next section, BLOP-
CC finds important practical applications, in particular, in the optimization of
mobile telecommunication systems.

As G is assumed to be complete, in the sequel we will not distinguish be-
tween an Hamiltonian path P = {(k1, k2), · · · , (kn−1, kn)} and the associated
node permutation K = 〈k1, · · · , kn〉. Moreover, given any Hamiltonian path
P = {(k1, k2), · · · , (kn−1, kn)}, we call direct all arcs (ki, ki+1) ∈ P (the thick ones
in Figure 3.1), whereas the arcs (ki, kj) for j ≥ i + 1 are called transitive (these
are precisely the arcs in [P] \ P , depicted in thin line in Figure 3.1). Finally,

3.2. Motivation 33

we use notation π(P) to denote the cumulative cost of an Hamiltonian path P ,
defined as the LOP-CC cost π =

∑n
v=1 αv of the corresponding permutation.

In this chapter we introduce and study both problems LOP-CC and BLOP-
CC. In Section 3.2, we give the practical application that motivated the present
study and leaded to the patented new methodology for cellular phone manage-
ment described in [13]. In Section 3.3, we show that both LOP-CC and BLOP-CC
are NP-hard. A Mixed-Integer linear Programming (MIP) model is presented
in Section 3.4, whereas an ad-hoc enumerative method is introduced in Section
3.5. Extensive computational results on a large set of instances are presented
in Section 3.6, whereas a dynamic-programming heuristic is also described and
evaluated in Section 3.7. Some conclusions are finally drawn in Section 3.8.

3.2 Motivation

In this section we outline the practical problem that motivated the present chap-
ter; the interested reader is referred to [12], [41] and [69] for more details.

In wireless cellular communications, mobile terminals (MTs) communicate
simultaneously with a common Base Station (BS). In order to distinguish among
the signals of different MTs, the Universal Mobile Telecommunication Standard
(UMTS) [1] adopts the so-called code division multiple access technique, where
each terminal is identified by a specific code. Due to the distortions introduced
by radio propagation, the MTs partially interfere with each other, hence the
need to keep the multiuser access interference below an acceptable level. A very
effective technique for interference reduction has been proposed [67], and is called
Successive Interference Cancelation (SIC). According to this method, MT signals
are detected sequentially from the received signal, according to a predetermined
order. After each detection, interference is removed from the received signal, thus
allowing for improved detection for the next users.

A crucial problem in the design of the SIC system is therefore the choice
of the detection order. Usually, users are ordered by decreasing received power
[67], although a better performance can be obtained by considering also the level
of mutual interference among users. A second issue is the choice of the power
level αi at which the i-th user has to transmit its data. Indeed, a large power
level typically allows for an improved signal detection, whereas the minimization
of the transmission power yields a longer duration of the batteries of the MT.1

Moreover, physical and regulatory constraints impose an upper bound, U , on the
transmission power of the mobile terminals.

Both the choice of the cancelation order and of the transmission power levels
must ensure a reliable detection of the signals coming from all MTs. A proper
reception is ensured when the average Signal-to-Noise (plus Interference) power
ratio (SNIR) is equal to a target level Γ. For a SIC receiver, the SNIR is related
to the power of the interference generated from user i on user j, denoted by ρij.

1Battery lifetime is one of the main limiting factors for mobile communication systems

34 Chapter 3. Linear Ordering Problem with Cumulative Costs

In particular, upon detection of user kp the SNIR is

SNIR(p) =
αkpρkpkp

N0
√

ρkpkp +
∑

i∈Up
αiNSρikp

(3.3)

where N0 (noise power) and NS (spreading factor) are given parameters, and

Up = {kp+1, kp+2, · · · , kn} (3.4)

is the set of undetected user at stage p.
One then faces the problem of jointly optimizing the SIC detection order and

the transmission power levels, with the aim of minimizing the overall transmission
power while ensuring a proper reception for all users. This problem, called joint
power-control and receiver optimization (JOPCO), has been introduced in [12],
and can be formalized as follows: given a set of users {1, 2, . . . , n}, the interference
factors ρij (i, j = 1, . . . , n), the noise power N0, the spreading factor NS , the
target ratio Γ, and the maximum allowed power level U , find the transmission
power levels αi (i = 1, · · · , n) and the detection permutation K = 〈k1, . . . , kn〉
that minimize the total transmission power π =

∑n
i=1 αki

under the following
constraints:

Γ =
αki

ρkiki

N0
√

ρkiki
+

∑
l∈Ui

αlNSρlki

, for i = 1, · · · , n (3.5)

αi ≤ U (3.6)

In [12] a simple GRASP heuristic is proposed for JOPCO with the aim of
minimizing the system transmit power under the constraint of ensuring the same
quality of the transmission (measured by the average raw Bit Error Rate, BER)
to all users.

In particular, the requirement on the BER is translated into a constraint on
the SNIR at the detection point of each user, as discussed before. Extensive
experiments are reported, showing that the JOPCO technique performs much
better than the usual Average Power (AP) approach in all the four scenarios
simulated, both in terms of quality of the transmission (BER) and of allocated
transmission power.

Figure 3.2 (taken from [12]) illustrates the average BER vs. the number
n of active users for synchronous and asynchronous transmission systems, and
compares the JOPCO and AP methodologies. Thin and bold lines correspond
to the case with and without the so-called scrambling operation on transmitted
data, respectively.

It can be seen that, both with and without scrambling, JOPCO ensures ap-
proximately a constant average raw BER of 10−3 up to 10 active users with respect
to the classical AP technique. In the case of synchronous transmission without
scrambling, AP gives a BER that is even lower than the target, just because it
allocates much more transmission power than necessary to guarantee the target
quality, as can be seen in Figure 3.3 (top). When a larger number of active users

3.2. Motivation 35

2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

number of active users

B
E

R
AP
JOPCO

2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

number of active users

B
E

R

AP
JOPCO

Figure 3.2: The average raw bit error rate BER vs. the number f active users
for synchronous (top) and asynchronous (bottom) transmissions, with scrambling
(thin line) and without scrambling (bold line)

36 Chapter 3. Linear Ordering Problem with Cumulative Costs

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

number of active users

η
[d

B
]

η
AP/JOPCO

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

number of active users

η
[d

B
]

η
AP/JOPCO

Figure 3.3: The expected total transmission power ratio η vs. the number of
active users for synchronous (top) and asynchronous (bottom) transmissions, with
scrambling (thin line) and without scrambling (bold line)

3.3. Complexity of the LOP-CC 37

is present, instead, JOPCO has slight performance degradation due to errors in
the interference cancelation.

Figure 3.3 (also taken from [12]) gives the expected total transmission power
ratio expressed in dB, η, as a function of the number of active users (with and
without scrambling), i.e.,

η = 10 log10 E

[
P

(AP)
tot

P
(JOPCO)
tot

]
. (3.7)

where P
(AP)
tot and P

(JOPCO)
tot represent the total transmission power allocated by

AP and JOPCO, respectively.
In all cases, we observe that the JOPCO approach requires a reduced trans-

mission power with respect to the AP approach. In particular, for a full loaded
synchronous (resp., asynchronous) system without scrambling, on average the
system power requirement using the JOPCO technique is 7 dB (resp., 3 dB)
lower than that for AP. When scrambling is considered, instead, the JOPCO
power requirement is 3 dB (resp., 2dB) lower than that for AP.

We next show how JOPCO can be formulated as a BLOP-CC. Clearly, for
any given user permutation K the power levels αi are univocally determined by
the SNIR constraints (3.5). Indeed, rewriting (3.5) as

αki
=

ΓN0
√

ρkiki
+ ΓNS

∑
l∈Ui

αlρlki

ρkiki

one has that values αki
can easily be computed in the reverse order i = n, n −

1, · · · , 1. Defining the weights pi = ΓN0/
√

ρii and the costs cij = ΓNSρji/ρii

one then obtains precisely the BLOP-CC formulation introduced in the previous
section.

3.3 Complexity of the LOP-CC

We start proving that the LOP-CC problem is NP-hard. We first give a simple
outline of the proof, and then address in a formal proof the details required.

Our proof is by reduction from the following Hamiltonian Path problem, HP,
which is known to be NP-complete.

Definition 3.3.1 (HP). Given a digraph GHP = (VHP , AHP), decide whether G
contains any directed Hamiltonian path.

Our reduction takes any HP instance GHP = (VHP , AHP) and computes the
following LOP-CC instance:

V := VHP = {1, · · · , n} (3.8)

pi := 1 ∀i ∈ V (3.9)

cij =

{
M if (i, j) ∈ AHP

2M otherwise
∀i, j ∈ V, i 6= j (3.10)

38 Chapter 3. Linear Ordering Problem with Cumulative Costs

where M is a sufficiently large positive value (to be defined later). The construc-
tion can clearly be carried out in polynomial time, provided that value M can
be stored in a polynomial number of bits a property that will be asserted in the
formal proof.

Figure 3.4: The worst-case “good” path used in the complexity proof

“Good” Hamiltonian paths of G (i.e., those corresponding to Hamiltonian
paths in GHP) only involve direct arcs of cost equal to M , while all the transitive
arcs have a cost not larger than 2M ; see Figure 3.4 for an illustration. It is
therefore not difficult to show that, for sufficiently large M , the overall cumulative
cost associated with such a path is π(P) = Mn−1 +O(Mn−2). On the other hand,
if P does not correspond to a Hamiltonian path in GHP , then it has to involve at
least one direct arc of cost 2M , hence its cumulative cost π(P) cannot be smaller
than 2Mn−1. For a large M , our construction then ensures that π(P) < π(P ′)
for any “good” Hamiltonian path P and for any “non-good” Hamiltonian path
P ′, which implies that GHP contains an Hamiltonian path if and only if any
arbitrary optimal LOP-CC solution corresponds to a “good” Hamiltonian path
(or, equivalently, if the optimal LOP-CC value is strictly less than 2Mn−1).

Theorem 3.3.1. LOP-CC is NP-hard

Proof. Given the transformation above, our formal proof amounts to establish-
ing an upper bound UBgood(n,M) on the cumulative cost π(P) of any “good”
Hamiltonian path P as well as a lower bound LBnogood(n,M) on the cumu-
lative cost π(P ′) of any “non-good” Hamiltonian path P ′, and to show that
UBgood(n,M) < LBnogood(n,M) for all n and for a value of M such that log(M)
is polynomial in n.

The lower bound LBnogood(n,M) corresponds to the case where only one direct
arc in P ′ has cost 2M , hence it can be computed in a straightforward way as

LBgood(n,M) = 2Mn−1 (3.11)

As to upper bound UBgood(n,M), it is computed by considering the cumula-
tive cost of a Hamiltonian path P where all direct arcs have cost M , whereas all
transitive arcs have cost 2M . This case is illustrated in Figure 3.4. To be more
precise, we claim that

π(Pn) ≤ UBgood(n,M) := Mn−1 + 4nMn−2 (3.12)

3.3. Complexity of the LOP-CC 39

holds for any Hamiltonian path Pn in G whose direct arcs all have cost M ,
where M > 1 is assumed. The proof of this claim is by induction on n. The
claim clearly holds in cases n = 1 and n = 2, where we have π(P1) = 1 and
π(P2) = M + 2, respectively. We assume now that (3.12) holds for all n ≤ h
for a given h ≥ 2, and we prove that it also holds for n = h + 1. Let Pn=h+1 =
{(k1, k2), · · · , (kh, kh+1)} be any Hamiltonian path whose direct arcs all have cost
M , and let Ph = {(k2, k3), · · · , (kh, kh+1} and Ph−1 = {(k3, k4), · · · , (kh, kh+1} be
obtained from Ph+1 by removing its first arc and its first two arcs, respectively.
We have

π(Ph+1) =
h+1∑
i=1

αki
=

h+1∑
i=2

αki
+ αk1

= π(Ph) + αk1

≤ π(Ph) + Mαk2 + 1 + 2M
h+1∑
i=3

αki
(because of (3.1) and (3.10))

≤ π(Ph) + Mπ(Ph) (since π(Ph) ≥ αk2 + 1)

+ 2M π(Ph−1) (since π(Ph−1) =
∑h+1

i=3 αki
)

≤ (1 + M)π(Ph) + 2Mπ(Ph−1)

The claim then follows from the induction hypothesis, as we have

π(Ph+1) ≤ (1 + M)(Mh−1 + 4hMh−2) + 2M(Mh−2 + 4h−1Mh−3)

≤ Mh + (3 + 4h)Mh−1 +
3

2
4hMh−2 (3.13)

≤ Mh + (3 +
5

2
4h)Mh−1 (since Mh−2 ≤ Mh−1) (3.14)

≤ Mh + 4h+1Mh−1 (since h ≥ 2) (3.15)

To complete the complexity proof, we have to choose a value for M that
guarantees UBgood(n,M) < LBnogood(n,M), i.e.,

Mn−1 + 4nMn−2 < 2Mn−1 =⇒ 4nMn−2 < Mn−1 =⇒ 4n < M

We then set M = 4n + 1, whose size log(M) = O(n) is polynomial in n, as
required.

Corollary 3.3.1.1. BLOP-CC is NP-hard

Proof. We use the same construction as in the proof of the previous theorem,
with U := UBgood(n, M) = O(Mn) = O(4n2

) large enough to make all “good”
Hamiltonian paths in G feasible for the BLOP-CC instance, but still with size
log(U) = O(n2).

40 Chapter 3. Linear Ordering Problem with Cumulative Costs

3.4 A MIP model

In this section we introduce a MIP model for BLOP-CC, derived from the LOP
model of Grötschel, Jünger and Reinelt [32].

As already mentioned, in a standard linear ordering problem we have n items
to be placed in a convenient order. If we place item i before item j, we pay a cost
of gij. The objective is to choose the item order that minimizes the total cost.
This problem can then be modeled as

min
∑

(i,j)∈A gijxij

subject to “x is the incidence vector of an acyclic tournment”

where xij = 1 if item i is placed before j in the final order, xij = 0 otherwise.
In order to get an acyclic tournament, it is shown in [32] that, besides the

obvious conditions
xij + xji = 1, ∀(i, j) ∈ A, i < j (3.16)

it is sufficient to prevent 3-node cycles of the form xij = xjk = xki = 1, leading
to the triangle inequalities

xij + xjk + xki ≤ 2 (3.17)

Using the same set of variables, one can rewrite the LOP-CC constraints (3.1)
as the nonlinear equalities:

αi = pi +
n∑

j=1

cijαjxij ∀i ∈ V (3.18)

In order to get linear constraints, we introduce the following n(n − 1) new
variables:

yij(= αjxij) =

{
αj if xij = 1
0 otherwise

∀i, j ∈ V : i 6= j (3.19)

Thus (3.18) becomes linear in the y variables,

αi = pi +
n∑

j=1

cijyij

and conditions (3.19) become

xij = 0 ⇒ yij = 0 −→ yij ≤ Mxij

xij = 1 ⇒ yij ≥ αj −→ yij ≥ αj −M(1− xij)
xij = 1 ⇒ yij ≤ αj −→ yij ≤ αj + M(1− xij)

where M is a sufficiently large positive value. Notice that constraints yij ≤
αj +M(1−xij) can be removed from the model, as the minimization of variables
αj implies that of variables yij. (As to constraints yij ≤ Mxij, they are redundant
as well; however, our computational experience showed that they improve the
numerical stability of the MIP solver, so we keep them into our model.) Also,

3.5. An exact enumerative algorithm 41

from (3.19), the y variables are bounded by the α variables, thus we can take
M = U . Finally, α ≥ 0 can be assumed since p, c ≥ 0).

As it is customary in LOP models, one can use equations (3.16) to eliminate
all variables xij with i > j,2 and modify the triangle inequalities into:

xij + xjk − xik ≤ 1 for all 1 ≤ i < j < k ≤ n
−xij − xjk + xik ≤ 0 for all 1 ≤ i < j < k ≤ n

This leads to the following MIP model for BLOP-CC:

minimize
∑n

i=1 αi

subject to xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ n
xij + xjk − xik ≥ 0 for 1 ≤ i < j < k ≤ n
αi = pi +

∑n
j=1 cijyij for 1 ≤ i ≤ n

yij ≤ Uxij for 1 ≤ i < j ≤ n
yji ≤ U(1− xij) for 1 ≤ i < j ≤ n
yij ≥ αj − U(1− xij) for 1 ≤ i < j ≤ n
yji ≥ αi − Uxij for 1 ≤ i < j ≤ n
0 ≤ αi ≤ U for 1 ≤ i ≤ n
yij ≥ 0 for 1 ≤ i 6= j ≤ n
xij ∈ {0, 1} for 1 ≤ i < j ≤ n

3.5 An exact enumerative algorithm

Our enumerative algorithm is based on a standard backtracking technique (akin
to those used in Constraint Programming) to generate all permutations and to
find one with the lowest total cost. To limit the number of permutations actually
evaluated, we use a pruning mechanism based on lower bounds.

Permutations are built progressively, and are extended backwards from the
last node. At the root of the search tree (depth 0), none of the permutation
elements in K = 〈k1, · · · , kn〉 is fixed. At depth 1, the last element of the permu-
tation, kn, is fixed to one of the n possible choices (thus, the root has n sons).
At depth 2, the next to last item, kn−1, is fixed to one of the remaining n − 1
possible choices, and so on. The search tree is visited in depth-first manner. The
only required data structures to implement this method are an array to store the
current partial permutation, and another to keep track of the nodes that have
not yet been inserted in the current partial permutation.

We chose this method to enumerate permutations, rather than more sophis-
ticated ones, because we can compute very quickly a parametric lower bound for
partial permutations (to be used for pruning purposes), thus enumerating very
effectively a large number of nodes.

2The α variables could be removed as well, but this would have a marginal effect on the
solution time of the model.

42 Chapter 3. Linear Ordering Problem with Cumulative Costs

Permutation generation:

TraverseSearchTree(n)

1. initialize set S := {1, 2, · · · , n}
2. EnumPermutationElement(S, n)

EnumPermutationElement(i)
3. for each element e in S do

4. perm[i] ← e
5. evaluate partial permutation

〈∗, · · · , ∗, perm[i], perm[i + 1],· · · ,perm[n]〉
6. if i > 1 then EnumPermutationElement(S \ {e}, i− 1)
7. enddo

Figure 3.5: The basic method

Our lower bound is computed as follows. Given a permutationK = 〈k1, · · · , kn〉,
we can write the corresponding node values αv as:

αkn = pkn

αkn−1 = pkn−1 + αkn ckn−1,kn

αkn−2 = pkn−2 + αkn ckn−2,kn + αkn−1 ckn−2,kn−1

· · ·
and the total permutation cost π is the sum of all the αv. Notice that all the
node weights pv contribute to the total cost, so their sum can be used as an initial
lower bound for the cost of any permutation.

Assume now that nodes ki+1, ki+2, · · · , kn have already been chosen. When
node ki is also chosen, one can easily compute the corresponding αki

by using
equation (3.1). Furthermore, the contribution of this αki

to the final cost of any
permutation of the type 〈∗, · · · , ∗, ki, ki+1, · · · , kn〉 is given by:

αki

∑

u/∈{ki,··· ,kn}
cuki

(3.20)

regardless of the rank of the remaining nodes in the complete permutation. This
property allows us to compute easily, in a parametric way, a valid lower bound
on the cost of any such permutation.

To be more specific, our pruning mechanism works as follows. We start with
lower bound LB :=

∑
v pv and with an empty permutation. We then build-up

partial permutations recursively. Every time a new node ki is inserted in front
of the current permutation, we compute the corresponding αki

and add (3.20)
to the current lower bound LB. If the resulting LB is strictly smaller than the
incumbent solution value, we proceed with the recursion; otherwise we backtrack,
and update LB accordingly.

A small modification of this algorithm can be used to start with a given
permutation (rather than from scratch), thus allowing the enumerative search to

3.6. Computational analysis (exact methods) 43

Optimization by backtracking:

1. find a starting heuristic solution H
2. initialize the fifo queue Q with the elements in H
3. LB ← ∑n

i=1 p[i]

4. UB ←∞
5. EnumPermutationElement(n, LB)

6. output bestperm

EnumPermutationElement(i, LB)

7. repeat i times

8. q ← pop Q
9. perm[i] ← q

10. calculate alpha[q]

11. if i = 1 then

12. bestperm ← perm

13. UB ← LB

14. else

15. LB ← LB + alpha[q] *
∑

r∈Qc[r,q]

16. if LB<UB then EnumPermutationElement(i-1, LB)

17. endif

18. push q into Q
19. enddo

Figure 3.6: The overall enumerative algorithm

quickly produce improved permutations through successive modifications of the
starting one. To this end, the only change required at Step 3 of the algorithm of
Figure 3.5 is to implement the set S as a FIFO queue, to be initialized with the
desired starting permutation (the last node in the sequence being the first to be
extracted).

In our implementation we use a simple yet effective heuristic to find a “good”
initial solution for the BLOP-CC instances arising in our telecommunication ap-
plication. Namely, we sort the nodes by decreasing autocorrelation factors ρii,
and consider the associated permutation (the first and last node in the permuta-
tion being those with the largest and smallest ρii, respectively) to initialize our
incumbent solution. Alternative heuristics to find a good initial permutation are
presented in [12].

Our complete algorithm is outlined in Figure 3.6.

3.6 Computational analysis (exact methods)

We have compared the performance of our exact enumerative algorithm with that
of a state-of-the-art commercial MIP solver (ILOG Cplex 9.0.2 [43]) applied to the

44 Chapter 3. Linear Ordering Problem with Cumulative Costs

MIP model of Section 4. The outcome of this experiment is reported in Table 3.1
and 3.2, where 4 large sets of BLOP-CC instances have been considered.

The instances used in our study have been provided by the telecommuni-
cations group of the Engineering School of the University of Padova, and are
related to detection-order optimization in UMTS networks [12]. All the four
communication scenarios considered in [12] have been addressed: synchronous
and asynchronous transmission, with and without scrambling. For each scenario,
500 matrices (ρij) have been randomly generated assuming the presence of 16
users3 uniformly distributed in the cell (with a radius of 580 m), according to the
so-called log-distance path loss model. The input values Γ, U , NS, and N0 have
been set to 0.625, 10.0, 16, and 0.50476587558415, respectively. From each ma-
trix ρ, we have derived 8 BLOP-CC instances of different sizes (n = 2, 4, . . . , 16),
using the equations given at the end of Section 2 to compute the weights pv

and costs cuv. The full set of these matrices ρ is available for download at
http://www.math.unipd.it/~bertacco/LOPCC_instances.zip

For each instance, the corresponding MIP model is built-up through a C++
code based on ILOG Concert Technology 2.0 [44]. All the model constraints
are statically incorporated in the initial formulation, and the outcome is solved
through ILOG Cplex 9.0.2. Since the default ILOG Cplex tolerances are too large
to solve correctly even small instances, we used the following parameter setting
(all other parameters being left at default values):

• Absolute mipgap tolerance (CPX PARAM EPAGAP): 1e-13

• Relative mipgap tolerance (CPX PARAM EPGAP): 1e-11

• Integrality tolerance (CPX PARAM EPINT): 1e-9

• Optimality tolerance (CPX PARAM EPOPT): 1e-9

• Feasibility tolerance (CPX PARAM EPRHS): 1e-9

Unfortunately, in some cases these tolerances are not small enough to ensure
a valid resolution, even when n = 2. The reason is that the ρ matrix contains co-
efficients that may vary by several orders of magnitude, hence even our feasibility
tolerance of 1e-9 can be insufficient. On the other hand, ILOG Cplex does not
support smaller values for this parameter, so we could not fix this pathological
situation, and we had to report in Table 3.1 the number of instances that ILOG

Cplex could not solve correctly.
Table 3.1 reports, for each group of instances and for each size n, the following

information: the number of instances solved, the average solution times for both
our enumerative code (Enum) and ILOG Cplex (MIP), the speedup of the enu-
merative code with respect to ILOG Cplex, the maximum solution times, and the
number of instances not solved correctly by ILOG Cplex (# fails). Computing

3The UMTS technology considers up to 8-16 active users at a time; a larger number of active
users is unrealistic for this application.

3.6. Computational analysis (exact methods) 45

Set 1: Synchronous communication without scrambling
instances average time (sec.s) Enum max time (sec.s)

size Enum MIP Enum MIP speedup Enum MIP # fails
2 500 500 - 0.0 - 0.0 2
4 500 500 - 0.0 0.0 0.0 2
6 500 500 - 0.0 0.0 0.0 7
8 500 500 - 0.0 497 0.0 0.6 7
10 500 500 0.0 0.5 186 0.0 5.3 6
12 500 500 0.0 9.6 787 0.2 455.5 9
14 500 50 0.2 395.0 1,906 12.5 2,537.6 1
16 500 5 4.8 22,233.0 4,574 381.9 60,096.2 1

Set 2: Synchronous communication with scrambling
instances average time (sec.s) Enum max time (sec.s)

size Enum MIP Enum MIP speedup Enum MIP # fails
2 500 500 - 0.0 - 0.0 3
4 500 500 - 0.0 - 0.0 5
6 500 500 - 0.0 - 0.0 8
8 500 500 - 0.0 0.0 1.0 7
10 500 500 0.0 0.6 237 0.0 10.0 7
12 500 500 0.0 8.8 441 0.9 319.8 10
14 500 50 0.5 267.4 503 43.1 2,256.9 1
16 500 4 15.0 14,473.2 964 794.6 49,424.0 1

Set 3: Asynchronous communication without scrambling
instances average time (sec.s) Enum max time (sec.s)

size Enum MIP Enum MIP speedup Enum MIP # fails
2 500 500 - 0.0 - 0.0 2
4 500 500 - 0.0 - 0.0 3
6 500 500 - 0.0 - 0.0 6
8 500 500 - 0.1 0.0 0.5 4
10 500 500 0.0 1.2 1,212 0.0 13.1 4
12 500 500 0.0 30.0 2,447 0.2 786.6 10
14 500 50 0.2 1,130.8 5,218 11.9 8,058.2 0
16 500 5 5.6 28,191.6 4,978 407.8 61,402.8 1

Set 4: Asynchronous communication with scrambling
instances average time (sec.s) Enum max time (sec.s)

size Enum MIP Enum MIP speedup Enum MIP # fails
2 500 500 - 0.0 0.0 0.0 3
4 500 500 - 0.0 0.0 0.0 2
6 500 500 - 0.0 0.0 0.0 3
8 500 500 - 0.1 0.0 0.7 4
10 500 500 0.0 1.3 1,096 0.0 15.8 4
12 500 500 0.0 31.3 2,310 0.2 473.4 8
14 500 50 0.2 1,801.5 6,880 6.6 35,469.5 1
16 500 2 6.3 8,362.0 1,316 204.8 9,821.5 1

Table 3.1: Computational analysis of the exact methods

46 Chapter 3. Linear Ordering Problem with Cumulative Costs

Overall statistics
instances average time (sec.s) Enum max time (sec.s)

size Enum MIP Enum MIP speedup Enum MIP # fails
2 2000 2000 - 0.0 0.0 0.0 10
4 2000 2000 - 0.0 0.0 0.0 12
6 2000 2000 - 0.0 0.0 0.0 24
8 2000 2000 - 0.1 1,146 0.0 1.0 22
10 2000 2000 0.0 0.9 488 0.0 15.8 21
12 2000 2000 0.0 20.0 1,373 0.9 786.6 37
14 2000 200 0.3 898.7 2,952 43.1 35,469.5 3
16 2000 16 7.9 20,421.2 2,562 794.6 61,402.8 4

Table 3.2: Overall statistics for the exact methods

times are expressed in CPU seconds, and refer to a Pentium M 1.4 Ghz notebook
with 512 MBytes of main memory.

The computational results clearly show that our enumerative approach out-
performs ILOG Cplex, and is up to three orders of magnitude faster. As a matter
of fact, in no instance ILOG Cplex beat the enumerative code. As to scalability,
the enumerative code proved capable of solving instances with n = 20 in about 3
hours.

All the instances in our testbed were solved to proven optimality, thus en-
abling us to benchmark the GRASP heuristic proposed in [12] (evaluating the
performance of this method was indeed our initial motivation in studying BLOP-
CC).

3.7 Heuristics

We propose next a heuristic dynamic programming solution scheme, based on the
observation that the classic min-cost Hamiltonian path problem on small graphs
can be solved very effectively by using dynamic programming [73]. Indeed, for
the min-cost HP problem, a suitable dynamic programming state is defined as
the pair (S, h) (see Figure 3.7), where S is a nonempty node set and h ∈ S. The
optimal cost T (S, h) of a path starting from node h and visiting exactly once all
the nodes in S can then be computed through the recursion

T (S, h) = min{d(h, i) + T (S \ {h}, i) : i ∈ S \ {h}},

where d(h, i) is the cost of the arc (h, i), and T ({v}, v) = 0 for all v ∈ V .
It is then quite natural to adapt the above recursion to LOP-CC, by simply
reinterpreting values T (S, h) as the lower bound described in Section 4. To be
more specific, one can think of initializing T ({k}, k) =

∑
v∈V pv and of using

equation (3.20) instead of d(h, i) in the recursion formula. In this way, T (S, h)
represents an estimate of the contribution that the trailing part of a path starting
from h and covering exactly once all the nodes in S, will give to the overall

3.7. Heuristics 47

Figure 3.7: Dynamic programming state and recursion

cumulative cost – regardless of how it is extended by adding nodes before h.
Since the computation of the lower bounds takes linear time and there are n2n−1

states, the overall complexity is O(n2 ·2n), hence it is affordable for the small-size
graphs arising in our telecommunication application.

Unfortunately, differently from the HP problem, the above recursion applied
LOP-CC does not guarantee the optimality of the resulting path. The reason
is that the cost of adding a node in front of a given path T (S, h), given by
equation (3.20), is not independent from the order of the nodes in S (because of
the aki

term). Therefore, for LOP-CC the above simple dynamic-programming
approach is not exact, although in many practical cases it can still be interesting
as a heuristic method.

Table 3.3 analyzes the quality of the heuristic solutions found by the dynamic
programming heuristic (DP) over the same set of instances considered in the
bottom part of Table 1 (2000 random instances for each size).

The first column in the table gives the size of the problems. The second
column reports the number of instances for which DP found an optimal solution,
while the next two columns report the average and maximum gap of the solution
found by DP with respect to the optimal one (found by our exact enumerative
method, Enum). The final two columns compare the average CPU times of the
DP and Enum algorithms. For the instance of size 20, mentioned above, DP
found a solution with a gap of 0.1% in 46 seconds (versus 3 hours taken by the
Enum).

In order to better evaluate our dynamic-programming heuristic, we compared
it with a GRASP heuristic for UMTS applications akin to that proposed in [12]
(but with a slightly better performance for the instances in our testbed), that
works as follows.

The Greedy Randomized Adaptive Search Procedure (GRASP) is based on
a greedy approach performing n steps to build the ordered set K. At each step
a user (i.e., node) is inserted in the current sequence K, starting from the last

48 Chapter 3. Linear Ordering Problem with Cumulative Costs

instances solved average maximum average time average time
size to optimality by DP gap gap by Enum (sec.s) by DP (sec.s)
4 2000 / 2000 0% 0% - -
6 1990 / 2000 0.001% 0.74% - -
8 1901 / 2000 0.01% 1.24% - -
10 1734 / 2000 0.05% 4.38% 0.001 0.002
12 1457 / 2000 0.14% 6.99% 0.014 0.014
14 1146 / 2000 0.27% 7.15% 0.305 0.097
16 852 / 2000 0.47% 11.75% 7.972 0.752

Table 3.3: Performance of the dynamic programming heuristic

position kn, and coming back up to the first one k1. As in the enumerative
approach, building K in reverse order allows one to easily compute the power αki

associated with a user as soon as it is inserted in K (by using equation (3.1)).
In order to perform the choice of the user to be inserted at each step i, the

minimum power criterion is used. With this criterion, for each user k not yet in
K, we compute the corresponding power received at the detection point as

P
(i)
k = α

(i)
k ρkk = (pki

+
n∑

j=i+1

ckikj
)ρkk. (3.21)

This figure gives the power that the user k would be assigned, if selected for the
position i in the cancelation order. The user yielding the minimum power is then
determined as

ki = argmink/∈K{P (i)
k }. (3.22)

Using a GRASP approach, several locally-optimal solutions are examined and
the solution achieving the best performance is selected. Let NMax by an integer
parameter. The GRASP algorithm still involves K steps. At each step i of the
algorithm, let W (i) = {w(i)

1 , w
(i)
2 , . . . , w

(i)
NMax

} be the NMax user indices not yet

in K and having the lowest powers P
(i)
k . The user ki to be inserted in the set

K is chosen randomly from the set W (i). Note that the GRASP algorithm for
NMax = 1 yields the greedy solution, as the user with the lowest P

(i)
k is always

selected. In general, because of the random choice of the users, the algorithm
can provide different solutions for each run. In practice, the GRASP algorithm
is iterated I times (say), plus one for the pure greedy run, and the best solution
is selected.

Table 3.4 compares the GRASP and the DP heuristics over the same set
of 2,000 instances considered in the previous experiments. For this benchmark,
we ran GRASP with NMax = 3 for a number of iterations I such that GRASP
heuristics takes the same CPU running time as the DP one. The first two columns
in the table give the size of the problems and the number of GRASP iterations
(I). The third and fourth columns report, respectively, the average and maximum
gap of the GRASP solutions with respect to the optimal ones. Finally the last
two columns show the difference between these gaps and those obtained with our
DP method (as shown in the previous table).

3.8. Conclusions 49

As a comparison, running the original GRASP heuristic described in [12] on
all the instances of size 16, yields an average gap of 9.48% and a maximum gap
of 66.16%.

iters average maximum ∆ average ∆ maximum
size I gap gap gap wrt DP gap wrt DP
4 12 0.003% 2.631% +0.003% +2.631%
6 48 0.243% 9.643% +0.242% +8.903%
8 198 0.430% 8.470% +0.420% +7.230%
10 862 0.941% 21.698% +0.891% +17.318%
12 3936 1.364% 26.251% +1.224% +19.261%
14 20074 1.874% 27.921% +1.604% +20.771%
16 116506 2.620% 23.623% +2.150% +11.873%

Table 3.4: Performance of the GRASP heuristic

The table shows that DP heuristic performs considerably better than the
GRASP method. Also, for an instance of size 20, DP found a solution with a gap
of 0.100%, GRASP reached a gap of 0.415% (within the same computing time),
whereas for an instance of size 21, DP found a solution 0.31% better than the
GRASP one.

3.8 Conclusions

We have introduced and studied, for the first time, a new optimization problem
related to the well-known Linear Ordering Problem, in which the solution cost is
non-linear due to a cumulative backwards propagation mechanism. This model
was motivated by a practical application in UMTS mobile-phone telecommuni-
cation system.

We have formalized the problem, in two versions, and proved that they are
both NP-hard. We have proposed a Mixed-Integer Linear Programming model
as well as an ad-hoc enumerative algorithm for the exact solution of the problem.
A dynamic-programming heuristic has been also described. Extensive computa-
tional results on large sets of instances have been presented, showing that the
proposed techniques are capable of solving, in reasonable computing times, all
the instances coming from our application. As a byproduct, our method allowed
to benchmark the simple GRASP heuristic proposed in [12].

Future research should be devoted to enhancing the MIP formulation, and/or
to embed more sophisticated pruning mechanisms in our enumerative scheme.
Also worth studying are more complex (nonlinear) cost functions applied to the
basic Linear Ordering model.

50 Chapter 3. Linear Ordering Problem with Cumulative Costs

Chapter 4

Branching on General
Disjunctions

4.1 Introduction

As discussed in Chapter 1, branch-and-bound algorithms use branching to split
the feasible region of a problem into disjoint subsets that are both “easier” to
solve, and cut off the current LP optimal vertex. In other words, branching means
to impose a disjunction that is valid for all feasible (integer) solutions, but not
the current fractional LP solution.

The choice of the branching object is traditionally an individual variable,
chosen among the most fractional ones in the current basic solution (see Section
1.5.1). If xi is an integer-constraint variable, with a fractional value x∗i in the
current solution, then we can impose the constraint xi ≤ bx∗i c for one child and
xi ≥ dx∗i e for the second child (variable dichotomy).

More generally, we can consider branching on arbitrary integer vectors by
imposing a general (or split) disjunction [17] of the form

αx ≤ α0

∨
αx ≥ α0 + 1 (4.1)

where (α, α0) ∈ Zn+1 (for an integer linear program with n variables,). Variable
dichotomy can therefore be seen as a disjunction where the vector α is the i-th
elementary vector and α0 = bx∗i c (simple disjunction).

The main reason for studying general disjunctions is that they can lead to a
drastic reduction of the branching tree size. While branching on a disjunction
implies adding a new constraint at each level, thus making the LP subproblems
increasingly more complex, the decrease in tree size should more than offset this
effect.

One difficulty with the application of this idea, however, is how to choose, at
each node of the branching tree, the “best” disjunctions among the infinite space
of integer vectors. In [61], Owen and Mehrotra proposed to branch on general
disjunctions generated by a neighborhood search heuristic. The neighborhood
contains all disjunctions with coefficients in {−1, 0, 1} on the integer variables

51

52 Chapter 4. Branching on General Disjunctions

with fractional values at the current node. The quality of the disjunctions is
evaluated by solving the children nodes in the spirit of strong branching. More
recently, Karamanov and Cornuéjols [46] considered a specific class of general dis-
junctions, the ones defining mixed integer Gomory cuts derived from the tableau,
and select the most promising disjunctions based on a heuristic measure of dis-
junction quality (given by the distance cut off by the corresponding cut). Their
experiments show that branching on general disjunctions is more efficient than
branching on variables, based both on solution time and tree size.

In this chapter we propose two different approaches to branching on general
disjunctions, and study the impact that they can have on the branching tree.

4.2 Slicing

Our first approach is inspired by the algorithms for integer programming in fixed
dimension. Given a full-dimensional convex body K ⊆ Rn, the width of K along
a direction c ∈ Rn is the quantity wc(K) := max{cT x|x ∈ K}−min{cT x|x ∈ K}.
The width of K, w(K) is the minimum of its widths along nonzero integral vectors
c ∈ Zn\∅.

If K does not include any lattice points, then K must be “flat”, meaning that
there is a constant fn (depending only on the dimension n) bounding the width
of K. This fact is know as Kinchin’s flatness theorem (see [45]) and is exploited
in Lenstra’s algorithm [48, 35] for the integer feasibility problem as follows. If
one has to decide whether a full-dimensional polyhedron P = {x ∈ Rn|Ax ≤ b} is
integer feasible or not, one computes an integral direction c ∈ Zn\∅ along which P
is not much wider than its (minimum) width1: w(P) ≤ wc(P) ≤ γw(P). If wc(P)
is larger than γfn, then P must contain integer points by the flatness theorem.
Otherwise, an integer point of P must lie in one of the constant number of (n−1)-
dimensional polyhedra P ∩ (cT x = δ) for δ integer in the range [min{cT x|x ∈
P}, max{cT x|x ∈ P}]. In the original space, this corresponds to branching on a
general disjunction, with one child node for each possible value of δ.

In our first approach, we keep the idea of reducing the dimension of (at least
one of the) subproblems, but depart from this strategy in two main aspects.
First we avoid a multi-term disjunction where a child is created for each sec-
tioning hyperplane; instead we create only two subproblem, one associated to
the hyperplane closer to the LP fractional optimum, and the other associated to
all further hyperplanes. Moreover, rather than looking for a “thin” direction, we
want the first hyperplane to be a valid cut and look for a direction that maximizes
the LP bound at the right son.

1This direction can be computed by lattice basis reduction based on the work of Lenstra,
Lenstra, and Lovász [49]

4.2. Slicing 53

4.2.1 A MIP model

We consider the Integer Linear Program problem

(IP) min{cT x : Ax ≤ b, x ≥ 0 integer} (4.2)

where A is a m× n matrix, b ∈ Rm, and c ∈ Rn, along with its linear relaxation

(LP) min{cT x : Ax ≤ b, x ≥ 0}

and the two associated polyhedra:

P := {x ∈ Rn
+ : Ax ≤ b} (4.3)

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn) (4.4)

Given a fractional solution x∗ of (LP), we want to find a valid Chvátal-Gomory
cut αT x ≤ α0 that cuts off x∗, and then branch on the disjunction

αT x = α0

∨
αT x ≤ α0 − 1. (4.5)

. In particular, we would like the right-son lower bound

LBr := min{cT x : Ax ≤ b, αT x ≤ α0 − 1, x ≥ 0}

be as large as possible (eventually greater or equal to the value of the incumbent
solution). This problem can be rephrased as

(i) αT x < α0 + 1 valid for P , with (α, α0) integer
which imposes that αT x ≤ α0 is a valid Chvátal-Gomory cut for (MIP),

(ii) αT x∗ > α0

to cut off the current (fractional) LP optimum x∗, and

(iii) the linear system {x ∈ P, αT x ≤ α0− 1, cT x < LBr} is infeasible, for LBr

as large as possible

Our approach is to model this optimization problem as a mixed integer pro-
gram which is then solved through a general-purpose MIP solver. In order to
model condition (i) and (iii) through linear constraints we use the Farkas’ Lemma
(see for example [22]):

Lemma 4.2.1 (Farkas’ Lemma). The inequality αT x ≤ α0 is valid for the non
empty polyhedron P := {x ≥ 0 : Ax ≤ b} if and only if there exists a vector u ≥ 0
such that

αT ≤ uT A, α0 ≥ uT b. (4.6)

Equivalently, P has no solution if and only if there exists u ≥ 0 such that

uT A ≥ 0, uT b < 0. (4.7)

54 Chapter 4. Branching on General Disjunctions

By (4.6), condition (i) becomes

∃ u ≥ 0 : αT ≤ uT A,α0 + 1 > uT b.

As to condition (iii), again by Farkas (4.7) it becomes

∃ (µ, λ, λ′) ≥ 0 : µT A + λ′αT + λcT ≥ 0T , µT b + λ′(α0 − 1) + λ(LBr − ε) < 0

for a certain very small positive value ε. Assuming w.l.o.g. λ′ > 0 we can set
λ′ = 1, thus (iii) can be expressed as

∃(µ, λ) ≥ 0 : µT A + αT + λcT ≥ 0T , µT b + (a0 − 1) + λ(LBr − ε) < 0. (4.8)

Note that the above condition can also be derived, perhaps more directly,
as follows. By LP duality, and assuming the right-son LP relaxation is feasible,
LBr = min{cT x : −Ax ≥ −b,−αT x ≥ −(α0 − 1), x ≥ 0} = max{−wT b− σ(α0 −
1) : cT + wT A + σαT ≥ 0T , (w, σ) ≥ 0} , so there exists a dual-feasible solution
(w, σ) such that LBr ≤ −wT b − σ(α0 − 1). Assuming w.l.o.g. σ > 0 (otherwise
the branching condition would be ineffective and LBr cannot improve the father-
node bound), dividing by σ the conditions above, and making the substitutions
λ = 1/σ and µ = w/σ, we obtain (4.8).

Thus we obtain our final (nonlinear because of term λLBr) MIP model:

max LBr (4.9)

αT ≤ uT A (4.10)

uT b− α0 ≤ 1− ε′ (4.11)

αT x∗ − α0 ≥ δ (4.12)

µT A + αT + λcT ≥ 0T (4.13)

µT b + (a0 − 1) + λ(LBr − ε) ≤ −ε′ (4.14)

u ≥ 0, µ ≥ 0, λ ≥ 0 (4.15)

(α, α0) integer (4.16)

In order to get a standard MIP model, one can approximate LBr by a weighted
sum of binary variables, and then linearize λLBr according to the following con-
struction. In our model, the only values of interest for LBr are between the LP re-
laxation bound at the current node, say LB, and the value of the incumbent solu-
tion, say UB. Hence we can write LBr := LB+GAP ·σ, where GAP := UB−LB
and σ ∈ [0, 1]. Now we approximate σ with b binary variables z1, z2, . . . , zb:
σ ≈ ∑b−1

h=1 2−hzh + 21−bzb, so as to be able to obtain σ = 0 (for zh = 0 for all h)
and σ = 1 (for zh = 1 for all h). Then we write λLBr = λLB + λ · GAP · σ ≈
λLB + GAPλ(

∑b−1
h=1 2−hzh + 21−bzb) = λLB + GAP (

∑b−1
h=1 2−hγh + 21−bγb) where

γh := λzh is linearized through the constraints

−Mzh ≤ γh ≤ Mzh, λ−M(1−zh) ≤ γh ≤ λ+M(1−zh) ∀h = 1, . . . , b (4.17)

4.3. Maximizing the son-node bounds 55

where M is a sufficiently large value. The final model reads:

(SM) max LB + GAP (
b−1∑

h=1

2−hzh + 21−bzb) (4.18)

αT ≤ uT A (4.19)

uT b− α0 ≤ 1− ε′ (4.20)

αT x∗ − α0 ≥ δ (4.21)

µT A + αT + λcT ≥ 0T (4.22)

µT b + α0 + λ(LB − ε) + GAP (
b−1∑

h=1

2−hγh + 21−bγb) ≤ 1− ε′(4.23)

λ−M(1− zh) ≤ γh (4.24)

u ≥ 0, µ ≥ 0, λ ≥ 0 (4.25)

γh ≥ 0 ∀h = 1, . . . , b (4.26)

zh ∈ {0, 1} ∀h = 1, . . . , b (4.27)

(α, α0) integer (4.28)

where the objective function can of course be replaced by the simpler term∑b−1
h=1 2−hzh + 21−bzb. Note also that some of the inequalities (4.17) are not con-

straining and have been removed.
In addition, one can also allow for the presence of continuous variables. In-

deed, if a variable xj is not restricted to be integer, one can still derive a valid
cut by setting αj = 0 and imposing uT Aj ≥ 0 (or uT Aj = 0 in case xj is a free
variable).

In section 4.4, we evaluate a branching strategy that uses, at each node,
(eventually heuristic) solutions of the above MIP to obtain effective branching
disjunctions of the type (4.5). To improve the optimization of this model, before
solving it, we also look for valid CG cuts to pass to the solver as incumbent
solutions, so that local search heuristics can be activated. These cuts are obtained
either from the current optimal tableau or from a reduced version of the above
model where only inequalities (4.19) and (4.20) are kept and the violation (4.21)
is set as the objective function (see also [25]).

4.3 Maximizing the son-node bounds

Another approach is to search for a disjunction of the following type

αT x ≤ α0 − 1
∨

αT x ≥ α0 (4.29)

with (α, α0) integer, that produces the largest LP bound in both sides of the
disjunction. More precisely we try to maximize the minimum of the two son-
node bounds that would result from this disjunction.

56 Chapter 4. Branching on General Disjunctions

This is also the rule commonly used for choosing a branching variable when
using simple disjunctions. Specifically, let x∗1 and x∗2 be the optimal solutions
for the left and right child, respectively, and let z∗1 = cT x∗1 and z∗2 = cT x∗2 be
the corresponding objective values. In order to choose a branching variable, the
typical criteria is to maximize a function of z∗1 and z∗2 , usually min(z∗1 , z

∗
2) or,

sometimes, a weighted sum of this min and the average 1
2
[z∗1 + z∗2] (see [4, 51], for

instance).

Exploiting the Farkas’ Lemma as before, this problem can be rephrased as the
problem of finding the maximum value LB∗ such that there exist (α, α0) integer
such that:

(a) the linear system Ax ≤ b, αT x ≤ α0−1, cT x ≤ LB∗−ε, x ≥ 0 is infeasible,
where ε is a very small positive value

(b) the linear system Ax ≤ b, −αT x ≤ −α0, cT x ≤ LB∗−ε, x ≥ 0 is infeasible,
where ε is a very small positive value

(c) α0− 1 < αT x∗ < α0 so that the current fractional LP optimum x∗ is cut off
by the disjunction.

We are interested only in disjunctions that improve the current node LP
bound, LB. If we can’t find any such disjunction, then it seems more reason-
able to use the simpler branching on variables. On the other hand, whenever the
bound can be improved, with LB∗ > LB, then the current node optimum x∗ is
certainly cut-off and condition (c) is redundant. This leads to the MIP model:

max LB∗ (4.30)

µT A + αT + λcT ≥ 0T (4.31)

µT b + α0 + λ(LB∗ − ε) ≤ 1− ε′ (4.32)

wT A− αT + λ′cT ≥ 0T (4.33)

wT b− α0 + λ′(LB∗ − ε) ≤ −ε′ (4.34)

µ ≥ 0, w ≥ 0, λ ≥ 0, λ′ ≥ 0 (4.35)

In order to optimize this model with a general-purpose MIP solver, we need
to handle the two non-linear terms λLB∗ and λ′LB∗ in constraints (4.32) and
(4.34), respectively. Rather than linearize both of them through discretization
as for the (SM) model, which would make the problem much harder to solve,
it seems more convenient to use an external binary search for the best value of
LB∗ for which the model is feasible. More precisely we perform an n-steps binary
search for the best value of LB∗, in the range [LB, LB + GAP] (with LB and
GAP defined as before) for which we can find a disjunction. At each step we
solve the following model

4.4. Computational experiments 57

(BM) min ∆ (4.36)

µT A + αT + λcT ≥ 0T (4.37)

µT b + α0 + λ(LB∗ − ε)−∆ ≤ 1− ε′ (4.38)

wT A− αT + λ′cT ≥ 0T (4.39)

wT b− α0 + λ′(LB∗ − ε)−∆ ≤ −ε′ (4.40)

µ ≥ 0, w ≥ 0, λ ≥ 0, λ′ ≥ 0, ∆ ≥ 0 (4.41)

where inequalities (4.32) and (4.34) have been relaxed and their violation
moved to the objective function, so we only accept solutions with ∆ = 0. Finally,
since it is often impossible to close even a small fraction of the gap and in order
to contain the computing time, we don’t start the binary search with a value of
LB∗ in the middle of gap, but first try with the smallest candidate value (namely,
LB + GAP/2n) and then continue with the standard binary search.

4.4 Computational experiments

In this section we compare the number of nodes explored by a state-of-the-art
commercial solver, namely, ILOG Cplex 9.1 [43] using three different branching
strategies: ILOG Cplex default variable branching, and the two strategies pre-
sented in the previous sections.

Our aim is to establish if either or both the proposed strategies can lead to a
decrease of the search tree size and to what extent.

The set of instances used for this experiment is taken from the MIPLIB2 and
MIPLIB3 libraries [57] and from a set of randomly generated knapsack problems
(instances kp80, kp100, and mkp18 3). The instances have been selected accord-
ing to this criteria: they involve only integer variables2, and a feasible solution
for the (SM) model at the root node could be found within 5 minutes of CPU
time.

Preliminary results of our experiments are reported in Tables 4.1 and 4.2.
The focus is on the total number of nodes processed to prove optimality. The
tables show the name of the instance in the first column, followed by the number
of nodes processed by the solver with default branching, and then by the number
of nodes processed using the disjunctions obtained either with the (SM) model
(Table 4.1) or the (BM) model (Table 4.2). ILOG Cplex was used both as the
external branch-and-bound framework and as the MIP solver for the (SM) and
(BM) models. The number of nodes processed by ILOG Cplex with its default
branching was obtained running it with all parameters left to the default values
except for the integrality tolerance set to 0. In particular, both pre-solving
and cut generation were left enabled.

2The misc* models actually have 1 continuous variable, which just defines the objective
function and can be easily substituted and removed.

58 Chapter 4. Branching on General Disjunctions

In Table 4.1, the slicing branching columns report the number of nodes pro-
cessed (and its percentage with respect to ILOG Cplex default) for the case of
branching on the disjunctions obtained with the (SM) model. For this experiment,
the (SM) model was solved at each node of the first 11 levels of the branching
tree (i.e., for node depth from 0 to 10) and with a time-limit of 10 minutes.

cplex slicing dis. tot.
Name branching branching bra. bra.
bm23 103 30 29.13% 26 26
enigma 8,790 11,930 135.72% 12 12
kp80 89,874 89,682 99.79% 3 13
l152lav 676 868 128.46% 17 18
lseu 133 22 16.54% 19 19
misc01 516 488 94.57% 63 63
misc02 40 37 92.50% 17 17
misc03 1,215 628 51.69% 57 57
misc07 72,266 65,568 90.73% 45 45
mkp18 3 894,474 409,411 45.77% 45 47
mod008 380 9 2.37% 9 9
mod010 10 2 20.00% 1 2
p0201 131 543 414.50% 61 61
pipex 17 8 47.06% 7 8
stein9 9 5 55.56% 3 3

geometric mean 53.35%

Table 4.1: Comparison of tree size for slicing branching

Whenever a feasible solution could be found within this time-limit, branching
was performed using the general disjunction given by the best solution. For
nodes where no solution to the (SM) model could be found, and for nodes deeper
than level 10, the solver default branching was used. The last two columns of
the table show the number of times that branching on a general disjunction has
been possible, and the total number of branching in the first 11 levels of the tree.
These correspond, respectively, to the number of (SM) models for which a feasible
solution was found, and the total number of (SM) models solved. Parameters ε,
ε′ and δ were set all to 10−3. The number b of binary variables used to discretize
the non-linear term λLBr was 4, thus splitting the gap in 8 intervals. Finally, for
solving the (SM) models, ILOG Cplex was run with all settings left to the default
values except for the integrality tolerance set to 0, feasibility tolerance

set to 10−9, and MIP emphasis set to 4 (i.e., Emphasize hidden feasible solutions).
Table 4.2 is organized similarly and reports the results for the case of branching

on disjunctions obtained with the (BM) model. This model was solved with the
same parameters described above, except that, in this case, a 3-step binary search
is used in place of the discretization, each step with a time-limit of 1 minute.

All tests were performed on an Intel Pentium IV 2.4GHz personal computer

4.4. Computational experiments 59

with 512 Mbyte of main memory.

cplex best bound dis. tot.
Name branching branching bra. bra.
bm23 103 107 103.88% 28 37
enigma 8,790 8,790 100.00% 0 6
kp80 89,874 25,565 28.45% 6 17
l152lav 676 264 39.05% 12 27
lseu 133 32 24.06% 11 15
misc01 516 423 81.98% 16 21
misc02 40 13 32.50% 6 8
misc03 1,215 1227 100.99% 7 12
misc07 72,266 68,639 94.98% 6 21
mkp18 3 894,474 894,474 100.00% 0 31
mod008 380 4 1.05% 2 2
mod010 10 10 100.00% 0 6
p0201 131 137 104.58% 10 17
pipex 17 4 23.53% 2 2
stein9 9 10 111.11% 2 5

geometric mean 48.68%

Table 4.2: Comparison of tree size for best bound branching

The tables show that, with the (SM) model, the number of nodes processed
decreased, sometimes drastically, in 12 instances, and increased in 3 out of 18
instances. On (geometric) average, by using the (SM) model the resulting tree
size was 53.35% of that generated with default branching, even applying this
model only in the first few levels of the tree. In particular, on instances mod008

and mod010, the disjunctions found always managed to close all the gap (for the
right branch), thus reducing the tree size more effectively. In the cases were the
tree size increased, this seems to be caused both by the unbalanced nature of
this approach and by an higher difficulty in finding feasible solutions (and then
update the incumbent solution) when branching on general disjunctions.

The overall performance of the (BM) model was even better, with tree sizes
reduced, on average, to 48.68%, and never increased considerably. Here it can be
noticed that, for 3 instances, no general disjunctions could be found at any node
(so the tree size is unchanged). In the case of instance enigma this is because
its objective function can’t effectively guide the optimization since the LP bound
at the root node is equal to the optimal value; hence the (BM) model can never
find a disjunction that improves the bound at both sons. For the other 2 cases,
it is possible that no disjunctions closing one eighth of the gap existed or the
time-limit was to low to find them.

Finally, times are not shown here since, at this stage, our focus was only on
the tree size. Clearly both our strategies involved solving MIP models that are
quite difficult, thus leading to optimization times in the order of several minutes

60 Chapter 4. Branching on General Disjunctions

and artificially limited by the depth and time limits imposed. ILOG Cplex could
solve most of these instances in few seconds.

4.5 Conclusions

In this chapter we proposed two new strategies for branching on general disjunc-
tions within branch-and-cut algorithms for Mixed Integer Programming problems.
Both strategies are independent of specific problem structures and can be applied
to any MIP. The first strategy aims at a left son subproblem of lower dimension
and a right son subproblem with a large LP bound improvement, while the second
one looks for the largest possible bound improvement in both sons.

Both strategies model the problem of choosing the best disjunction as a Mixed
Integer Problem, which is then solved through a general purpose MIP solver with
a truncated search.

Preliminary tests of these ideas, comparing branching on variables with branch-
ing on general disjunctions, over a set 15 instances with quite different structures,
show that, on average, branching on general disjunctions can effectively reduce
considerably the size of the branching tree.

Future directions of research include both improving the proposed MIP models
and their solution scheme, in order to evaluate their effects at deeper levels of
the branching tree and on a larger set of test problems. Also, another interesting
question that is going to be investigated is, given an optimal MIP solution, how
often is it possible to close all the gap between a node LP bound and the optimal
objective value with only one disjunction? We believe that these can provide very
useful new insight to the fundamental topic of branching.

Bibliography

[1] 3GPP, Technical Specification Group Radio Access Networks; Radio Trans-
mission and Reception. 3G TS 25.102 version 3.6.0, 1999.

[2] T. Achterberg. SCIP - a framework to integrate Constraint and Mixed In-
teger Programming, Technical Report 04-19, Zuse Institute Berlin, 2004
(available at http://www.zib.de/Publications/abstracts/ZR-04-19/).

[3] T. Achterberg and T. Berthold. Improving the feasibility pump. Technical
Report Zuse Institute Berlin, September 2005.

[4] T. Achterberg, T. Koch and A. Martin. Branching rules revisited. Operation
Research Letters, 33:42–54, 2005.

[5] T. Achterberg, T. Koch and A. Martin. MIPLIB 2003. Technical Report 05-
28, Zuse Institute Berlin, 2005 (available at http://www.zib.de/PaperWeb/
abstracts/ZR-05-28/).

[6] E. Balas. Facets of the knapsack polytope. Mathematical Programming,
8:146–164, 1975.

[7] E. Balas, S. Ceria, G. Cornuéjols and N. R. Natraj. Gomory cuts revisited.
Operations Research Letters, 19:1–9, 1996.

[8] E. Balas, S. Ceria, M. Dawande, F. Margot and G. Pataki. OCTANE: A
New Heuristic For Pure 0-1 Programs. Operations Research 49, 207–225,
2001.

[9] E. Balas and C. H. Martin. Pivot-And-Complement: A Heuristic For 0-1
Programming. Management Science 26, 86–96, 1980.

[10] E. Balas, S. Schmieta and C. Wallace. Pivot and Shift-A Mixed Integer
Programming Heuristic. Discrete Optimization 1, 3–12, 2004.

[11] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers.
SIAM Journal of Applied Mathematics, 34:119–148, 1978.

[12] N. Benvenuto, G. Carnevale and S. Tomasin. Joint Power Control and
Receiver Optimization of CDMA Transceivers using Successive Interference
Cancelation. Technical Report DEI, Department of Information Engineering,
University of Padova, 2004.

61

62 BIBLIOGRAPHY

[13] N. Benvenuto and S. Tomasin. On the Comparison Between OFDM and Sin-
gle Carrier Modulation With a DFE Using a Frequency-Domain Feedforward
Filter. IEEE Transactions on Communications 50(6), 947–955, 2002.

[14] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, Massachusetts, 1997.

[15] J. W. Chinneck and J. Patel. Faster MIP Solutions Through Better Variable
Ordering, ISMP 2003, Copenhagen, August 2003.

[16] V. Chvátal. Edmonds Polytopes and a Hierarchy of Combinatorial Problem.
Discrete Mathematics 4, 305–337, 1973.

[17] W. Cook, R. Kannan and A. Schrijver. Chvátal closures for mixed integer
programs. Mathematical Programming, 47:155–174, 1990

[18] Dash Xpress-Optimizer 16.01.05: Getting Started and Reference Manual,
Dash Optimization Ltd, http://www.dashoptimization.com/, 2004.

[19] E. Danna, E. Rothberg and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming 102, 71–90,
2005.

[20] G. B. Dantzig, D. R. Fulkerson and S. Johnson. Solution of a Large Scale
Traveling Salesman Problem. Journal of the Operations Research Society of
America 2, 393–410, 1954.

[21] DIMACS Second Challenge. http://mat.gsia.cmu.edu/challenge.html.

[22] S. Fang and S. Puthenpura. Linear Optimization and Extensions: Theory
and Algorithms. Prentice Hall College Div, 1993.

[23] M. Fischetti, F. Glover and A. Lodi. The Feasibility Pump. Mathematical
Programming 104, 91–104, 2005.

[24] M. Fischetti and A. Lodi. Local Branching. Mathematical Programming 98,
23–47, 2003.

[25] M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. To
appear in Mathematical Programming, 2005.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

[27] F. Glover and M. Laguna. General Purpose Heuristics For Integer Program-
ming: Part I. Journal of Heuristics 2, 343–358, 1997.

[28] F. Glover and M. Laguna. General Purpose Heuristics For Integer Program-
ming: Part II. Journal of Heuristics 3, 161–179, 1997.

BIBLIOGRAPHY 63

[29] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston,
Dordrecht, London, 1997.

[30] R. E. Gomory. Outline of an Algorithm for Integer Solutions to Linear
Programs. Bulletin of The American Mathematical Society 64, 275–278,
1958.

[31] R. E. Gomory. An algorithm for the mixed integer problem. Technical Report
RM-2597, The Rand Corporation, 1960.

[32] M. Grötschel, M. Jünger and G. Reinelt. A Cutting Plane Algorithm for the
Linear Ordering Problem. Operations Research, 32, 1195–1220, 1984.

[33] M. Grötschel, M. Jünger and G. Reinelt. On the acyclic subgraph polytope.
Mathematical Programming, 33, 28–42, 1985.

[34] M. Grötschel, M. Jünger and G. Reinelt. Facets of the Linear Ordering
Polytope. Mathematical Programming, 33, 43–60, 1985.

[35] M. Grötschel, L. Lovász and A. Schrijver. Geometric Algorithms and Combi-
natorial Optimization, volume 2 of Algorithms and Combinatorics. Springer,
1988.

[36] Z. Gu, G. L. Nemhauser and M. W. P. Savelsbergh. Lifted cover inequalities
for 01 integer programs: Computation. INFORMS Journal on Computing,
10:427–437, 1998.

[37] Z. Gu, G. L. Nemhauser and M. W. P. Savelsbergh. Lifted flow cover inequal-
ities for mixed 01 integer programs. Mathematical Programming, 85:439–467,
1999.

[38] G. Gutin and A. Punnen (editors) The Traveling Salesman Problem and its
Variations, Kluwer, 2002.

[39] P. L. Hammer, E. L. Johnson and U. N. Peled. Facets of regular 01 polytopes.
Mathematical Programming, 8:179–206, 1975.

[40] F. S. Hillier. Effcient Heuristic Procedures For Integer Linear Programming
With An Interior. Operations Research 17, 600–637, 1969.

[41] H. Holma and A. Toskala. WCDMA for UMTS: Radio Access for Third
Generation Mobile Communications, Wiley, New York, 2000.

[42] T. Ibaraki, T. Ohashi and H. Mine. A Heuristic Algorithm For Mixed-Integer
Programming Problems. Mathematical Programming Study 2, 115–136, 1974.

[43] ILOG Cplex 9: User’s Manual and Reference Manual, ILOG, S.A., http:
//www.ilog.com/, 2004.

64 BIBLIOGRAPHY

[44] ILOG Concert Technology 2: User’s Manual and Reference Manual, ILOG,
S.A., http://www.ilog.com/, 2004.

[45] R. Kannan and L. Lovász. Covering minima and lattice-point-free convex
bodies. Annals of Mathematics, 128:577–602, 1988.

[46] M. Karamanov and G. Cornuéjols. Branching on General Disjunctions To
appear in Mathematical Programming, 2005.

[47] A. H. Land and A. G. Doig. An Automatic Method for Solving Discrete
Programming Problems. Econometrica 28, 497–520, 1960.

[48] H. W. Lenstra. Integer programming with a fixed number of variables. Math-
ematics of Operations Research, 8(4):538–548, 1983.

[49] A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 1982.

[50] J. K. Lenstra, A. H. G. Rinnooy Kan and D. Shmoys (editors). The Traveling
Salesman Problem: A Guided Tour to Combinatorial Optimization, Wiley,
251-305, 1985.

[51] J. Linderoth and M. Savelsbergh. A computational study of search strategies
for mixed integer programming. Report LEC-97-12, Georgia Institute of
Technology, 1997.

[52] A. Løkketangen. Heuristics for 0-1 Mixed-Integer Programming. In P.M.
Pardalos and M.G.C. Resende (ed.s) Handbook of Applied Optimization, Ox-
ford University Press, 474–477, 2002.

[53] A. Løkketangen and F. Glover. Solving Zero/One Mixed Integer Program-
ming Problems Using Tabu Search. European Journal of Operational Re-
search 106, 624–658, 1998.

[54] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding.
Operations Research, 49:363–371, 2001.

[55] A. Martin. Integer Programs with Block Structure. Habilitationsschrift,
Technische Universität Berlin.

[56] H. D. Mittelmann. Benchmarks for Optimization Software: Testcases. http:
//plato.asu.edu/topics/testcases.html.

[57] MIPLIB website of Zuse Institute Berlin. http://miplib.zib.de/miplib3/
miplib.html.

[58] M. Nediak and J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed
Integer Programming. Research Report RRR 53-2001, RUTCOR, Rutgers
University, October 2001.

BIBLIOGRAPHY 65

[59] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience. John Wiley & Sons, New York, 1988.

[60] G. L. Nemhauser and L. A. Wolsey. A recursive procedure for generating all
cuts for 01 mixed integer programs. Mathematical Programming, 46:379–390,
1990.

[61] J. Owen and S. Mehrotra. Experimental results on using general disjunc-
tions in branch-andbound for general-integer linear program. Computational
Optimization and Applications, 20:159–170, 2001.

[62] M. W. Padberg. On the facial structure of set packing polyhedra. Mathe-
matical Programming, 5:199–215, 1973.

[63] M. W. Padberg. Covering, packing and knapsack problems. Annals of Dis-
crete Mathematics, 4:265–287, 1979.

[64] M. W. Padberg and G. Rinaldi. Optimization of a 532-city symmetric trav-
eling salesman problem by branch and cut. Operations Research Letters, 6,
1–7, 1987.

[65] M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolu-
tion of large-scale symmetric traveling salesman problems. SIAM Rev., 33,
60–100, 1991.

[66] M. W. Padberg, T. J. Van Roy and L. A. Wolsey. Valid linear inequalities
for fixed charge problems. Operations Research, 33:842–861, 1985.

[67] P. Patel and J. Holzman. Analysis of a Simple Successive Interference Can-
cellation Scheme in a DS/CDMA System. IEEE J. Select. Areas Commun.,
12, 727–807, 1994.

[68] L. Peeters. Cyclic Railway Timetable Optimization. ERIM PhD Series,
Erasmus University Rotterdam, June, 2003.

[69] J. G. Proakis. Digital Communications 4th edition, McGraw Hill, New York,
2004.

[70] G. Reinelt. The Linear Ordering Problem: Algorithms and Applications. Re-
search and Exposition in Mathematics 8, Heldermann Verlag, Berlin, 1985.

[71] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed inte-
ger programming problems. ORSA Journal on Computing, 6:445–454, 1994.

[72] A. Schrijver. On cutting planes. Annals of Discrete Mathematics 9, 291–296,
1980.

[73] S. S. Srivastava, S. Kumar, R. C. Garg and P. Sen. Generalized Travelling
Salesman Problem through Sets of Nodes. CORS Journal, 7, 97–101, 1969.

66 BIBLIOGRAPHY

[74] T. J. Van Roy and L. A. Wolsey. Solving mixed integer programming prob-
lems using automatic reformulation. Operations Research, 35:45–57, 1987.

[75] D. Warrier and U. Madhow. On the Capacity of Cellular CDMA with Suc-
cessive Decoding and Controlled Power Disparities. in Proc. Vehic. Tech.
Conf. (VTC), vol. 3, 1873–1877, 1998.

[76] L. A. Wolsey. Integer Programming. John Wiley & Sons, New York, 1998.

