
UNIVERSITÀ DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova
Dipartimento di Matematica Pura e Applicata

Scuola di Dottorato di Ricerca in
Matematica Computazionale

XXI Ciclo

Constraint Programming Techniques for

Mixed Integer Linear Programs

Tesi di Dottorato di:
Domenico Salvagnin

Il Coordinatore
Ch.mo Prof. Paolo Dai Pra

Il Supervisore
Ch.mo Prof. Matteo Fischetti

UNIVERSITÀ DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica Pura ed Applicata

Dottorato di Ricerca in

Matematica Computazionale

XVIII Ciclo

Exact and Heuristic Methods for
Mixed Integer Linear Programs

Tesi di Dottorato di:
Livio Bertacco

Il Coordinatore Il Supervisore
Ch.mo Prof. Michelangelo Conforti Ch.mo Prof. Matteo Fischetti

Padova, 30 Dicembre 2005

Padova, 25 Gennaio 2009

UNIVERSITÀ DI PADOVA

DIPARTIMENTO DI MATEMATICA PURA E APPLICATA

Constraint Programming

Techniques for

Mixed Integer Linear Programs

Ph.D. THESIS

Author: Domenico Salvagnin

Coordinator: Ch.mo Prof. Paolo Dai Pra

Supervisor: Ch.mo Prof. Matteo Fishetti

2008

Scuola di Dottorato di Ricerca in Matematica Computazionale – XXI CICLO

Abstract

Many decision problems in industry, logistics, and telecommunications can be viewed
as satisfiability or optimization problems. Two paradigms have reached a high degree
of sophistication from the point of view of both theory and implementation: Con-
straint Programming (CP) and Mixed Integer Programming (MIP). The CP and MIP
paradigms have strengths and weaknesses that complement each other. On the one
hand, CP, through the use of sophisticated propagation techniques, privileges primal
inference. On the other hand, MIP, through the techniques of relaxation and strength-
ening through cutting planes, privileges dual inference.

This thesis presents several studies in Mixed Integer Programming, with emphasis
on computational aspects and integration with the Constraint Programming paradigm.
In particular, CP concepts and techniques, such as nogoods, minimal infeasiblity and
constraint propagation, are used to improve different MIP solving components, namely,
dominance detection, Benders cuts selection strategy and primal heuristics. This cross-
fertilization of techniques and ideas has proven very effective.

Finally, an appendix is given covering a MIP application to robust railway timetabling.

Sommario

Molti problemi decisionali nell’industria, nella logistica e nelle telecomunicazioni posso-
no essere formulati come problemi di soddisfacibilità o di ottimizzazione. Due paradigmi
per la modellazione e la risoluzione di tali problemi hanno raggiunto un elevato grado
di sviluppo, sia dal punto di vista teorico che implementativo: la Programmazione a
Vincoli (Constraint Programming, CP) e la Programmazione Lineare Intera Mista (Mi-
xed Integer Programming, MIP). I paradigmi CP e MIP hanno vantaggi e debolezze
complementari. Da una parte, la CP privilegia l’inferenza primale, attraverso sofistica-
te tecniche di propagazione. Dall’altra, la MIP privilegia l’inferenza duale, attraverso i
rilassamenti e il loro rafforzamento mediante piani di taglio.

Questa tesi presenta alcuni studi in Programmazione Lineare Intera Mista, con enfa-
si sugli aspetti computazionali e sull’integrazione col paradigma della Programmazione
a Vincoli. In particolare, concetti e tecniche CP, quali nogood, insoddisfacibilità mini-
male e propagazione, sono usati per migliorare varie componenti risolutive per la MIP,
quali procedure di dominanza, strategia di selezione dei tagli di Benders e euristiche
primali. Questo scambio di idee e tecniche si è dimostrato molto efficace.

Infine, un’applicazione MIP alla generazione di orari robusti in ambito ferroviario è
presentata in appendice.

Ringraziamenti

Molte persone hanno contribuito con il loro supporto allo sviluppo di questa tesi di
dottorato che, per alcuni aspetti, porta a compimento un cammino iniziato molti an-
ni fa e che, per altri, è un nuovo punto di partenza: a tutte va il mio più sincero
ringraziamento.

In primis voglio ringraziare la mia famiglia, che mi ha supportato in tutti questi
anni e che mi ha permesso di affrontare gli anni di studio (e ricerca) qui all’Università
di Padova senza preoccupazione alcuna.

L’esperienza di questi anni è stata unica: ho avuto l’opportuna di conoscere e
collaborare con persone eccezionali, sia dal punto di vista professionale che umano.
Voglio ringraziare per questo tutto il gruppo di Ricerca Operativa del DEI (un ambiente
unico), nonché molti colleghi (e amici) del Dipartimento di Matematica e del DEIS
dell’Università di Bologna.

Un ringraziamento particolare va ovviamente al mio supervisor, Matteo Fischetti: i
suoi consigli, le sue idee, il suo supporto e il suo modo di fare sono stati fondamentali.
Un giorno si è scherzosamente autodefinito “maestro di vita”: beh, Matteo, in parte
lo sei stato veramente e spero che la nostra collaborazione possa continuare ancora a
lungo!

Infine, ma non certo per importanza, voglio ringraziare mia moglie Susanna che,
credendo di aver sposato un serio e responsabile ingegnere, si è invece ritrovata come
marito un (ormai ex) studente di dottorato che vuole tentare l’incerta via della ricerca,
ma non per questo mi ha supportato un ε in meno: grazie di cuore.

Padova, 25 gennaio 2009

Domenico Salvagnin

Contents

1 Introduction 1
1.1 Constraint Programming . 1

1.1.1 CP Solvers . 2
1.2 Boolean Satisfiability Problems . 3

1.2.1 SAT solvers . 3
1.3 Mixed Integer Linear Programming . 4

1.3.1 MIP solvers . 4
1.4 Integration . 6

2 Pruning Moves 9
2.1 The Fischetti-Toth dominance procedure 10
2.2 Nogoods and pruning moves . 15
2.3 Improving the auxiliary problem . 16
2.4 Implementation . 19
2.5 Computational Results . 20

2.5.1 Knapsack problem . 21
2.5.2 Network loading problem . 22
2.5.3 Pool effectiveness . 24

2.6 Conclusions . 29

3 Minimal Infeasible Subsystems and Benders cuts 31
3.1 Benders cuts: theory ... 32
3.2 ... and practice . 34
3.3 Benders cuts and Minimal Infeasible Subsystems 37
3.4 Computational results . 38
3.5 Conclusions . 42

4 Feasibility Pump 2.0 47
4.1 The Feasibility Pump . 47

4.1.1 The general integer case . 49
4.2 Constraint propagation . 50

4.2.1 Bound strengthening . 50
4.2.2 Propagation algorithm . 51

4.3 The new FP scheme . 53

xii Contents

4.4 Implementation . 54
4.4.1 Optimizing FP restarts . 55
4.4.2 Optimizing propagators . 55
4.4.3 Optimizing constraint propagation 56

4.5 Computational results . 56
4.6 Conclusions and future directions of work 62

A Fast Approaches to Improve the Robustness of a Railway Timetable 69
A.1 Literature review . 70
A.2 The Nominal Model . 71
A.3 The Stochastic Programming Paradigm 74

A.3.1 The Sample Average Approximation Method 75
A.3.2 Sampling . 76

A.4 Validation Model . 77
A.5 Finding Robust Solutions . 78

A.5.1 A Fat Stochastic Model . 79
A.5.2 A Slim Stochastic Model . 79
A.5.3 Light Robustness . 80

A.6 Computational Results . 81
A.7 Conclusions and future work . 90

Bibliography 97

Chapter 1

Introduction

In this thesis we will deal with optimization problems, i.e., problems of the form

z = min f(x) (1.1)

C (1.2)

x ∈ D (1.3)

Here f(x) is a real valued objective function of the variable x to be minimized, D is
the domain of x and C is a finite set of constraints that must be satisfied. Any x ∈ D
is called a solution; if it satisfies all constraints in C, it is called a feasible solution. A
feasible solution x∗ is optimal if f(x∗) ≤ f(x) for all feasible solutions x.

A problem with no feasible solutions is called infeasible. On the other hand, if there
is no lower bound on f(x) over the feasible set, the problem is called unbounded. In
this thesis we assume that an optimization problem is either infeasible, unbounded or
has finite optimum value1.

Since the key to efficiently solve an optimization problem is to exploit its particular
structure, optimization methods come in a great variety of forms. Different methods
with different properties have been developed in different research communities, yet
the key ingredients of optimization methods are quite common among them. In this
chapter we will briefly introduce three modeling and optimization paradigms, namely
Constraint Programming, Boolean Satisfiability and Mixed Integer Linear Programming,
highlighting commonalities and differences, strengths and weaknesses of all of them.

1.1 Constraint Programming

Constraint Programming (CP) is the study of computational systems based on con-
straints. It is an emergent paradigm to declarative model and effectively solve large,
often combinatorial, optimization problems.

The basic concepts of constraint programming date back to the early studies in the
sixties and seventies done by the artificial intelligence community [111, 118]. Further

1This is not always the case. For example we rule out problems like min e−x subject to x ≥ 0.

2 Chapter 1. Introduction

steps were achieved when it was noted [39,57] that logic programming (and declarative
programming in general) was just a particular kind of constraint programming (hence
the development of Constraint Logic Programming). However, this does not mean
that constraint programming is restricted to declarative languages (like CHiP [28],
CLP(R) [57] or Prolog III [22]), since constraint programming services can and are
actually implemented also for imperative ones (like ILOG Solver [96] or Gecode [40]).

Constraint programming deals with Constraint Satisfaction Problems. A constraint
satisfaction problem (CSP) is defined as a triple (x,D, C), where

• x = {x1, . . . , xn} denotes a finite set of variables

• D = D1 × . . .×Dn represents the domain of the variables

• C denotes a finite set of constraints restricting the values that the variables can
simultaneously take.

Note that both domains and constraints can be of arbitrary type. A CSP where all
domains are finite, although not necessarily numeric, is called a finite domain CSP,
CSP(FD) for short.

We may want to find one solution, all solutions, or prove that no solution exists. If
we are also given an objective function f : D → R mapping each complete solution to a
real value we may also want to find an optimal (or at least good) feasible solution—in
this case we speak of constraint optimization problems.

From the complexity point view, since CSPs include satisfiability problems as special
case, we have that CSP is NP-hard.

1.1.1 CP Solvers

The most common algorithm to solve CSPs is backtracking search. This technique con-
sists in extending a (initially empty) partial solution assigning a value from its domain
to an uninstantiated variable (this is called labeling). If every variable is assigned a value
without violating any constraint, then we have found a solution. Otherwise we need
to backtrack (undo) one or more assignments and pick different values. This scheme
can be organized as a search tree; every node (subproblem) corresponds to a partial
assignment and is derived by its parent with the addition of a variable assignment2.

This simple scheme is sufficient to solve CSP, or at least CSP(FD), but it is hardly
a practical scheme by itself. The key element for solving CSPs in practice is the use of
constraint propagation. Constraint propagation’s task is to analyze the set of constraints
and the domain of the current subproblem, and to infer additional constraints and
domain reductions. Constraints discovered this way are always implied by the original
constraint set C, and thus unnecessary to correctly model the problem; yet they are
helpful in reducing the amount of search that needs to be done to solve the problem,

2In practice it is possible and worthwhile to generalize the concept of variable assignment to an
arbitrary split of the subproblem space.

1.2. Boolean Satisfiability Problems 3

because they make implicit information explicit. If constraint propagation is used to
infer only domain reductions it is called domain propagation.

If a constraint optimization problem is to be solved, a constraint

f(x) < f(x̃)

is added to the set of constraints whenever a new incumbent x̃—the best solution
available—is found. The search terminates when the feasible set becomes empty.

1.2 Boolean Satisfiability Problems

The boolean satisfiability problem (SAT) is the problem of determining wheter the
variables of a given formula of propositional logic can be assigned so as to satisfy the
formula, or prove that no such assignment exists. It is well known that any formula
in propositional logic can be expressed as a conjunction of clauses, where a clause
is a disjunction of literals (atomic propositions or their negations). As such, SAT is
a very special case of CSP, where all variables are constrained to be boolean, and
all constraints are logical clauses. SAT has many practical applications, mainly in
the context of integrated circuits design and verification [15] and logic systems [114].
Despite is simplicity, SAT is NP-complete, indeed it was the first problem shown to
be such [23].

1.2.1 SAT solvers

Although SAT problems could in principle be solved by general-purpose CSP solvers,
the particular structure of the problem enables the design of more specialized—and
efficient—solving schemes. In particular, modern SAT solvers (like CHAFF [85] or
MINISAT [29]) exploit the following techniques:

• an implicit enumeration scheme (the DPLL algorithm [27, 73]). At every node
a variable xj is chosen and the disjunction xj = false ∨ xj = true is used to
generate two child nodes. Nodes are processed in depth first order.

• unit resolution, a particular and efficient form of domain propagation, to be ap-
plied on the subproblems.

• conflict analysis, i.e., analyze infeasible subproblems in order to deduce new
clauses, called conflict clauses [110], which can help prune the search tree.

• restarts. Restart strategies, often in conjunction with randomization, are helpful
to reduce the sensitivity of backtracking search algorithms to early branching
mistakes (see, for example, [44, 47]).

It is also worth noting that, in principle, SAT problems can be solved without a
backtracking algorithm, applying resolution [97, 115], which is a complete inference
method for propositional logic. Unfortunately, the worst-case complexity of resolution

4 Chapter 1. Introduction

is not smaller than that of backtracking search, hence the DPLL algorithm is preferred
in practice.

1.3 Mixed Integer Linear Programming

A mixed integer linear program is defined as follows

z = min cTx (1.4)

Ax ≤ b (1.5)

l ≤ x ≤ u (1.6)

x ∈ Rn (1.7)

xj ∈ Z ∀j ∈ I (1.8)

where A ∈ Qm×n, c ∈ Qn, b ∈ Qm, l ∈ (Q ∪ {−∞})m, u ∈ (Q ∪ {∞})m and I ⊆ N =
{1, . . . , n}. Here cTx is the objective function, Ax ≤ b are the linear constraints, l and
u are simple lower and upper bounds on the problem variables x, and I is the subset
of indices denoting the variables required to be integer. Integer variables with bounds
0 ≤ xj ≤ 1 are called binary variables and play a special role in MIP modeling/solving.
We will denote the set of binary variables indices with B ⊆ I. Variables not required
to be integer are called continuous variables.

There are several special cases of the above general model, namely:

• linear programs (LP) if I = ∅

• integer programs (IP) if I = N

• binary programs (BP) if B = I = N

Note that a MIP is just a special case, albeit a very important one, of CP, where all
constraints and the objective function are required to be linear and we have only integer
or real-valued domains. Despite these limitations, MIPs proved to be very effective in
modeling and solving both theoretical and practical optimization problems.

Since SAT is a special case of binary program, BP, IP and MIP are NP-hard. Only
LPs were shown to be polynomially solvable [60], yet the algorithm used to solve them
in practice, the simplex [26] algorithm, is non-polynomial.

1.3.1 MIP solvers

State-of-the-art MIP solvers are based, like CSP and SAT solvers, on a backtracking
scheme, namely the branch-and-bound (B&B) scheme. This technique optimizes the
search exploiting relaxations.

An outline of the basic scheme is given in Figure 1.1. According to this scheme, the
B&B algorithm consists of the following steps:

• At the beginning of the search, we initialize a queueQ of unprocessed subproblems
with the original problem P and set the value of the current incumbent to +∞.

1.3. Mixed Integer Linear Programming 5

input : minimization problem P
output: optimal solution xbest of value zbest

Initialize Q = {P}, zbest = +∞1

while Q not empty do2

Choose Q ∈ Q and remove it from Q3

Solve the LP relaxation R of Q4

if R is feasible then5

Let x∗ be the optimal solution of R, of value z∗6

if z∗ < zbest then7

if x∗ is feasible for P then8

Let zbest = z∗ and xbest = x∗9

else10

Split problem Q into subproblems Q1, . . . , Qk and add them to Q11

end12

end13

end14

end15

return xbest and zbest16

Figure 1.1: Basic B&B scheme.

• We choose a subproblem Q from Q. If the queue is empty we are done.

• We solve the LP relaxation R of Q, i.e., we solve a relaxed version of Q where we
have dropped all integrality constraints. If the relaxation is feasible we denote
with x∗ and z∗ the relaxed solution and its value, respectively.

• If z∗ ≥ zbest than we can discard the current subproblem immediately, because it
cannot contain a feasible solution better than the current incumbent (bounding).

• If x∗ is feasible for the original problem, i.e., x∗ satisfies all integrality require-
ments, then we have found a new incumbent and we can update xbest and zbest.
Otherwise, we split the current subproblem Q into smaller parts and we add them
to Q. This is usually done by choosing a variable xj that has a fractional value
x∗j in the relaxation and by imposing the disjunction xj ≤ bx∗jc ∨ xj ≥ dx∗je (we
say that we have branched on variable xj).

The effectiveness of the B&B scheme depends on the convergence rate of primal
(zbest) and dual (the smallest relaxation value z∗ of unprocessed nodes) bounds. These
bounds are affected by many factors:

• The node selection strategy used to choose the next subproblem Q to extract
from Q. There are two main possible strategies to visit the search tree. One
is best-first search, where the node with best dual bound (lowest z∗) is chosen,
while the other is depth-first [24,71] search, where the deepest unprocessed node
is chosen. The first strategy tries to move the dual bound as quickly as possible,
thus minimizing the number of nodes of the tree, but in doing so it is quite slow

6 Chapter 1. Introduction

at finding new incumbents and is more memory demanding. On the other hand,
depth-first has lower memory requirements and a greater node throughput. It
tends to find primal solutions earlier in the search; however, a bad branching
decision can make the dual bound move very slowly. State-of-the-art MIP solvers
use a hybrid strategy combining the characteristics of both methods [3].

• The branching strategy, i.e., how we choose the variable xj to branch on. We
would like to choose the variable that leads to the highest dual bound change,
but this may be very difficult to estimate. What is done in practice is to select a
manageable list of “candidate” variables, and estimate the change of LP bound
that would occur branching on them. Many methods have been studied to get a
good estimate in a reasonable amount of time, among them strong branching [7],
pseudocost branching [12], and reliability branching [3, 5].

• How fast we find an incumbent solution providing a good primal bound. Just
waiting to find good feasible solutions at B&B nodes by solving LP relaxations
has proven not to be effective, so MIP solvers resort to primal heuristics [14].
These heuristics are used both to find a first feasible solution to the model, with
techniques such as rounding, partial enumeration and diving or to improve exist-
ing ones, usually through local search algorithms.

• How tight is the LP relaxation of the subproblems. There are essentially two
techniques to improve the LP relaxation of a model, namely preprocessing and
cutting planes. Preprocessing can alter quite significantly the formulation of a
problem with techniques such as fixing, aggregation, substitution, redundancy
detection, coefficient reduction, and bound strengthening, without changing the
set of feasible (in case of primal reductions) or optimal (in case of dual reduc-
tions) solutions [104]. Cutting planes are linear constraints that are satisfied by
all feasible solutions but not by every solution of the LP relaxation, hence the
strengthening of the LP relaxation. Cutting planes can be generated “a priori”
or “on the fly” in order to cut a fractional vertex of the LP relaxation (separa-
tion). Cutting planes implemented in MIP solvers include both generic cuts valid
for any MIP problem, like Gomory mixed-integer and mixed-integer rounding
cuts [76,87], and strong polyhedral cuts studied for particular linear constraints,
such as knapsack and fixed-charge flow [89,91]. The combination of cutting planes
and B&B was introduced successfully in [88, 90] under the name Branch & Cut
(B&C) and is the algorithm of choice implemented in state-of-the-art MIP solvers.

1.4 Integration

Despite their differences, the three aforementioned paradigms all share the same key
ingredients, namely search, inference and relaxation.

Search is the enumeration of problem restrictions, each of which is obtained by
adding constraints to the original problem P . The solution space of a given optimization

1.4. Integration 7

problem is almost invariably exponentially large and highly irregular, and a natural
strategy is to split this search space into smallest pieces, to be solved separately, and
to pick the best solution found. As we have seen, a very common search strategy is
branching search, which recursively splits the feasible set of a given problem until the
resulting subproblem is easy to solve or proven infeasible. As we have seen, branching
search—combined with appropriate inference and relaxation techniques—is at the basis
of the most efficient strategies for solving CP problems (backtracking algorithm), SAT
problems (DPLL algorithm), and MIP problems (branch-and-bound or branch-and-
cut algorithms). However, branching search is not the only option: another general
approach is that of constraint-directed search, in which once a restriction is solved a
constraint is generated that excludes that restriction and possibly others that are proven
to be no better (such constraint is named nogood). The search continues until the
nogoods collected in the process exclude all the search space. Moreover, if the nogoods
are written to impose bounds on the optimal value instead of excluding solutions (in
this case they are named nogood bounds), then we have that the nogood set can be seen
as a problem relaxation. SAT solving algorithms such as dynamic backtracking [42],
as well as decomposition techniques for MIPs, such as Benders’ decompositions [11,49]
and its generalizations, can be seen as cases of constraint-directed search.

Inference is the act of revealing implicit constraints from the existing ones, in order
to reduce the search space. The connection between inference and optimization is funda-
mental; indeed, any optimization problem can in principle be expressed as an inference
problem, namely the problem of deriving from the constraints the best lower bound on
the objective function valid for the solution space. Inference is used extensively in all
three paradigms we have seen, although in different ways. The rich modeling language
of the constraint programming paradigm allows one to fully exploit the structure of the
constraints, by means of sophisticated and powerful constraint propagation algorithms.
These structures are often lost when translating these constraints (if possible) into lin-
ear inequalities. The unrestricted nature of CP constraints is also its biggest weakness,
because it prevents inferences for the problem as a whole. On the other hand, MIP
solver have to deal only with linear inequalities, for which global inference methods,
such as the Farkas’ lemma and Gomory cutting planes separators, are known.

Relaxation means replacing the solution space of our problem with a larger, but
more easily searchable, one. Relaxations provide information to guide (through relaxed
solutions) and accelerate (through bounds) the search phase. Linear relaxations are the
key ingredient of B&B and B&C algorithms for MIPs. The existence of a good (and fast)
relaxation is one of the biggest advantages of the MIP paradigm over CP. Due to the
very generic nature of CP constraints, a relaxation of the problem is often unavailable
to CP solvers. As such, CP solvers can perform much weaker global inferences and
dual reductions.

In the last years, several researchers in the CP and MIP communities have investi-
gated the possibility to integrate the methodologies proper to these paradigms [51,81].
Such an integration has the potential to yield important benefits, and the literature
on this topic is recent but growing. From the modelling/programming point of view,

8 Chapter 1. Introduction

many CP languages include nowadays Operation Research techniques for the propaga-
tion of global constraints [81]. Global constraints enable the use of local relaxations
of structured constraints, providing precious information for cost-based filtering [37].
Some languages enable the use of hybridization techniques, where different solvers work
on distinct parts of the optimization process [49,81,113]. Several methods combine CP
with linear or Lagrangian relaxation, and maintain a unique model that is used by dis-
tinct solvers that cooperate through common data structures, such as the domains of
the variables and their extremes, while others combine MIP and CP through generaliza-
tions of Benders decomposition. More recently, the Constraint Integer Programming [3]
and search-infer-and-relax [51] paradigms proposed a higher level of integration between
CP and MIP. Both paradigms are currently implemented in experimental codes, namely
SCIP and SIMPL, respectively.

Chapter 2

Pruning Moves

A concept playing a potentially relevant role in trying to keep the size of the branch-
and-bound tree as small as possible is that of dominance. Following e.g. Papadimitriou
and Steiglitz [92], a branching node α is said to be dominated by another node β if
every feasible solution in the subtree of α corresponds to a solution in the subtree of β
having a better cost (tie breaks being handled by a suitable lexicographic rule). This
concept seems to have been studied first by Kohler and Steiglitz [63], and has been
developed in the subsequent years, most notably by Ibaraki [55]. However, although
known for a long time, dominance criteria are not exploited in general-purpose MILP
codes, due to a number of important limitations of the classical definition. In fact,
as stated, the dominance relationship is too vague to be applicable in a generic MILP
context—in principle, every node not leading to an optimal solution could be declared
as being dominated.

In this chapter we build on the general-purpose dominance procedure proposed in
the late 80’s by Fischetti and Toth [36], that overcomes some of the drawbacks of
the classical dominance definition. As far as we know, no attempt to actually use
the above dominance procedure within a general-purpose MILP scheme is reported in
the literature. This is due to the fact that the approach tends to be excessively time
consuming—the reduction in the number of nodes does not compensate for the large
overhead introduced. In an attempt to find a viable way to implement the original
scheme, we found that the concept of nogood, borrowed from Constraint Programming
(CP), can play a crucial role for the practical effectiveness of the overall dominance
procedure. Roughly speaking, a nogood is a partial assignment of the variables such that
every completion is either infeasible (for constraint satisfaction problems) or nonoptimal
(for constraint optimization problems). Though widely used in the CP context, the
concept of nogood is seldom used in Mathematical Programming. One of the the first
uses of nogoods in ILP was to solve verification problems (Hooker and Yan [52]) and
fixed-charge network flow problems (Hooker et al. [61]). Further applications can be
found in Codato and Fischetti [21], where nogoods are used to generate cuts for a
MILP problem. Very recently, attempts to apply the concept of “nogood” to MILPs,
deriving nogoods from nodes discarded by the B&B algorithm, have been presented

10 Chapter 2. Pruning Moves

in [2, 103]. In the context of dominance, a nogood configuration is available, as a
byproduct, whenever the auxiliary problem is solved successfully. More generally, we
show how the auxiliary problem can be used to derive “improving moves” that capture
in a much more effective way the presence of general integer (as opposed to binary)
variables.

Improving moves are the basic elements of test sets. For an integer programming
problem, a test set is defined as a set T of vectors such that every feasible solution x

to the integer program is non-optimal if and only if there exists an element t ∈ T (the
“improving move”) such that x + t is a feasible solution with strictly better objective
function value; see, e.g., [46, 105, 112]. Test sets are often computed for a family of
integer linear programs, obtained by varying the right-hand-side vector. This makes
test sets useful for sensitivity analysis, or for solving stochastic programs with a large
number of scenarios. Improving moves are meant to be used to convert any feasible
solution to an optimal one by a sequence of moves maintaining solution feasibility
and improving in a strictly monotone way the objective value. Computing and using
test sets for NP-hard problems is however by far too expensive in practice. In our
approach, instead, improving moves are exploited heuristically within a node fathoming
procedure—hence the name “pruning moves”. More specifically, we generate pruning
moves on the fly, and store them in a move pool that is checked in a rather inexpensive
way at each node of the branch-and-bound tree. Computational results show that this
approach can be very successful for problems whose structure is amenable to dominance.

2.1 The Fischetti-Toth dominance procedure

In the standard Branch-and-Bound (B&B) or Branch-and-Cut (B&C) framework, a
node is fathomed in two situations:

1. the LP relaxation of the node is infeasible; or

2. the optimal value of LP relaxation is not better than the value of the incumbent
optimal solution.

There is however a third way of fathoming a node, by using the concept of dominance.
According to [92], a dominance relation is defined as follows: if we can show that a
descendant of a node β is at least as good as the best descendant of a node α, then we
say that node β dominates node α, meaning that the latter can be fathomed (in case
of ties, an appropriate rule has to be taken into account in order to avoid fathoming
cycles). Unfortunately, this definition may become useless in the context of general
MILPs, where we do not actually know how to perform the dominance test without
storing huge amounts of information for all the previously-generated nodes—which is
often impractical.

Fischetti and Toth [36] proposed a different dominance procedure that overcomes
many of the drawbacks of the classical definition, and resembles somehow the logic cuts
introduced by Hooker et al. in [54] and the isomorphic pruning introduced recently by
Margot [77,78]. Here is how the procedure works.

2.1. The Fischetti-Toth dominance procedure 11

Let P be the MILP problem

P : min{cTx : x ∈ F (P)}

whose feasible solution set is defined as

F (P) := {x ∈ Rn : Ax ≤ b, l ≤ x ≤ u, xj integer for all j ∈ I} (2.1)

where I ⊆ N := {1, · · · , n} is the index set of the integer variables. For any I ′ ⊆ I and
for any x′ ∈ RI′ , let

c(I ′, x′) :=
∑
j∈I′

cjx
′
j

denote the contribution of the variables in I ′ to the overall cost. Now, suppose we
are solving P by an enumerative (B&B or B&C) algorithm whose branching rule fixes
some of the integer-constrained variables to certain values. For every node k of the
branch-and-bound tree, let Ik ⊆ I denote the set of indices of the variables xj fixed to
a certain value xkj (say). Every solution x ∈ F (P) such that xj = xkj for all j ∈ Ik (i.e.,
belonging to the subtree rooted at node k) is called a completion of the partial solution
associated at node k.

Definition 1. Let α and β be two nodes of the branch-and-bound tree. Node β domi-
nates node α if:

1. Iβ = Iα

2. c(Iβ, xβ) ≤ c(Iα, xα), i.e., the cost of the partial solution xβ at node β is not
worse than that at node α, namely xα.

3. every completion of the partial solution xα associated with node α is also a com-
pletion of the partial solution xβ associated with node β.

According to the classical dominance theory, the existence of a node β unfathomed
that dominates node α is a sufficient condition to fathom node α. A key question at this
point is: Given the current node α, how can we check the existence of a dominating node
β? Fischetti and Toth answered this question by modeling the search of dominating
nodes as a structured optimization problem, to be solved exactly or heuristically. For
generic MILP models, this leads to the following auxiliary problem XPα:

min
∑
j∈Iα

cjxj

∑
j∈Iα

Ajxj ≤ bα :=
∑
j∈Iα

Ajx
α
j (2.2)

lj ≤ xj ≤ uj , j ∈ Iα (2.3)

xj integer, j ∈ Iα (2.4)

12 Chapter 2. Pruning Moves

If a solution xβ (say) of the auxiliary problem having a cost strictly smaller than
c(Iα, xα) is found, then it defines a dominating node β and the current node α can be
fathomed.

It is worth noting that the auxiliary problem is of the same nature as the original
MILP problem, but with a smaller size and thus it is often easily solved (possibly in
a heuristic way) by a general-purpose MILP solver. In a sense, we are using here the
approach of “MIPping the dominance test” (i.e., of modeling it as a MILP [31]), in
a vein similar to the recent approaches of Fischetti and Lodi [30] (the so-called local-
branching heuristic, where a suitable MILP model is used to improve the incumbent
solution) and of Fischetti and Lodi [35] (where an ad-hoc MILP model is used to
generate violated Chvátal-Gomory cuts). Also note that, as discussed in Section 2.3,
the auxiliary problem gives a sufficient but not necessary condition for the existence of
a dominating node, in the sense that some of its constraints could be relaxed without
affecting the validity of the approach. In addition, inequalities (2.2) could be converted
to equalities in order to reduce the search space and get a simpler, although possibly
less effective, auxiliary problem.

The Fischetti-Toth dominance procedure, called LD (for Local Dominance) in the
sequel, has several useful properties:

• there is no need to store any information about the set of previously-generated
nodes;

• there is no need to make any time-consuming comparison of the current node
with other nodes;

• a node can be fathomed even if the corresponding dominating one has not been
generated yet;

• the correctness of the enumerative algorithm does not depend on the branching
rule; this is a valuable property since it imposes no constraints on the B&B
parameters—though an inappropriate branching strategy could prevent several
dominated nodes to be fathomed;

• the LD test needs not be applied at every node; this is crucial from a practical
point of view, as the dominance test introduces some overhead and it would make
the algorithm too slow if applied at every node.

An important issue to be addressed when implementing the LD test is to avoid
fathoming cycles arising when the auxiliary problem actually has a solution xβ different
from xα but of the same cost, in which case one is allowed to fathom node α only
if a tie-break rule is used to guarantee that node β itself is not fathomed for the
same reason. In order to prevent these “tautological” fathoming cycles the following
criterion (among others) has been proposed in [36]: In case of cost equivalence, define
as unfathomed the node β corresponding to the solution found by the deterministic1

1In this context, an algorithm is said to be deterministic if it always provides the same output
solution for the same input.

2.1. The Fischetti-Toth dominance procedure 13

x1 = 0 x1 = 1

x2 = 1 x2 = 0

x3 = 1

x4 = 0

x5 = 1

α

α′
β′

β

x3 = 1

x4 = 0

x5 = 1

Figure 2.1: A nasty situation for LD test

(exact or heuristic) algorithm used to solve the auxiliary problem. However, even very
simple “deterministic” algorithms may lead to a wrong result, as shown in the following
example.

Let P be the problem:

min−x1 − x2 − x3 − x4 − 99x5

s.t. x1 + x2 ≤ 1

x3 + x4 ≤ 1

x4 + x5 ≤ 1

x ∈ {0, 1}5

whose optimal solutions are [1, 0, 1, 0, 1] and [0, 1, 1, 0, 1], and let us consider the branch-
and-bound tree depicted in Figure 2.1. The deterministic algorithm used to perform
the LD test is as follows: If the number of variables in the auxiliary problem is smaller
than 3, use a greedy heuristic trying to fix variables to 1 in decreasing index order;
otherwise use the same greedy heuristic, but in increasing index order.

14 Chapter 2. Pruning Moves

When node α (that corresponds to the partial solution x1 = 1, x2 = 0 with cost -1)
is processed, the following auxiliary model is constructed

min−x1 − x2

s.t. x1 + x2 ≤ 1

x1, x2 ∈ {0, 1}

and the deterministic heuristic returns the partial solution x2 = 1, x1 = 0 of cost -1
associated with node β, so node α is declared to be dominated by β and node α is
fathomed assuming (correctly) that node β will survive the fathoming test. However,
when the descendant node α′ (that corresponds to the partial solution x1 = 0, x2 =
1, x3 = 1, x4 = 0 with cost -2) is processed, the following auxiliary model is constructed

min−x1 − x2 − x3 − x4

s.t. x1 + x2 ≤ 1

x3 + x4 ≤ 1

x4 ≤ 1

x1, x2, x3, x4 ∈ {0, 1}

and our deterministic heuristic returns the partial solution x1 = 1, x2 = 0, x3 = 1, x4 =
0 of cost -2 associated with node β′, so node α′ is declared to be dominated by β′ and
node α′ is fathomed as well. Therefore, in this case the enumerative algorithm cannot
find any of the two optimal solutions, i.e., the LD tests produced a wrong answer.

In view of the considerations above, in our implementation we used a different tie-
break rule, also described in [36], that consists in ranking cost-equivalent solutions in
lexicographical order (≺). To be more specific, in case of cost ties we fathom node
α if and only if xβ ≺ xα, meaning that the partial solution xβ associated with the
dominating node β is lexicographically smaller2 than xα. Using this tie-break rule, it
is possible to prove the correctness of the overall enumerative method.

Proposition 1. Assuming that the projection of the feasible set F (P) on the integer
variable space is a bounded set, a B&B algorithm exploiting LD with the lexicographical
tie-break rule returns the same optimal value as the classical B&B algorithm.

Proof. Let x∗ be the lexicographically minimal optimal solution, whose existence is
guaranteed by the boundedness assumption and by the fact that ≺ is a well-order. We
need to show that no node α having x∗ among its descendants (i.e. such that x∗j = xαj
for all j ∈ Iα) can be fathomed by the LD test. Assume by contradiction that a node
β dominating α exists, and define

zj :=

x
β
j j ∈ I∗

x∗j j 6∈ I∗

2We use the standard definition of lexicographic order on vectors of fixed size over a totally order
set.

2.2. Nogoods and pruning moves 15

where I∗ := Iβ (= Iα). In other words, z is a new solution obtained from x∗ by replacing
its dominated part with the dominating one. Two cases can arise:

1. c(I∗, xβ) < c(I∗, xα): we have

cT z =
∑
j∈I∗

cjx
β
j +

∑
j 6∈I∗

cjx
∗
j <

∑
j∈I∗

cjx
α
j +

∑
j 6∈I∗

cjx
∗
j = cTx∗

and
n∑
j=1

Ajzj =
∑
j∈I∗

Ajx
β
j +

∑
j 6∈I∗

Ajx
∗
j ≤

∑
j∈I∗

Ajx
α
j +

∑
j 6∈I∗

Ajx
∗
j ≤ b

so z is a feasible solution with a cost strictly smaller than x∗, which is impossible.

2. c(I∗, xβ) = c(I∗, xα): using the same argument as in the previous case, one can
easily show that z is an alternative optimal solution with z ≺ x∗, also impossible.

It is important to notice that the above proof of correctness uses just two properties
of the lexicographic order, namely:

P1 well-order : required for the existence of a minimum optimal solution;

P2 inheritance: if xα and xβ are two partial assignments such that xα ≺ xβ, then the
lexicographic order is not changed if we apply the same completion to both of
them.

This observation will be used in section 2.3 to derive a more efficient tie-break rule.

2.2 Nogoods and pruning moves

The computational overhead related to the LD test can be reduced considerably if we
exploit the notion of nogoods taken from Constraint Programming (CP). A nogood is a
partial assignment of the problem variables such that every completion is either infea-
sible (for constraint satisfaction problems) or nonoptimal (for constraint optimization
problems). The key observation here is that whenever we discover (through the solu-
tion of the auxiliary problem) that the current node α is dominated, we have in fact
found a nogood configuration [Iα, xα] that we want to exclude from being re-analyzed
at a later time.

Actually, when the LD test succeeds we have not just a dominated partial assign-
ment (xα), but also a dominating one (xβ). Combining the two we get a pruning move
(∆ = [Iα, xβ − xα]), i.e., a list of variable changes that we can apply to a (partial)
assignment to find a dominating one, provided that the new values assigned to the
variables stay within the prescribed bounds. For binary MILPs, the concept of pruning
move is equivalent to that of nogood, in the sense that a pruning move can be applied
to a partial assignment if and only if the same assignment can be ruled out by a cor-
responding (single) nogood. For general-integer MILPs, however, pruning moves can

16 Chapter 2. Pruning Moves

be much more effective than nogoods. This is easily seen by the following example.
Suppose we have two integer variables x1, x2 ∈ [0, U] and that the LD test produces
the pair

xα = (1, 0) xβ = (0, 1)

It is easy to see that, in this case, all the following (dominating, dominated)-pairs are
valid:

{((a, b), (a− 1, b+ 1)) : a ∈ [1, U] , b ∈ [0, U − 1]}

The standard LD procedure would need to derive each such pair by solving a different
auxiliary problem, while they can be derived all together by solving a single MILP
leading to the pruning move (−1, 1). As such, pruning moves can be seen as compact
representations of sets of nogoods, a topic studied also in [59].

In our implementation, we maintain explicitly a pool of previously-found pruning
moves and solve the following problem (akin to separation for cutting-plane methods)
at each branching node α: Find, if any, a move ∆ = [I ′, δ] stored in the pool, such
that I ′ ⊆ Iα and lj ≤ xαj + δj ≤ uj for all j ∈ I ′. If the test is successful, we can
of course fathom node α without needing to construct and solve the corresponding
auxiliary problem XPα. In our implementation, pruning moves are stored in sparse
form, while the pool is simply a list of moves sorted by length. It is worth noting that
we are interested in minimal (with respect to set inclusion) pruning moves, so as to
improve effectiveness of the method. To this end, before storing a pruning move in the
pool we remove its components j such that xαj = xβj (if any).

It is also worth noting that a move ∆1 = [I1, δ1] implies (absorbs) a move ∆2 =
[I2, δ2] in case

I1 ⊆ I2 and |δ1
j | ≤ |δ2

j | ∀j ∈ I1

This property can be exploited to keep the pool smaller without affecting its fathoming
power.

At first glance, the use of a move pool can resembles classical state-based domi-
nance tests, but this is really not the case since the amount of information stored is
much smaller—actually, it could even be limited to be of polynomial size, by exploiting
techniques such as relevance or length bounded nogood recording (see [58]).

2.3 Improving the auxiliary problem

The effectiveness of the dominance test presented in the previous section heavily de-
pends on the auxiliary problem that is constructed at a given node α. In particular,
it is advisable that its solution set is as large as possible, so as to increase the chances
of finding a dominating partial solution. Moreover, we aim to find a partial solution
different from (and hopefully lexicographically better than) the one associated with the
current node—finding the same solution xα is of no use within the LD context. For
these reasons, we next propose a number of improvements over the original auxiliary
problem formulation.

2.3. Improving the auxiliary problem 17

Objective function

The choice of the lexicographic order as a mean to resolve ties, although natural and
simple, is not well suited in practice.

In the most näıve implementation, there is a good chance of not finding a lexico-
graphically better solution even if this exists, because we do not convey in any way to
the solver the information that we are interested in lexicographically minimal solutions.
This is unfortunate, since we risk wasting a great computational effort.

Moreover, the lexicographic order cannot be expressed as a linear objective without
resorting to huge coefficients: the only way to enforce the discovery of lexicographically
better solutions is through ad-hoc branching and node selection strategies, that are
quite intrusive and greatly degrade the efficiency of the solution process.

The solution we propose is to use an alternative randomly generated objective
function, according to the following scheme:

• We generate an alternative random objective function at the beginning and keep
it unchanged for the whole search, so as to satisfy the two properties P1 and P2
of Section 2.1 needed for the correctness of the algorithm.

• In order to guarantee that the optimal solution of the auxiliary problem will be
not worse than the original partial assignment, we add the following optimality
constraint: ∑

j∈Iα
cjxj ≤

∑
j∈Iα

cjx
α
j

• We compare the original partial assignment xα to the solution xβ found by the LD-
procedure (if any) first by original objective function, then by random objective
function and finally, in the unlikely case that both functions yield the same value,
by lexicographic order.

Local branching constraints

As the depth of the nodes in the B&B increases, the auxiliary problem grows in size
and becomes harder to solve. Moreover, we are interested in detecting moves involving
only a few variables, since these are more likely to help prune the tree and are more
efficient to search. For these reasons one can heuristically limit the search space of the
auxiliary problem to alternative assignments not too far from the current one. To this
end, we use a local branching [30] constraint defined as follows.

For a given node α, let Bα ⊆ Iα be the (possibly empty) set of fixed binary variables,
and define

U = {j ∈ Bα | xαj = 1} and L = {j ∈ Bα | xαj = 0}

Then we can guarantee a solution x of the auxiliary problem to be different from xα in
at most k binary variables through the following local branching constraint∑

j∈U
(1− xj) +

∑
j∈L

xj ≤ k

18 Chapter 2. Pruning Moves

A similar reasoning could be extended to deal with general integer variables as well,
although in this case the constraint is not as simple as before and requires the addition
of certain auxiliary variables [30]. According to our computational experience, a good
compromise is to consider a local branching constraint involving only the (binary or
general integer) variables fixed to their lower or upper bound, namely∑

j∈U
(uj − xj) +

∑
j∈L

(xj − lj) ≤ k

where
U = {j ∈ Iα | xαj = uj} and L = {j ∈ Iα | xαj = lj}

Right-hand side improvement

One could observe that we have been somehow over-conservative in the definition of
the auxiliary problem XPα. In particular, as noticed already in [36], in some cases the
condition ∑

j∈Iα
Ajxj ≤ bα

could be relaxed without affecting the correctness of the method.
To illustrate this possibility, consider a simple knapsack constraint 4x1 +5x2 +3x3 +

2x4 ≤ 10 and suppose we are given the partial assignment [1, 0, 1, ∗]. The corresponding
constraint in the auxiliary problem then reads 4x1 + 5x2 + 3x3 ≤ 7. However, since
the maximum load achievable with the free variables is 2, one can safely consider the
relaxed requirement 4x1 + 5x2 + 3x3 ≤ 10 − 2 = 8. Notice that the feasible partial
solution [0, 1, 1, ∗] is forbidden by the original constraint but allowed by the relaxed one,
i.e., the relaxation does improve the chances of finding a dominating node. Another
example arises for set covering problems, where the i-th constraint reads

∑
j∈Qi xj ≥ 1

for some Qi ⊆ {1, . . . , n}. Suppose we have a partial assignment xαj (j ∈ Iα), such
that k :=

∑
j∈Iα∩Qi x

α
j > 1. In this case, the corresponding constraint in the auxiliary

problem would be
∑

j∈Iα∩Qi xj ≥ k, although its relaxed version
∑

j∈Iα∩Qi xj ≥ 1 is
obviously valid as well.

The examples above show however that the improvement of the auxiliary problem
may require some knowledge of the particular structure of its constraints. Even more
importantly, the right-hand side strengthening procedure above can interfere and be-
come incompatible with the post-processing procedure that we apply to improve the
moves. For this reason, in our implementation we decided to avoid any right-hand side
improvement.

Local search on incumbents

A drawback of the proposed scheme is that node fathoming is very unlikely at the very
beginning of the search. Indeed, at the top of the tree only few variables are fixed
and the LD test often fails (this is also true if short moves exist, since their detection
depends on the branching strategy used), while the move pool is empty.

2.4. Implementation 19

To mitigate this problem, each time a new incumbent is found we invoke the fol-
lowing local search phase aimed at feeding the move pool.

• Given the incumbent x∗, we search the neighborhood Nk(x∗) defined through the
following constraints: ∑

j∈I
Ajxj =

∑
j∈I

Ajx
∗
j (2.5)

∑
j∈I:x∗j=uj

(uj − xj) +
∑

j∈I:x∗j=lj

(xj − lj) ≤ k (2.6)

∑
j∈I

cjxj ≤
∑
j∈I

cjx
∗
j (2.7)

lj ≤ xj ≤ uj , j ∈ I

xj integer, j ∈ I

In other words, we look for alternative values of the integer variables xj (j ∈ I)
using each constraint—variable bounds excluded—in the same way as x∗ (con-
straint (2.5)), having a Hamming distance from x∗ not larger than k (constraint
(2.6)), and with an objective value not worse than x∗ (constraint (2.7)).

• We populate a solution list by finding multiple solutions to the MILP

min{
∑
j∈I

cjxj : x ∈ Nk(x∗)}

by exploiting the multiple-solution mode available in our MILP solver [102].

• Given the solution list L = (x1, . . . , xp), we compare the solutions pairwise and
generate a pruning move accordingly, to be stored in the move pool.

• If we find a better solution during the search, we use it to update the incumbent.

It is worth noting that the use of equalities (2.5) allows us to generate a pruning move
for every pair of distinct solutions in the list, since for every pair we have a dominating
and a dominated solution whose difference produces the pruning move.

2.4 Implementation

The enhanced dominance procedure presented in the previous sections was implemented
in C++ on a Linux platform, and applied within a commercial MILP solver. Here are
some implementation details that deserve further description.

An important drawbacks of LD tests is that their use can postpone the finding of
a better incumbent solution, thus increasing the number of nodes needed to solve the
problem. This behavior is quite undesirable, particularly in the first phase of the search
when we have no incumbent and no nodes can be fathomed through bounding criteria.

20 Chapter 2. Pruning Moves

Our solution to this problem is to skip the dominance test until the first feasible solution
is found.

The definition and solution of the auxiliary problem at every node of the branch-
and-bound tree can become too expensive in practice. We face here a situation similar
to that arising in B&C methods where new cuts are typically not generated at every
node—though the generated cuts are exploited at each node. A specific LD considera-
tion is that we had better skip the auxiliary problem on nodes close to the top or the
bottom of the branch-and-bound tree. Indeed, in the first case only few variables have
been fixed, hence there is little chance of finding dominating partial assignments. In the
latter case, instead, it is likely that the node would be fathomed anyway by standard
bounding tests. Moreover, at the bottom of the tree the number of fixed variables is
quite large and the auxiliary problem may be quite hard to solve. In our implementa-
tion, we provide two thresholds on tree depth, namely depthmin and depthmax, and solve
the auxiliary problem for a node α only if depthmin ≤ depth(α) ≤ depthmax. Moreover,
we decided to solve the auxiliary problem at a node only if its depth is a multiple of a
given parameter, say depth interval.

In addition, as it is undesirable to spend a large computing time on the auxiliary
problem for a node that would have been pruned anyway by the standard B&B rules,
we decided to apply our technique just before branching—applying the LD test before
the LP relaxation is solved turned out to be less effective.

In order to avoid spending too much computing time on pathologically hard auxil-
iary MILPs, we also set a node limit N1 (say) for the auxiliary problem solution, and
a node limit N2 (say) for the local search on incumbents.

Finally, since the discovery of new pruning moves decreases as we proceed with the
search, we set a upper bound M on the number of times the LD test is called: after
this limit is reached, the pruning effect is left to the move pool only.

It is important to stress that, although the auxiliary problem is solved only at
certain nodes, we check the current partial assignment against the move pool at every
node, since this check is relatively cheap.

2.5 Computational Results

In our computational experiments we used the commercial solver ILOG Cplex 11.0 [102]
with default options. All runs were performed on a Intel Q6600 2.4Ghz PC with 4GB
of RAM, under Linux.

The definition of the test-bed for testing the potential of our approach is of course
a delicate issue. As a matter of fact, one cannot realistically expect any dominance
relationship to be effective on all types of MILPs. This is confirmed by a preliminary
test we performed on the MIPLIB 2003 [1] testbed, where pruning moves are seldom
generated. We face here a situation similar to that arising when testing techniques
designed for highly-symmetric problems, such as the isomorphic pruning proposed re-
cently by Margot [77, 78]—although remarkably effective on some classes of problems,
the approach is clearly of no use for problems that do not exhibit any symmetry.

2.5. Computational Results 21

Therefore we looked for classes of practically relevant problems whose structure can
trigger the dominance relationship, and measured the speedup that can be achieved by
using our specific LD procedure. In particular, we next give results on two combina-
torial problems: knapsack problems [80] and network loading problems [8, 116]. While
the first class of problems is quite natural for dominance tests (and could in principle
be solved much more effectively by using specialized codes [80] and problem specific
dominance criteria, see for example [38]), the second one is representative of very im-
portant applications where the dominance property is hidden well inside the solution
structure.

2.5.1 Knapsack problem

We generated hard single knapsack instances according to the so-called spanner instance
method in combination with the almost strongly correlated profit generation technique;
see Pisinger [94] for details.

The parameters of our LD procedure were set to:

depthmin: 5

depthmax: 0.8 times the number of integer variables

depthinterval: 6

k: 0.2 times the number of integer variables

N1: 10

N2: 5000

M : 1000

The results on hard single knapsack instances with 60 to 90 items are given in
Table 2.1, where labels “Dominance” and “Standard” refer to the performance of the
B&C scheme with and without the LD tests, and label “Ratio” refers to the ratios
Standard/Dominance. For a fair comparison, the same seed was used to initialize the
random generator in all runs. The performance figures used in the comparison are the
number of nodes of the resulting branch-and-bound tree and the computing time (in
CPU seconds). For these problems, the LD tests provided an overall speedup of 23
times and with substantially fewer nodes (the ratio being approximatively 1:33). Note
that, in some cases, the ratios reported in the table are just lower bounds on the real
ones, as the standard algorithm was stopped before completion due to the time limit.

Additional statistics are reported in Table 2.2 where we provide, for each instance,
the final size of the move pool, the percentage of the whole solution time spent either
on pool management (Pool Time) or LD tests (LD time) along with their success rates
(Pool Success and LD Success, respectively). The figures indicate that the number of
pruning moves stored in the pool is always manageable. In addition, the pool checks

22 Chapter 2. Pruning Moves

Standard Dominance Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

kp60 1 311,490 14.70 0.00 1,793 3.45 0.00 173.73 4.26
kp60 2 831,319 43.72 0.00 3,718 3.05 0.00 223.59 14.35
kp60 3 865,469 45.32 0.00 3,995 2.15 0.00 216.64 21.11
kp60 4 1,012,287 47.54 0.00 19,720 6.42 0.00 51.33 7.41
kp70 1 >12,659,538 >1,200.00 0.41 1,634,517 138.68 0.00 7.75 8.65
kp70 2 783,092 41.21 0.00 4,466 6.43 0.00 175.35 6.41
kp70 3 830,794 41.97 0.00 6,396 4.93 0.00 129.89 8.51
kp70 4 >13,226,464 >1,200.00 0.48 27,591 4.49 0.00 479.38 267.18
kp80 1 403,396 18.71 0.00 2,599 9.41 0.00 155.21 1.99
kp80 2 559,447 28.11 0.00 3,118 1.87 0.00 179.42 15.04
kp80 3 576,885 23.46 0.00 2,962 3.40 0.00 194.76 6.90
kp80 4 277,981 13.35 0.00 5,690 3.29 0.00 48.85 4.06
kp90 1 >16,013,282 >1,200.00 0.07 803,333 65.57 0.00 19.93 18.30
kp90 2 18,330,528 863.77 0.00 5,024 3.56 0.00 3,648.59 242.74
kp90 3 >15,273,264 >1,200.00 0.27 37,017 5.61 0.00 412.60 213.78
kp90 4 2,136,389 116.21 0.00 8,056 3.82 0.00 265.19 30.46

Average >5,255,727 >381.13 - 160,165 16.63 - 398.89 54.45
Geom. mean >1,761,164 >98.78 - 11,625 6.00 - 151.50 16.47

Table 2.1: Computational results for hard knapsack instances

and the LD tests are rather successful as they both allow a node to be fathomed ap-
proximatively 1/3 of the times they are applied—the total effect being of fathoming
approximately 2/3 of the nodes where the test is applied, which results in a dramatic
reduction of the total number of branch-and-bound nodes. Although the relative over-
head introduced by the LD procedure is significant (due to the fact that node relaxations
are particularly cheap for knapsack problems), the overall benefit is striking, with an
average speed-up of about 1–2 orders of magnitude.

2.5.2 Network loading problem

Network loading problems arise in telecommunications applications where demand for
capacity for multiple commodities has to be realized by allocating capacity to the arcs
of a given network. Along with a capacity plan, a routing of all commodities has to
be determined and each commodity must be routed from source to destination on a
single path through the network. The objective is to minimize the cost of the installed
capacity in the network, ensuring that all commodities can be routed from source to
destination simultaneously.

Given a directed graph G = (V,A), a set of commodities K (each commodity being
described by a source node sk, a destination node tk, and a demand size dk), a base
capacity unit C and capacity installation costs cij , our network loading problem can
be formulated as:

min
∑

(i,j)∈A

cijyij

2.5. Computational Results 23

Problem Pool size Pool Time Pool Success LD Time LD Success

kp60 1 404 20.08% 38.95% 13.82% 35.00%
kp60 2 196 1.61% 34.97% 29.82% 47.06%
kp60 3 360 14.86% 37.66% 24.45% 16.67%
kp60 4 148 3.48% 38.18% 58.24% 16.80%
kp70 1 330 26.00% 29.62% 1.10% 50.50%
kp70 2 464 18.62% 39.97% 20.67% 40.59%
kp70 3 299 15.11% 40.58% 25.28% 30.43%
kp70 4 324 16.61% 29.31% 37.60% 59.90%
kp80 1 384 20.67% 42.89% 4.99% 37.05%
kp80 2 286 8.45% 37.87% 35.88% 25.45%
kp80 3 833 24.78% 43.96% 9.54% 35.50%
kp80 4 294 15.95% 43.02% 28.13% 25.13%
kp90 1 268 22.32% 37.55% 2.08% 28.70%
kp90 2 705 17.76% 38.56% 34.19% 58.15%
kp90 3 286 16.55% 34.20% 20.88% 41.20%
kp90 4 181 3.85% 33.97% 44.78% 42.20%

Average 360.13 15.42% 37.58% 24.47% 36.90%
Geom. mean 326.24 12.49% 37.33% 16.80% 34.59%

Table 2.2: Internal statistics for hard knapsack instances

∑
j∈V

xkij −
∑
j∈V

xkji =

1 i = sk

−1 i = tk

0 otherwise

k ∈ K, i ∈ V (2.8)

∑
k

dkxkij ≤ Cyij , (i, j) ∈ A (2.9)

xkij ∈ {0, 1}, yij ∈ Z+
0 , k ∈ K, (i, j) ∈ A (2.10)

Random instances of the above network loading problem were generated as follows:

• In order to obtain a grid-like structure, we generated grid networks of dimensions
3x5 and 4x4 and randomly deleted arcs with probability 0.1. Each arc has base
unit capacity of value 4 and cost 10.

• We generated a commodity of flow 10 for each pair of nodes with probability 0.2.

Some parameters of the LD procedure were changed with respect to the knapsack
test-bed, due to the greatly increased size of the instances:

k: 0.01 times the number of integer variables

N1: 100

N2: 25000

The results of our experiments are given in Table 2.3. In this class of problems, the
dominance procedure is still quite effective, with an overall speedup of 4 times and a
node ratio of more than 5.

24 Chapter 2. Pruning Moves

Typical pruning moves discovered by the LD-test for this class of problems are
shown in Figure 2.2. In particular, the figure illustrates two moves taken from instance
g 15 17 43. For each of them we present two equivalent configurations; flows of different
commodities are drawn with different line styles, while the values reported by the edges
(if relevant) indicate the amount yij of unit capacities installed on the arcs. In move
(a) we have a simple swap of the routing of two different flows with the same value: the
corresponding move involves only binary variables xkij , whereas variables yij (not shown
in the figure) are unaffected. In move (b) we have a more complex swap, involving
also arc capacities (and thus general integer variables as well); here, we reroute two
commodities such as to use a different arc, and move an appropriate amount of unit
capacities accordingly. This last example shows the effectiveness of pruning moves: this
move can be applied whenever it is possible to transfer five unit of capacity from the
bottom arc to the upper arc, regardless of their actual values.

��

��

��

��

��� ���

Figure 2.2: Typical moves captured by the LD-tests on network design instances.

Additional statistics are reported in Table 2.4. The format of the table is the same
as for knapsack problems. As expected, both the computational overhead of the tests
and their rate of success are significantly smaller than in the knapsack case, but still
very satisfactory.

2.5.3 Pool effectiveness

Finally, we tested the effectiveness of the main improvements we proposed to the origi-
nal Fischetti-Toth scheme. Results are reported in Table 2.5 and Table 2.6 for knapsack
and network loading instances, respectively. We compared our final code (Dominance)
against two versions of the same code obtained by disabling the use of the move pool
(versions LD1 and LD2) and a version without the local search on incumbents (version
LD3). We provide the absolute performance figures for Dominance, while we give rel-
ative performance for the other versions—the numbers in the table give the slowdown
factors of the various versions with respect to our final code (the larger the worse).
According to the tables, disabling the move pool while retaining the limit M on the
number of times the LD test is actually called (version LD1) is disastrous: not only
do we lose the fathoming effect on a large part of the tree, but we waste a large com-
puting time in solving auxiliary problems discovering a same pruning move (or even
a dominated one) over and over. Better results can be obtained if we remove limit

2.5. Computational Results 25

Standard Dominance Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

g 15 17 43 1,954,292 797.01 0.00 242,693 163.80 0.00 8.05 4.87
g 15 17 45 >8,711,335 >3,600.00 0.34 1,544,646 845.00 0.00 5.64 4.26
g 15 17 51 >8,022,870 > 3,600.00 0.29 963,576 545.14 0.00 8.33 6.60
g 15 18 35 3,764,325 1,559.38 0.00 286,539 172.48 0.00 13.14 9.04
g 15 18 37 3,959,652 1,525.63 0.00 567,899 279.64 0.00 6.97 5.46
g 15 18 39 752,035 251.52 0.00 303,667 146.55 0.00 2.48 1.72
g 15 18 40 >10,156,564 >3,600.00 0.48 1,071,922 493.57 0.00 9.48 7.29
g 15 19 43 1,609,434 886.51 0.00 415,472 294.61 0.00 3.87 3.01
g 16 18 48 581,268 226.13 0.00 122,824 86.65 0.00 4.73 2.61
g 16 18 53 6,425,061 3,183.84 0.00 6,489 56.14 0.00 990.15 56.71
g 16 19 51 >7,222,780 >3,600.00 0.43 3,774,093 2,158.96 0.00 1.91 1.67
g 16 20 47 5,593,517 3,436.69 0.00 587,773 449.83 0.00 9.52 7.64
g 16 20 51 2,229,792 1,394.58 0.00 272,355 257.26 0.00 8.19 5.42
g 16 21 40 >6,187,221 >3,600.00 0.37 2,334,537 1,524.71 0.00 2.65 2.36
g 16 21 44 1,079,588 717.43 0.00 151,869 182.00 0.00 7.11 3.94
g 16 21 52 >4,565,496 >3,600.00 0.27 1,279,007 1,186.96 0.00 3.57 3.03

Average >4,550,951.88 >2,223.67 - 870,335.06 552.71 - 67.86 7.85
Geom. mean >3,354,264 >1,621.25 - 436,484 339.43 - 7.68 4.78

Table 2.3: Computational results for network loading problems

Problem Pool size Pool Time Ratio Pool Success LD Time Ratio LD Success

g 15 17 43 48 0.73% 13.39% 26.20% 1.50%
g 15 17 45 61 1.08% 17.80% 8.43% 0.80%
g 15 17 51 167 2.19% 17.14% 5.79% 1.30%
g 15 18 35 55 0.94% 16.64% 15.84% 1.10%
g 15 18 37 53 1.15% 4.04% 3.27% 0.50%
g 15 18 39 108 1.52% 12.22% 16.93% 1.20%
g 15 18 40 89 1.66% 18.90% 5.17% 2.60%
g 15 19 43 135 1.68% 18.51% 8.97% 3.30%
g 16 18 48 78 0.95% 9.81% 28.68% 0.90%
g 16 18 53 84 0.17% 3.19% 59.68% 0.60%
g 16 19 51 178 2.45% 22.92% 1.49% 1.70%
g 16 20 47 56 0.92% 8.63% 8.76% 0.80%
g 16 20 51 69 0.81% 15.32% 18.28% 2.60%
g 16 21 40 67 0.92% 11.46% 2.77% 1.90%
g 16 21 44 108 0.78% 7.25% 25.27% 1.00%
g 16 21 52 71 0.77% 13.24% 5.58% 2.30%

Average 89.19 1.17% 13.15% 15.07% 1.51%
Geom. mean 82.13 1.01% 11.70% 9.89% 1.31%

Table 2.4: Internal statistics for network loading instances

26 Chapter 2. Pruning Moves

M (version LD2): in this way we retain much of the fathoming effect, but at a much
greater computational effort (LD2 is about 5 times slower than the default version
on knapsack problems, and reaches the 1-hour time limit in 11 out of 16 instances on
network problems). The contribution of the local search on incumbents (version LD3)
is more difficult to evaluate: while the number of nodes is always reduced by its use,
the overall computing time is reduced only for network problems. A closer look at the
individual table entries shows however that local search is not effective only for easy
problems, where its overhead is not balanced by the increased fathoming power, but it
turns out to be very useful on harder instances (e.g., kp70 1 or kp90 1).

2
.5.

C
om

p
u

tation
a
l

R
esu

lts
27

Dominance LD1 ratios LD2 ratios LD3 ratios

Problem Nodes Time (s) Nodes Time Nodes Time Nodes Time

kp60 1 1,793 3.45 104.23 3.09 3.66 1.36 1.20 0.23
kp60 2 3,718 3.05 179.47 11.96 4.61 4.77 1.56 0.76
kp60 3 3,995 2.15 143.03 14.41 5.01 4.67 1.97 0.82
kp60 4 19,720 6.42 19.34 3.07 4.33 10.45 1.67 0.85
kp70 1 1,634,517 138.68 >8.16 >8.65 >1.26 >8.65 7.21 6.25
kp70 2 4,466 6.43 133.94 5.05 5.58 2.70 1.26 0.30
kp70 3 6,396 4.93 117.94 7.94 5.31 4.43 1.35 0.44
kp70 4 27,591 4.49 >500.77 >267.18 2.85 17.85 2.33 1.36
kp80 1 2,599 9.41 105.96 1.46 4.97 0.72 1.38 0.11
kp80 2 3,118 1.87 103.60 9.35 4.19 4.70 1.30 0.69
kp80 3 2,962 3.40 119.87 4.49 5.14 1.79 1.44 0.26
kp80 4 5,690 3.29 39.23 3.56 4.78 4.36 1.54 0.70
kp90 1 803,333 65.57 >20.06 >18.30 10.66 16.30 14.49 10.52
kp90 2 5,024 3.56 3,354.31 221.01 4.45 4.02 1.58 0.67
kp90 3 37,017 5.61 >432.23 >213.78 3.67 20.43 1.58 0.94
kp90 4 8,056 3.82 240.35 27.55 3.32 4.58 1.00 0.64

Average - - >351.41 >51.30 >4.61 >6.99 2.68 1.60
Geom. mean - - >116.83 >13.14 >4.26 >4.85 1.88 0.74

Table 2.5: Comparison of different LD versions on knapsack problems: LD1 is the version without the move pool and with the same limit M on
the number of times the LD test is called, while LD2 is still without the move pool, but with no such limit. LD3 is the version without local
search on the incumbents. As in the previous table, label Dominance refers to the default LD version. > indicates a reached time limit.

2
8

C
h

ap
ter

2.
P

ru
n

in
g

M
ov

es

Dominance LD1 ratios LD2 ratios LD3 ratios

Problem Nodes Time (s) Nodes Time Nodes Time Nodes Time

g 15 17 43 242,693 164 4.36 2.73 >1.97 >21.98 0.82 0.90
g 15 17 45 1,544,646 845 >5.38 >4.26 >0.22 >4.26 1.26 1.22
g 15 17 51 963,576 545 >8.38 >6.60 >0.55 >6.60 1.99 1.82
g 15 18 35 286,539 172 6.80 4.89 1.48 15.78 1.08 1.02
g 15 18 37 567,899 280 2.13 1.77 1.25 12.43 0.47 0.55
g 15 18 39 303,667 147 2.19 1.63 1.11 7.99 0.97 0.89
g 15 18 40 1,071,922 494 >9.46 >7.29 >0.65 >7.29 1.44 1.35
g 15 19 43 415,472 295 3.39 2.68 1.04 10.83 0.98 0.93
g 16 18 48 122,824 87 9.51 5.49 >4.17 >41.55 4.01 2.63
g 16 18 53 6,489 56 >1,126.00 >64.13 28.33 33.69 3.84 1.07
g 16 19 51 3,774,093 2,159 >1.93 >1.67 >0.11 >1.67 1.65 1.57
g 16 20 47 587,773 450 >10.07 >8.00 >1.05 >8.00 2.96 2.61
g 16 20 51 272,355 257 3.46 2.43 >1.83 >13.99 1.63 1.35
g 16 21 40 2,334,537 1,525 >2.66 >2.36 >0.17 >2.36 2.42 2.36
g 16 21 44 151,869 182 7.18 4.25 >3.04 >19.78 1.76 1.31
g 16 21 52 1,279,007 1,187 >3.57 >3.03 >0.23 >3.03 1.01 0.97

Average - - >75.40 >7.70 >2.95 >13.20 1.77 1.41
Geom. mean - - >6.49 >4.14 >1.00 >9.24 1.51 1.29

Table 2.6: Comparison of different LD versions on network problems: LD1 is the version without the move pool and the same M as the default
LD version, while LD2 is still without the move pool, but with no such limit. LD3 is the version without local search on the incumbents. As
in the previous table, label Dominance refers to the default LD version. > indicates a reached time limit (for LD1 and LD2 the time limit is
reached so often that the means are seriously underestimated)

2.6. Conclusions 29

2.6 Conclusions

In this chapter we have presented a dominance procedure for general MILPs. The tech-
nique is an elaboration of an earlier proposal of Fischetti and Toth [36], with important
improvements aimed at making the approach computationally more attractive in the
general MILP context. In particular, the use of nogoods and of pruning moves that we
propose in this chapter turned out to be crucial for an effective use of dominance tests
within a general-purpose MILP code.

In our view, a main contribution of our work is the innovative use of improving
moves. In a classical (yet computationally impractical) test set approach, these moves
are used within a primal solution scheme leading eventually to an optimal solution. In
our approach, instead, we heuristically generate improving moves on small subsets of
variables by solving, on the fly, small MILPs. These moves are not used to improve the
incumbent, as in the classical test set environment, but rather to fathom nodes in the
branch-and-bound tree—hence the name “pruning moves”. If implemented in a proper
way, this approach introduces an acceptable overhead even if embedded in a highly-
efficient commercial MILP solver such as ILOG Cplex 11, and may produce a drastic
reduction in the number of nodes. Indeed, computational results show that the method
can lead to a speedup of up to 2 orders of magnitude on hard MILPs whose structure is
amenable to dominance, in the sense that it allows for local variable adjustments that
produce equivalent solutions. An example of this kind of problems has been discussed,
namely a network loading problem arising in telecommunication.

A drawback of our approach is of course the overhead introduced when addressing
problems that turn out not to produce any pruning moves. A possible remedy is to use
a conservative adaptive scheme that tries to generate those moves only at the beginning
of the search, and deactivates the solution of auxiliary problem if its success rate is not
satisfactory. The detailed design and implementation of this idea is however out of the
scope of the present thesis, and is left to future research.

Acknowledgments

This work was supported by the University of Padova “Progetti di Ricerca di Ateneo”,
under contract no. CPDA051592 (project: Integrating Integer Programming and Con-
straint Programming) and by the Future and Emerging Technologies unit of the EC
(IST priority), under contract no. FP6-021235-2 (project ARRIVAL).

Chapter 3

Minimal Infeasible Subsystems

and Benders cuts

Benders decomposition is a particular kind of constraint-directed search, where all prob-
lem restrictions are defined by fixing the same subset of variables, i.e., the variable set is
partitioned into a set of “search” variables and a set of “subproblem” variables. It was
originally proposed in [11] as a machinery to convert a generic mixed-integer program
involving integer variables x and continuous variable y into an integer program involv-
ing the x variables only, possibly plus a single continuous variable η taking into account
the overall contribution to the objective function of the continuous variables. However,
the basic idea of the Benders method can be extended to more general settings, pro-
vided that we are able to analyze the problem restrictions in order to infer appropriate
nogoods and nogood bounds (called Benders cuts) involving the search variables. In-
deed, generalized Benders decomposition is one of the most successful frameworks for
the integration of CP and MIP, with speedups up to three orders of magnitude reported
in various applications [50,53,98,113].

In practice, the ability to infer strong Benders cuts from problem restrictions is a key
ingredient for the success of a Benders scheme. In many applications, the strength of
a nogood is closely related to the concept of minimality; intuitively, a minimal nogood
(or nogood bound) affects a bigger part of the solution space, and so is more effective.
However, if we look at the classical Benders scheme, as it is applied to MIPs, we can
notice that the issue of minimality is not taken into account.

Our approach to introduce minimality-reasoning in a MIP Benders scheme is based
on the correspondence between minimal infeasible subsystems of an infeasible LP and
the vertices of the so-called alternative polyhedron. The choice of the “most effective”
violated Benders cut then corresponds to the selection of a suitable vertex of the alter-
native polyhedron.

Computational results on a testbed of MIPLIB instances are presented, where the
quality of Benders cuts is measured in terms of “percentage of gap closed” at the root
node, as customary in cutting plane methods. We show that the proposed methods
provide a speedup of 1 to 2 orders of magnitude with respect to the classical one.

32 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

3.1 Benders cuts: theory ...

Suppose we are given a MIP problem

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0, x integer

y ≥ 0

(3.1)

where x ∈ Rn, y ∈ Rt, and matrix Q has m rows.

Classical Benders decomposition states that solving such a problem is equivalent to
solving

min cTx+ η

Ax ≥ b
η ≥ uT (r − Tx), u ∈ VERT

vT (r − Tx) ≤ 0, v ∈ RAY

x ≥ 0, x integer

(3.2)

where the additional variable η takes into account the objective function term dT y,
while sets VERT and RAY contain the vertices and extreme rays (respectively) of the
polyhedron D defined by:

πTQ ≤ dT

π ≥ 0
(3.3)

The above formulation has exponentially many inequalities, so an iterative solution
approach based on cutting planes is needed, that can be outlined as follows.

1. Solve the so-called master problem:

min cTx+ η

Ax ≥ b
{previously generated Benders cuts}

x ≥ 0, x integer

(3.4)

including (some of) the Benders cuts generated so far (none at the very begin-
ning). Let (x∗, η∗) be an optimal solution of the master problem.

3.1. Benders cuts: theory ... 33

2. Solve the so-called dual slave problem:

maxπT (r − Tx∗)
πTQ ≤ dT

π ≥ 0

(3.5)

3. If the dual slave problem is unbounded, choose any unbounded extreme ray v,
and add the so-called Benders feasibility cut

vT (r − Tx) ≤ 0

to the master and go to Step 1. Otherwise, let the optimal value and an optimal
vertex be z∗ and u respectively. If z∗ ≤ η∗ then stop. Otherwise, add the so-called
Benders optimality cut

η ≥ uT (r − Tx)

to the master problem, and go to Step 1.

The distinction between optimality cuts (involving the η variable) and feasibility
cuts (that assert some property of the feasible x vector) is very important in practice,
and will be analyzed in greater detail in the sequel.

As already noted by other authors, but seldom applied in practice, Benders cuts
can be generated to separate any solution (integer or not) of the master problem. As a
consequence, these cuts can easily be embedded into a modern branch-and-cut scheme
where Benders cuts (among others) are generated at each node of the branching tree.

Note that:

• Although presented for the MIP case, the Benders framework is by no means
limited to it. In particular, any problem of the form

min c(x) + dT y

g(x) ≥ 0

F (x) +Qy ≥ r
y ≥ 0

(3.6)

with arbitrary c(), g() and F () is suitable to be solved with this method, provided
that we have a solver for the master problem (see [41]). This also means that,
given any arbitrary partition of the variables, any linear programming problem
can be casted into the Benders framework, by projecting away a subset of the
variables. This is indeed done in practice with problems that simplify considerably
(e.g., decompose) after fixing a subset of their decision variables—this is the case,
e.g., in Stochastic Linear Programs (SLPs).

• The Benders method is in fact a pure cutting plane approach in which, given a
solution (x∗, η∗) of a problem relaxation (the master), we look for a violated valid

34 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

inequality. In particular, the search for such an inequality is done by solving an
LP problem (the dual slave), which acts as a Cut Generating LP akin to the one
used in disjunctive programming (as a matter of fact, disjunctive cuts can be
viewed as Benders cuts derived from a compact extended formulation).

• The set of Benders cuts corresponds to the vertices and extreme rays of D and is
independent of the current master solution (x∗, η∗), which is used only to decide
which is next cut to add. For this purpose a suboptimal (or even infeasible)
master solution can be used as well, as e.g. in the recent proposals by Rei e
al. [99] and by Poojari and Beasley [95].

Given the considerations above, in the following we focus on a generic LP of the
form

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0

y ≥ 0

(3.7)

This LP may be the root relaxation of a MIP problem, or just a large-scale LP problem
suitable for Benders decomposition (e.g., a SLP problem).

3.2 ... and practice

The first question we asked ourselves was: What can be considered a modern, yet clas-
sical, implementation of Benders decomposition to be used for benchmarking purposes?
As a matter of fact, any implementation of the Benders approach has to face a number
of implementation issues that affect heavily the overall performance of the method,
and many authors using Benders cuts tend to classify their methods as just “standard
implementations” without giving sufficient details.

A first issue is how to obtain a good, yet easily computable, initial lower bound on
η, so as to prevent the generation of several dominated (and thus useless) optimality
cuts. From a theoretical point of view, we are interested in the best-possible optimality
cut of the form

η ≥ πT r − 0Tx

so πT r can be obtained by just solving the LP:

maxπT r

πTQ ≤ dT

πTT = 0T

π ≥ 0

(3.8)

3.2. ... and practice 35

However, if the slave problem does not have a special structure (i.e., if it does not
decompose nicely), the introduction of the coupling matrix T yields an LP problem of
the same size as the original LP, so this approach is not always viable computationally.
Therefore, in our tests we prefer to calculate a trivial bound on dT y based only on
the lower and upper bounds on the y variables (if no bounds are given, we just write
η ≥ −M for a suitably large M).

Then we addressed the relative contribution of optimality and feasibility cuts to the
convergence of the method. Indeed, according to our computational experience these
two classes of cuts behave quite differently in many important respects:

• For many problems where term dT y gives a significant contribution to the overall
optimal value, optimality cuts can be much more effective in moving the bound
than feasibility cuts, because they involve the η variable explicitly.

• Optimality cuts are typically quite bad from a numerical point view. In particular,
optimality cuts tend to exhibit an higher dynamism than feasibility cuts, i.e.,
a higher ratio between the maximum and minimum absolute value of the cut
coefficients. This was somewhat expectable, because optimality cuts have to
take into account the objective function, which may be of a completely different
magnitude (and precision) with respect to the constraints.

• Optimality cuts tend to be much denser than the feasibility ones. Again, this is
not surprising since the role of optimality cuts is to provide a lower bound on
the objective function term η that is based on the value of the variables x of the
master problem, and it is unlikely that just a few master variables can succeed in
producing a tight bound.

As a consequence, it is important to have some control on the kind (and quality) of
Benders cuts generated at each iteration. Unfortunately, Benders decomposition—as it
is typically implemented in the literature—is heavily biased toward feasibility cuts. As
a matter of fact, as long as a violated feasibility cut exists, the dual slave is unbounded
and hence no optimality cut is generated. As noted by Benders himself [11], however,
if we solve the dual slave with the primal simplex method, then when we discover an
unbounded ray we are “sitting on a vertex” of polyhedron D, and thus we can generate
also an optimality cut with no additional computational effort. A main drawback of
this approach is that optimality cut produced is not guaranteed to be violated, and in
any case its discovery was quite “random” as the corresponding vertex is by no mean
a one maximizing a certain quality index such as cut violation, depth, etc.

The lack of control on the quality of the Benders cuts is even more striking when fea-
sibility cuts are generated, since the textbook method does not give any rule to choose
among the unbounded rays. To illustrate this important (and often underestimated)
point, suppose that we want to apply a textbook Benders decomposition approach
to the well-known Asymmetric Traveling Salesman Problem (ATSP). Our compact
MIP formulation then involves binary variables xij associated with the arcs of digraph
G = (V,A), and continuous flow variables ykij that describe a flow of value 1 from a fixed

36 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

source node (say node 1) to sink node k, for all k ∈ V \ {1}. In this example, system
Ax ≥ b corresponds to in- and out-degree restrictions, whereas system Tx+Qy ≥ r is
made by |V | − 1 independent blocks corresponding to the flow-conservation equations
for each k, plus the coupling constraints ykij ≤ xij for all k ∈ V \ {1} and (i, j) ∈ A.
It is not hard to see that, in this case, Benders cuts are of the feasibility type only,
and correspond to the classical Subtour Elimination Constraints (SECs) of the form∑

(i,j)∈δ+(S) xij ≥ 1. These cuts are known to be facet-defining (assuming G is complete
digraph), hence they are very strong in practice—so we can conclude that “Benders
cuts make a wonderful job”. What is clearly inefficient is instead the way these cuts
would be handled by the standard Benders method. First of all, SECs would be gen-
erated only after having solved to proven optimality the current master, and used to
cut integer points only. This is clearly inefficient, since SECs should be generated at
each node of the branching tree, or at least whenever the incumbent solution is up-
dated (as in the old-day method by Miliotis [82,83]). But even if SECs were generated
within a modern branch-and-cut framework, what is completely missing in the Ben-
ders method is a sensible cut selection criterion—once a violated SEC exists, the dual
slave becomes unbounded and any violated SEC can be returned by the separation
procedure—whereas we know that SEC density (among other characteristics) plays a
crucial role in speeding-up convergence.

The considerations above prompted us to introduce an effective criterion for choos-
ing among violated (optimality or feasibility) Benders cuts, very much in the spirit
of disjunctive cut generation that is also based on CGLPs (see Balas, Ceria, and
Cornuéjols [9], and also Fischetti, Lodi and Tramontani [32]). As far as we know, no
research effort was devoted to this particular topic in the literature, with one notable
exception—the acceleration procedure by Magnanti and Wong [74]. This procedure
provides a criterion to choose, among equivalent optimal vertices of the dual slave
polyhedron, a “Pareto-optimal” one that corresponds to a maximally-violated optimal-
ity cut that is not strictly dominated (within the master feasible solution set) by any
other maximally-violated cut. The procedure has however some drawbacks:

• According to its original definition, the procedure would require the dual slave
to have a bounded optimal value, hence it could not be applied in a completely
general context involving feasibility cuts—this drawback can however be partially
overcome by introducing artificial dual bounds.

• The user has to provide a point in the relative interior of the master feasible set.
This is quite a simple task if the the master has a very special structure, as in the
cases addressed by Magnanti and Wong in their study, but is NP-hard in general
if the master is a MIP, since we need a point in the relative interior of the convex
hull of the integer feasible points, which is usually not known. Moreover, the
outcome of the procedure depends on the choice of the interior point.

• The method may be computationally heavy, as it requires to solve two LPs to
generate a single cut, the second LP being often quite time-consuming due to

3.3. Benders cuts and Minimal Infeasible Subsystems 37

the presence of an additional equation that fixes the degree of violation to the
cut—this equation is in fact very dense and numerically unstable.

• The Magnanti-Wong criterion benefits from the existence of several equivalent
optimal solutions of the dual slave problem (i.e., several maximally-violated opti-
mality cuts), which is however not very frequent when fractional (as opposed to
integer) points of the master are cut.

3.3 Benders cuts and Minimal Infeasible Subsystems

The CGLP of a Benders cut can always be seen as a feasibility problem: given a master
solution (x∗, η∗), it is possible to generate a violated cut if and only if the following
primal slave problem is infeasible:

dT y ≤ η∗

Qy ≥ r − Tx∗

y ≥ 0

(3.9)

or equivalently, by LP duality, if the following dual slave problem is unbounded:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

π, π0 ≥ 0

(3.10)

If the separation is successful, given the dual solution (extreme ray) (π, π0) the gener-
ated cut is

πT (r − Tx)− π0η ≤ 0

In practice, one is interested in detecting a “minimal source of infeasibility” of (3.9),
so as to detect a small set of rows that allows one to cut the master solution. According
to Gleeson and Ryan [43], the rows of any Minimal (with respect to set inclusion)
Infeasible Subsystem (MIS) of (3.9) are indexed by the support of the vertices of the
following polyhedron, sometimes called the alternative polyhedron:

πTQ ≤ π0d
T

πT (r − Tx∗)− π0η
∗ = 1

π, π0 ≥ 0

(3.11)

where the unbounded objective function—namely, the cut violation to be maximized—
has been fixed to a normalization positive value (if the alternative polyhedron is empty,
we are done). By choosing an appropriate objective function it is therefore possible to
optimize over the alternative polyhedron, thus selecting a violated cut corresponding
to a MIS of (3.9) with certain useful properties. Therefore, the choice of the objective
function is a main issue to be addressed when designing a separation procedure based

38 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

on a CGLP, as in the Benders method.

A natural objective function whose purpose is to try to minimize the cardinality of
the support of the optimal vertex (and hence to find a small-cardinality MIS 1) is

min
m∑
i=1

πi + π0 (3.12)

As we are only interested in solutions with a positive cut violation, and since
{(π, π0) ≥ 0 : πTQ ≤ π0d

T } is a cone, we can swap the role of the objective function
(3.12) and of the normalization condition in (3.11), yielding the following equivalent
CGLP akin to the one used for disjunctive cuts by Balas, Ceria, and Cornuéjols [9]:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

m∑
i=1

πi + π0 = 1

π, π0 ≥ 0

(3.13)

It is worth noting that the feasible solution set of the above CGLP is never empty
nor unbounded, so a violated cut can be generated if and only if the CGLP has a
strictly positive optimal value. The latter formulation is preferable from a computa-
tional point because the normalization constraint

∑m
i=1 πi+π0 = 1, though very dense,

is numerically more stable than its “cut violation” counterpart πT (r−Tx∗)−π0η
∗ = 1.

Moreover, at each iteration only the CGLP objective function is affected by the change
in the master solution, hence its re-optimization with the primal simplex method is
usually quite fast.

A geometric interpretation of (3.13) is as follows. The CGLP feasible set is now
defined as the intersection of the homogenization of the dual polyhedron D with the
normalization hyperplane

∑m
i=1 πi + π0 = 1. It is not difficult to see that there is a

one-to-one correspondence between the vertices of this feasible set and the extreme rays
(if π0 = 0) and vertices (if π0 6= 0) of D. Therefore, the reformulation does not actually
change the set of Benders cuts that can be generated, but it is nevertheless useful in
that it allows one to use a more clever choice of the violated cut to be separated.

3.4 Computational results

The effectiveness of our CGLP formulation has been tested on a collection of problems
from the MIPLIB 2003 library [1]. Among the instances in this testbed, we have chosen
the mixed-integer cases with a meaningful number of integer and continuous variables.
Moreover, we discarded some instances with numerical instability and which, after
the variables were partitioned, were too easy to solve even by the classical Benders

1Finding a minimum-cardinality MIS is an NP-hard problem in general; see, e.g., Amaldi et al. [6]

3.4. Computational results 39

Problem # variables # integer # continuous # constraints

10teams 2025 1800 225 230
a1c1s1 3648 192 3456 3312
aflow40b 2728 1364 1364 1442
danoint 521 56 465 664
fixnet6 878 378 500 478
modglob 422 98 324 291
momentum1 5174 2349 2825 42680
pp08a 240 64 176 136
timtab1 397 171 226 171
timtab2 675 294 381 294
tr12-30 1080 360 720 750

Table 3.1: Testbed characteristics

method 2. Table 3.1 shows our final testbed with the main characteristics of each
instance.

Standard variable partitioning has been applied—integer (and binary) variables are
viewed as master variables x, and the continuous variables are viewed as slave variables
y.

We implemented two variants of the classical (textbook) Benders method, as well
as two variants of our MIS-based CGLP, namely:

tb: This is the original method as proposed by Benders [11]. If the dual slave problem is
bounded, we generate one optimality cut, otherwise we generate both a feasibility
and an optimality cut (the optimality cut being added to the master problem only
if it is violated by the current master solution).

tb noopt: This is a standard Benders implementation method as often seen on text-
books. This method always generate only one cut per iteration—in case of un-
boundedness, only the feasibility cut associated with the unbounded dual-slave
ray detected by the LP solver is added to the master.

mis: This is our basic MIS-based method. It uses the CGLP (3.13) to solve the sepa-
ration problem, hence it generates only one cut per iteration.

mis2: This is a modified version of mis: after having solved the CGLP, if the generated
cut is an optimality one, we enforce the generation of an additional feasibility cut
by imposing the condition π0 = 0.

In our experiments, we handled the equations in the MIP model (if any) explicitly,
without replacing them with pairs of inequalities; this implies the presence of free dual
multipliers and the use of their absolute value in the normalization condition.

2A couple of instances exhibit a block structure of the slave problem and just a few iterations where
enough to terminate the method.

40 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

The implementation was done in C++ on a Linux 2.6 platform and all tests were
performed on an Intel Core2 Quad CPU Q6600 with 4GB of RAM. We used ILOG
Cplex 11.0 as the black-box LP solver; we disabled the LP presolver and forced the use
of the primal simplex method for the solution of the dual slaves so as to be able to get
a meaningful output even in case of unbounded problems. Before solving an instance,
we performed a standard bound shifting in order to reduce the number of slave variable
bounds to dualize. For this reason, the optimal LP value reported in our tables may
differ from the value reported in the literature.

The quality of the generated Benders cuts is measured in terms of “percentage
gap closed” at the root node, as customary in cutting plane methods. The results
are shown in Tables 3.2 and 3.3. In Table 3.2 we report the computing time and
number of iterations needed to reach 80%, 90%, 95% and 99% of the optimal root
relaxation value, as well as the total running times and number of iterations needed for
convergence (within a time limit of 2,000 seconds). In Table 3.3 we report the number
of generated (optimality and feasibility) cuts, their average density (column AvgD),
the rate of growth of the master solution time (column MRate) as a function of the
number of iterations (standard linear regression on the master-problem running times
vs. iterations), and the average separation time in CPU seconds (column AvgT). In
both tables a (*) indicates failed cut generation due to numerical problems. Results
with tb noopt are not reported since this method was never better (and often much
worse) than tb: a typical behavior is illustrated in Figures 3.1 and 3.2.

3
.4.

C
om

p
u

tation
a
l

resu
lts

41

Time (seconds) Iterations

Problem Method 80% 90% 95% 99% 80% 90% 95% 99% bestBound optimum totTime totIter

10teams
tb 0.08 0.21 0.22 0.26 24 35 38 43 897.00 897.00 0.51 71
mis 0.04 0.05 0.06 0.07 9 11 14 19 897.00 897.00 0.21 66
mis2 0.04 0.05 0.05 0.07 9 11 14 19 897.00 897.00 0.22 66

a1c1s1
tb - - - - - - - - 707.61 997.53 1000.45 3714
mis 3.68 6.01 10.62 19.39 144 218 296 482 997.53 997.53 39.95 914
mis2 86.58 189.93 280.78 - 62 118 173 - 982.38 997.53 451.98 296

aflow40b
tb 0.03 0.03 0.04 0.09 1 2 5 13 1005.66 1005.66 0.24 44
mis 0.05 0.05 0.07 0.16 1 1 2 7 1005.66 1005.66 0.89 44
mis2 0.04 0.04 0.07 0.17 1 1 2 7 1005.66 1005.66 0.90 44

danoint
tb 21.22 24.30 29.16 29.16 595 654 766 766 62.64 62.64 36.15 1251
mis 0.18 0.18 0.18 1.03 43 43 43 87 62.64 62.64 1.74 186
mis2 3.00 3.00 3.00 5.42 43 43 43 72 62.64 62.64 12.46 167

fixnet6
tb 0.75 1.19 1.61 2.14 183 254 310 368 1200.88 1200.88 3.20 523
mis 0.05 0.12 0.16 0.34 39 65 83 139 1200.88 1200.88 0.70 230
mis2 0.28 0.43 0.64 1.02 26 39 56 87 1200.88 1200.88 1.79 161

modglob*
tb - - - - - - - - - - - -
mis 0.34 0.34 1.38 2.01 62 62 303 473 20430900.00 20430947.62 50.31 3573
mis2 0.58 0.87 3.00 6.06 34 61 274 613 20430900.00 20430947.62 44.83 3079

momentum1*
tb - - - - - - - - - - - -
mis 0.35 0.59 0.73 1.60 0 3 5 18 72793.30 72793.35 26.21 207
mis2 - - - - - - - - - - - -

pp08a
tb 0.01 0.01 0.01 1.03 9 14 16 339 2748.35 2748.35 4.11 825
mis 0.13 0.28 0.33 0.52 125 195 213 280 2748.35 2748.35 1.71 696
mis2 0.03 0.04 0.04 0.68 9 13 14 179 2748.35 2748.35 2.20 540

timtab1
tb 60.15 61.70 67.09 77.27 676 705 778 963 28655.10 28694.00 83.70 1046
mis 1.51 2.33 3.08 5.03 601 831 978 1294 28694.00 28694.00 6.13 1431
mis2 2.81 3.48 4.13 5.09 362 433 494 575 28694.00 28694.00 5.83 635

timtab2
tb 444.26 517.35 663.03 898.50 1162 1388 1731 2165 83269.00 83592.00 1003.04 2327
mis 17.96 35.51 52.70 119.58 1091 1493 1812 2965 83592.00 83592.00 204.90 4080
mis2 14.36 21.33 29.74 46.28 536 682 827 1131 83592.00 83592.00 64.14 1395

tr12-30
tb 1.22 1.95 3.14 19.14 146 188 222 254 14210.43 14210.43 357.80 518
mis 18.83 36.41 59.49 88.98 547 669 768 860 14210.43 14210.43 123.18 1015
mis2 0.63 0.66 0.66 12.69 17 18 18 249 14210.43 14210.43 13.42 272

Table 3.2: Comparison of the effectiveness of various separation methods in moving the lower bound at the root node.

42 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

As reported in Table 3.2 tb is the most efficient method only in 1 out of 11 instances,
namely aflow40, and only with little advantage over the competitors. On the other
hand, mis and mis2 are much more effective on 10 out of 11 instances, with speedups
of 1 to 2 orders of magnitude. As expected, the average density of the cuts generated
by mis and mis2 is considerably smaller than tb, see Table 3.3. This has a positive
effect on the rate of growth of the master solution time as a function of the number of
iterations, as reported in column Master Rate in the table.

A closer analysis of instance a1c1s1 provides some insights on the strength of the
proposed methods: at each iteration, while tb generates weak feasibility and optimality
cuts, with no selection criteria for both, mis is able to cut the current master solution
with just a good optimality cut. This is however not always the best strategy: for
example, in timtab1, timtab2 and tr12-30, feasibility cuts are really crucial for the
effectiveness of the method and should be preferred—hence mis2 becomes the leading
method.

A comparison between mis and mis2 shows that mis candidates as the method of
choice, as it is usually faster due to the extra computing time that mis2 spends in
generating the additional feasibility cut (at least, in our present implementation); see
Table 3.3. Nevertheless, as already mentioned, there are instances such that timtab2

and tr12-30 where the extra separation effort is rewarded by a significant improvement
of the overall performance.

3.5 Conclusions

We have investigated alternative cut selection criteria for Benders cuts. By using
the correspondence between minimal infeasible subsystems of an infeasible LP and the
vertices of a so-called alternative polyhedron, we were able to define a simple yet effective
cut-generation LP allowing for the selection of strong Benders cuts. Computational
results on a set of MIPLIB instances show that the proposed method provide a speedup
of 1 to 2 orders of magnitude with respect to the textbook one.

Acknowledgments

This work was supported by the Future and Emerging Technologies unit of the EC
(IST priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and by MiUR,
Italy (PRIN 2006 project “Models and algorithms for robust network optimization”).

3.5. Conclusions 43

Problem Method # cuts # opt. # feas. AvgD MRate AvgT

10teams
tb 107 36 71 383 1.14E-04 1.94E-04
mis 66 0 66 53 3.97E-05 1.94E-04
mis2 66 0 66 53 3.44E-05 2.39E-04

a1c1s1
tb 5893 3714 2179 76 1.65E-04 6.01E-03
mis 914 906 8 26 2.63E-05 3.05E-02
mis2 577 296 281 14 4.13E-05 1.52E+00

aflow40b
tb 44 0 44 252 4.74E-06 4.24E-03
mis 44 0 44 242 -5.93E-06 1.86E-02
mis2 44 0 44 242 1.04E-05 1.89E-02

danoint
tb 1412 1251 161 48 3.09E-06 2.02E-02
mis 186 186 0 37 5.25E-06 8.72E-03
mis2 180 167 13 35 4.99E-06 7.38E-02

fixnet6
tb 806 523 283 46 1.05E-05 1.24E-03
mis 230 210 20 22 9.38E-06 2.01E-03
mis2 321 160 161 24 1.60E-05 9.59E-03

modglob*
tb - - - - - -
mis 3573 3557 16 31 6.74E-06 2.30E-03
mis2 3088 3077 11 29 5.84E-06 6.25E-03

momentum1*
tb - - - - - -
mis 414 383 31 143 3.18E-04 2.61E-02
mis2 - - - - - -

pp08a
tb 901 825 76 40 7.97E-06 3.14E-04
mis 696 688 8 17 3.52E-06 5.91E-04
mis2 613 540 73 16 3.45E-06 2.46E-03

timtab1
tb 2083 1042 1041 56 2.52E-06 4.37E-04
mis 1431 1354 77 17 4.31E-06 1.10E-03
mis2 1268 633 635 10 8.82E-06 4.88E-03

timtab2
tb 4609 2316 2293 103 8.98E-05 5.98E-04
mis 4080 3918 162 45 1.90E-05 3.29E-03
mis2 2783 1388 1395 23 3.79E-05 1.31E-02

tr12-30
tb 1026 513 513 144 4.13E-03 7.69E-04
mis 1015 999 16 44 3.20E-04 4.55E-03
mis2 544 272 272 19 6.75E-05 4.02E-02

Table 3.3: Statistics on the Benders cuts generated by the different methods.

44 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

0 500 1000 1500 2000
Iterations

0

200

400

600

800

1000

1200

1400

L
o
w
e
rB
o
u
n
d

fixnet6: Lower Bound vs. Iterations

tb
tb_noopt

mis
mis2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iterations

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

L
o
w
e
rB
o
u
n
d

timtab2: Lower Bound vs. Iterations

tb
tb_noopt

mis
mis2

Figure 3.1: Lower bound growth vs. iterations with different separation methods. The
dotted line is the known optimal value. For timtab2, tb noopt was not able to improve
its initial null lower bound.

3.5. Conclusions 45

0 2 4 6 8 10 12
Time

0

200

400

600

800

1000

1200

1400
L
o
w
e
rB
o
u
n
d

fixnet6: Lower Bound vs. Time

tb
tb_noopt

mis
mis2

0 200 400 600 800 1000 1200
Time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

L
o
w
e
rB
o
u
n
d

timtab2: Lower Bound vs. Time

tb
tb_noopt

mis
mis2

Figure 3.2: Lower bound growth vs. time with different separation methods. The
dotted line is the known optimal value. For timtab2, tb noopt was not able to improve
its initial null lower bound.

Chapter 4

Feasibility Pump 2.0

Finding a feasible solution of a given Mixed-Integer Programming (MIP) model is a
very important NP-complete problem that can be extremely hard in practice.

Feasibility Pump (FP) is a heuristic scheme for finding a feasible solution to general
MIPs recently proposed by Fischetti, Glover, and Lodi [34] and further improved by
Fischetti, Bertacco and Lodi [13] and Achterberg and Berthold [4]. The FP heuristic
turns out to be quite successful in finding feasible solutions even for hard MIP instances,
and is currently implemented in many optimization solvers, both commercial and open-
source.

FP can be viewed as a clever way of rounding a sequence of fractional solutions of
the LP relaxation, until a feasible one is eventually found. In the attempt of improving
the FP success rate, one can therefore try to replace the original rounding operations
(which are fast and simple, but somehow blind) with more clever rounding heuristics.

In this chapter we investigate the use of a diving-like procedure based on rounding
and constraint propagation. This is a basic tool from Constraint Programming, which
is used in modern Branch&Cut (B&C) codes for node preprocessing.

Extensive computational results on a large testbed of both binary and general inte-
ger MIPs from the literature show that this is a promising direction for improving the
FP success rate significantly, with a typically better quality of the feasible solutions
found.

4.1 The Feasibility Pump

Suppose we are given a MIP:

min{cTx : Ax ≤ b, xj integer ∀j ∈ I}

and let P = {x : Ax ≤ b} be the corresponding LP relaxation polyhedron. Here, A is
an m × n matrix, and I ⊆ {1, 2, · · · , n} is the index set of the variables constrained
to be integer. We assume that system Ax ≤ b includes finite lower and upper bound
constraints of the form

lj ≤ xj ≤ uj ∀j ∈ I

48 Chapter 4. Feasibility Pump 2.0

With a little abuse of terminology, we say that a point x is “integer” if xj is integer
for all j ∈ I (thus ignoring the continuous components), and fractional otherwise.
Moreover, we call LP-feasible a point x ∈ P . Finally, we define the distance between
two given points x and x̃, with x̃ integer, as

∆(x, x̃) =
∑
j∈I
|xj − x̃|

again ignoring the contribution of the continuous components.

Starting from an LP-feasible point, the basic FP scheme generates two (hopefully
convergent) trajectories of points x∗ and x̃, which satisfy feasibility in a complementary
way: points x∗ are LP-feasible, but may not be integer, whereas points x̃ are integer,
but may not be LP-feasible.

input : MIP ≡ min{cTx : x ∈ P, xj integer ∀j ∈ I}
output: a feasible MIP solution x∗ (if found)

x∗ = arg min{cTx : x ∈ P}1

while not termination condition do2

if x∗ is integer then return x∗3

x̃ = Round (x∗)4

if cycle detected then Perturb (x̃)5

x∗ = LinearProj (x̃)6

end7

Figure 4.1: Feasibility Pump—the basic scheme

The two sequences of points are obtained as follows: at each iteration (called pump-
ing cycle), a new integer point x̃ is obtained from the fractional x∗ by simply rounding
its integer-constrained components to the nearest integer, while a new fractional point
x∗ is obtained as a point of the LP relaxation that minimizes ∆(x, x̃). The procedure
stops if the new x∗ is integer or if we have reached a termination condition—usually,
a time or iteration limit. Some care must be taken in order to avoid cycling, usually
through random perturbations. An outline of this basic scheme is given in Figure 4.1.

According to this scheme, there are three essential FP ingredients:

Round This is the function called to transform an LP-feasible point into an integer
one. The standard choice is to simply round each component x∗j with j ∈ I to the
nearest integer [x∗j] (say), while leaving the continuous components unchanged.

LinearProj This function is somehow the inverse of the previous one, and is responsi-
ble for calculating an LP-feasible point x∗ from the current integer x̃. A standard
choice is to solve the following LP:

x∗ = arg min{∆(x, x̃) : x ∈ P}

4.1. The Feasibility Pump 49

In the binary case the distance function ∆(·, x̃) can easily be linearized as

∆(x, x̃) =
∑

j∈I:x̃j=1

(1− xj) +
∑

j∈I:x̃j=0

xj

In the general integer case, however, the linearization requires the use of additional
variables and constraints to deal with integer-constrained components x̃j with
lj < x̃j < uj . To be more specific, the distance function reads

∆(x, x̃) =
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:lj<x̃j<uj

dj

with the addition of constraints

dj ≥ xj − x̃j and dj ≥ x̃j − xj

Perturb This function is used to perturb an integer point when a cycle is detected.
The standard choice is to apply a weak perturbation if a cycle of length one is
detected, and a strong perturbation (akin to a restart) otherwise. More details
can be found in [13,34].

It is worth noting that, in absence of cycles and assuming the MIP is feasible, FP
converges in a finite number of steps. Indeed, if there are no cycles, at each pumping
cycle a different x̃ is visited, hence the finite convergence follows since finitely many
choices exists due to the integer variable boundedness.

4.1.1 The general integer case

The above scheme, although applicable “as is” to the general integer case, is not partic-
ularly effective in that scenario. This is easily explained by observing that, for general
integer variables, one has to decide not only the rounding direction (up or down), as
for binary variables, but also the new value. For the same reasons, also the random
perturbation phases must be designed much more carefully.

To overcome some of these difficulties, an extended scheme suited for the general in-
teger case has been presented in Bertacco, Fischetti and Lodi [13] and further developed
with solution quality considerations by Achterberg and Berthold in [4].

The scheme is essentially a three-staged approach. In Stage 1, the integrality con-
straint on the general-integer variables is relaxed, and the pumping cycles are carried
out only on the binary variables. Stage 1 terminates as soon as a “binary feasible”
solution is found, or some termination criterion is reached. The rationale behind this
approach is trying to find quickly a solution which is feasible with respect to the binary
components, in the hope that the general integer ones will be “almost integer” as well.
In Stage 2, the integrality constraint on the general-integer variables is restored and
the FP scheme continues. If a feasible solution is not found in Stage 2, a local search
phase (Stage 3) around the rounding of a “best” x̃ is triggered as last resort, using a
MIP solver as a black box heuristic.

50 Chapter 4. Feasibility Pump 2.0

4.2 Constraint propagation

Constraint propagation is a very general concept that appears under different names
in different fields of computer science and mathematical programming. It is essentially
a form of inference which consists in explicitly forbidding values—or combinations of
values—for some problem variables.

In order to get a practical constraint propagation system, two questions need to be
answered:

• What does it mean to propagate a single constraint? In our particular case, this
means understanding how to propagate a general linear constraint with both in-
teger and continuous variables. The logic behind this goes under the name of
bound strengthening [79, 104] (a form of preprocessing) in the integer program-
ming community.

• How do we coordinate the propagation of the whole set of constraints defining
our problem?

In the remaining part of this section we will first describe bound strengthening (Sec-
tion 4.2.1) and then we will describe our constraint propagation system (Section 4.2.2),
following the propagator-based approach given by Schulte and Stuckey in [107].

4.2.1 Bound strengthening

Bound strengthening [3, 45, 51, 79, 104] is a preprocessing technique that, given the
original domain of a set of variables and a linear constraint on them, tries to infer
tighter bounds on the variables. We will now describe the logic behind this technique
in the case of a linear inequality of the form:∑

j∈C+

ajxj +
∑
j∈C−

ajxj ≤ b

where C+ and C− denote the index set of the variables with positive and negative
coefficients, respectively. We will assume that all variables are bounded, with lower
and upper bounds denoted by lj and uj , respectively. Simple extensions can be made
to deal with unbounded (continuous) variables and equality constraints.

The first step to propagate the constraint above is to compute the minimum (Lmin)
and maximum (Lmax) “activity level” of the constraint:

Lmin =
∑
j∈C+

ajlj +
∑
j∈C−

ajuj

Lmax =
∑
j∈C+

ajuj +
∑
j∈C−

ajlj

4.2. Constraint propagation 51

Now we can compute updated upper bounds for variables in C+ as

uj = lj +
b− Lmin

aj
(4.1)

and updated lower bounds for variables in C− as

lj = uj +
b− Lmin

aj
(4.2)

Moreover, for variables constrained to be integer we can also apply the floor b·c and
ceiling d·e operators to the new upper and lower bounds, respectively.

It is worth noting that no propagation is possible in case the maximum potential
activity change due to a single variable, computed as

max
j
{|aj(uj − lj)|}

is not greater than the quantity b − Lmin. This observation is very important for the
efficiency of the propagation algorithm, since it can save several useless propagator
calls. Finally, equations (4.1) and (4.2) greatly simplify in case of binary variables, and
the simplified versions should be used in the propagation code for the sake of efficiency.

4.2.2 Propagation algorithm

Constraint propagation systems [100, 106, 107] are built upon the basic concepts of
domain, constraint and propagator.

A domain D is the set of values a solution x can possibly take. In general, x is a
vector (x1, . . . , xn) and D is a Cartesian product D1 × . . .×Dn, where each Di is the
domain of variable xi. We will denote the set of variables as X.

A constraint c is a relation among a subset var(c) ⊆ X of variables, listing the
tuples allowed by the constraint itself. This definition is of little use from the computa-
tional point of view; in practice, constraint propagation systems implement constraints
through propagators.

A propagator p implementing1 a constraint c is a function that maps domains to
domains and that satisfies the following conditions:

• p is a decreasing function, i.e., p(D) ⊆ D for all domains. This guarantees that
propagators only remove values.

• p is a monotonic function, i.e., if D1 ⊆ D2, then p(D1) ⊆ p(D2).

• p is correct for c, i.e., it does not remove any tuple allowed by c.

• p is checking for c, i.e., all domains D corresponding to solutions of c are fixpoints
for p, i.e., p(D) = D. In other words, for every domain D in which all variables

1In general, a constraint c is implemented by a collection of propagators; we will consider only the
case where a single propagator suffices.

52 Chapter 4. Feasibility Pump 2.0

involved in the constraint are fixed and the corresponding tuple is valid for c, we
must have p(D) = D.

A propagation solver for a set of propagators R and some initial domain D finds a
fixpoint for propagators p ∈ R.

input : a domain D
input : a set Pf of (fixpoint) propagators p with p(D) = D
input : a set Pn of (non-fixpoint) propagators p with p(D) ⊆ D
output: an updated domain D

Q = Pn1

R = Pf ∪ Pn2

while Q not empty do3

p = Pop (Q)4

D = p(D)5

K = set of variables whose domain was changed by p6

Q = Q ∪ {q ∈ R : var(q) ∩K 6= ∅}7

end8

return D9

Figure 4.2: Basic propagation engine

A basic propagation algorithm is outlined in Figure 4.2. The propagators in R are
assigned to the sets Pf and Pn, depending on their known fixpoint status for domain
D—this feature is essential for implementing efficient incremental propagation. The
algorithm maintains a queue Q of pending propagators (initially Pn). At each iteration,
a propagator p is popped from the queue and executed. At the same time the set K
of variables whose domains have been modified is computed and all propagators that
share variables with K are added to Q (hence they are scheduled for execution).

The complexity of the above algorithm is highly dependent on the domain of the
variables. For integer (finite domain) variables, the algorithm terminates in a finite
number of steps, although the complexity is exponential in the size of the domain (it
is however polynomial in the pure binary case, provided that the propagators are also
polynomial, which is usually the case). For continuous variables, this algorithm may not
converge in a finite number of steps, as shown in the following example (Hooker [51]):αx1 − x2 ≥ 0

−x1 + x2 ≥ 0
(4.3)

where 0 < α < 1 and the initial domain is [0, 1] for both variables: it can be easily seen
that the upper bound on x1 converges only asymptotically to zero.

4.3. The new FP scheme 53

4.3 The new FP scheme

As already observed, the rounding function described in the original feasibility pump
scheme has the advantage of being extremely fast and simple, but it has also the
drawback of completely ignoring the linear constraints of the model. While it is true
that the linear part is taken into account in the LinearProj phase, still the “blind”
rounding operation can let the scheme fail (or take more iterations than necessary) to
reach a feasible solution, even on trivial instances.

Suppose for example we are given a simple binary knapsack problem. It is well
known that an LP optimal solution has only one fractional component, corresponding
to the so-called critical item. Unfortunately, a value greater than 0.5 for this component
will be rounded up to one, thus resulting into an infeasible integer solution (all other
components will retain their value, being already zero or one). A similar reasoning can
also be done for set covering instances, where finding a feasible solution is also a trivial
matter but can require several pumping cycles to an FP scheme.

Our proposal is to merge constraint propagation with the rounding phase, in order
to have a more clever strategy that better exploits information about the linear con-
straints. This integration is based on the following observation: rounding a variable
means temporarily fixing it to a given value, so we can in principle propagate this tem-
porary fixing before rounding the remaining variables. This is very similar to what is
done in modern MIP solvers during diving phases, but without the overhead of solving
the linear relaxations. A sketch of the new rounding procedure is given in Figure 4.3.
The procedure works as follows. At each iteration, a free variable xj ∈ I is selected
and rounded to [x∗j]. The new fixing xj = [x∗j] is then propagated by the propagation
engine, together with propagators in R. When there are no free variables left, the
domain Dj of every variable xj with j ∈ I has been reduced to a singleton and we can
“read” the corresponding x̃ from D.

input : a domain D and a set R of propagators
input : a fractional vector x∗

output: an integer vector x̃

I = index set of integer variables1

while I not empty do2

j = Choose (I)3

D = Propagate (D, R, xj = [x∗j])4

I = index set of integer non-fixed variables5

end6

read x̃ from D7

return x̃8

Figure 4.3: New rounding procedure

With respect to the original “simple” rounding scheme, it is worth noting that:

• When rounding a general integer variable, one can exploit the reduced domain

54 Chapter 4. Feasibility Pump 2.0

derived by the current propagation. For example, if the domain of a variable y
with fractional value 6.3 is reduced to [8, 10], then it is not clever to round it to
values 6 or 7 (as simple rounding would do), but value 8 should be chosen instead.

• On a single iteration, the new rounding scheme strictly dominates the original
one, because a feasible simple rounding cannot be ruled out because of constraint
propagation. On the other hand, as outlined above, there are cases where the new
scheme (but not the original one) can find a feasible solution in just one iteration.

• There is no dominance relation between the two rounding schemes as far as the
“feasibility degree” of the resulting x̃ is concerned. This is because constraint
propagation can only try to enforce feasibility, but there is no guarantee that
the resulting rounded vector will be “more feasible” than the one we would have
obtained through simple rounding.

• There is also no dominance relation at the feasibility pump level, i.e., we are not
guaranteed to find a feasible solution in less iterations.

• As in diving, but differently from standard rounding, the final x̃ depends on the
order in which we choose the next variable to round (and also on the order in
which we execute propagators); this ordering can have a great impact on the
effectiveness of the overall scheme.

Finally, while in a constraint propagation system it is essential to be able to detect
as soon as possible the infeasibility of the final solution (mainly to reduce propagation
overhead, but also to get smaller search trees or to infer smaller infeasibility proofs), in
the FP application we always need to bring propagation to the end, because we need
to choose a value for all integer variables. In our implementation, failed propagators
leading to infeasible solutions are simply ignored for the rest of the current rounding,
but the propagation continues in the attempt of reducing the degree of infeasibility of
the final solution found.

4.4 Implementation

While for binary MIPs the implementation of an FP scheme is quite straightforward, in
the general integer case some care must be taken in order to get a satisfactory behavior
of the algorithm. Moreover, since the overhead of constraint propagation can be quite
large (mainly if compared with the extremely fast simple rounding operation) we need
a very efficient implementation of the whole constraint propagation system, that can
be achieved through a careful implementation of both the single propagators and of
the overall propagation engine. In the rest of the section we will describe important
implementation details concerning these issues.

4.4. Implementation 55

4.4.1 Optimizing FP restarts

Random perturbations, and in particular restarts, are a key ingredient of the original
FP scheme even for binary MIPs. They are even more important in the general integer
case, where the FP is more prone to cycling. As a matter of fact, our computational
experience shows that just adapting the original restart procedure for binary MIPs to
the general integer case results in a seriously worsening of the overall behavior.

The FP implementation of Bertacco, Fischetti and Lodi [13] uses a quite elaborated
restart scheme to decide how much a single variable has to be perturbed, and how many
variables have to be changed. According to this scheme, a single variable xj is perturbed
taking into account the size of its domain: if uj−lj < M with a suitable large coefficient
M , then the new value is picked randomly within the domain. Otherwise, the new value
is picked uniformly in a large neighborhood around the lower or upper bound (if the
old value is sufficiently close to one of them), or around the old value.

The number of variables to be perturbed, say RP , is also very important and has
to be defined in a conservative way. In [13] , RP is changed dynamically according to
the frequency of restarts. In particular, RP decreases geometrically with constant 0.85
at every iteration in which restarts are not performed, while it increases linearly (with
a factor of 40) on the others. Finally, RP is bounded by a small percentage (10%) of
the number of general integer variables, and the variables to be changed are picked at
random at every restart.

4.4.2 Optimizing propagators

The default linear propagator is, by design, general purpose: it must deal with all pos-
sible combinations of variable bounds and variable types, and can make no assumption
on the kind of coefficients (sign, distribution, etc.).

While it is true that constraints of this type are really used in practice, nevertheless
they are often only a small part of the MIP model. As a matter of fact, most of
the linear constraints used in MIP modeling have some specific structure that can be
exploited to provide a more efficient propagation [3].

For the reasons above, we implemented specialized propagators for several classes of
constraints, and an automated analyzer for assigning each constraint to the appropriate
class. In particular, we implemented specialized propagators for

• Knapsack constraints, i.e., constraints with positive coefficients involving only
bounded variables. These assumptions enable several optimizations to be per-
formed. Note that this class of constraints includes both covering and packing
constraints.

• Cardinality constraints, i.e., constraints providing lower and/or upper bounds on
the sum of binary variables. Propagation can be greatly simplified in this case,
since we just need to count the number of variables fixed to zero or one. This
class includes classical set covering/packing/partioning constraints.

56 Chapter 4. Feasibility Pump 2.0

• Binary logic constraints, i.e., linear constraints expressing logical conditions be-
tween two binary variables, such as implications and equivalences.

According to our computational experience, the above specializations can lead to a
speedup of up to one order of magnitude in the propagation phase.

4.4.3 Optimizing constraint propagation

A propagation engine should exploit all available knowledge in order to avoid unneces-
sary propagator execution [107]. Moreover, when the engine invokes the execution of a
propagator, it should provide enough information to allow the most efficient algorithms
to be used. Thus the constraint system must support

• Propagator states, needed to store data structures for incremental propagation.

• Modification information (which variables have been modified and how), needed
to implement sub-linear propagators and to implement more accurate fixpoint
considerations (see [100,106,107]).

A simple and efficient way for supporting these services is to use the so-called
advisors. Advisors were introduced by Lagerkvist and Schulte in [65] and are used in
the open-source constraint programming solver Gecode [40]. They are responsible for
updating the propagator state in response to domain changes, and to decide whether a
propagator needs to be executed. Each advisor is tied to a (variable, propagator) pair,
so that the most specialized behavior can be implemented. Modification information is
provided by propagation events, see [107]. More details about advised propagation are
available in [65].

Finally, since the presence of continuous variables or integer variables with huge
domains can make the complexity of propagation too high, we impose a small bound
on the number of times the domain of a single variable can be tightened (e.g., 10): when
this bound is reached, the domain at hand stops triggering propagator executions within
the scope of the current rounding.

4.5 Computational results

In this section we report computational results to compare the two rounding schemes
(with and without propagation). Our testbed is made by 43 binary MIP instances
from MIPLIB 2003 [1] and by 29 general integer MIP instances from MIPLIB 2003
and [25, 84]. One instance (stp3d) was left out because even the first LP relaxation
was very computationally demanding, while instances momentum* were left out because
of numerical problems. Some characteristics of the instances are reported in Tables 4.1
and 4.2.

All algorithms were implemented in C++. We used a commercial LP solver (ILOG
Cplex 11.0 [102]) to solve the linear relaxations and to preprocess our instances. All
tests have been run on a Intel Core2 Q6600 system (2.40 GHz) with 4GB of RAM. The

4.5. Computational results 57

Name m n |B| best

10teams 230 2,025 1,800 924.0
a1c1s1 3,312 3,648 192 11,503.4
aflow30a 479 842 421 1,158.0
aflow40b 1,442 2,728 1,364 1,168.0
air04 823 8,904 8,904 56,137.0
air05 426 7,195 7,195 26,374.0
cap6000 2,176 6,000 6,000 -2,451,380.0
dano3mip 3,202 13,873 552 686.5
danoint 664 521 56 65.7
disctom 399 10,000 10,000 -5,000
ds 656 67,732 67,732 422.3
fast0507 507 63,009 63,009 174.0
fiber 363 1,298 1,254 405,935.0
fixnet6 478 878 378 3,983.0
glass4 396 322 302 1,200,010,000.0
harp2 112 2,993 2,993 -73,899,800.0
liu 2,178 1,156 1,089 1,122.0
markshare1 6 62 50 1.0
markshare2 7 74 60 1.0
mas74 13 151 150 11,801.2
mas76 12 151 150 40,005.1
misc07 212 260 259 2,810.0
mkc 3,411 5,325 5,323 -563.8
mod011 4,480 10,958 96 -54,558,500.0
modglob 291 422 98 20,740,500.0
net12 14,021 14,115 1,603 214.0
nsrand-ipx 735 6,621 6,620 51,200
nw04 36 87,482 87,482 16,862.0
opt1217 64 769 768 -16.0
p2756 755 2,756 2,756 3,124.0
pk1 45 86 55 11.0
pp08aCUTS 246 240 64 7,350.0
pp08a 136 240 64 7,350.0
protfold 2,112 1,835 1,835 -31.0
qiu 1,192 840 48 -132.9
rd-rplusc-21 125,899 622 457 165,395
set1ch 492 712 240 54,537.8
seymour 4,944 1,372 1,372 423.0
sp97ar 1,761 14,101 14,101 661,677,000.0
swath 884 6,805 6,724 467.4
t1717 551 73,885 73,885 215,991.0
tr12-30 750 1,080 360 130,596.0
vpm2 234 378 168 13.8

Table 4.1: Binary testbed characteristics. m is the number of rows, n the number of
columns, |B| the number of binary variables, and best is the objective value of the
best known solution.

58 Chapter 4. Feasibility Pump 2.0

Name m n |B| |I| − |B| best

arki001 1,048 1,388 415 123 7,580,810.0
atlanta-ip 21,732 48,738 46,667 106 90.0
gesa2 1,392 1,224 240 168 25,779,900.0
gesa2-o 1,248 1,224 384 336 25,779,900.0
manna81 6,480 3,321 18 3,303 -13,164.0
msc98-ip 15,850 21,143 20,237 53 19,839,500.0
mzzv11 9,499 10,240 9,989 251 -21,718.0
mzzv42z 10,460 11,717 11,482 235 -20,540.0
noswot 182 128 75 25 -41.0
roll300 2,295 1,166 246 492 12,890.0
rout 291 556 300 15 1,077.6
timtab1 171 397 64 107 764,772.0
timtab2 294 675 113 181 1,161,963.0

neos7 1,994 1,556 434 20 721,934.0
neos8 46,324 23,228 23,224 4 -3,719.0
neos10 46,793 23,489 23,484 5 -1,135.0
neos16 1,018 377 336 41 454.0
neos20 2,446 1,165 937 30 -434.0

rococoB10-011000 1,667 4,456 4,320 136 19,772.0
rococoB10-011001 1,677 4,456 4,320 136 22,894.0
rococoB11-010000 3,792 12,376 12,210 166 34,830.0
rococoB11-110001 8,148 12,431 12,265 166 45,593.0
rococoB12-111111 8,978 9,109 8,778 331 40,877.0
rococoC10-001000 1,293 3,117 2,993 124 11,475.0
rococoC10-100001 7,596 5,864 5,740 124 19,251.0
rococoC11-010100 4,010 12,321 12,155 166 30,643.0
rococoC11-011100 2,367 6,491 6,325 166 23,260.0
rococoC12-100000 21,550 17,299 17,112 187 38,607.0
rococoC12-111100 10,842 8,619 8,432 187 38,390.0

Table 4.2: General integer testbed characteristics. m is the number of rows, n the
number of columns, |B| the number of binary variables, |I|−|B| the number of general
integer variables, and best is the objective value of the best known solution.

4.5. Computational results 59

feasibility pump was run with standard parameters, as described in [13,34], except for
rococo* instances where we did not force the use of the primal simplex method for
reoptimizing the LPs, because it was much slower than using Cplex defaults.

Comparing the performance of different feasibility pump variants is not a simple
matter: the original scheme is often modified in order to generate a sequence of solutions
of increasing quality, with an increase in the number of parameters that need to be set
and a consequent complication of the benchmarking task. We therefore decided to
consider a slightly modified two-stages FP scheme, based on the one described in [13],
with some minor simplifications, namely:

• We stop as soon as a first feasible solution is found.

• We skip Stage 3. This stage is usually quite computationally demanding (it is also
skipped in other FP implementation, for example in SCIP [3]) and is somehow
external to the FP scheme.

• We do not perform random perturbation if the distance function improves too
slowly. This is because the iteration limits we set both for Stage 1 and for Stage 2
is much smaller than the ones in [13], so the check is not worthwhile.

However, since we still want to test the ability of FP of finding good-quality solutions,
for each instance in our testbed we generated a set of instances with increasing difficulty
through the addition of an optimality constraint of the type:

cTx ≤ z∗(1 + α)

where z∗ is the best known solution from the literature, and α is the relative allowed
optimality gap.

Finally, we tested the FP algorithm with two different iteration limits (IT), namely
250 and 202. The former is used to evaluate the performance of the algorithm as a
pure primal heuristic, while the latter simulates the use of the FP at the root node of
a generic B&C code, where it is typically not worthwhile to spend a large computing
time on a single heuristic. A time limit of 500 seconds was set in all cases.

The performance figures used to compare the algorithm are:

#f Number of solutions found in the testbed. Being the feasibility pump a primal
heuristic, this is the most important figure for benchmarking.

nitr Number of iterations needed to find a solution.

time Time needed to find a solution.

value Objective value of the solution found. Although a good-quality solution is very
important in a B&C code, in our view this is not the most important figure.
Indeed, the main purpose of the feasibility pump is to find quickly a starting

2For general integer instances, the Stage 1 iteration limit was set to 100 and 5, respectively.

60 Chapter 4. Feasibility Pump 2.0

feasible solution, whose quality can hopefully be improved at a later time through
local-search procedures.

As already discussed, random perturbation is a fundamental ingredient of the FP
scheme, so it is not completely fair to compare different variants on a single run. For
this reasons, for each instance we ran 3 times each FP variant (using different seeds for
the internal pseudo-random number generator), and report the results for all 3 runs.

We denote by std the original FP based on simple rounding (the one used in the
standard FP) and with prop the one using propagation-based rounding. Within prop,
variables are ranked in order of increasing fractionality, with binary variables always
preceding the general integer ones. This corresponds to the “smallest domain first” rule
in Constraint Programming, and it is also common wisdom in Integer Programming.
As a matter of fact, binary variables very often model the most important decisions in
the model, and their fixing usually triggers more powerful propagations. Cumulative
results are reported in Table 4.3, for both binary and and general integer instances.
More detailed results are reported in the Tables 4.5, 4.6, 4.7, 4.8, 4.9 and 4.103.

The structure of the tables is as follows: on the vertical axis we have the performance
figures (#f, nitr and time), grouped by iteration limit IL, while on the horizontal axis we
have the cumulative results of std and prop and the percentage improvements (impr%)
achieved by prop with respect to std (a positive percentage always means that the new
method based on propagation outperformed the standard one).

According to Table 4.3, both for binary and general integer instances there is a
substantial improvement for all performance figures and for every value of α, even on
the hardest combination of parameters (IT = 20 and α = 10%).

Finally, in Table 4.4 we report a measure of the quality of the solutions found by
std and prop, by counting the number of times a method gave a strictly better solution
compared to the other. The results are in favor of prop even from this point of view,
in that prop outperformed std for all combinations of settings—overall, prop found
a strictly better solution 153 times, while std only 65 times (214 times the solution
quality was the same).

3Here the reported number of iterations and computing times are averages over three runs with
different random seeds and Column #f gives the number of solutions found (out of three).

4
.5.

C
om

p
u

tation
a
l

resu
lts

61

No Gap 100% Gap 10% Gap Overall

Testbed IT Figure std prop impr % std prop impr% std prop impr% std prop impr%

binary

20
#f 93 107 15.05% 76 99 30.26% 37 44 18.92% 206 250 21.36%
nitr 1,055 719 31.85% 1,310 961 26.64% 2,022 1,883 6.87% 4,387 3,563 18.78%
time 858 813 5.26% 826 761 7.81% 885 856 3.25% 2,569 2,430 5.39%

250
#f 116 124 6.90% 96 113 17.71% 43 54 25.58% 255 291 14.12%
nitr 5,203 2,800 46.18% 9,943 5,524 44.44% 21,374 19,083 10.72% 36,520 27,407 24.95%
time 2,490 1,716 31.07% 2,641 1,123 57.47% 3,200 2,880 10.01% 8,331 5,720 31.35%

general

20
#f 36 47 30.56% 17 34 100.00% 13 20 53.85% 66 101 53.03%
nitr 1,376 1,023 25.65% 1,505 1,226 18.54% 1,535 1,443 5.99% 4,416 3,692 16.39%
time 242 235 3.03% 318 288 9.39% 350 366 -4.72% 910 889 2.27%

250
#f 59 67 13.56% 34 48 41.18% 19 27 42.11% 112 142 26.79%
nitr 8,214 6,285 23.48% 13,951 10,695 23.34% 17,598 16,148 8.24% 39,763 33,128 16.69%
time 362 349 3.53% 1,146 836 27.03% 2,076 1,602 22.86% 3,584 2,787 22.24%

Table 4.3: Binary and general integer testbed results; a positive percentage means that the new method (prop) outperformed the standard one
(std).

62 Chapter 4. Feasibility Pump 2.0

Testbed IT Gap std better prop better equal

binary

20
10% 4 8 31

100% 5 19 19
None 7 19 17

250
10% 7 7 29

100% 8 20 15
None 9 21 13

general

20
10% 2 5 22

100% 3 8 18
None 8 12 9

250
10% 2 6 21

100% 5 11 13
None 5 17 7

Overall − − 65 153 214

Table 4.4: Solution quality comparison of the two main variants std and prop.

4.6 Conclusions and future directions of work

In this chapter a new version of the Feasibility Pump heuristic has been proposed and
evaluated computationally. The idea is to exploit a concept borrowed from Constraint
Programming (namely, constraint propagation) to have a more powerful rounding op-
eration. The computational results on both binary and general integer MIPs show
that the new method finds more (and better) feasible solutions than its predecessor,
typically in a shorter computing time.

Future work should address the issue of integrating in the best possible way the
new rounding scheme within a most elaborated FP code for MIPs with general integer
variables, such as the one proposed by Achterberg and Berthold [4].

Acknowledgments

This work was supported by the University of Padova “Progetti di Ricerca di Ateneo”,
under contract no. CPDA051592 (project: Integrating Integer Programming and Con-
straint Programming) and by the Future and Emerging Technologies unit of the EC
(IST priority), under contract no. FP6-021235-2 (project ARRIVAL).

4.6. Conclusions and future directions of work 63

IL = 20 IL = 250

std prop std prop

Instance nitr time #f nitr time #f nitr time #f nitr time #f

10teams 20 1.07 0 20 0.93 0 215 11.38 1 194 8.36 2
a1c1s1 5 0.79 3 3 0.88 3 5 0.80 3 3 0.87 3
aflow30a 20 0.03 0 5 0.02 3 39 0.03 3 5 0.02 3
aflow40b 6 0.06 3 4 0.08 3 6 0.06 3 4 0.07 3
air04 12 19.46 2 5 8.73 3 14 21.99 3 5 8.66 3
air05 15 8.85 3 1 1.68 3 15 8.87 3 1 1.69 3
cap6000 3 0.04 3 1 0.06 3 3 0.04 3 1 0.06 3
dano3mip 2 19.24 3 1 18.75 3 2 19.53 3 1 18.67 3
danoint 4 0.11 3 2 0.12 3 4 0.11 3 2 0.12 3
disctom 2 4.23 3 2 4.03 3 2 4.24 3 2 4.02 3
ds 20 98.11 0 20 122.58 0 84 500.85 0 40 240.82 3
fast0507 5 29.04 3 1 23.35 3 5 29.30 3 1 22.35 3
fiber 3 0.01 3 1 0.01 3 3 0.01 3 1 0.01 3
fixnet6 2 0.00 3 1 0.01 3 2 0.00 3 1 0.01 3
glass4 20 0.01 0 20 0.02 0 49 0.02 3 49 0.03 3
harp2 20 0.01 0 5 0.01 3 205 0.09 2 5 0.01 3
liu 1 0.04 3 1 0.06 3 1 0.04 3 1 0.06 3
markshare1 1 0.00 3 1 0.00 3 1 0.00 3 1 0.00 3
markshare2 1 0.00 3 1 0.00 3 1 0.00 3 1 0.00 3
mas74 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
mas76 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
misc07 20 0.02 0 18 0.03 1 167 0.15 3 52 0.08 3
mkc 3 0.04 3 1 0.06 3 3 0.04 3 1 0.06 3
mod011 1 0.06 3 1 0.08 3 1 0.06 3 1 0.09 3
modglob 1 0.01 3 1 0.01 3 1 0.00 3 1 0.01 3
net12 20 1.93 0 13 2.34 3 154 4.40 3 13 2.21 3
nsrand-ipx 3 0.09 3 1 0.12 3 3 0.10 3 1 0.12 3
nw04 1 0.55 3 2 1.06 3 1 0.56 3 2 1.14 3
opt1217 1 0.01 3 1 0.01 3 1 0.01 3 1 0.01 3
p2756 20 0.04 0 2 0.03 3 250 0.37 0 2 0.03 3
pk1 1 0.00 3 1 0.00 3 1 0.00 3 1 0.00 3
pp08a 4 0.00 3 4 0.00 3 4 0.00 3 4 0.00 3
pp08aCUTS 4 0.01 3 4 0.01 3 4 0.01 3 4 0.01 3
protfold 20 6.83 0 18 7.47 1 146 31.20 2 25 10.75 3
qiu 4 0.11 3 3 0.11 3 4 0.10 3 3 0.12 3
rd-rplusc-21 20 4.68 0 20 11.25 0 250 51.78 0 250 100.23 0
set1ch 3 0.01 3 1 0.01 3 3 0.01 3 1 0.01 3
seymour 3 1.36 3 1 1.30 3 3 1.38 3 1 1.29 3
sp97ar 6 0.97 3 2 0.95 3 6 0.93 3 2 0.89 3
swath 20 0.37 1 20 0.48 0 27 0.52 3 203 6.17 2
t1717 20 87.70 0 20 64.20 0 35 140.90 3 36 143.00 3
tr12-30 8 0.02 3 7 0.02 3 8 0.02 3 7 0.03 3
vpm2 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3

Overall 352 285.92 93 240 270.88 107 1,734 829.93 116 933 572.10 124

Table 4.5: Detailed binary results with no optimality constraint.

64 Chapter 4. Feasibility Pump 2.0

IL = 20 IL = 250

std prop std prop

Instance nitr time #f nitr time #f nitr time #f nitr time #f

10teams 20 1.00 0 7 0.39 3 250 12.09 0 7 0.39 3
a1c1s1 5 0.99 3 3 0.81 3 5 0.98 3 3 0.81 3
aflow30a 16 0.03 1 5 0.02 3 56 0.06 3 5 0.02 3
aflow40b 20 0.12 0 13 0.13 3 127 0.39 3 13 0.13 3
air04 7 16.91 3 5 10.77 3 7 16.65 3 5 10.99 3
air05 2 3.25 3 4 2.24 3 2 3.23 3 4 2.26 3
cap6000 3 0.04 3 1 0.06 3 3 0.05 3 1 0.06 3
dano3mip 2 22.01 3 1 20.70 3 2 22.12 3 1 20.86 3
danoint 4 0.11 3 2 0.12 3 4 0.11 3 2 0.13 3
disctom 2 4.24 3 2 4.04 3 2 4.24 3 2 4.04 3
ds 20 96.21 0 20 124.17 0 78 503.20 0 27 159.43 3
fast0507 5 24.84 3 1 24.14 3 5 25.22 3 1 23.36 3
fiber 20 0.02 0 20 0.04 0 250 0.15 0 250 0.34 0
fixnet6 2 0.00 3 1 0.01 3 2 0.01 3 1 0.01 3
glass4 20 0.01 0 20 0.02 0 250 0.10 0 209 0.13 2
harp2 20 0.01 0 5 0.01 3 141 0.07 2 5 0.02 3
liu 20 0.08 0 20 0.13 0 250 0.44 0 250 1.10 0
markshare1 20 0.00 0 20 0.00 0 250 0.02 0 250 0.03 0
markshare2 20 0.00 0 20 0.01 0 250 0.03 0 250 0.04 0
mas74 2 0.00 3 1 0.01 3 2 0.00 3 1 0.00 3
mas76 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
misc07 20 0.03 0 20 0.04 0 112 0.10 3 37 0.06 3
mkc 3 0.05 3 1 0.06 3 3 0.05 3 1 0.06 3
mod011 1 0.09 3 1 0.12 3 1 0.09 3 1 0.12 3
modglob 1 0.00 3 1 0.01 3 1 0.00 3 1 0.01 3
net12 20 1.94 0 13 2.31 3 154 4.52 3 13 2.28 3
nsrand-ipx 11 0.20 2 1 0.17 3 88 0.76 2 1 0.17 3
nw04 1 0.80 3 1 1.14 3 1 0.83 3 1 1.19 3
opt1217 1 0.01 3 1 0.01 3 1 0.01 3 1 0.01 3
p2756 20 0.03 0 2 0.02 3 250 0.28 0 2 0.02 3
pk1 1 0.00 3 1 0.00 3 1 0.00 3 1 0.00 3
pp08a 4 0.00 3 4 0.01 3 4 0.00 3 4 0.01 3
pp08aCUTS 4 0.01 3 4 0.01 3 4 0.01 3 4 0.01 3
protfold 20 6.79 0 18 7.47 1 146 31.23 2 25 10.71 3
qiu 12 0.18 2 18 0.33 2 15 0.20 3 25 0.39 3
rd-rplusc-21 20 4.45 0 20 7.96 0 250 54.30 0 250 84.02 0
set1ch 3 0.01 3 1 0.01 3 3 0.01 3 1 0.01 3
seymour 2 1.30 3 1 1.23 3 2 1.29 3 1 1.23 3
sp97ar 10 1.30 2 2 1.06 3 87 3.71 2 2 1.02 3
swath 20 0.56 0 20 0.87 0 200 5.73 1 165 5.91 3
t1717 20 87.62 0 10 43.08 3 44 188.11 3 10 43.02 3
tr12-30 8 0.02 3 6 0.04 3 8 0.02 3 6 0.04 3
vpm2 2 0.00 3 2 0.00 3 2 0.00 3 2 0.00 3

Overall 437 275.27 76 320 253.76 99 3,314 880.42 96 1,841 374.44 113

Table 4.6: Detailed binary results with 100% optimality constraint.

4.6. Conclusions and future directions of work 65

IL = 20 IL = 250

std prop std prop

Instance nitr time #f nitr time #f nitr time #f nitr time #f

10teams 20 1.00 0 7 0.39 3 250 12.12 0 7 0.38 3
a1c1s1 20 1.47 0 20 1.43 0 250 3.09 0 250 5.18 0
aflow30a 20 0.04 0 20 0.05 0 250 0.21 0 216 0.29 1
aflow40b 20 0.17 0 20 0.19 0 250 0.94 0 250 1.33 0
air04 7 16.70 3 5 10.53 3 7 16.86 3 5 10.77 3
air05 16 15.10 2 5 2.46 3 17 15.64 3 5 2.47 3
cap6000 3 0.05 3 1 0.06 3 3 0.05 3 1 0.06 3
dano3mip 4 21.12 3 1 15.40 3 4 21.16 3 1 15.27 3
danoint 20 0.17 0 3 0.13 3 228 2.82 1 3 0.13 3
disctom 2 4.24 3 2 4.03 3 2 4.24 3 2 4.05 3
ds 20 95.47 0 20 123.24 0 78 502.88 0 64 507.18 0
fast0507 5 26.47 3 3 29.54 3 5 25.60 3 3 30.26 3
fiber 20 0.02 0 20 0.04 0 250 0.14 0 250 0.32 0
fixnet6 20 0.01 0 20 0.03 0 250 0.11 0 250 0.28 0
glass4 20 0.02 0 20 0.02 0 250 0.10 0 250 0.16 0
harp2 20 0.02 0 18 0.03 1 250 0.18 0 34 0.06 3
liu 20 0.08 0 20 0.14 0 250 0.55 0 250 1.06 0
markshare1 20 0.00 0 20 0.00 0 250 0.02 0 250 0.03 0
markshare2 20 0.00 0 20 0.00 0 250 0.02 0 250 0.04 0
mas74 20 0.01 0 20 0.01 0 250 0.04 0 250 0.11 0
mas76 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
misc07 20 0.03 0 20 0.04 0 250 0.25 0 176 0.26 2
mkc 20 0.11 0 20 0.25 0 250 0.83 0 250 2.54 0
mod011 4 0.29 3 4 0.33 3 4 0.28 3 4 0.33 3
modglob 3 0.00 3 3 0.01 3 3 0.01 3 3 0.01 3
net12 20 2.75 0 20 4.21 0 250 7.28 0 250 16.56 0
nsrand-ipx 20 0.37 0 20 0.93 0 250 4.80 0 250 11.31 0
nw04 15 3.62 1 20 6.30 1 23 4.87 3 43 11.80 3
opt1217 2 0.01 3 1 0.01 3 2 0.01 3 1 0.01 3
p2756 20 0.03 0 20 0.07 0 250 0.23 0 250 0.76 0
pk1 20 0.01 0 20 0.01 0 250 0.11 0 250 0.15 0
pp08a 20 0.01 0 20 0.02 0 250 0.05 0 250 0.21 0
pp08aCUTS 20 0.02 0 20 0.03 0 250 0.12 0 250 0.33 0
protfold 20 8.76 0 20 12.80 0 250 88.78 0 250 147.56 0
qiu 12 0.19 3 20 0.23 0 12 0.20 3 29 0.35 3
rd-rplusc-21 20 4.74 0 20 8.04 0 250 53.75 0 250 83.79 0
set1ch 20 0.02 0 20 0.04 0 250 0.13 0 250 0.32 0
seymour 2 1.30 3 1 1.24 3 2 1.29 3 1 1.23 3
sp97ar 20 2.56 0 20 3.08 0 250 21.56 0 250 31.02 0
swath 20 0.70 0 20 0.82 0 250 8.09 0 250 11.04 0
t1717 20 87.33 0 13 59.09 3 62 267.10 2 13 58.70 3
tr12-30 20 0.07 0 20 0.19 0 250 0.23 0 250 2.17 0
vpm2 17 0.00 1 20 0.01 0 170 0.04 1 250 0.07 0

Overall 674 295.07 37 628 285.49 44 7,125 1,066.76 43 6,361 959.98 54

Table 4.7: Detailed binary results with 10% optimality constraint.

66 Chapter 4. Feasibility Pump 2.0

IL = 20 IL = 250

std prop std prop

Instance nitr time #f nitr time #f nitr time #f nitr time #f

arki001 20 0.45 0 20 0.49 0 250 5.34 0 250 5.79 0
atlanta-ip 20 25.62 0 20 26.58 0 250 36.94 0 250 45.46 0
gesa2 4 0.02 3 3 0.03 3 4 0.02 3 3 0.03 3
gesa2-o 6 0.02 3 5 0.03 3 6 0.02 3 5 0.02 3
manna81 20 0.45 0 2 0.09 3 50 1.32 3 2 0.09 3
msc98-ip 20 15.97 0 10 13.62 3 21 14.52 3 9 13.65 3
mzzv11 20 19.80 0 4 18.76 3 100 32.07 2 4 18.76 3
mzzv42z 20 8.81 0 2 7.50 3 26 8.76 3 2 7.58 3
noswot 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
roll3000 20 0.31 0 20 0.41 0 250 2.71 0 227 3.14 1
rout 20 0.02 1 18 0.03 2 24 0.02 3 18 0.03 3
timtab1 20 0.04 0 12 0.03 3 250 0.42 0 12 0.03 3
timtab2 20 0.08 0 20 0.10 0 250 0.80 0 250 1.25 0

neos7 19 0.12 1 3 0.06 3 7 0.04 3 3 0.06 3
neos8 20 0.10 0 1 0.05 3 235 0.90 1 1 0.05 3
neos10 20 0.41 0 1 0.04 3 108 1.11 2 1 0.04 3
neos16 20 0.16 0 20 0.19 0 250 1.69 0 250 1.82 0
neos20 20 0.08 0 20 0.10 0 250 0.69 0 250 0.85 0

rococoB10-011000 12 0.22 3 20 0.32 0 12 0.22 3 29 0.34 3
rococoB10-011001 12 0.22 3 20 0.33 0 12 0.22 3 27 0.37 3
rococoB11-010000 16 0.61 3 20 0.97 0 16 0.61 3 33 1.18 3
rococoB11-110001 20 1.63 1 20 2.02 0 22 1.57 3 26 2.10 3
rococoB12-111111 20 2.45 0 20 2.84 0 250 7.36 0 250 8.46 0
rococoC10-001000 12 0.08 3 13 0.09 3 12 0.08 3 13 0.10 3
rococoC10-100001 14 0.15 3 20 0.35 0 14 0.16 3 126 1.47 3
rococoC11-010100 5 0.43 3 2 0.43 3 5 0.43 3 2 0.43 3
rococoC11-011100 6 0.30 3 2 0.31 3 6 0.31 3 2 0.30 3
rococoC12-100000 20 1.39 0 20 1.84 0 45 1.66 3 47 2.41 3
rococoC12-111100 11 0.69 3 2 0.60 3 11 0.67 3 2 0.59 3

Overall 459 80.63 36 341 78.21 47 2,738 120.66 59 2,095 116.40 67

Table 4.8: Detailed general integer results with no optimality constraint.

4.6. Conclusions and future directions of work 67

IL = 20 IL = 250

std prop std prop

Instance nitr time #f nitr time #f nitr time #f nitr time #f

arki001 20 0.38 0 20 0.56 0 250 5.01 0 250 7.23 0
atlanta-ip 20 23.14 0 20 24.09 0 250 36.01 0 225 42.14 1
gesa2 4 0.02 3 3 0.03 3 4 0.02 3 3 0.03 3
gesa2-o 6 0.02 3 5 0.03 3 6 0.02 3 5 0.03 3
manna81 20 0.46 0 2 0.09 3 50 1.29 3 2 0.09 3
msc98-ip 20 16.00 0 10 13.76 3 21 14.41 3 9 13.65 3
mzzv11 20 24.71 0 11 24.43 3 114 37.19 2 7 23.64 3
mzzv42z 20 12.02 0 3 9.20 3 6 9.24 3 3 9.29 3
noswot 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
roll3000 20 0.36 0 20 0.49 0 55 0.25 3 91 1.23 3
rout 8 0.01 3 8 0.03 3 21 0.02 3 17 0.04 3
timtab1 20 0.05 0 7 0.02 3 250 0.58 0 7 0.02 3
timtab2 20 0.10 0 20 0.14 0 250 1.06 0 250 1.81 0

neos7 20 0.12 0 20 0.16 0 97 0.29 2 14 0.09 3
neos8 4 0.03 3 1 0.05 3 4 0.03 3 1 0.04 3
neos10 17 0.10 2 1 0.06 3 19 0.08 3 1 0.06 3
neos16 20 0.16 0 20 0.19 0 250 1.68 0 250 1.81 0
neos20 20 0.08 0 20 0.11 0 250 0.72 0 250 0.85 0

rococoB10-011000 20 0.47 0 20 0.39 0 250 3.80 0 250 2.92 0
rococoB10-011001 20 0.46 0 20 0.39 0 250 3.87 0 250 2.94 0
rococoB11-010000 20 2.14 0 20 4.04 0 250 19.80 0 250 49.40 0
rococoB11-110001 20 6.24 0 20 4.49 0 250 85.88 0 250 34.12 0
rococoB12-111111 20 9.60 0 20 4.89 0 250 63.87 0 250 29.90 0
rococoC10-001000 20 0.15 0 20 0.15 0 250 0.98 0 250 1.79 0
rococoC10-100001 20 0.88 0 20 0.60 0 250 21.21 0 250 8.15 0
rococoC11-010100 20 2.16 0 20 1.09 0 250 20.92 0 35 1.65 3
rococoC11-011100 20 0.46 0 20 0.81 0 250 3.57 0 121 3.55 2
rococoC12-100000 20 4.86 0 20 4.71 0 250 43.78 0 250 40.73 0
rococoC12-111100 20 0.86 0 17 1.09 1 250 6.46 0 23 1.57 3

Overall 501 106.04 17 409 96.09 34 4,649 382.04 34 3,565 278.77 48

Table 4.9: Detailed general integer results with 100% optimality constraint.

68 Chapter 4. Feasibility Pump 2.0

IL = 20 IL = 250

std prop std prop

Instance nitr time #f nitr time #f nitr time #f nitr time #f

arki001 20 0.37 0 20 0.59 0 250 4.96 0 250 7.17 0
atlanta-ip 20 26.36 0 20 25.96 0 250 102.96 0 250 69.21 0
gesa2 4 0.02 3 3 0.03 3 4 0.02 3 3 0.03 3
gesa2-o 6 0.02 3 12 0.06 3 6 0.02 3 12 0.06 3
manna81 20 0.49 0 2 0.10 3 50 5.76 3 2 0.09 3
msc98-ip 20 21.52 0 20 19.80 0 250 102.36 0 250 49.42 0
mzzv11 20 26.35 0 20 27.19 0 250 118.20 0 250 76.92 0
mzzv42z 20 12.11 0 20 19.57 0 250 53.67 0 250 65.94 0
noswot 2 0.00 3 1 0.00 3 2 0.00 3 1 0.00 3
roll3000 20 0.60 0 20 0.57 0 250 6.23 0 250 6.88 0
rout 20 0.04 0 20 0.05 0 202 0.21 1 141 0.27 3
timtab1 20 0.07 0 20 0.08 0 250 0.80 0 250 0.95 0
timtab2 20 0.17 0 20 0.23 0 250 1.79 0 250 2.81 0

neos7 16 0.08 1 18 0.12 1 98 0.51 3 89 0.37 3
neos8 4 0.03 3 1 0.05 3 4 0.03 3 1 0.05 3
neos10 20 0.44 0 19 0.47 1 250 3.53 0 127 2.14 3
neos16 20 0.16 0 20 0.19 0 250 1.69 0 250 1.83 0
neos20 20 0.10 0 20 0.27 0 250 0.70 0 250 2.38 0

rococoB10-011000 20 0.48 0 20 0.39 0 250 3.88 0 250 2.87 0
rococoB10-011001 20 0.45 0 20 0.38 0 250 3.90 0 250 2.90 0
rococoB11-010000 20 2.15 0 20 4.02 0 250 19.97 0 250 51.53 0
rococoB11-110001 20 6.62 0 20 4.54 0 250 95.55 0 250 32.95 0
rococoB12-111111 20 8.48 0 20 4.77 0 250 68.65 0 250 28.46 0
rococoC10-001000 20 0.15 0 20 0.16 0 250 1.00 0 250 1.70 0
rococoC10-100001 20 0.86 0 20 0.87 0 250 21.60 0 250 10.65 0
rococoC11-010100 20 2.18 0 5 0.45 3 250 20.57 0 5 0.45 3
rococoC11-011100 20 0.46 0 20 1.29 0 250 3.55 0 250 17.07 0
rococoC12-100000 20 4.90 0 20 4.69 0 250 43.48 0 250 40.28 0
rococoC12-111100 20 0.87 0 20 5.17 0 250 6.48 0 250 58.49 0

Overall 512 116.53 13 481 122.06 20 5,866 692.07 19 5,381 533.87 27

Table 4.10: Detailed general integer results with 10% optimality constraint.

Appendix A

Fast Approaches to Improve the

Robustness of a Railway

Timetable

The Train Timetabling Problem (TTP) consists in finding an effective train schedule
on a given railway network. The schedule needs to satisfy some operational constraints
given by capacities of the network and security measures. Moreover, it is required to
exploit efficiently the resources of the railway infrastructure.

In practice, however, the maximization of some objective function is not enough:
the solution is also required to be robust against delays/disturbances along the network.
Very often, the robustness of optimal solutions of the original problem turns out to be
not enough for their practical applicability, whereas easy-to-compute robust solutions
tend to be too conservative and thus unnecessarily inefficient. As a result, practitioners
call for a fast yet accurate method to find the most robust timetable whose efficiency
is only slightly smaller than the theoretical optimal one. This is typically obtained by
adding “buffer times” to the schedule according to certain simple rules (see §2.2 in [64]).

The purpose of the present chapter is to propose and evaluate new methods to im-
prove the robustness of a given TTP solution. In particular, we addresss the aperiodic
(non cyclic) TTP version described in [17]. Our approach combines Linear Program-
ming (LP) with Stochastic Programming (SP) and Robust Optimization techniques.

We propose the following three-stage framework as a practical tool for improving
and testing robust solutions for the TTP:

stage 1) nominal problem solution: the TTP is modeled without taking into ac-
count robustness, and solved (not necessarily to optimality) by a standard MIP
solver or using ad-hoc heuristics.

stage 2) robustness training: borrowing an expression typical of Artificial Intelli-
gence field, starting from the previous stage solution the model is “trained to
robustness”, typically by exploiting a restricted set of samples (scenarios).

stage 3) robustness validation: the robustness of the final solution found in stage

70 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

2 is evaluated by using a validation tool, thus allowing for a fair comparison of
different training methods.

In this chapter we focus mainly on the second stage, robustness training. We assume
nominal solutions are given in input while, as far as the validation stage is concerned,
we use a simple LP validation model.

A.1 Literature review

The TTP problem has two main variants: the periodic and aperiodic versions. The
periodic TTP’s goal is to design a timetable that is operated cyclically after a (small)
period of time; this is a typical requirement for passenger trains in order to come
up with an easy-to-remember timetable. The first authors who developed a model
for generating periodic timetables were Serafini and Ukovic [108], who introduced a
mathematical model called Periodic Event Scheduling Problem (PESP). In PESP, a set
of repetitive events is scheduled under periodic time-window constraints. Consequently,
the events are scheduled for one cycle in such a way that the cycle can be repeated.
Most models for periodic TTP are based on PESP. A natural LP formulation of PESP
is quite weak, due to kind of big-M constraints (where M is the period). An alternative
stronger formulation is treated in Nachtigall [86] and Liebchen and Peeters [66, 93]
among others, and is based on cycle bases and separation of valid inequalities.

As to robustness, Kroon et al. [64] describe a stochastic optimization variant of
PESP. Their model explicitly takes into account stochastic disturbances of the railway
processes, distinguishing between a planned timetable and several realizations of the
timetable under pre-determined stochastic disturbances. The model can be used to
allocate time supplements and buffer times to the processes in the planned timetable
in such a way that the average delay of the realizations of the trains is minimized. In
order to keep the computation times within an acceptable bound, they start with an
existing timetable and fix the precedences among trains. They show that a substantial
increase in robustness can be achieved by taking into account stochastic disturbances
in the design of the timetable. For the case of one trip serving 10 stations, Liebchen
and Stiller [67] provide a theoretical explanation for the effects observed empirically
in Kroon et al. [64]. Finally a new notion of robustness, called recoverable robustness,
has been proposed in [68], which integrate the notion of robustness and recoverability
into a common framework. Applications to integrated timetabling/delay management
in railway systems are described and evaluated in [19,68,69].

The aperiodic TTP is especially relevant on heavy-traffic, long-distance corridors,
where the capacity of the infrastructure is limited due to greater traffic densities, and
competitive pressure among the train operators is expected to increase in the near
future. In the Caprara et al. [17] setting, a train operator applies for allocating its
trains on the infrastructure, and specify a profit for the “ideal timetable” they are
asking for. Then the infrastructure manager collects all requests from train operators
and computes a feasible timetable maximizing the overall profit, i.e., the difference

A.2. The Nominal Model 71

between the profits of the scheduled trains and a cost-penalty function, which takes into
account the deviations of the final timetables with respect to the ideal ones (possibly
leaving some trains unscheduled).

Different ILP models based on a graph representation of the problem were presented
in [17,18]. In these papers the problem is modeled by means of a directed acyclic multi-
graph, in which nodes correspond to arrival and departure events from the stations and
arise at some discretized time instants, and arcs correspond to train stops within a
station or to train trips. A Lagrangian relaxation method is used to derive bounds on
the optimal solution value as well as to drive a heuristic procedure.

A.2 The Nominal Model

In this section we describe the specific aperiodic TTP problem we consider, and give a
basic event-based formulation for the “nominal” version where robustness is not taken
into account.

Following [17], the aperiodic TTP can be described as follows: given a railway
network, described as a set of stations connected by tracks, and an ideal train timetable,
find an actual train schedule satisfying all the operational constraints and having a
minimum distance from the ideal timetable.

The entities involved in modelling the problem are the following:

railway network: a graph N = (S,L), where S is the set of stations and L is the set
of tracks connecting them.

trains: a train corresponds to a simple path on the railway network N . The set of
trains is denoted by T . For each train h ∈ T we have an ideal profit πh (the
profit of the train if scheduled exactly as in the ideal timetable), a stretch penalty
θh (the train stretch being defined as the difference between the running times
in the actual and ideal timetables) and a shift penalty σh (the train shift being
defined as the absolute difference between the departures from the first station in
the actual and ideal timetables).

events: arrivals and departures of the trains at the stations. The set of all the events
is denoted by E. With a small abuse of notation, we will denote by thi both the
i-th event of train h and its associated time. We also define

• A: set of all arrival events

• D: set of all departure events

whereas AS , DS and ES denote the restriction of the above sets to a particular
station S. Each train h is associated with an ordered sequence of length len(h) of
departure/arrival events thi such that thi+1 ≥ thi , the first and last event of train h
being denoted by th1 and thlen(h), respectively. In addition, let thi denote the ideal
time for event thi .

72 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

(partial) schedule: a time assignment to all the events associated with a subset of
trains.

objective: maximize the overall profit of the scheduled trains, the profit of train h

being computed as
ρh = πh − σh shifth − θh stretchh

where
shifth = |th1 − th1 |

and
stretchh = (thlen(h) − th1)− (thlen(h) − th1)

denote the shift and stretch associated with train h, respectively. Trains with
negative profit are intended to remain unscheduled and do not contribute to the
overall profit.

Operational constraints include:

time windows: it is possible to shift an event from its ideal time only within a given
time window;

headway times: for safety reasons, a minimum time distance between two consecutive
arrival/departure events from the same station is imposed;

track capacities: overtaking between trains is allowed only within stations (assumed
of infinite capacity).

As already mentioned, in the present chapter we do not address the solution of the
nominal TTP problem explicitly, in that a nominal solution is assumed to be provided
in input. Nevertheless, we next outline the structure of a MIP formulation for the
nominal TTP problem, since a relaxed version of it is at the basis of the LP models
used in Sections A.4 and A.5.

Although in the nominal problem one is allowed to leave some trains unscheduled,
to simplify our presentation we consider a non-congested network where one is required
to schedule all the trains. A natural event-based model in the spirit of the Periodic
Event Scheduling Problem (PESP) formulation used in the periodic (cyclic) case [108]
can be sketched as follows:

z∗ = max
∑
h∈T

ρh

thi+1 − thi ≥ dhi,i+1 ∀h ∈ T, i = 1, . . . , len(h)− 1 (A.1)

|thi − tkj | ≥ ∆a ∀thi , tkj ∈ AS ,∀S ∈ S (A.2)

|thi − tkj | ≥ ∆d ∀thi , tkj ∈ DS ,∀S ∈ S (A.3)

thi+1 < tkj+1 ⇔ thi < tkj ∀thi , tkj ∈ DS ,∀S ∈ S (A.4)

A.2. The Nominal Model 73

ρh = πh − σh|th1 − th1 | − θh((thlen(h) − th1)− (thlen(h) − th1)) ∀h ∈ T (A.5)

l ≤ t ≤ u ∀t ∈ E (A.6)

Constraints (A.1) impose a minimum time difference di,i+1 between two consecutive
events of the same train, thus imposing minimum trip duration (trains are supposed to
travel always at the maximum allowed speed for the track) and minimum stop time at
the stations.

Constraints (A.2)-(A.3) model the headway times between two consecutive arrival
or departure events in the same station (∆d and ∆a being the minimum departure and
arrival headway, respectively). Since these constraints are nonlinear and we do not
know in advance the order in which events occur at the stations, in our MIP model
we introduce a set of binary variables xh,ki,j to be set to 1 iff thi ≤ tkj along with big-M
coefficients M , so that conditions

|thi − tkj | ≥ ∆

can be translated to
thi − tkj ≥ ∆−Mxh,ki,j

tkj − thi ≥ ∆−Mxk,hj,i

xh,ki,j + xk,hj,i = 1

Given the linearization of constraints (A.2)-(A.3), it is easy to translate the track
capacity constraints (A.4) as

xh,ki,j = xh,ki+1,j+1

Constraints (A.5) define the profits of the trains, whereas constraints (A.6) model
the user-defined time windows of each event.

It is important to notice that, although we are interested in integer values (minutes)
for the events to be published in the final timetable, we do not force the integrality on
variables tj . This has the important consequence that, after fixing the event precedence
variables x, the model becomes a plain linear model. On the other hand, the possible
fractional value of the final time variables t need to be handled somehow in a post-
processing phase to be applied before publishing the timetable. For arrival events, one
can just round the corresponding fractional times to the nearest integer since there is no
problem of an arrival arises a little earlier (or later) than published. An easy procedure
for departure times is instead to simply round down all the t-values even if this results
into a slightly infeasible published timetable, so as to guarantee that all events arise
not earlier than their published time value. In a sense, this policy amounts to using an
“infinite” time discretization during the optimization phase, the difference between the
actual and the published event times being perceived by the travelers as a small (less
than one minute) delay.

74 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

As far as the objective function is concerned, the nonlinear term

|th1 − th1 |

giving the shift sh of train h can be easily linearized as

sh ≥ th1 − th1

sh ≥ th1 − th1

A.3 The Stochastic Programming Paradigm

Having stated the problem as a MIP, a well known tool to find robust solutions is the
(two-stage) Stochastic Programming approach; see [16], [101] for an introduction to the
SP methodology. In SP, the set of constraints is decomposed in structural constraints,
which represent the deterministic part of the model, and control constraints which have
a stochastic nature and whose coefficients depend on the particular scenario. Roughly
speaking, the approach allows one to take decisions in the first stage by ignoring the
stochastic part of the model, but enforces some costly recourse action when indeter-
minacy will eventually occur. Thus a natural optimization objective for this two-stage
strategy is to minimize the total expected cost:

min
x∈X

cTx+ E[Q(x, ξ(ω))]

where x denotes the first-stage decision whose feasibility set is X, ω ∈ Ω denotes a
scenario that is unknown when the first-stage decision x has to be made, and Q(x, ξ(ω))
represents the optimal value of the second-stage recourse problem corresponding to
first-stage decision x and parameters ξ(ω).

If Ω contains a finite number of scenarios {ω1, ω2, . . . , ω|Ω|} with associated proba-
bilities pk, k ∈ 1, 2, . . . , |Ω|, then the expectation can be evaluated as a finite sum, and
the two-stage model (with linear recourse) becomes a standard linear model:

w∗ = min
x∈X

cTx+
|Ω|∑
k=1

pkq
T
k rk, rk ∈ Yk, ∀k = 1 . . . |Ω| (A.7)

where rk are the recourse variables with linear costs qk, and Yk is a polyhedron depend-
ing on the first-stage variables x.

As |Ω| is often very large, various sampling-based approaches have been proposed to
estimate the second-stage objective function. Interior sampling methods use samples
during the algorithm execution to estimate, from time to time, algorithmic parameters
such as function values, gradients, optimality cuts. Exterior sampling methods, instead,
use the Sample Average Approximation (SAA) algorithm to estimate the optimal ob-
jective. We have chosen exterior sampling, since it has some advantages over interior
sampling [109]: ease of numerical implementation, good theoretical convergence prop-

A.3. The Stochastic Programming Paradigm 75

erties [117], well developed statistical inference (validation and error analysis, stopping
rules). Furthermore, it is easily amenable to variance reduction techniques, ideal for
parallel computations.

A.3.1 The Sample Average Approximation Method

The SAA consists in approximating the mean of the random variable Q(x, ξ(ω)) with
the sample mean of {Q(x, ξ(ω1)), Q(x, ξ(ω2)), . . . , Q(x, ξ(ωN))} independent and iden-
tically distributed (i.i.d.) samples from the distribution of Q(x, ξ(ω)). If Q(x, ξ(ω))
has finite mean and variance, the sample mean Q̄N (x, ξ(ωi)) = 1

N

∑N
i=1Q(x, ξ(ωi)) is

an unbiased estimator of the actual mean:

E[Q̄N (x, ξ(ωi))] = E[Q(x, ξ(ω))]

and it satisfies the following central limit theorem:

√
N [Q̄N (x, ξ(ωi))− E[Q(x, ξ(ω))]]⇒ N (0, σ2) as N →∞

where ⇒ denotes convergence in distribution, N (0, σ2) is a normal random variable
with zero mean and variance σ2 = var Q(x, ξ(ω)).

The SAA approximation of (A.7) reads:

w∗N = min
x∈X

cTx+
1
N

N∑
k=1

qTk rk, rk ∈ Yk,∀k = 1 . . . N (A.8)

Under mild assumptions it was proved that the optimal value of SAA problem (A.8)
converges with probability 1 to w∗ (see [117]), that is, the optimal value of the stochastic
problem, as N tends to infinity.

Also, it is possible to use SAA to estimate the optimality gap by deriving lower and
upper bounds on w∗. These bounds will be used to quantify the confidence intervals of
the optimal solution of the stochastic model (see Section A.6, Figure A.9). Indeed, an
upper bound on w∗ is

cT x̂+ E[Q(x̂, ξ(ω))] = cT x̂+ E[Q̄N (x̂, ξ(ωi))] (A.9)

where x̂ is a given feasible, yet suboptimal, first-stage decision vector. The expectation
in the right hand side of (A.9), by its own, can be estimated as the mean of N ′ � N

(say) independent SSA Q̄jN (x̂, ξ(ωji)), obtaining:

UB =
1
N ′

N ′∑
j=1

Q̄jN (x̂, ξ(ωji)) (A.10)

σ2
u = var Q̄N (x̂, ξ(ωi)) =

1
(N ′ − 1)N ′

N ′∑
j=1

(Q̄jN (x̂, ξ(ωji))− ŪB) (A.11)

76 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

It is easy to show (see [70]) that a lower bound on w∗ is given by E[w∗N]. Again, we
can compute this expectation by sampling:

LB =
1
N ′

N ′∑
j=1

w∗jN (A.12)

σ2
l = var w̄∗N =

1
(N ′ − 1)N ′

N ′∑
j=1

(w∗jN − LB) (A.13)

A.3.2 Sampling

Sampling of delays has been carried out using the following per-line model. A line
L is defined as a sequence of stations operated by trains during the 24 hours. Each
line section (the path between two consecutive stations i and j) can have a certain
probability P(i,j) to be affected by delay. Also, each time interval [l, k] in the 24-hour
time horizon can have a certain probability of delay, say P[l,k]. Then each single train
h arrives at the last station with a cumulative random delay δh. The actual delay
incurred by train h operating on section (i, j) in time interval [l, k] is computed using
the following formula:

δh(i,j)([l, k]) = δhP[l,k]

P(i,j)∑
(i,j)∈L P(i,j)

(A.14)

where we normalize sections delay probabilities in order to distribute the cumulative
delay δTP[l,k] incurred by train T operating on line L through each line section (i, j).
Note that P(i,j) and P[l,k] can be deterministic numbers between 0 and 1, but typically
they are treated as random variables.

When using random sampling, the outcome can be affected by a large variance,
making it difficult to interpret. So we decided to use Latin Hypercube (LH) variance
reduction technique when sampling from each distribution of P(i,j), P[l,k] and δh. Other
techniques such as, e.g., Importance Sampling [20] can in principle fit our simulation
setting as well, but are quite involved. On the contrary, LH sampling is of general
applicability and comes with a straightforward implementation. The standard approach
to get a sample from a particular probability distribution is to apply the inverse of the
desired Cumulative Distribution Function (CDF) to a sample drawn from a uniform
distribution. The process is then repeated until the required number of samples N is
collected. Using LH sampling, instead, we first subdivide the [0, 1] interval in N equal
subintervals, and from each of them we draw a sample from a uniform distribution
spanning the subinterval. Then the obtained sample vector is inverted through the
CDF and randomly permuted. For more theoretical insights, the interested reader is
referred to [72].

While being a very simple-minded approach, still LH sampling proved to be quite
effective in our application. Figure A.1 shows the reduction in variance σ when sampling
from an exponential distribution with or without LH sampling. In our computational

A.4. Validation Model 77

testing, we observed an even larger reduction (one order of magnitude or more).

0 0.5 1 1.5
0

5

10

15

20

25

With LHS

σ = 0.19907

0 0.5 1 1.5
0

5

10

15

20

25

Without LHS

σ = 0.24352

Figure A.1: Reduction of variance σ with LH when approximating through sampling,
the exponential probability distribution function (solid line).

A.4 Validation Model

An important component in our framework is robustness validation. Validation is
often carried out inside the model itself, as is the case when a SP approach is used.
However, we decided to implement an external simulation-based validation module
that is independent from the optimization model itself, so that it can be of general
applicability and allows one to compare solutions coming from different methods. The
module is required to simulate the reaction of the railways system to the occurrence
of delays, by introducing small adjustments to the planned timetable received as an
input parameter. Validation is a huge topic on its own. Indeed, the set of actions the
railway system can make to react to disruptions is quite large—see for example [48]—
and the decision making process is often complicated by strict real-time requirements
and complex business rules. Validation can be carried out by optimization methods,
these as the one proposed in [19,68,69]. However, the complexity of such models grows
rapidly as soon as we allow complex decisions to be made. Thus, simulation methods
are often used to measure empirically the robustness of a given timetable—see, for
example, [10].

For the purpose of the present chapter, we decided to implement a simple LP-based
validation tool based on the following simplified assumptions.

• Limited adjustability in response to delays with respect to the given timetable:
In this chapter, timetabling robustness is not concerned with major disruptions
(which have to be handled by the real time control system and require human
intervention) but is a way to control delay propagation, i.e., a robust timetable
has to favor delay compensation without heavy human action. As a consequence,
at validation time no train cancellation is allowed, and event precedences are fixed
with respect to the planned timetable.

78 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

• Speed of validation: The validation tool should be able to analyze quickly the
behavior of the timetable under many different scenarios.

Given these guidelines, we designed a validation model which analyzes a single delay
scenario ω at a time. As all precedences are fixed according to the input solution to be
evaluated, constraints (A.1-A.3) all simplify to linear inequalities of the form:

ti − tj ≥ di,j

where di,j can be a minimum trip time, a minimum rest or an headway time. We
will denote with P the set of ordered pairs (i, j) for which a constraint of type (A.1)
can be written. The problem of adjusting the given timetable t under a certain delay
scenario ω can thus be rephrased as the following simple linear programming model
with decision variables tω:

min
∑
j∈E

wj
(
tωj − tj

)
(A.15)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P (A.16)

tωi ≥ ti ∀i ∈ E (A.17)

Constraints (A.16) correspond to the linear inequalities just explained, in which the
nominal right-hand-side value δi,j is updated by adding the (possibly zero) extra-time
δωi,j from the current scenario ω. Weights wj appearing in the objective function are
related to the relative importance of the events, and typically depend on the number
of passengers affected.

Constraints (A.17) are non-anticipatory constraints stating the obvious condition
that one is not allowed to anticipate any event with respect to its published value
in the timetable. Since these values are known, these constraints act as simple lower
bounds on the decision variables. Instead, we impose no upper bounds since we allow
an unlimited stretch of the timetable to recover from delays, i.e. a feasible timetable is
always achievable.

The objective function is to minimize the “cumulative delay” on the whole network.
Given a feasible solution, the validation tool keeps testing it against a large set of

scenarios, one at a time, gathering statistical information on the value of the objective
function and yielding a concise figure (the average cumulative delay) of the robustness
of the timetable.

A.5 Finding Robust Solutions

In this section we present three different approaches to cope with robustness. We
introduced two simplifying hypotheses: (1) all input trains have to be scheduled; (2)
all event precedences are fixed according to a given input “nominal” solution. These
strong assumptions were made to obtain tractable (LP) models.

A.5. Finding Robust Solutions 79

A.5.1 A Fat Stochastic Model

Our first attempt to solve the robust version of the TTP is to use a standard scenario-
based SP formulation. The model can be outlined as:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)

∑
h∈T

ρh ≥ (1− α)z∗ (A.18)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (A.19)

tωi ≥ ti ∀i ∈ E,∀ω ∈ Ω (A.20)

ti − tj ≥ di,j ∀(i, j) ∈ P (A.21)

l ≤ t ≤ u (A.22)

The structure of the model is similar to that used in the validation tool, but takes
into account several scenarios at the same time. Moreover, the nominal timetable
values tj are now viewed as first-stage decision variables to be optimized–their optimal
value will define the final timetable to be published. The model is composed by the
original one and a copy of it with a modified right hand side for each scenario; the
original variables and the correspondent second-stage copies in each scenario are linked
through non-anticipatory constraints.

The objective is to minimize the cumulative delay over all events and scenarios. The
original objective function

∑
ρh is taken into account through constraint (A.18), where

α ≥ 0 is a tradeoff parameter and z∗ is the objective value of the reference solution.

For realistic instances and number of scenarios this model becomes very time con-
suming (if not impossible) to solve–hence we called it “fat”. On the other hand, also in
view of its similarity with the validation model, it plays the role of a kind of “perfect
model” in terms of achieved robustness, hence it is be used for benchmark purposes.

A.5.2 A Slim Stochastic Model

Being the computing time required by the full stochastic model quite large, we present
an alternative model which is simpler yet meaningful for our problem. In particular,
we propose the following recourse-based formulation:

min
∑

(i,j)∈P,ω∈Ω

wi,js
ω
i,j (A.23)

80 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

∑
h∈T

ρh ≥ (1− α)z∗ (A.24)

ti − tj + sωi,j ≥ di,j + δωi,j ∀(i, j) ∈ P, ∀ω ∈ Ω (A.25)

sωi,j ≥ 0 ∀(i, j) ∈ P, ∀ω ∈ Ω (A.26)

ti − tj ≥ di,j ∀(i, j) ∈ P (A.27)

l ≤ t ≤ u (A.28)

In this model we have just one copy of the original variables, plus the recourse
variables sωi,j which account for the unabsorbed extra times δωi,j w.r.t. the minimum
train trip times. It is worth noting that the above “slim” model is inherently smaller
than the fat one. Moreover, one can drop all the constraints of type (A.25) with
δωi,j = 0, a situation that occurs very frequently in practice since most extra-times in a
given scenario are zero.

As to objective function, it involves a weighted sum of the recourse variables. Find-
ing meaningful values for weights wi,j turns out to be very important. Indeed, we will
show in Section A.6 how to define these weights so as to produce solutions whose robust-
ness is comparable with that obtainable by solving the (much more time consuming)
fat model.

A.5.3 Light Robustness

A different way to produce robust solutions is to use the Light Robustness (LR) ap-
proach proposed recently by Fischetti and Monaci [33]. This method is based on the
consideration that, roughly speaking, robustness is about putting enough slack on the
constraints of the problem. In its simpler version, the LR counterpart of the LP model

min{cTx : Ax ≤ b, x ≥ 0}

reads

min f(γ) (A.29)

Ax− γ ≤ b− β (A.30)

cTx ≤ (1 + α)z? (A.31)

x ≥ 0 (A.32)

0 ≤ γ ≤ β (A.33)

where βi is a parameter giving the desired protection level (or slack) on constraint i, and
γi ≥ 0 is a decision variable giving the corresponding unsatisfied slack. The objective
is to minimize a given function f of the γ variables (typically, a linear or quadratic
expression). Moreover, (A.31) gives a bound (controlled by α) on the efficiency loss
due to the increased robustness of the solution, where z? is the value of the input
nominal solution.

A.6. Computational Results 81

Instance #Stations #Sched. Trains

BZVR 27 127
BrBO 48 68
MUVR 48 48
PDBO 17 33

Table A.1: Nominal solution characteristics.

In our TTP model, a typical constraint reads

ti − tj ≥ di,j

and its LR counterpart is simply

ti − tj + γi,j ≥ di,j + ∆i,j γi,j ≥ 0

where ∆i,j is the required protection level parameter.

A.6 Computational Results

We carried out tests on four single-line medium-size TTP instances provided by the
Italian railway company, Trenitalia. Data refers to unidirectional traffic on different
corridors.

An almost-optimal heuristic solution for each of these instances was computed by
using the algorithm described in [17]. The algorithm is a Lagrangian heuristic based
on the computation of paths on a time-expanded network, whose computing time was
in the order of minutes on a Pentium IV, 2.4 GHz PC. The corresponding solutions
were used as the input nominal solutions to freeze the event precedences and to select
the trains to schedule. Solution characteristics are given in Table A.1.

We implemented our framework in C++ and carried out our tests on a AMD
Athlon64 X2 4200+ computer with 4GB of RAM. ILOG CPLEX 10.1 [56] was used as
MIP solver.

According to the sampling model described in Section A.3.2, we generated an extra
time δh(ω) corresponding to each train h and to each scenario ω, drawing them from
an exponential distribution with mean µ = 5%. In lack of more detailed data from
the Italian railways operator about the actual distribution of delays in line sections,
we assume a proportional distribution of delays along line segments seems to be a fair
assumption. Accordingly probabilities P(i,j) in A.14 are proportional to the length of
train segments, barring a small additive white Gaussian noise (standard deviation σ =
0.01, i.e. a random adjustment of 1-2%), and probabilities P[l,k] are deterministically
set to 1.

Given this setting, the first test we performed was aimed at comparing four differ-
ent training methods for each reference solution with different values of the tradeoff

82 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

parameter α, namely 1%, 5%, 10% and 20%. We compared the following alternative
methods:

• fat : fat stochastic model (only 50 scenarios)

• slim1 : slim stochastic model with uniform objective function–all weights equal
(400 scenarios)

• slim2 : slim stochastic model with enhanced objective function (400 scenarios),
where events arising earlier in each train sequence receive a larger weight in the
objective function. More specifically, if the i-th event of train h is followed by k
events, its weight in A.23 is set to k + 1. The idea behind this weighing policy is
that unabsorbed disturbances sωi,j in a train sequence are likely to propagate to
the next ones, so the first ones in the line are the most important to minimize.

• LR: Light Robustness model with objective function as in slim2 (using the slim1
objective function produces significantly worse results). Protection level parame-
ters are set to ∆ = −µ ln 1

2 , where µ is the mean of the exponential distribution.
This is the protection level required to absorb a delay drawn from such a distribu-
tion with probability 1

2 . For example, setting a buffer of 1 minute we can absorb
half of the times an exponentially distributed disturbance of mean 1.44 minutes.

As to the validation model, weights wj appearing in objective function (A.15) are
assumed to be equal to 1, i.e., all events are considered equally important. It turn out
that the new objective function tipically produces slightly worse results for LR while
slim2 takes advantage of it for large values of λ. In any case, the improvement is not
substantial (up to 3-4%).

The results are shown in Table A.2 and graphical representations are given in Fig-
ures A.2 and A.3.

According to the figures, slim2 always yields a very tight approximation of fat, while
slim1 is often poorer. As to LR, it usually produces good results that are only slightly
worse than slim2, mainly in the most-realistic cases where the tradeoff parameter α is
small. As to computing times (reported in Table A.2), the fat model is one order of
magnitude slower than slim1 and slim2, although it uses only 50 scenarios instead of
400. LR is much faster than any other method—more than two orders of magnitude
w.r.t the fast stochastic models. Therefore, LR qualifies as the method of choice for
addressing very large real cases, as it guarantees good levels of robustness within very
short computing times.

A.6. Computational Results 83

1% 5% 10% 20%
6000

7000

8000

9000

10000

11000

12000

13000
Line BrBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

1% 5% 10% 20%
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200
Line PDBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

Figure A.2: Comparison of different training models applied to the best reference
solution for each instance. On the x-axis there is the efficiency loss (α) while the y-axis
reproduces the confidence intervals of the validation figure (run with 500 scenarios).

84 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

1% 5% 10% 20%
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

1% 5% 10% 20%
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4 Line BZVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

Figure A.3: Comparison of different training models applied to the best reference
solution for each instance. On the x-axis there is the efficiency loss (α) while the y-axis
reproduces the confidence intervals of the validation figure (run with 500 scenarios).

A
.6

.
C

om
p

u
tation

al
R

esu
lts

85

α Fat Slim1 Slim2 LR

Line Delay WAD(%) Time(s) Delay WAD(%) Time(s) Delay WAD(%) Time(s) Delay WAD(%) Time(s)

0% BZVR 16149 – 9667 16316 – 532 16294 – 994 16286 – 2.27
0% BrBO 12156 – 384 12238 – 128 12214 – 173 12216 – 0.49
0% MUVR 18182 – 377 18879 – 88 18240 – 117 18707 – 0.43
0% PDBO 3141 – 257 3144 – 52 3139 – 63 3137 – 0.25

Tot: 49628 – 10685 50577 – 800 49887 – 1347 50346 – 3.44

1% BZVR 14399 16.4 10265 15325 45 549 14787 17 1087 14662 18 2.13
1% BrBO 11423 21.6 351 11646 42 134 11472 21 156 11499 23 0.48
1% MUVR 17808 12.9 391 18721 37 96 17903 12 120 18386 8 0.48
1% PDBO 2907 15.6 250 3026 51 57 2954 11 60 2954 13 0.27

Tot: 46537 66.5 11257 48718 175 836 47116 61 1423 47501 62 3.36

5% BZVR 11345 15.9 9003 12663 48 601 11588 19 982 12220 22 1.99
5% BrBO 9782 18.9 357 11000 50 146 9842 22 164 10021 23 0.51
5% MUVR 16502 14.5 385 18106 41 86 16574 13 107 17003 11 0.45
5% PDBO 2412 14.7 223 2610 44 49 2508 20 57 2521 19 0.28

Tot: 40041 64 9968 44379 183 882 40512 74 1310 41765 75 3.23

10% BZVR 9142 21.4 9650 10862 50 596 9469 24 979 10532 33 2.01
10% BrBO 8496 19.1 387 10179 51 132 8552 20 157 8842 23 0.51
10% MUVR 15153 14.7 343 17163 49 84 15315 15 114 15710 13 0.43
10% PDBO 1971 19.9 229 2244 49 50 2062 27 55 2314 37 0.25

Tot: 34762 75.1 10609 40448 199 862 35398 86 1305 37398 106 3.2

20% BZVR 6210 28.5 9072 7986 50 538 6643 31 1019 8707 52 2.04
20% BrBO 6664 22.1 375 8672 53 127 6763 23 153 7410 30 0.52
20% MUVR 13004 17.1 384 15708 52 91 13180 18 116 13576 19 0.42
20% PDBO 1357 28.4 230 1653 49 55 1486 34 60 1736 53 0.28

Tot: 27235 96.1 10061 34019 204 811 28072 106 1348 31429 154 3.26

40% BZVR 3389 35.4 10486 4707 50 578 3931 37 998 5241 51 2.31
40% BrBO 4491 27.7 410 6212 52 130 4544 29 166 6221 52 0.53
40% MUVR 10289 21.8 376 13613 52 95 10592 25 108 11479 34 0.45
40% PDBO 676 37.1 262 879 49 55 776 41 57 1010 52 0.28

Tot: 18845 122 11534 25411 203 858 19843 132 1329 23951 189 3.57

Table A.2: Comparison of different training methods w.r.t. computing time, percentage WAD and validation function (cumulative delay in
minutes), for different lines and tradeoff α.

86 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

0 len(h)
i

w
ei

gh
t

λ =∞

λ = 30

λ = 15

λ = 6

λ = 3

Figure A.4: Alternative weighing functions for slim2 and LR, giving weight wij as a
function of position i in the line.

We also tried a variation of the slim2 and LR objective function. The variation is
motivated by observations in [64] about the optimal distribution of buffers on a single
corridor. There, it was observed that buffers that are placed too early risk to be left
unused, because the probability to face any delay at this early position is too small. As
a consequence, it is worthwhile to lower the weights wi,j arising in the early sections
of the line. Figure A.4 plots different parametric variants of slim2 objective functions.
All of the them obey a common formula, namely:

(1− e−λi)(len(h)− i)

parametrized in λ (λ = ∞ is the original slim2 weighing scheme). Table A.3 reports
the percentual improvements with respect to case λ =∞, slim2 and LR, respectively.
It turns out that there is only a small improvement for large λ in slim2.

One might also wonder what is the effect of the input nominal solution to the
subsequent robustness improving phase. To answer this question we do the following
experiment. We take the scheduled trains in the heuristic nominal solutions of [17]
formerly used, and we construct a MIP model, as described in Section A.2, where the
choice of precedences is left open. Then we collect a series of heuristic nominal solutions
of increasing efficiency for that model by running the MIP solver with a 5-minute time
limit and storing all the incumbent solutions produced during the run. Moreover we
let the solver run with a 1-hour time limit to produce an almost optimal solution zref .
Indeed, all instances terminated with a remaining optimality gap less than 4%.

Then, we compare the robustness achieved by our fat model when starting from
these solutions and allowing for a relative efficiency loss α with respect to zref . The

A.6. Computational Results 87

Slim2

λ BZVR BrBO MUVR PDBO

α = 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

3 -1.9 2.6 1.7 3.5 0 -2.5 -2.3 -0.1 -1.2 -0.8 -1.2 -5.3 -2.3 0.2 -0.1 -1.7
6 -0.7 2.6 1.6 3 0.4 -1.3 0.6 2.8 -0.8 -0.9 0.2 -1.5 -1.8 0.2 1 3.6
15 0 3.7 1.7 4.9 1.1 1.2 3.4 3.8 -0.6 -0.3 0 1 -0.3 0.7 1.8 1.4
30 0.4 3.6 0.1 3.5 0.8 1.8 2.2 3.7 0 0.2 0.3 0.7 0.3 -0.2 1.1 1.8

LR

λ BZVR BrBO MUVR PDBO

α = 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

3 -0.3 -0.2 1.1 -2.2 -0.1 0.2 -0.5 -0.5 0.1 -0.4 1.2 0.2 -0.7 -0.7 -2.2 0.2
6 -0.2 -0.8 2 -2 0.1 0.6 0.5 -0.7 0.4 0.2 -0.1 1.3 -1.5 -0.3 0.2 -1.7
15 -0.3 -0.5 1.7 -1.1 0.1 0.3 0.4 -0.5 -0.2 0.7 1.3 0.6 -1.3 0 -0.7 1.3
30 0.1 -0.1 1.2 -0.7 0.3 0.2 0 -0.7 -0.4 0.4 0.9 -0.8 -0.4 -0.8 -0.4 -0.9

Table A.3: Percentage robustness improvement with respect to λ =∞ for the different
weighing functions plotted in Figure A.4; a negative value corresponds to a worse
robustness.

left part of Table A.4 gives the outcome of the experiment, for two instances (BrBO
and MUVR). First columns correspond to the 10 best solutions obtained with the 5-
minute time limit, sorted by increasing efficiency from left to right. E.g., for instance
BrBO, the 10 solutions have a loss of efficiency ranging from 5.5% to 0.4% with respect
to zref . Rows correspond to the different thresholds α used (1%,5%,10% and 20%).
The table entries then give the percentage increase in robustness (as measured by the
validation tool) with respect to robustness measured when starting from the almost
optimal solution zref . E.g., for BrBO, if we allow a 10% efficiency loss w.r.t. zref and
start from a nominal solution which is already 4.5% worse, we loose 13.9% in terms of
robustness achieved through fat.

As expected, starting from a worse nominal solution reduces the degrees of freedom
in the subsequent training phase, leading to robustness loss (in some cases the robust
model become even infeasible, as for missing entries in Table A.4). This negative effect
could be counterbalanced by the different precedence structure of the solution. Indeed,
each solution has a difference precedence order of trains which could in principle be more
suited to deal with disturbances, thus allowing for a more robust timetable. However,
in the aforementioned experiment the precedence structure of the solutions seems to
play only a secondary role.

To better quantify the role of precedences for robustness in our instances we do
a second experiment, namely, we solve a MIP version of the LR model where the
precedences are left unfixed. Note that this is only viable for LR, since the other
models are too large to be solved by any state-of-the-art MIP solver. Again we train
the model using a loss of efficiency α ranging from 1 to 20% from the same almost
optimal solution zref used in the precedence example. zref is also used to provide a first
incumbent solution to the MIP solver. Since the solver cannot improve robustness by
finding a more efficient solution for which the tradeoff constraint would becomes looser,

88 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

the robustness improvement, if any, will come entirely from the more robust precedence
structure of the solution. Results are reported in the right part of Table A.4.

The remaining integrality gap after 1 hour of computing time was less than 1% for
all instances. For PDBO and BZVR the MIP model did not find any more solution
than the incumbent, so they are not reported in the table.

The last column of Table A.4 reports the percentage robustness improvement of the
MIP LR model described above, over the linear LR model described in Section A.5.3,
both applied to the almost optimal solution zref . E.g. in Br-BO, for a threshold α of
10% the MIP version of LR is able to improve by 4.3% over the simple linear LR.

Furthermore, the second-last column of Table A.4 reports, for comparison sake, the
percentage difference between the solution robustness obtained by the MIP LR and the
robustness obtained by using fat on the same almost optimal solution zref .

Results confirm that in our testbed the combinatorial structure of solutions given
by precedences is not as important, as their efficiency is, in determining the maximum
achievable robustness. However, we expect that for more complex network topologies
the combinatorial contribution will become overwhelming.

BrBO

Fat LR-MIP

α vs Fat vs LR

eff(%)= -5.5 -4.5 -3.9 -2.7 -2.2 -1.7 -1.3 -1.2 -0.8 -0.4 0.0 0.0 0.0

1% – – – – – – – – -4.1 -2.7 0.0 -0.4 -0.1
5% – -20.3 -18.2 -8.1 -7.4 -4.4 -2.8 -3.1 -1.6 -2.2 0.0 1.7 4.1
10% -23.9 -13.9 -15.2 -5.2 -5.6 -2.9 -1.9 -2.8 -1.4 -2.6 0.0 -1.0 4.3
20% -22.2 -11.9 -14.9 -4.6 -4.5 -3.1 -2.1 -2.8 -2.4 -3.0 0.0 -11.8 2.7

MUVR

Fat LR-MIP

α vs Fat vs LR

eff(%)= -27.4 -14.9 -9.9 -9.2 -7.6 -6.8 -2.7 -1.6 -1.6 -1.3 0.0 0.0 0.0

1% – – – – – – – – – – 0.0 -0.6 0.0
5% – – – – – – -3.7 -1.7 -1.2 -1.7 0.0 -1.2 -0.1
10% – – -19.2 -16.5 -12.6 -10.1 -1.6 -0.8 -0.3 0.2 0.0 -1.4 1.1
20% – -25.5 -13.1 -12.7 -9.1 -8.6 -2.1 -0.9 0.1 -0.8 0.0 -4.3 1.4

Table A.4: Effects of nominal input solution on robustness.

A simple yet often used in practice policy to enforce robustness in a timetable is
to allocate a buffer that is just proportional to the train duration. Figure A.5 gives
the results of this simple policy on a sample instance, where we first compute the
maximum total amount of buffer we can allocate for a given efficiency loss, and then
distribute it proportionally along the line. According to the figure, the proportional
buffer allocation policy and slim1 behave quite similarly. This is not surprising, since
model slim1 actually favors a proportional buffer allocation — is confirmed in the other
instances as well (not shown in the figure). On the other hand, much better results are
obtained by applying more clever optimization methods, showing the practical relevance

A.6. Computational Results 89

of the optimization approaches.

0% 1% 5% 10% 20%

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 2
LR
Uniform
slim 1

4.34%

2.20%

1.11%

0.23%

Figure A.5: Comparison of a simple “proportional” buffer allocation strategy against
the proposed methods. The percentages shown are the total amount of buffer it was
possible to allocate within a given tradeoff.

While the validation output gives a reliable measure of how robust a solution is
against delays, other figures exist that summarize somehow the “static” structure of
a solution. These figures are useful to get insights into the structure of the solutions
obtained with different training methods. In particular, we used the weighted average
distance (WAD) of the allocated buffer from the starting point. The WAD of the single
train h is calculated as

WADh =
1∑len(h)−1

i=1 si,i+1

len(h)−1∑
i=1

si,i+1(thi+1 + thi)/2
thlen(h) − th1

(A.34)

where si,i+1 is the amount of buffer allocated from ti to ti+1. The WAD is a number
between 0 and 1 which measures how the buffers are distributed along the train trip.
For example, a value of 0.5 means that the same amount of buffers were allocated in
the first half and in the second half of the trip; values smaller or bigger than 0.5 relate
to a shift in buffers distribution towards the begin or the end of the trip, respectively.
The WAD of an entire line is calculated as the mean of all the WADs of the trains of
the line. The reader is referred to [64] for a more detailed discussion.

A comparison of the various WADs is reported in Table A.2 and illustrated in
Figures A.6 and A.7. It can be seen that there is a significative correlation between the
degree of approximation of the various WADs with respect to “perfect WAD” (WADfat)
and the robustness of the solution–as computed by the validation tool and reported in
Figure A.2 and A.3.

90 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

In Figures A.6 and A.7 appears that slim1 WAD is almost fixed to 50%, meaning
a uniform allocation of buffers. On the other hand, the other methods tend to allocate
buffers earlier in the line, resulting in a lower value of the WAD. Moreover, as the
allowed efficiency loss increases (x axis), the WAD increases as well, meaning that
the uniform allocation is more likely to be a good choice. We can also note that LR
behaves better for small efficiency losses. Indeed, LR uses a fixed buffer β to deal
with disturbances. When the problem is less constrained in efficiency, these buffers can
become too small, and the LP solver will start to distribute, in a somehow unpredictable
way, the excess buffers to meet the increased degree of freedom, thus degrading the
performance of the method. E.g., this is the case of lines BZVR and PDBO. Moreover
BZVR and PDBO are more congested than other two instances, which also explains
the better performance of the uniform allocation strategy.

Figure A.8 reports how the buffers are distributed along the line. The figure is
obtained by normalizing each line by the length of the corridor, and averaging the
buffers allocated in each normalized line section. The averages are then normalized by
the total amount of allocated buffer, so that the area of each chart approximately sum
up to 1. E.g., slim1 allocates buffers almost uniformly along the line—the particular
structure of the timetable being responsible of local fluctuations. It is clear that slim2
produces a very tight approximation of fat, while slim1 does not. It is worth noting
that LR uses a smoother allocation of buffers, while slim1 yields a better approximation
of their oscillations, but misses the global allocation policy. In this respect, slim2
performs quite well instead. This is due to the fact that LR does not exploit directly
the scenario information, thus it has to cope with very little information. Again, note
that the poorest method (slim1) produces an almost uniform distribution of the buffers,
whereas the best ones tend to allocate them earlier. This confirms the findings reported
in [64].

Finally, given the intrinsic approximation of the stochastic methods due to the
evaluation of the expectation, we have computed lower and upper bounds on the optimal
solutions of the stochastic models, as described in Section A.3. A typical plot obtained
for the slim stochastic model is reported in Figure A.9, showing very narrow estimation
gaps. Similar results are obtained with the other models, except fat that behaves a
little worse due the reduced number of scenarios.

A.7 Conclusions and future work

In this chapter we have described a three-stage framework as a practical tool for building
and testing robust solutions for the Train Timetabling Problem. We mainly focused on
robustness improvement of a given nominal solution. Robustness was then validated in
terms of the total cumulative delay, computed by solving an LP model.

We examined three different robustness improving models. The best performing, in
terms of validated cumulative delay, is a huge stochastic reformulation of the nominal
TTP problem. However, the solution of this model turned out to be very slow (if not
impossible) for practical instances. An approximation of it, called “slim”, performed

A.7. Conclusions and future work 91

1% 5% 10% 20%
0

10

20

30

40

50

60
Line BrBO

Efficiency loss

W
A

D
 (

%
)

1% 5% 10% 20%
0

10

20

30

40

50

60
Line PDBO

Efficiency loss

W
A

D
 (

%
)

fat
slim 1
slim 2
LR

fat
slim 1
slim 2
LR

Figure A.6: Comparison of different training models from the WAD point of view
(WAD is given within its confidence intervals).

92 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

1% 5% 10% 20%
0

10

20

30

40

50

60
Line BZVR

Efficiency loss

W
A

D
 (

%
)

1% 5% 10% 20%
0

10

20

30

40

50

60
Line MUVR

Efficiency loss

W
A

D
 (

%
)

fat
slim 1
slim 2
LR

fat
slim 1
slim 2
LR

Figure A.7: Comparison of different training models from the WAD point of view
(WAD is given within its confidence intervals).

A.7. Conclusions and future work 93

0% 10% 20% 30% 40% 50% 60% 70% 80%
0

0.5

1

1.5

2

2.5

3

3.5

4

 trip length (%)

 a
llo

ca
te

d
bu

ffe
r

(%
)

Buffer allocation curves in MUVR (eff.loss. 10%)

fat
slim 1
slim 2
LR

Figure A.8: Comparison of different training models from the allocated-buffer point
of view.

94 Appendix A. Fast Approaches to Improve the Robustness of a Railway Timetable

1% 5% 10% 20%
4000

6000

8000

10000

12000
Line BrBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

1% 5% 10% 20%
0

500

1000

1500

2000

2500
Line PDBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

1% 5% 10% 20%
0.6

0.8

1

1.2

1.4

1.6
x 10

4 Line MuVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

1% 5% 10% 20%
2000

4000

6000

8000

10000

12000

14000
Line BZVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

Figure A.9: Confidence intervals of upper and lower bounds of the optimal solution of
stochastic model slim2

A.7. Conclusions and future work 95

much better provided that the “right” objective function is given. The fastest method,
Light Robustness (LR), proved to be quite accurate when seeking for a reasonable
robustness–efficiency tradeoff, allowing for fast solution of large instances. Light Ro-
bustness is therefore a suitable tool for addressing large-scale real scenarios, and can
be embedded in the nominal solver to efficiently provide alternative, robust-improved
timetables.

We performed our computations on real world unidirectional corridors operated
by the Italian railways operator. Further work should address more complex network
topologies.

In our study we used a LP-based validation tool to estimate the cumulative delay in
a set of random scenarios: however, it would be interesting to measure the actual price
required to recover a delayed timetable by using the same strategies used in real-world
delay management.

Moreover, we have quantified for the LR model the gain in terms of robustness
resulting from relaxing the requirement that all precedences in the nominal solution
must be preserved. It would be interesting to extend this analysis also to the slim2
model that, at the time of writing, seems intractable even for medium–size instances.

Acknowledgments

This work was supported by the Future and Emerging Technologies unit of the EC
(IST priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and by MiUR,
Italy (PRIN 2006 project “Models and algorithms for robust network optimization”).
We thank Paolo Toth, Alberto Caprara and Valentina Cacchiani for providing us with
the nominal TTP solutions used in our computational testing. Thanks are also due to
three anonymous referees for their constructive comments.

Bibliography

[1] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34:361–372, 2006. Problems available at http://miplib.zib.de.

[2] Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete
Optimization, 1:4–20, 2007.

[3] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universität Berlin, 2007.

[4] Tobias Achterberg and Timo Berthold. Improving the feasibility pump. Discrete
Optimization, 4:77–86, 2007.

[5] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules re-
visited. Operations Research Letters, 33:42–54, 2005.

[6] E. Amaldi, M. E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsys-
tem problem, IISs and IIS-hypergraphs. Mathematical Programming, 95(3):533–
554, 2003.

[7] D. Applegate, R. Bixby, V. Chvatal, and B. Cook. Finding cuts in the TSP.
Technical Report 95-05, DIMACS, 1995.

[8] Alper Atamturk and Deepak Rajan. On splittable and unsplittable flow capaci-
tated network design arc-set polyhedra. Mathematical Programming, 92:315–333,
2002.

[9] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0–1 programming by lift-and-project
in a branch-and-cut frameworkbranch-and-cut framework. Management Science,
42(9):1229–1246, 1996.

[10] F. Barber, S. Cicerone, D. Delling, G. Di Stefano, M. Fischetti, L. Kroon, D. Sal-
vagnin, P. Tormos, C. Weber, and A. Zanette. New frameworks for the interaction
between robust and online timetable planning, and for monitoring the status quo
of the system. Technical Report ARRIVAL-D3.4, ARRIVAL Project, 2008.

[11] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, December 1962.

98 Bibliography

[12] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and D. Vincent.
Experiments in mixed integer linear programming. Mathematical Programming,
1:76–94, 1971.

[13] Livio Bertacco, Matteo Fischetti, and Andrea Lodi. A feasibility pump heuristic
for general mixed-integer problems. Discrete Optimization, 4:63–76, 2007.

[14] Timo Berthold. Primal Heuristics for Mixed Integer Programs. Master’s thesis,
Technische Universität Berlin, 2006.

[15] Armin Biere and Wolfgang Kunz. SAT & ATPG: Boolean engines for new gen-
eration synthesis and verification moderators. In ICCAD, pages 782–790, 2002.

[16] John R. Birge and Francois Louveaux. Introduction to Stochastic Programming.
Springer, 2000.

[17] A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling
problem. Operations Research, 50(5):851–861, 2002.

[18] A. Caprara, M. Monaci, P. Toth, and P.L. Guida. A Lagrangian heuristic algo-
rithm for a real-world train timetabling problem. Discrete Applied Mathematics,
154(5):738–753, 2006.

[19] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni,
and Alfredo Navarra. On the interaction between robust timetable planning and
delay management. Technical Report ARRIVAL-TR-0116, ARRIVAL project,
2007.

[20] Charles E. Clark. Importance sampling in Monte Carlo analyses. Operations
Research, 9(5):603–620, 1961.

[21] G. Codato and M. Fischetti. Combinatorial Benders’ cuts. In IPCO 2005 Pro-
ceedings, pages 178–195, 2005.

[22] A. Colmerauer. An introduction to Prolog III. draft, 1987.

[23] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC,
pages 151–158. ACM, 1971.

[24] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
Computer Journal, 8:250–255, 1965.

[25] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming, 102(1):71–90,
2005.

[26] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, New Jersey, 1963.

Bibliography 99

[27] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[28] Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane Ag-
goun, T. Graf, and F. Berthier. The constraint logic programming language
CHIP. In FGCS, pages 693–702, Tokyo, Japan, 1988.

[29] Niklas Eén and Niklas Sörensson. An extensible SAT-solver, October 14 2003.

[30] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1–
3):23–47, 2003.

[31] M. Fischetti, A. Lodi, and D. Salvagnin. Just MIP it! Technical report, University
of Padova, October 2008.

[32] M. Fischetti, A. Lodi, and A. Tramontani. Experiments with disjunctive cuts.
Technical report, November 2007. In preparation.

[33] M. Fischetti and M. Monaci. Light robustness. Technical Report ARRIVAL-TR-
0119, ARRIVAL Project, 2008.

[34] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathe-
matical Programming, 104(1):91–104, 2005.

[35] Matteo Fischetti and Andrea Lodi. Optimizing over the first Chvàtal closure.
Mathematical Programming, 110(1):3–20, 2007.

[36] Matteo Fischetti and Paolo Toth. A new dominance procedure for combinatorial
optimization problems. Operations Research Letters, 7:181–187, 1988.

[37] Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filtering.
In Principles and Practice of Constraint Programming, pages 189–203. Springer-
Verlag, 1999.

[38] Ricardo Fukasawa and Marcos Goycoolea. On the exact separation of mixed
integer knapsack cuts. In Integer Programming and Combinatorial Optimization,
volume 4513, pages 225–239. Springer, 2007.

[39] Hervé Gallaire. Logic programming: Further developments. In SLP, pages 88–96,
1985.

[40] Gecode Team. Gecode: Generic constraint development environment, 2008.
Available from http://www.gecode.org.

[41] Arthur M. Geoffrion. Generalized Benders decomposition. Journal of Optimiza-
tion Theory and Applications, 10:237–260, 1972.

[42] Matthew L. Ginsberg, James M. Crawford, and David W. Etherington. Dynamic
backtracking. Technical report, 1996.

100 Bibliography

[43] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequali-
ties. ORSA Journal on Computing, 2(1):61–63, 1990.

[44] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search
through randomization. In AAAI/IAAI, pages 431–437, 1998.

[45] J. Gondzio. Presolve analysis of linear programs prior to applying an interior
point method. INFORMS Journal on Computing, 9:73–91, 1997.

[46] Jack E. Graver. On the foundations of linear and integer linear programming i.
Mathematical Programming, 9(1):207–226, 1975.

[47] William D. Harvey. Nonsystematic backtracking search. PhD thesis, Stanford
University, 1995.

[48] Mads Hofman, Line Madsen, Julie Jespersen Groth, Jens Clausen, and Jesper
Larsen. Robustness and recovery in train scheduling - a case study from DSB
S-tog a/s. In ATMOS 2006, 2006.

[49] J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. Wiley, 2000.

[50] J. N. Hooker. A hybrid method for planning and scheduling. Constraints,
10(4):385–401, 2005.

[51] J. N. Hooker. Integrated Methods for Optimization. Springer, 2006.

[52] J. N. Hooker and Hong Yan. Logic circuit verification by Benders’ decomposition.
In Principles and Practice of Constraint Programming, pages 267–288, 1995.

[53] John N. Hooker. An integrated method for planning and scheduling to minimize
tardiness. Constraints, 11:139–157, 2006.

[54] John N. Hooker, Hong Yan, Ignacio E. Grossmann, and R. Raman. Logic cuts
for processing networks with fixed charges. Computers & OR, 21(3), 1994.

[55] Toshihide Ibaraki. The power of dominance relations in branch-and-bound algo-
rithms. Journal of the ACM, 24(2):264–279, 1977.

[56] ILOG Inc. ILOG CPLEX 10.1 User’s Manual, 2007.

[57] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In POPL,
pages 111–119, 1987.

[58] Roberto J. Bayardo Jr. and Daniel P. Miranker. A complexity analysis of
space-bounded learning algorithms for the constraint satisfaction problem. In
AAAI/IAAI, pages 298–304, 1996.

[59] George Katsirelos and Fahiem Bacchus. Generalized nogoods in CSPs. In AAAI,
pages 390–396. MIT Press, 2005.

Bibliography 101

[60] L. G. Khachian. A polynomial algorithm in linear programming. Soviet Mathe-
matics Doklady, 20(1):191–194, 1979.

[61] H. J. Kim and J. N. Hooker. Solving fixed-charge network flow problems with a
hybrid optimization and constraint programming approach. Annals of Operations
Research, 115:95–124, 2002.

[62] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sam-
ple average approximation method for stochastic discrete optimization. SIAM
Journal on Optimization, 12(2):479–502, 2002.

[63] W. H. Kohler and K. Steiglitz. Characterization and theoretical comparison of
branch-and-bound algorithms for permutation problems. Journal of the ACM,
21(1):140–156, 1974.

[64] L.G. Kroon, R. Dekker, and M.J.C.M. Vromans. Cyclic railway timetabling: a
stochastic optimization approach. In Algorithmic Methods for Railway Optimiza-
tion, Lecture Notes in Computer Science, pages 41–66. 2007.

[65] Mikael Z. Lagerkvist and Christian Schulte. Advisors for incremental propagation.
In Principles and Practice of Constraint Programming, volume 4741 of Lecture
Notes in Computer Science, pages 409–422. Springer-Verlag, 2007.

[66] C. Liebchen and L. W.P. Peeters. On cyclic timetabling and cycles in graphs.
Technical Report 761-2002, TU Berlin, Mathematical Institute, 2002.

[67] C. Liebchen and S.Stiller. Delay resistant timetabling. Technical Report
ARRIVAL-TR-0056, ARRIVAL Project, 2006.

[68] Christian Liebchen, Marco Lübbecke, Rolf H. Möhring, and Sebastian Stiller. Re-
coverable robustness. Technical Report ARRIVAL-TR-0066, ARRIVAL-Project,
2007.

[69] Christian Liebchen, Michael Schachtebeck, Anita Schöbel, Sebastian Stiller, and
André Prigge. Computing delay resistant railway timetables. Technical Report
ARRIVAL-TR-0071, ARRIVAL Project, October 2007.

[70] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior
of sampling methods for stochastic programming. Annals of Operations Research,
142(1):215–241, February 2006.

[71] J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the
traveling salesman problem. Operations Research, 11:972–989, 1963.

[72] W. L. Loh. On latin hypercube sampling. The Annals of Statistics, 24(5), 1996.

[73] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

102 Bibliography

[74] T.L. Magnanti and R.T. Wong. Accelerating Benders decomposition: algorithmic
enhancement and model selection criteria. Operations Research, 29:464–484, 1981.

[75] W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for
determining solution quality in stochastic programs. Operations Research Letters,
24(24):10, February 1999.

[76] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve
MIPs. Operations Research, 49(3):363–371, 2001.

[77] François Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, 94(1):71–90, 2002.

[78] François Margot. Exploiting orbits in symmetric ILP. Mathematical Program-
ming, 98(1):3–21, 2003.

[79] István Maros. Computational Techniques of the Simplex Method. Kluwer Aca-
demic Publishers, 2002.

[80] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer
Implementations. Wiley, 1990.

[81] M. Milano. Constraint and Integer Programming: Toward a Unified Methodology.
Kluwer Academic Publishers, 2003.

[82] P. Miliotis. Integer programming approaches to the travelling salesman problem.
Mathematical Programming, 10:367–378, 1976.

[83] P. Miliotis. Using cutting planes to solve the symmetric travelling salesman
problem. Mathematical Programming, 15:177–178, 1978.

[84] H. D. Mittelmann. Benchmarks for optimization software: Testcases. Problems
available at http://plato.asu.edu/sub/testcases.html.

[85] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In DAC, pages 530–
535, 2001.

[86] K. Nachtigall. Periodic network optimization and fixed interval timetables. Habil-
itation Thesis, Deutsches Zentrum für Luft-und Raumfahrt, Braunschweig, 1999.

[87] G. Nemhauser and L. A. Wolsey. A recursive procedure to generate all cuts for
0-1 mixed integer programs. Mathematical Programming, 46:379–390, 1990.

[88] M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling
salesman problem by branch and cut. Operations Research Letters, 6:1–8, 1987.

[89] M. W. Padberg. Covering, packing and knapsack problems. Annals of Discrete
Mathematics, 4:265–287, 1979.

Bibliography 103

[90] M. W. Padberg and Rinaldi G. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review, 33, 1991.

[91] M. W. Padberg, T. J. Van Roy, and L. A. Wolsey. Valid Linear Inequalities for
Fixed Charge Problems. Operations Research, 33(4):842–861, 1985.

[92] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover, 1982.

[93] L. W. P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus
University Rotterdam, 2003.

[94] David Pisinger. Where are the hard knapsack problems? Computers & Operations
Research, 32:2271–2284, 2005.

[95] Chandra Poojari and John Beasley. Improving benders decomposition using a
genetic algorithm. Technical report, Centre for the Analysis of Risk and Opti-
misation Modelling Applications (CARISMA), School of Information Systems,
Computing and Mathematics, Brunel University, Uxbridge, 2007.

[96] Jean-Francois Puget. A C++ implementation of CLP. In Proceedings of the
Second Singapore International Conference on Intelligent Systems, Singapore,
1994.

[97] W. V. O. Quine. The problem of simplifying truth functions. American Mathe-
matical Monthly, 59:521–531, 1952.

[98] Rasmus V. Rasmussen and Michael A. Trick. A Benders approach for the con-
strained minimum break problem. European Journal of Operational Research,
177(1):198–213, 2007.

[99] W. Rei, J. F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders
decomposition by local branching. Technical report, 2006.

[100] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. The Handbook of
Constraint Programming. Elsevier, 2006.

[101] A. Ruszczynski and A. Shapiro, editors. Stochastic Programming (Hanbooks in
Operations Research and Management Series). Elsevier, 2003.

[102] ILOG S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual,
2007. http://www.ilog.com.

[103] T. Sandholm and R. Shields. Nogood learning for mixed-integer programming.
Technical Report CMU-CS-06-155, Carnegie Mellon University, 2006.

[104] M. W. P. Savelsbergh. Preprocessing and probing for mixed integer programming
problems. ORSA Journal on Computing, 6:445–454, 1994.

104 Bibliography

[105] Herbert E. Scarf. Neighborhood systems for production sets with indivisibilities.
Econometrica, 54(3):507–532, 1986.

[106] Christian Schulte. Programming Constraint Services. PhD thesis, Universität
des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Infor-
matik, Saarbrücken, Germany, 2000.

[107] Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In
Principles and Practice of Constraint Programming, volume 3258 of Lecture Notes
in Computer Science, pages 619–633. Springer, 2004.

[108] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling prob-
lems. SIAM Journal on Discrete Mathematics, 2, 1989.

[109] A. Shapiro. Monte Carlo sampling approach to stochastic programming. In
ESAIM: Proceedings, volume 13, pages 65–73, December 2003.

[110] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm
for satisfiability. In ICCAD, pages 220–227, 1996.

[111] Ivan E. Sutherland. Sketchpad: a man-machine graphical communication system.
In DAC ’64: Proceedings of the SHARE design automation workshop, New York,
NY, USA, 1964. ACM.

[112] Rekha Thomas and Robert Weismantel. Test sets and inequalities for integer
programs. Integer Programming and Combinatorial Optimization, pages 16–30,
1996.

[113] Erlendur S. Thorsteinsson. Branch-and-check: A hybrid framework integrating
mixed integer programming and constraint logic programming. Lecture Notes in
Computer Science, 2239:16–30, 2001.

[114] K. Truemper. Design of Logic-Based Intelligent Systems. John Wiley & Sons,
2004.

[115] G. S. Tseitin. On the complexity of derivations in the propositional calculus. In
A. O. Slisenko, editor, Structures in Constructive Mathematics and Mathematical
Logic, Part II, pages 115–125, 1968.

[116] Stan P.M. van Hoesel, Arie M.C.A. Koster, Robert L.M.J. van de Leensel, and
Martin W.P. Savelsbergh. Polyhedral results for the edge capacity polytope.
Mathematical Programming, 92:335–358, 2002.

[117] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. The
sample average approximation method applied to stochastic routing problems: A
computational study. Computational and Applied Optimization, 24, 2003.

[118] David Waltz. Understanding line drawings of scenes with shadows. In The Psy-
chology of Computer Vision, page pages. McGraw-Hill, 1975.

