
UNIVERSITÀ DEGLI STUDI DI PADOVA

Sede Amministrativa: Università degli Studi di Padova
Dipartimento di Matematica Pura e Applicata

Scuola di Dottorato di Ricerca in Scienze Matematiche

Indirizzo di Matematica Computazionale

XXI Ciclo

Three Topics in
Mixed Integer Programming

Direttore della Scuola: Ch.mo Prof. Paolo Dai Pra

Supervisore: Ch.mo Prof. Matteo Fischetti

Dottorando: Arrigo Zanette

Padova, 3 Novembre 2008

UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI MATEMATICA PURA E APPLICATA

Three Topics in
Mixed Integer Programming

Ph.D. THESIS

Author: Arrigo Zanette
Coordinator: Ch.mo Prof. Paolo Dai Pra
Supervisor: Ch.mo Prof. Matteo Fishetti

2008–2009

Scuola di Dottorato di Ricerca in Matematica Computazionale – XXI CICLO

Abstract

In the present thesis we describe our contributions on three topics in Mixed Integer
Programming (MIP). In chapter entitled “Lexicography and degeneracy: Can a pure
cutting plane algorithm work?”, we discuss an implementation of the lexicographic ver-
sion of Gomory’s fractional cutting plane method for Integer Linear Programming (ILP)
problems and of two heuristics mimicking the latter. In computational testing on a bat-
tery of MIPLIB problems we compare the performance of these variants with that of the
standard Gomory algorithm, both in the single-cut and in the multi-cut (rounds of cuts)
version, and show that they provide a radical improvement over the standard procedure.
We also offer an explanation for this surprising phenomenon. In chapter entitled “Min-
imal Infeasible Subsystems and Benders cuts”, taking inspiration from general cutting
plane methods for MIP, we propose alternative selection criteria for Benders cuts, and
analyze them computationally. Our approach is based on the correspondence between
minimal infeasible subsystems of an infeasible Linear Program, and the vertices of the
so-called alternative polyhedron. The choice of the "most effective" violated Benders
cut then corresponds to the selection of a suitable vertex of the alternative polyhedron,
hence a clever choice of the dual objective function is crucial–whereas the textbook Ben-
ders approach uses a completely random selection policy, at least when the so-called
feasibility cuts are generated. Computational results on a testbed of MIPLIB instances
are presented. We show that the proposed methods allow for a speedup of 1 to 2 orders
of magnitude with respect to a textbook implementation. In chapter entitled “Fast Ap-
proaches to Improve the Robustness of a Railway Timetable”, we address the problem
of finding a robust train timetable. The Train Timetabling Problem (TTP) consists in
finding a train schedule on a railway network that satisfies some operational constraints
and maximizes some profit function which counts for the efficiency of the infrastructure
usage. In practical cases, however, the maximization of the objective function is not
enough and one calls for a robust solution that is capable of absorbing as much as possi-
ble delays/disturbances on the network. We propose and analyze computationally four
different methods to improve the robustness of a given TTP solution. The approaches
combine Linear Programming (LP) and ad-hoc Stochastic Programming/Robust Opti-
mization techniques. The computational results on real-world instances show that two
of the proposed techniques are very fast and provide robust solutions of comparable
quality with respect to the standard (but very time consuming) Stochastic Program-
ming approach.

Sommario

Nel presente lavoro di tesi descriviamo i nostri contributi su tre argomenti di Mixed In-
teger Programming (MIP). Nel capitolo intitolato “Lexicography and degeneracy: Can
a pure cutting plane algorithm work?” discutiamo una implementazione della versione
lessicografica del metodo dei piani di taglio di Gomory per problemi di Integer Li-
near Programming (ILP) e due euristiche. Nei test computazionali su una batteria di
istanze della libreria MIPLIB confrontiamo la performance dei metodi implementati col
l’algoritmo standard di Gomory, sia nella versione a singolo taglio che nella versione
multi taglio (round di tagli), e mostriamo che le nostre implementazioni producono un
miglioramento radicale sulla procedura standard. Inoltre forniamo un’interpretazione di
questo sorprendente fenomeno. Nel capitolo intitolato “Minimal Infeasible Subsystems
and Benders cuts”, prendendo ispirazione dai metodi cutting plane generalmente usati
in MIP, proponiamo nuovi criteri di selezione per i tagli di Benders, e li analizziamo
computazionalmente. Il nostro approccio si basa sulla corrispondenza tra sistemi mini-
mamente infeasible di un problema lineare infeasible, e i vertici del così detto poliedro
delle alternative. La scelta del taglio di Benders violato più efficace corrisponde quindi
alla selezione di un vertice opportuno nel poliedro delle alternative, da cui segue che
è cruciale una scelta intelligente della funzione obiettivo duale–mentre l’approccio di
Benders textbook usa una politica di scelta completamente casuale. Nei test compu-
tazionali mostriamo che il metodo proposto consente uno speedup da 1 a 2 ordini di
grandezza rispetto all’implementazione textbook. Nel capitolo intitolato “Fast Approa-
ches to Improve the Robustness of a Railway Timetable”, ci occupiamo del problema di
trovare una tabella oraria robusta in ambito ferroviario. Il Train Timetabling Problem
(TTP) consiste nel trovare uno schedule dei treni di una rete ferroviaria che soddisfi
dei vincoli operativi e massimizzi una funzione di profitto che stimi l’efficienza dell’uso
dell’infrastruttura. Tuttavia la massimizzazione della funzione obiettivo può non essere
sufficiente e si può voler trovare una soluzione robusta, ovvero capace di assorbire il più
possibile i ritardi/disturbi sulla rete. A tal fine, proponiamo e analizziamo computa-
zionalmente quattro diversi metodi per migliorare la robustezza di una data soluzione
di TTP. Gli approcci combinano Programmazione Lineare e tecniche ad-hoc di Sto-
chastic Programming/Robust Optimization. I risultati computazionali su istanze reali
mostrano che due delle tecniche proposte sono molto veloci e forniscono soluzioni ro-
buste di qualità comparabile ad un approccio di Stochastic Programming standard, ma
computazionalmente molto più oneroso.

Acknowledgments

During the last three years many people have encouraged me and contributed to this
thesis: I want to thank all of them without whom I would not have reached this goal.

Firstly, I have to thank my advisor, Prof. Matteo Fischetti, who supported me with
his deep scientific understanding and enthusiasm for research, and made this experience
really enjoyable by creating an uncommonly friendly environment.

Many thanks also to the guys of the OR group in Padova and Bologna: Domenico
Salvagnin, who shared with me this adventure as a sincere friend and co-author of
two chapters of this thesis, and Michele Monaci and Valentina Cacchiani, for their
friendship and the help provided with the railway data. A special thought goes to
Lorenzo Brunetta, whose helpfulness and kindness we miss so much.

I am deeply indebted to Prof. Egon Balas, co-author of the second chapter, for
having given me the opportunity of visiting him at Carnegie Mellon and for having
shared his outstanding personality with me during many inspiring conversations.

I cannot forget to thank the technical staff at the department of Mathematics and
at DEI for their kind and prompt assistance.

Finally, I am sincerely grateful to whom have always unconditioned supported my
choices: my family and Valentina.

Contents

1 Mixed Integer Programming 1
1.1 The mathematical model . 2
1.2 Linear programming . 2

1.2.1 The Simplex Method . 3
1.3 Cutting planes . 4

1.3.1 Geometry of Chvátal-Gomory cuts 6
1.3.2 Stronger cuts . 7
1.3.3 Fortune of Gomory cutting planes 9

1.4 Branch and Bound . 10
1.5 Branch and Cut . 11

2 Lexicography and degeneracy: Can a pure cutting plane algorithm
work? 13
2.1 Introduction . 13
2.2 Gomory cuts . 15
2.3 Degeneracy and the lexicographic dual simplex 17

2.3.1 Lexicographic simplex and Gomory cuts: an entangled pair . . . 18
2.4 Heuristics variants . 20
2.5 Cut validity . 21
2.6 Computational results . 23
2.7 Approximating MIG cuts for pure integer programs 34
2.8 Conclusions and future work . 39

3 Minimal Infeasible Subsystems and Benders cuts 41
3.1 Introduction . 41
3.2 Benders cuts: theory ... 42
3.3 ... and practice . 45
3.4 Benders cuts and Minimal Infeasible Subsystems 47
3.5 Computational results . 49
3.6 Conclusions . 53

4 Fast Approaches to Improve the Robustness of a Railway Timetable 57
4.1 Introduction . 57
4.2 Literature review . 58

xii Contents

4.3 The Nominal Model . 59
4.4 The Stochastic Programming Paradigm 62

4.4.1 The Sample Average Approximation Method 63
4.4.2 Sampling . 64

4.5 Validation Model . 65
4.6 Finding Robust Solutions . 66

4.6.1 A Fat Stochastic Model . 67
4.6.2 A Slim Stochastic Model . 67
4.6.3 Light Robustness . 68

4.7 Computational Results . 69
4.8 Conclusions and future work . 78

Chapter 1

Mixed Integer Programming

Since the last half of the past century, Operations Research has played a fundamental
role in a broad range of military and civilian applications, including logistics, manage-
ment, transportation, finance, biology, and physics.

Among Operations Research techniques, Linear Programming (LP) is perhaps the
most known and the basic brick for many other approaches. It has been introduced
during the Second World War, to model planning (or programming, in the military
jargon) problems, using linear constraints. This kind of modelling turned out to be
efficiently solvable in practice by using the Simplex Method introduced by Dantzig in
1947, and also in theory, since it has been proved by Khachiyan [42] using the Ellipsoid
Method, and later by Karmarkar [41] using the so-called Barrier Method, that LP
problems can be solved in polynomial time.

A generalization of LP is Mixed Integer Programming (MIP). MIP can be considered
the swiss army knife in Operations Research, due to its modelling expressiveness derived
by mixing (hence the name) in the same mathematical model variables defined in the
reals, as for LP, and in the integers. The need of integer variables to model planning
decisions arose quite soon after the introduction of the simplex method. E.g., one
can easily model the decision making process by introducing binary variables, that is
variables that take value 1, if a decision as to be taken, 0 otherwise.

However, unlike LP, no polynomial time algorithm is known for solving MIP prob-
lems in general; indeed it has been proved that MIP problems belong to the class of
NP-hard problems (see Garey and Johnson [29], for example).

The vast practical impact and the intrinsic difficulty, make MIP problems one of the
most intriguing topics in applied mathematics. Since the introduction of MIP modelling,
big steps have been done in dealing with its solution: from small problems of dozens of
binaries variables and constraints, we are currently able to solve instances of thousands
of variables and constraints. The reason of the success is twofold: first, the increased
computing power availability, that makes manageable problems of bigger and bigger
size, and opens up the way to new approaches, once unpractical. The second, and
probably the most important reason, is the advance in algorithms, exact and heuristic,
used to solve MIP problems.

2 Chapter 1. Mixed Integer Programming

In the sequel, we will briefly introduce the main algorithmic ideas developed for
attacking MIP problems.

1.1 The mathematical model

A Mixed Integer linear Program (MIP) is defined as follows:

zMIP = min cTx

subject to Ax ≤ b
l ≤ x ≤ u
x ∈ Rn

xj ∈ Z ∀j ∈ I

(1.1)

where c ∈ Qn is the cost vector, A ∈ Qm×n is the constraints matrix, b ∈ Qm the righ-
hand side, l ∈ (Q ∪ {−∞})m and u ∈ (Q ∪ {∞})m the bounds on variables, typically
treated apart from the rest of constraints. For simplicity sake, in the sequel we will
consider l = 0 and and the upper bound x ≤ u included in the constraint matrix.
Variables constrained to integrality are indexed in I ⊆ N = {1, . . . , n}. Related to the
matrix notation in which it is written, constraints are also called rows and variables
columns. Integer variables xj with bounds 0 ≤ xj ≤ 1 are called binary variables and
typically have a different semantic than other integer variables, called general integer.
Indeed, binary variables are typically used to model the common situation in which yes-
or-no decisions arise. Moreover, from a theoretical viewpoint, any integer variable can
be expressed only in terms of binary variables through the binary expansion of interval
[l, u] (e.g., a variable xg ranging in the interval [0, 7] can be substituted, without loss
of generality, by using 3 different binary variables representing its binary expansion:
xg = xb0 + 2xb1 + 4xb2). Any vector x satisfying constraints in (1.1) is called feasible
solution. We will denote by z∗MIP the optimal integer solution of the MIP problem.

Geometrically speaking, constraints (1.1) define the set X obtained intersecting the
polyhedron PLP = {x ∈ Rn

+ : Ax ≤ b} and Z|I|. The integer hull of PLP is the convex
hull of points in X, conv(X). A fundamental result of Meyer [58] is that the integer
hull of the rational polyhedron PLP is again a rational polyhedron, PMIP . Namely,
conv(X) is given by the intersection of a finite number of inequalities defining PMIP .
So, provided that the polyhedral description of conv(X) is known, integrality constraints
become redundant and the problem simple [67]. However, the polyhedral description is
hard to find in general. This fact supports the theoretical importance of cutting plane
algorithms (see Section 1.3), in which conv(X) is iteratively constructed by adding valid
inequalities for conv(X) to PLP .

1.2 Linear programming

Discarding the integrality constraints in (1.1), the MIP model becomes a Linear Pro-
gramming (LP) model.

1.2. Linear programming 3

The solutions of LP is a relaxation of MIP. That is, the optimal value of LP, z∗LP
is a lower bound of the optimal value of MIP, say z∗MIP . The percentage difference
(z∗MIP − z∗LP)/z∗LP is called integrality gap. If this gap is 0, then the solution of the
MIP model resorts to the solution of its LP relaxation. There exist entire classes of
constraint matrices A that guarantee this desirable property [67].

LP can be solved efficiently, for example, by using the Simplex Method invented by
Dantzig in 1947.

1.2.1 The Simplex Method

The simplex method requires to put the LP model in standard form. This means that
inequality constraints are to be transformed into equality constraints by introducing
so-called slack variables (e.g., for a “≤” constraint a positive slack variable is added
to the left-hand-side of the constraint). Moreover, applying a linear transformation on
variables, lower bounds are set to zeros; on the other hand, upper bounds are treated
implicitly by complementing the respective variables as needed, during the execution of
the algorithm. All data is arranged for the computation in a matrix, called tableau. The
first row of the tableau, row 0, stores the coefficients of the objective function. Other
rows store the constraints matrix A. The first column, column 0, is reserved for the
right-hand-side values.

A basis B is a square invertible matrix obtained by selecting a subset of m columns
(i.e., basic variables). The unique solution of the linear system obtained by setting to
zero all non-basic variables is called basic solution.

The simplex algorithm iterates through basic solutions, by exchanging one column
in the basis (leaving variable) with another outside the basis (entering variable): this
operation is called pivot.

The choice of entering and leaving variables can be done by following different mea-
sures of improvement. Indeed, the algorithm comes into two main variants. On one
hand, the primal simplex method visits only feasible solutions by iteratively improving
the objective function value, until the optimum is eventually reached. On the other
hand, the dual simplex method visits only more-than-optimal solutions until it eventu-
ally finds a feasible solution.

The twofold nature of the algorithms relies on the LP strong duality, that is, there
exists a dual version of the original (primal) problem, defined in a dual space, which will
attain the same optimal value as the primal problem—provided such optimum exists
and is finite (refer to [5] for a treatment of linear programming duality). Actually, the
dual simplex corresponds to the primal simplex applied to the dual of the given problem.

When the measure of improvement fails the algorithm can cycle. This is due to either
primal or dual degeneracy. In case of primal degeneracy, there are many different bases
corresponding to the same basic solution; in case of dual degeneracy, there are different
basic solutions with the same cost. In both the situations, some countermeasure is
required to avoid cycling. The first proposed solution was to use a lexicographic simplex
algorithm [33]. Heuristic alternatives were then developed to address the computational

4 Chapter 1. Mixed Integer Programming

burden of the lexicographic simplex. The reader is referred to [71] for more details on
these techniques, and on the practical implementation of the simplex method as well.

The simplex method performs very well in practice, even if it has an exponential
worst case running time, and its effectiveness together with improved implementations
through years, are among the reasons of success in the solution of MIP problems of
increasing size.

In addition to the simplex method, other algorithms have been proposed to solve
LPs. In [42], Khachiyan first constructively proved the polynomial complexity of LP.
The ellipsoid algorithm proposed by Khachiyan has the remarkable property of being
independent on the number of constraints in input. The only requirement is that one
should be able to provide efficiently, if any, a constraint violated by a given point x∗.
The problem of finding a constraint violated by a given point x∗ is called separation
problem. In a sense, we can think of the ellipsoid method as a cutting plane algorithm,
like the ones we will describe in the next section. Moreover, this peculiar feature has
a profound theoretical consequence, when going back to MIP problems. Geometrically
speaking, a MIP is a polyhedron with exponentially many defining constraints. This is a
problem if one writes down the overall model; but this is not an issue anymore by using
the ellipsoid method. Now the point is that if we were able to answer a separation query
in polynomial time, we would also be able to solve (1.1) in polynomial time by using the
ability of the ellipsoid method of dealing implicitly with constraints. Of course this is
very unlikely to be the case: indeed, it has been proved [67] that the separation problem
is polynomially solvable if and only if the related optimization problem is polynomially
solvable as well.

In [41], Karmarkar proposed another polynomial time algorithm for solving LPs.
Unlike the ellipsoid method, this algorithm has emerged in the recent years as a valid
alternative to the Simplex Method, at least for huge models. E.g., the application
studied in Chapter 4, we found it much faster than the simplex method for solving the
very-large-scale LP models involved.

1.3 Cutting planes

If the LP relaxation does not suffice to solve the MIP problem, one may try to strengthen
the relaxation by adding new inequalities and solving the LP relaxation again. As
mentioned in Section 1.1, theory [58] suggests that iterating this process one could
eventually find the MIP optimum, since MIP is a polyhedron. This technique is called
cutting planes method and a pseudocode of the general scheme is given in Figure 1.1.

A cutting plane is an inequality valid for PMIP but violated by at least one point of
PLP . A way of deriving a valid inequality for PMIP is by aggregating rows in PLP with
some non-negative multipliers u ∈ Rn

+:

uTAx ≤ uT b

Since x is non-negative the inequality obtained by rounding down the coefficients of the

1.3. Cutting planes 5

input : MIP problem P
output: optimal solution x∗MIP of P
repeat1

Solve the current LP relaxation of P2

if the solution x∗LP is integer then3

return x∗LP4

else5

Solve the separation problem: find (π, π0) valid for X violated by x∗LP6

Add the cut πTx ≤ π0 to the current LP relaxation7

end8

until stopping criterion reached9

Figure 1.1: General cutting planes algorithm.

left-hand-side
buTAcx ≤ uT b (1.2)

is again a valid cut for PLP . Now, since x ∈ X is integer the strengthened cut:

buTAcx ≤ buT bc (1.3)

is a valid inequality for X. Cuts derived in this way are called Chvátal-Gomory cuts.
Chvátal proved in [19] that taking successive closures of this simple kind of cuts, i.e.,
the (undominated) cuts derived from all the possible multipliers u in the separation
phase (6) of Algorithm 1.1, suffices to ensure convergence. However, it is not clear how
to derive a violated cut, given a point x∗.

Gomory addressed that issue many years before, in his seminal work [35], showing
that violated Chvátal-Gomory cuts can be read directly from the fractional rows of the
current LP optimal tableau. In such a case, u appearing in (1.2) corresponds to the
entries of a row of the optimal basis inverse. The Gomory procedure is the following.
Starting from the Tableau row i

xi +
∑

j∈N\B

aijxj = ai0 (1.4)

we can relax it to inequality xi +
∑

j∈N\B aijxj ≤ ai0 Applying the Chvátal-Gomory
rounding procedure we get the Integer Gomory cut:

xi +
∑

j∈N\B

baijcxj ≤ bai0c (1.5)

Subtracting (1.5) from (1.4), and denoting by fij the fractional part of aij yields∑
j∈N\B

fijx ≥ fi0 (1.6)

(1.6) is called Fractional Gomory cut (FGC).

6 Chapter 1. Mixed Integer Programming

Provided that the MIP model has an integer objective function, that is the vector cT

has only integer coefficient, Gomory gave two alternative proofs of convergence. They
both rely on the lexicographic simplex method for getting rid of degeneracy in the
LP relaxations. The lexicographic simplex objective is to minimize (or maximize) the
solution vector formed by the objective function z, interpreted as the most important
lexicographic variable, followed by the other variables. This is equivalent to solve the
original LP amended with the following objective function:

minMnx0 +Mn−1x1 . . .+Mxn−1 + xn (1.7)

where M is a sufficiently large positive integer, and x0 = z. Now let us suppose xj is
the first fractional variable, according to the lexicographic order. The key point of the
first proof is that a Gomory cut derived from the row of the current lexicographically
optimal tableau where xj is basic, will increment the value of the objective function (1.7)
by, at least, Mn−j(dxje − xj). Thus, assuming without loss of generality that (1.7)
is bounded, the number of iterations of Algorithm 1.1 is finite. The second proof
relaxes the requirements of algorithm 1.1, allowing cuts to be derived after every lex-
simplex pivot. The risk, with respect to the first proof, is that we start separating
shallow cuts that do not ensure a significant improvement of (1.7). Shallow cuts, as
we will see in Chapter 2, are intimately connected to the determinant of the basis.
Intuitively, shallow cuts require small fractions to justify their shallowness, and small
fractions require big determinant to be represented. But shallow cuts can be avoided
ensuring the determinant D of the current basis is upper bounded by some integer D̄.
Indeed, it is always possible to limit the value of D, e.g., by introducing a finite number
of valid inequalities (Gomory cuts) with fractional coefficients on which pivoting for
decreasing D magnitude. So the algorithm will terminate in a finite number of steps.
An application of this latter proof are all-integer cutting planes methods [30], where
D̄ = 1.

1.3.1 Geometry of Chvátal-Gomory cuts

Let first introduce some definitions. A supporting hyperplane of a polyhedron P = {x ∈
Rn

+ : Ax ≤ b} is an hyperplane cTx = c0 such that c0 = max{cTx : x ∈ P}. The
intersection F = P ∩ {x : cTx = c0} is a polyhedron by itself and is called face of
P . The dimension of a polyhedron P is the dimension of the smallest affine subspace
containing F . A polyhedron P is full-dimensional if its dimension is n or, equivalently,
the system of inequalities {Ax ≤ b} does not contain any implicit equality. A facet is a
proper face of maximum dimension, e.g., if the polyhedron is full-dimensional a facet is
a face of dimension n− 1.

A cut (π1)Tx ≤ π1
0 for P = {x : Ax ≤ b} dominates another cut (π2)Tx ≤ π1

0 if
π1 ≥ π2 and π1

0 ≤ π2
0. It is easy to prove by using duality (see [62], for example) that all

the undominated Chvátal-Gomory cuts are obtainable by using dual coefficients cBB−1

for a certain basis B of PLP . Indeed, starting from any Chvátal-Gomory cut, one can
maximize in PLP the left-hand-side of the cut and then apply the rounding procedure

1.3. Cutting planes 7

πTx = π0 + f

πTx = π0

rounding

Dual cone
x∗

π

PLP

Figure 1.2: Cut geometry.

as in (1.2) in order to strengthen the initial cut and to produce an undominated one.
This fact open up an interpretation of Chvátal-Gomory cuts (see Figure 1.2). Namely,
any undominated Chvátal-Gomory cut can be derived by taking a vertex x∗ of PLP and
looking for an integer objective function πT maximized in x∗ (that is, in the cone of
dual multipliers u). Applying the rounding procedure in (1.3) yields the cut.

In [16] the above interpretation is applied to derive useful cuts. Indeed, under some
conditions it is easy (polynomial) to find an appropriate objective function violated by
a fractional basic solution. However, the general solution of the problem, addressed for
example in [53], is NP hard.

1.3.2 Stronger cuts

Let us now review the derivation of Chvátal-Gomory cuts in order to show how they
can be strengthened. Let our starting polyhedron be the following single inequality

ax ≤ b, x ∈ Z+ (1.8)

Then, denoting by f the fractional part (a− bac) of a and by f0 the fractional part of
b, we can rewrite (1.8) as follows:

bacx+ fx ≤ b, x ∈ Z+ (1.9)

Let z ∈ Z be equal to bacx and y ∈ R+ be equal to fx. Then we can restate (1.9) in
terms of z and y:

z + y ≤ b, z ∈ Z, y ∈ R+ (1.10)

It is easy to show that a valid cut for (1.10) is the following:

z ≤ bbc (1.11)

8 Chapter 1. Mixed Integer Programming

0 bbc b dbe z

y
z ≤ bbc

z + y ≤ b

0 bbc b dbe z

y

z − y ≤ b

z − 1
1−f0 y ≤ bbc

Figure 1.3: Mixed integer rounding.

which is exactly the Chvátal-Gomory cut (1.3), and is depicted in the left chart of
Figure 1.3.

However, instead of (1.9) we can equivalently write:

daex− (1− f)x ≤ b, x ∈ Z+ (1.12)

hence:
z − y ≤ b, z ∈ Z, y ∈ R+ (1.13)

for which a valid cut is given by:

z − 1
1− f0

y ≤ bbc (1.14)

or
bacx+

f − f0

1− f0
x ≤ bbc (1.15)

as depicted in the right chart of Figure 1.3. If f − f0 > 0 cut (1.15) is actually a
strengthening of the Chvátal-Gomory cut (1.11). This idea can be applied to strengthen
any Chvátal-Gomory cut. Indeed, given the Chvátal-Gomory cut

∑
jbajcxj ≤ bbc, first

relax the generating row
∑

j ajxj ≤ b∑
j: fj≤f0

bajcxj +
∑

j: fj>f0

ajxj ≤ b (1.16)

i.e., ∑
j: fj≤f0

bajcxj +
∑

j: fj>f0

dajexj −
∑

j: fj>f0

(1− fj)xj ≤ b (1.17)

Applying (1.14) with z =
∑

j: fj≤f0bajcxj +
∑

j: fj>f0
dajexj and y =

∑
j: fj>f0

(1 −

1.3. Cutting planes 9

fj)xj , yields the following cut:

∑
j

(
bajc+

(fj − f0)+

1− f0

)
xj ≤ bbc (1.18)

Cut (1.18) was studied by Marchand et al. in [56] and is called Mixed Integer Rounding
(MIR) cut. Starting from a Tableau row, transforming it into an inequality constraint
and applying the above procedures yields the Gomory Mixed Integer (GMI) cut, in-
vented by Gomory in [36]. As for (1.5), GMI cuts can be given also in fractional form:

∑
j∈N\B: fij≤fi0

fijxj +
∑

j∈N\B: fij>fi0

fi0(1− fij)
1− fi0

xj ≥ fi0 (1.19)

Indeed cuts (1.18) and (1.19), despite being a strengthening of (1.3) and (1.6) respec-
tively, can be used to deal with MIP problems involving rational (or continuous) vari-
ables.

Note that it is natural to use a disjunctive argument to derive and prove (1.14) and
(1.11), even if for the latter the argument is less evident. That is, we want to separate a
cut valid for the convex hull of the union of the two polyhedra obtained by intersecting
the initial polyhedron with the disjunction x ≤ bbc∪x ≥ bbc+ 1 on the integer variable
x. The disjunctive programming approach was pioneered in 1974 by Balas [6] and lead
to the so-called split cuts.

A comprehensive description of MIR cuts, GMI cuts, split cuts and other families of
general cutting planes for MIP problems is given in [23]. There, a hierarchy of families
of cuts is given: it turns out that the most important families of cuts are, at most, as
strong as GMI cuts are.

Recently Letchford et al. [44] reviewed strengthening procedures for Chvátal-Gomory
cuts and proposed a new one, that does not involve the introduction of continuous
variables, as in the GMI case.

1.3.3 Fortune of Gomory cutting planes

After the first successes (see [11], for example) it was observed quite soon [38] that a pure
cutting plane algorithm, as in Figure 1.1, suffers from an early tailing off phenomenon:
large sequence of cuts are added without any significant improvement towards integral-
ity. Due to this observation, pure cutting plane methods were abandoned in practice in
favor of enumerative techniques. In Chapter 2 we will see what are the causes of such
an early tailing off, and how to mitigate them.

Nowadays, Gomory cutting planes are commonly used inside MIP solvers to strengthen
the problem formulation. Their revival is due to Balas et al. [8], in which they report a
breakthrough in the solution of binary MIP problems using rounds of GMI cuts embed-
ded in a B&B code. Since then, GMI cuts have become a common feature in all MIP
solvers.

In addition to Gomory cutting planes, other cuts are among the arsenal of state-

10 Chapter 1. Mixed Integer Programming

of-the-art MIP solvers. These cutting planes do not have a general applicability, but
were developed by studying the polyhedral structure of specific problems such as knap-
sack, fixed-charge flow, vertex packing/covering. Solvers try to automatically identify
these common substructures in general instance and to add the appropriate cuts. A
comprehensive description can be found in [55].

1.4 Branch and Bound

Branch and bound (B&B) is an efficient way of enumerating all the possible integer
solutions of a MIP. The outline of the algorithm is given in Figure 1.4.

The algorithm procedes by partitioning the initial problem P into subproblems
Pi (branching phase). Subproblems Pi are then solved recursively by applying B&B.
Usually branching is implemented by using a search tree data structure (hence the
name): P is called the root node and Pi are child nodes. The current best integer
feasible solution found is the incumbent. A node, and the corresponding subproblem
Pi, is said to be fathomed when one of the following conditions holds:

1. Pi has an integer feasible solution, then we update the incumbent.

2. the constraints defining Pi make it infeasible

3. a lower bound on the cost of Pi is greater than the current incumbent cost: this
condition is called bounding

The last two conditions are typically implemented using a relaxation of problem P, for
which it is simple to verify feasibility and to find the optimal value. In fact, if P is
feasible then all its relaxations will be feasible as well, and will have an optimal cost not
greater (if minimizing) than P. The most used relaxation is the LP relaxation, obtained
by relaxing integrality constraints of (1.1); another practically important relaxation is
Lagrangian relaxation [31].

The branching phase is usually carried out by selecting a fractional variable xj and
splitting current node problem Q into the two subproblems Q1 = {Q ∩ xj ≤ bxjc}
and Q2 = {Q ∩ xj ≥ dxje}. The choice of the variable to branch on turns out to be
crucial. The simplest choice strategies simply look at the values attained by variables
in the current optimum relaxation, e.g., select the one with a fractional part as close as
possible to 0.5. Actually, the best selection strategy would be to branch on the variable
that will improve the lower bound most. However, this problem can be as hard as solving
the original problem, so one can reason again on the estimate of the bound given by
the relaxation, testing what happens to the lower bound after the next branching step
(strong branching). Recently, another kind of branching has been proposed, based on
general disjunctions. That is, instead of branching on a single variable disjunction, one
may consider a general disjunction {πTx ≤ π0 − 1 ∪ πTx ≥ π0}, e.g., the one derived
from a cut as in [24], or one that tends to minimize the number of required branching
nodes, as in [13].

1.5. Branch and Cut 11

input : MIP problem P
output: optimal solution (x∗MIP , z

∗
MIP) of P

let z̄ =∞1

let L = {P}2

while L 6= ∅ do3

Node Selection: Take Q out of L : L = L \ Q4

Solve relaxation Q of Q5

if Q is feasible then6

let x an optimal solution of Q7

let z = cTx its cost8

if x is integer and z < z̄ then9

z̄ = z10

x̄ = x11

Bounding: Remove every Q from L with bound greater than z̄12

Branching: else if z < z̄ then13

Partition Q into subproblems P1 . . .Pn14

Add P1 . . .Pn to L with bound z̄15

end16

end17

end18

return x∗MIP = x̄ and z∗MIP = z̄19

Figure 1.4: General Branch and Bound algorithm.

Another important choice is the order in which nodes inserted into list L (Figure 1.4)
should be processed. The best first strategy is to select the node with the lowest bound,
hoping it is closer to the optimum. A possible drawback of this approach is that it can
take a long time before the first incumbent is found, since the algorithm will tend to
stay close to the root node without going deep into the search tree. On the contrary,
the depth-first always select the deepest node for processing. This minimizes memory
consumption and can produce an incumbent faster. However it may spend a lot of time
enumerating solution regions that have few chances of producing good integer solutions.
Actual solvers mix these two strategies in order to get the best from both of them.

1.5 Branch and Cut

We have seen how to use cutting planes in a pure cutting plane algorithm. Unfortu-
nately, these kinds of algorithms tend to stall quite early, and/or to run into numerical
difficulties. A way of obviating this problem is pairing cutting planes algorithms with
enumeration. The obvious way of doing it is by running the cutting plane algorithm to
strengthen the formulation until tailing off or some other stopping criterion is met, and
then give the new strengthen formulation in input to a B&B. This approach is called
cut-and-branch.

In [1] Padberg and Rinaldi introduced the Branch-and-Cut (B&C) algorithm. Ac-
cording to B&C, globally valid cuts (if possible, facet defining) can be derived at every

12 Chapter 1. Mixed Integer Programming

B&B node. However there is a risk that the number of cuts becomes soon too large
to be handled. Thus cuts are typically stored in a separate data structure, called cut
pool, where they can be efficiently evaluated for violation and then inserted into the
model, as needed. Also an efficient purging policy to remove cuts is important to keep
the model small and the solution of the relaxation fast.

A drawback of B&C is that the LP relaxation can become harder to solve, due to the
increased size of the model and to the possibly denser structure of the cuts with respect
to the original system of constraints. On the other hand, often cuts help reducing the
number of node quite substantially.

The approach in [1] was not intended to use general cutting planes, such as Chvátal-
Gomory cutting planes, because it was not clear how to separate globally valid cuts.
Only in [8] it was shown that one can indeed derive globally valid GMI cuts for 0-1
programs, using a straightforward lifting procedure. Basically, the idea is that for 0-1
problems all integer solutions are vertices of the LP relaxation, so for every assignment
of variables there exists an LP basis of the original problem that yields that assignment.
From that basis we can separate a cut that is valid for the original set of constraints
(not including branching fixings), i.e., globally valid.

Chapter 2

Lexicography and degeneracy: Can
a pure cutting plane algorithm
work?

2.1 Introduction

Modern Branch-and-Cut (B&C) methods for mixed or pure Integer Linear Programs
(ILPs) are heavily based on general-purpose cutting planes such as Gomory cuts, that
are used to reduce the number of branching nodes needed to reach optimality. On the
other hand, pure cutting plane methods based on Gomory cuts alone are typically not
used in practice, due to their poor convergence properties.

In a sense, branching can be viewed as just a “symptomatic cure" to the well-known
drawbacks of Gomory cuts—saturation, bad numerical behavior, etc. From the cutting
plane point of view, however, the cure is even worse than the disease, in that it hides
the real source of the troubles. In this respect, it is instructive to observe that a
main piece of information about the performance of Gomory cuts (namely, that they
perform much better if generated in rounds) was discovered only in 1996 (Balas, Ceria,
Cornuéjols, and Natraj [8]), i.e., about 40 years after their introduction [35].

The purpose of our project, whose scope extends well beyond the present chapter, is
to try to come up with a viable pure cutting plane method (i.e., one that is not knocked
out by numerical difficulties), even if on most problems it will not be competitive with
the branch-and-bound based methods.

As a first step, we chose to test our ideas on Gomory’s fractional cuts, for two reasons:
they are the simplest to generate, and they have the property that when expressed in
the structural variables, all their coefficients are integer (which makes it easier to work
with them and to assess how nice or weird they are). In particular, we addressed the
following questions:

i) Given an ILP, which is the most effective way to generate fractional Gomory cuts
from the optimal LP tableaux so as to push the LP bound as close as possible to
the optimal integer value?

14 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

ii) What is the role of degeneracy in Gomory’s method?

iii) How can we try to counteract the numerical instability associated with the iterated
use of Gomory cuts?

iv) Is the classical polyhedral paradigm “the stronger the cut, the better" still appli-
cable in the context of Gomory cuts read from the tableau? The question is not
at all naive, as one has to take into account the negative effects that a stronger
yet denser (or numerically less accurate) cut has on the next tableaux, and hence
on the next cuts.

As we were in the process of testing various ways of keeping the basis determinant
and/or condition number within reasonable limits, we decided to implement the lexico-
graphic dual simplex algorithm used in one of Gomory’s two finite convergence proofs.
Gomory himself never advocated the practical use of this method; on the contrary, he
stressed that its sole purpose was to simplify one of the two proofs, and that in practice
other choice criteria in the pivoting sequence were likely to work better. Actually, we
have no information on anybody ever having tried extensively this method in practice.

The lexicographic method has two basic ingredients: (a) the starting tableau is not
just optimal, i.e., dual feasible, but lexicographically dual-feasible, and the method of
reoptimization after adding a cut is the lexicographic dual simplex method; and (b) at
least after every k iterations for some fixed k, the row with the first fractional basic
variable is chosen as source row for the next cut.

The implementation of this method produced a huge surprise: the lexicographic
method produces a dramatic improvement not only in gap closure (see Figure 2.1), but
also in determinant and cut coefficient size.

0 500 1000 1500 2000
5.554

5.556

5.558

5.56

5.562

5.564
x 10

4

cuts

ob
je

ct
iv

e
bo

un
d

Air04 (single−cut)

Lex

TB

0 2000 4000 6000 8000

13

14

15

16

17

18

cuts

ob
je

ct
iv

e
bo

un
d

Stein27 (single−cut)

TB

Lex

Figure 2.1: Comparison between the textbook and lexicographic implementations of
single-cut Gomory’s algorithm on air04 and stein27.

It is well known that cutting plane methods work better if the cuts are generated
in rounds rather than individually (i.e., if cuts from all fractional variables are added
before reoptimization, rather than reoptimizing after every cut). Now it seems that if

2.2. Gomory cuts 15

we are generating rounds of cuts rather than individual cuts, the use of the lexicographic
rule would make much less sense, in particular because (b) is automatically satisfied—
so the lexicographic rule plays a role only in shaping the pivoting sequence in the
reoptimization process. So we did not expect it to make much of a difference. Here came
our second great surprize: as illustrated in Figure 2.2, even more strikingly than when
using single cuts, comparing the standard and lexicographic methods with rounds of
cuts shows a huge difference not only in terms of gap closed (which for the lexicographic
version is 100% for more than half the instances in our testbed), but also of determinant
size and coefficient size (not shown in the figure).

0 1 2 3 4

x 10
4

5.556

5.558

5.56

5.562

5.564

5.566
x 10

4

cuts

ob
je

ct
iv

e
bo

un
d

Air04 (multi−cut)

Lex

TB

0 1 2 3

x 10
4

13

14

15

16

17

18

cuts

ob
je

ct
iv

e
bo

un
d

Stein27 (multi−cut)

TB

Lex

Figure 2.2: Comparison between the textbook and lexicographic implementations of
multi-cut Gomory’s algorithm on air04 and stein27.

In this chapter we discuss ad evaluate computationally an implementation of the
lexicographic version of Gomory’s fractional cutting plane method and of two heuristics
mimicking the latter one, and offer an interpretation of the outcome of our experiments.

We also describe a way to round the tableau coefficients when computing FGC
coefficients, which turns out to be very effective (together with the lexicographic sim-
plex) in producing numerically stable cuts. The integration of Gomory Mixed-Integer
cuts within a lexicographic cutting plane method for pure integer programs is finally
addressed.

2.2 Gomory cuts

In this chapter we focus on pure cutting plane methods applied to solving ILPs of the
the form:

min cTx

Ax = b

x ≥ 0 integer

16 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

where A ∈ Zm×n, b ∈ Zm and c ∈ Zn. Let P := {x ∈ <n : Ax = b, x ≥ 0} denote the
LP relaxation polyhedron, that we assume be bounded.

The cut generation is of course a crucial step in any cutting plane method, as one
is interested in easily-computable yet effective cuts.

In 1958, Gomory [35] (see also [37]) gave a simple and elegant way to generate
violated cuts, showing that x∗ can always be separated by means of a cut easily derived
from a row of the LP-relaxation optimal tableau. The cut derivation is based on a
rounding argument: given any equation

∑n
j=1 γjxj = γ0 valid for P , if x is constrained

to be nonnegative and integer then
∑n

j=1bγjcxj ≤ bγ0c and
∑n

j=1dγjexj ≥ dγ0e are
valid cuts. According to Gomory’s proposal, the equation is the one associated with
a row of the LP optimal tableau whose basic variable is fractional: we will refer to
this row as the cut generating row, and to the corresponding basic variable as the cut
generating variable.

The resulting cut, called Fractional Gomory Cut (FGC) or Chvátal-Gomory cut,
has important theoretical and practical properties. First of all, one can use FGCs read
from the LP tableau to derive a finitely-convergent cutting plane method. Secondly,
because of the integrality of all the cut coefficients, the associated slack variable can be
assumed to be integer, so the addition of FGCs does not introduce continuous variables
that could make the rounding argument inapplicable in the next iterations. Moreover,
the fact that the cut coefficients are integer ensures a certain “confidence level" about
the numerical accuracy of the generated cuts. Indeed, once a cut is generated, small
fractionalities in the computed coefficients can be removed safely so as to reduce er-
ror propagation, whereas FGCs with significant fractionalities are likely to be invalid
(because of numerical issues) and hence can be skipped.

In 1960, Gomory [36] introduced the Mixed Integer Gomory (MIG) cuts to deal with
the mixed-integer case. In case of pure ILPs, MIG cuts are applicable as well. Actually,
MIG cuts turn out to dominate FGCs in that each variable xj receives a coefficient
increased by a fractional quantity θj ∈ [0, 1) with respect to the FGCs (writing the
MIG in its ≤ form, with the same right-hand-side value as in its FGC counterpart).
E.g, a FGC cut of the type 2x1−x2+3x3 ≤ 5 may correspond to the MIG 2.27272727x1−
x2 +3.18181818x3 ≤ 5. So, from a strictly polyhedral point of view, there is no apparent
reason to insist on FGCs when a stronger replacement is readily available at no extra
computational effort. However, as shown in the example above, the coefficient integrality
of MIG cuts is no longer guaranteed, and the nice numerical properties of FGCs are
lost. Even more importantly, as discussed in the sequel, the introduction of “weird
fractionalities" in the cut coefficients may have uncontrollable effects on the fractionality
of the next LP solution and hence of the associated LP tableau. Finally, MIG cuts
introduce continuous slack variables that may receive overweak coefficients in the next
iterations, leading to weaker and weaker MIG cuts in the long run. As a result, it is
unclear whether FGC or MIG cuts are better suited for a pure cutting plane method for
pure integer programs based on tableau cuts—a topic that we are going to investigate
in the near future.

It is important to stress that the requirement of reading (essentially for free) the cuts

2.3. Degeneracy and the lexicographic dual simplex 17

directly from the optimal LP tableau makes the Gomory method intrinsically different
from a method that works solely with the original polyhedron where the cut separation
is decoupled from the LP reoptimization, as in the recent work of Fischetti and Lodi [26]
on FGCs or Balas and Saxena [25] on MIG (split) cuts. Actually, only the first round of
cuts generated by the Gomory method (those read from the very first optimal tableau)
work on the original polyhedron, subsequent rounds are generated from a polyhedron
truncated by previously generated cuts.

We face here a very fundamental issue in the design of pure cutting plane methods
based of (mixed-integer or fractional) Gomory cuts read from the LP optimal tableau.
Since we expect to generate a long sequence of cuts that eventually lead to an optimal
integer solution, we have to take into account side effects of the cuts that are typi-
cally underestimated when just a few cuts are used (within an enumeration scheme)
to improve the LP bound. In particular, one should try to maintain a “clean" optimal
tableau so as to favor the generation of “clean" cuts in the next iterations. To this
end, it is important to avoid as much as possible generating (and hence cutting) LP
optimal vertices with a “weird fractionality"—the main source of numerical inaccuracy.
This is because the corresponding optimal LP basis necessarily has a large determinant
(needed to describe the fractionality), hence the tableau contains weird entries that lead
to weaker and weaker Gomory cuts.

In this respect, dual degeneracy (that is notoriously massive in cutting plane meth-
ods) can play an important role and actually can favor the practical convergence of the
method, provided that it is exploited to choose the cleanest LP solution (and tableau)
among the equivalent optimal ones—the sequence of pivots performed by a generic
LP solver during the tableau reoptimization is aimed at restoring primal feasibility as
quickly as possible, and leads invariably to an uncontrolled growth of the basis deter-
minant, so the method gets out of control after few iterations.

2.3 Degeneracy and the lexicographic dual simplex

As already mentioned, massive dual degeneracy occurs almost invariably when solving
ILPs by means of cutting plane algorithms. Indeed, cutting planes tend to introduce
a huge number of cuts that are almost parallel to the objective function, whose main
goal is to prove or to disprove the existence of an integer point with a certain value of
the objective function.

In one of his two proofs of convergence, Gomory used the lexicographic dual simplex
to cope with degeneracy. The lexicographic dual simplex is a generalized version of
the simplex algorithm where, instead of considering the minimization of the objective
function, viewed without loss of generality as an additional integer variable x0 = cTx,
one is interested in the minimization of the entire solution vector (x0, x1, . . . , xn), where
(x0, x1, . . . , xn) <LEX (y0, y1, . . . , yn) means that there exists an index k such that
xi = yi for all i = 1, . . . , k−1 and xk < yk. In the lexicographic, as opposed to the usual,
dual simplex method the ratio test does not only involve two scalars (reduced cost and
pivot candidate) but a column and a scalar. So, its implementation is straightforward,

18 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

at least in theory. In practice, however, there are a number of major concerns that limit
this approach:

1. the ratio test may be quite time consuming;

2. the ratio test may fail in selecting the right column to preserve lex-optimality, due
to round-off errors;

3. the algorithm rigidly prescribes the pivot choice, which excludes the possibility of
applying much more effective pivot-selection criteria.

The last point is maybe the most important. As a clever approach should not interfere
too much with the black-box LP solver used, one could think of using a perturbed
linear objective function x0 + ε1x1 + ε2x2 . . ., where x0 is the actual objective and
1� ε1 � ε2 � Though this approach is numerically unacceptable, one can mimic
it by using the following method which resembles the iterative procedure used in the
construction of the so-called Balinsky–Tucker tableau [9], and is akin to the slack fixing
used in sequential solution of preemptive linear goal programming (see [4] and [70]).

Starting from the optimal solution (x?0, x
?
1, . . . , x

?
n), we want to find another basic

solution for which x0 = x?0 but x1 < x?1 (if any), by exploiting dual degeneracy. So, we
fix the variables that are nonbasic (at their bound) and have a nonzero reduced cost.
This fixing implies the fixing of the objective function value to x?0, but has a major
advantage: since we fix only variables at their bounds, the fixed variables will remain
out of the basis in all the subsequent steps. Then we reoptimize the LP by using x1

as the objective function (to be minimized), fix other nonbasic variables, and repeat.
The method then keeps optimizing subsequent variables, in lexicographic order, over
smaller and smaller dual-degenerate subspaces, until either no degeneracy remains, or
all variables are fixed. At this point we can unfix all the fixed variables and restore the
original objective function, the lex-optimal basis being associated with the non-fixed
variables.

This approach proved to be quite effective (and stable) in practice: even for large
problems, where the classical algorithm is painfully slow or even fails, our alternative
method requires short computing time to convert the optimal basis into a lexicographically-
minimal one. We have to admit however that our current implementation is not perfect,
as it requires deciding whether a reduced cost is zero or not: in some (rare) cases, numer-
ical errors lead to a wrong decision that does not yield a lexicographically dual-feasible
final tableau. We are confident however that a tighter integration with the underlying
LP solver could solve most of the difficulties in our present implementation.

2.3.1 Lexicographic simplex and Gomory cuts: an entangled pair

FGCs and the dual lexicographic simplex are intimately related one each other, in the
sense that FGCs are precisely the kind of cuts that allow for a significant lexicographic
improvement at each step. It is therefore not surprising that Gomory’s (first) proof of
convergence strictly relies on the use of the lexicographic dual simplex [35].

2.3. Degeneracy and the lexicographic dual simplex 19

Indeed, the lexicographic dual simplex method starts with a lexicographically opti-
mal tableau, which means that all columns are lexicographically positive or lexicograph-
ically negative (depending on whether one minimizes or maximizes, and on the sign rule
one follows in representing the columns), and preserves this property throughout the
pivoting procedure. To fix our ideas, let’s opt for minimization and the sign rule that
requires all columns to be lexicographically negative, which means that the first entry
is the negative of what usually goes under the name of reduced cost. Thus at any stage
of the procedure, the first nonzero entry of each column is negative. It is this sign
pattern that guarantees a certain property of the sequence of cuts generated under the
lexicographic rule, provided that the "right" rounding operation is used in generating
the cuts.

As a matter of fact, the Gomory method using the lexicographic simplex can be
proved to be convergent only in case the kind of rounding used is consistent with the
lexicographic objective. We next discuss very briefly the FGC properties that lead to a
convergent method. Let the ith row of the current tableau be

xh +
∑
j∈J−

aijxj +
∑
j∈J+

aijxj = ai0

where xh is the basic variable in row i, J− is the set of indices of nonbasic variables
such that aij ≤ 0, and J+ is the set of indices of nonbasic variables such that aij > 0.
Moreover, let us suppose h is the first index such that x∗h(= ai0) is fractional. To
simplify notation, assume h 6= 0, i.e., the optimal objective value is not fractional.

A key observation is that, due to the lexicographic sign pattern, for all i < h the
first nonzero entry aij in any column j ∈ J+ is negative.

The Gomory rounding procedure can be used to obtain the following FGC, in integer
form:

xh +
∑
j∈J−
daijexj +

∑
j∈J+

daijexj ≥ dai0e (2.1)

Note that we round the coefficients of the original row upward. The choice is moti-
vated by the fact that, for a minimization problem, we expect to lexicographically mini-
mize the solution vector of the linear relaxation, hence the cut is intended to contribute
in the opposite direction, namely, to increase lexicographically the solution vector.

Clearly, the round-up operation maintains the nonpositiveness of the coefficients in
J− and the positiveness of those in J+.

In case no xj with j ∈ J+ becomes strictly positive after the lexicographic reopti-
mization, cut (2.1) requires

xh ≥ dai0e −
∑
j∈J−
daijexj ≥ dai0e.

Otherwise, due to the particular tableau sign pattern, the increase of some xj with
j ∈ J+ implies the increase of some higher lex-ranked basic variable xr (the objective
function included) by a positive amount. In both cases, a significant lexicographic step

20 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

0 200 400 600
0

2

4

6

8

10

12

14
Bound (bm23)

#itrs

ob
je

ct
iv

e
bo

un
d

right sign
wrong sign

0 200 400 600
10

0

10
2

10
4

10
6

10
8

10
10

Cut coefficients (bm23)

#itrs

av
er

ag
e

cu
t c

oe
ffi

ci
en

t

right sign
wrong sign

Figure 2.3: Impact of rounding direction on FGCs read from the tableau rows.

is performed: either the cut-generating variable xh jumps, at least, to its upper integer
value dx∗he, or some higher lex-ranked variable increases by a positive amount. These
considerations allow one to conclude that the method converges after a finite number
of steps; see [35] for more details.

To show the practical impact of reading the “right” FGC from the tableau rows,
in Figure 2.3 we plot the behavior of two variants of the lexicographic method (in its
multi-cut version using rounds of cuts) applied to instance bm23: one variant exploits
the right FGCs, while the other uses their wrong counterpart. The figure shows a huge
difference not only in terms of gap closed, but also of numerical stability (coefficient
size).

2.4 Heuristics variants

While the lexicographic simplex method gives an exact solution to the problem of de-
generacy, simple heuristics can be devised that mimic the behavior of lexicographic dual
simplex. The scope of these heuristics is to try to highlight the crucial properties that
allow the lexicographic method to produce stable Gomory cuts.

As already mentioned, a lex-optimal solution can in principle be reached by using
an appropriate perturbation of the objective function, namely x0 + ε1x1 + . . . + εnxn

with 1 � ε1 � . . . � εn. Although this approach is actually impractical, one can use
a 1-level approximation where the perturbation affects a single variable only, say xh,
leading to the new objective function minx0 + εxh. The perturbation term is intended
to favor the choice of an equivalent optimal basis closer to the lexicographically optimal
one, where the chosen variable xh is moved towards its lower bound—and hopefully
becomes integer.

In our first heuristic, Heur1, when the objective function is degenerate we swap our
focus to the candidate cut generating variable, i.e., the variable xi to be perturbed is
chosen as the most lex-significant fractional variable. The idea is that each new cut

2.5. Cut validity 21

should guarantee a significant lex-decrease in the solution vector by either moving to a
new vertex where the cut generating variables becomes integer, or else some other more
lex-significant variables becomes fractional and can be cut.

A second perturbation heuristic, Heur2, can be designed along the following lines.
Consider the addition of a single FGC and the subsequent tableau reoptimization per-
formed by a standard dual simplex method. After the first pivot operation, the slack
variable associated with the new cut goes to zero and leaves the basis, and it is unlikely
that it will re-enter it in a subsequent step. This however turns out to be undesirable in
the long run, since it increases the chances that the FGC generated in the next iterations
will involve the slack variables of the previously-generated FGCs, and hence it favors
the generation of cuts of higher rank and the propagation of their undesirable charac-
teristics (density, numerical inaccuracy, etc.). By exploiting dual degeneracy, however,
one could try to select an equivalent optimal basis that includes the slack variables of
the FGCs. This can be achieved by simply giving a small negative cost to the FGC
slack variables.

Both the heuristics above involve the use of a small perturbation in the objective
function coefficients, that however can produce numerical troubles that interfere with
our study. So we handled perturbation in a way similar to that used in our implementa-
tion of the lexicographic dual simplex, that requires the solution of two LPs—one with
the standard objective function, and the second with the second-level objective function
and all nonbasic variables having nonzero reduced cost fixed at their bound.

2.5 Cut validity

Margot [57] addressed the possibility that cutting planes generators produce invalid
cuts due to numerical errors, and performed very interesting experiments on this im-
portant issue. The outcome of the experiments is that invalid cuts are separated more
frequently than expected, so validity should be a major concern in the development of
cut generators.

An important step towards a numerical accurate cut generator has been recently
done by Cook et al. [22] for the case of MIG cuts. Their approach is based upon a
common feature of the floating point unit of modern computers, namely, the ability
to decide if the mantissa of a floating point operation should be rounded downward
or upward. Taking advantage of this feature it is possible to derive lower and upper
bounds on every floating point computation carried out. E.g., in order to derive a valid
tableau-based MIG cut, first we have to start from a “valid” tableau row. A tableau row
is obtained by left-multiplying matrix A, assumed to be known without uncertainty, by
an approximation u of a row of the inverse of the basis matrix. The result should be an
equation, say uTA = uT b, that however can turn out to be slightly invalid due to limited
numerical precision. Hence one can weaken the equation into a certainly valid inequality
of a given sense (≤, say) by setting the floating point rounding accordingly. Similarly,
by paying attention to the sense of the floating point rounding in the subsequent steps of
the MIG separation algorithm, it is possible to come up with a MIG cut guaranteed to

22 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

be valid. The approach has however a potential drawback when used in a pure cutting
plane context, as it can produce slightly-modified cuts that do not preserve the nice
properties of the original “theoretical” cuts. Indeed, in an pure cutting plane framework
valid but weaker cuts can lead to small changes in the LP optimal solution. To represent
small changes, very precise tableau entries (and hence very large basis determinants) are
required, so numerical inaccuracy tends to accumulate and the algorithm might stall.

When FGCs are considered, validity can be certified by just solving an LP, since
these cuts are have Chvátal rank 1 with respect to the current formulation. To be more
specific, the validity of a FGC of the form αTx ≤ α0 with (α, α0) ∈ Zn+1 requires
checking whether the maximum value of the LP relaxation with objective function
s := αTx−α0 is strictly less than 1. (FGCs in ≥ form can be handled in a similar way.)

In our context, a generic FGC read from the optimal tableau has the form
∑

jbaijcxj ≤
bai0c. It is easy to show that the current basis B maximizes the objective function
s :=

∑
jbaijcxj − bai0c as well. Indeed, by subtracting from this latter equation the

i-th tableau row written as 0 =
∑

j aijxj − ai0 one can easily project out the basic x
variables and obtains the reduced-cost equation

s = fi0 −
∑
j

fijxj (2.2)

where, as customary, fij ∈ [0, 1) denotes the fractional part of aij , and fij = 0 for basic
variables xj . Being fij ≥ 0 for all j, the current basic solution x∗ is guaranteed to be
optimal for the maximization of s, the corresponding optimal value being s∗ = fi0 < 1,
which proves the validity of the FGC cut.

In practice, the solution of the maximization problem above will be carried out by
a finite-precision solver whose optimality check depends on a certain threshold ε used
to verify reduced cost signs. In this perspective, it makes sense to assert the validity
of a FGC by using the same optimality threshold as in the LP solver, in the sense that
cut invalidity would come into play only when the optimality test itself is invalidated
by numerical problems. This observations motivates the following definition.

Definition 1 Given a polyhedron P = {(x, y) ∈ Rn+m
+ : Ax + y = b} with A ∈ Zm×n

and b ∈ Zm, a basis B of (A, I), an integer vector (α, α0) ∈ Zn+1 and a threshold ε > 0,
we say that cut αTx ≤ α0 is a ε-valid (rank 1) cut if the objective function αTx is
ε-maximized by B, according to the classical reduced-cost test αT − αTBB−1A ≤ ε1T ,
and α0 ≥ bαTBB−1b+ εc.

Accordingly, the ε-validity of a FGC cut is still guaranteed if one performs integer
roundings by using a small positive threshold ε, through operator

floorε(aij) = baij + εc (2.3)

Indeed, with the above redefinition of the floor operator the FGC cut becomes∑
j floorε(aij)xj ≤ floorε(ai0) and the reduced costs f ′ij := aij − floorε(aij) = fij −

2.6. Computational results 23

bfij + εc used in (2.2) to certify FGC validity remain greater or equal to −ε, hence
within the tolerance that certifies optimality.

In our implementation we use the above floorε operator, with ε set in a conservative
way with respect to the optimality tolerance of the LP solver in use.

2.6 Computational results

Our set of pure ILP instances mainly comes from MIPLIB 2003 and MIPLIB 3; see
Table 2.1. It is worth noting that, to our knowledge, even very small instances of these
libraries (such as stein15, bm23, etc.) have never been solved by a pure cutting plane
method based on FGC or MIG cuts read from the LP tableau.

Problem Cons Vars LP opt Opt Source
air04 823 8904 55535.44 56137 MIPLIB 3.0
air05 426 7195 25877.61 26374 MIPLIB 3.0
bm23 20 27 20.57 34 MIPLIB
cap6000 2176 6000 -2451537.33 -2451377 MIPLIB 3.0
hard_ks100 1 100 -227303.66 -226649 Single knapsack
hard_ks9 1 9 -20112.98 -19516 Single knapsack
krob200 200 19900 27347 27768 2 matching
l152lav 97 1989 4656.36 4722 MIPLIB
lin318 318 50403 38963.5 39266 2 matching
lseu 28 89 834.68 1120 MIPLIB
manna81 6480 3321 -13297 -13164 MIPLIB 3.0
mitre 2054 9958 114740.52 115155 MIPLIB 3.0
mzzv11 9499 10240 -22945.24 -21718 MIPLIB 3.0
mzzv42z 10460 11717 -21623 -20540 MIPLIB 3.0
p0033 16 33 2520.57 3089 MIPLIB
p0201 133 201 6875 7615 MIPLIB 3.0
p0548 176 548 315.29 8691 MIPLIB 3.0
p2756 755 2756 2688.75 3124 MIPLIB 3.0
pipex 2 48 773751.06 788263 MIPLIB
protfold 2112 1835 -41.96 -31 MIPLIB 3.0
sentoy 30 60 -7839.28 -7772 MIPLIB
seymour 4944 1372 403.85 423 MIPLIB 3.0
stein15 35 15 5 9 MIPLIB
stein27 118 27 13 18 MIPLIB 3.0
timtab 171 397 28694 764772 MIPLIB 3.0

Table 2.1: Our test bed

Input data is assumed to be integer. All problems are preprocessed by adding an
integer variable x0 that accounts for the original objective function, from which we can
derive valid cuts, as Gomory’s proof of convergence prescribes. FGC cuts are derived in
integer form. Then slack are substituted to bring the cut back to the space of original
variables. Since all computations deal with integers, this avoids round-off errors, and
the cut are ε-valid, according to Definition (1), where ε = 1e−6.

We carried out our experiments in a Intel Core 2 Q6600, 2.40GHz, with a time limit
of 1 hour of CPU time and a memory limit of 2GB for each instance.

Our first set of experiments addressed the single-cut version of Gomory’s algorithm.
Actually, at each iteration we decided to generate two FGCs from the selected cut
generating row—one from the tableau row itself, and one from the same row multiplied
by -1.

The choice of the cut generation row in case of the lexicographic method is governed

24 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

by the rule that prescribes the selection of the least-index variable. As to the other
methods under comparison, the cut generation row is chosen with a random policy
giving a higher probability of selecting the cut-generating variable from those with
fractional part closer to 0.5 (alternative rules produced comparable results).

A very important implementation choice concerns the cut purging criterion. The
lexicographic algorithm ensures the lexicographic improvement of the solution vector
after each reoptimization, thus allowing one to remove cuts as soon as they become
slack at the new optimum. As far as other methods are concerned, however, we can
safely remove cuts only when the objective function improves. Indeed, if the objective
function remains unchanged a removed cut can be generated again in a subsequent
iteration, and the entire algorithm can loop—a situation that we actually encountered
during our experiments. We therefore decided to remove the slack cuts only when it
is mathematically correct, i.e. after a nonzero change in the objective function value,
though this policy can lead to an out-of-memory status after a long stalling phase.

Table 2.2 compares results on the textbook implementation of Gomory’s algorithm
(TB) and the lexicographic one (Lex). Besides the percentage of closed gap (ClGap),
we report 2 tightly correlated parameters to better measure the performance of each
method. The first parameter is the cut coefficients size (Coeff.): large coefficients,
besides increasing the likelihood of numerical errors, can be a symptom of cut ineffec-
tiveness since they are required to represent very small angles in the space of structural
variables. The second parameter is the condition number κ of the optimal basis, which
gives a measure of the inaccuracy of the finite-precision representation of a solution x
to the linear system Bx = b (the smaller the more accurate the representation). In the
table, only the maximum value of the two indicators above during the run is reported.
The first column reports one of the following exit-status codes: (O) integer optimum,
(T) time limit, (M) out of memory, (N) no suitable cuts found as all available cuts where
discarded because of their large (> 1010) coefficients.

2.6.
C
om

putationalresults
25

Textbook Lex
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 N 267 515 44.95 11.73 8.4e+07 4.6e+12 T 5446 10886 3601.15 36.83 1.8e+06 2e+14
air05 N 1237 2391 902.94 2.70 1.5e+08 9.2e+18 T 15859 31712 3601.13 44.60 3.2e+05 3.1e+12
bm23 N 313 618 0.23 18.09 1.4e+09 9.2e+18 O 713 1424 0.97 100.00 2.4e+02 2.7e+06
cap6000 N 575 1117 55.15 5.36 4.6e+07 2.7e+13 N 12606 25130 2112.15 26.53 4.3e+07 8.3e+18
hard_ks100 N 1485 2892 149.03 100.00 2e+08 9.3e+15 O 217 431 0.36 100.00 4.5e+05 1.3e+12
hard_ks9 N 164 289 0.18 98.83 2.2e+09 1.2e+13 O 889 1776 0.53 100.00 4.8e+04 5.3e+09
krob200 O 41 49 1.40 100.00 2.5 1.3e+07 O 1168 2199 256.95 100.00 8.7e+02 4.4e+08
l152lav N 1099 2160 77.89 37.54 4.2e+08 9.2e+18 O 1122 2219 30.21 100.00 1.6e+04 2.1e+09
lin318 O 97 134 8.53 100.00 20 5.4e+08 T 2028 3702 3604.78 63.64 2.4e+04 9.7e+10
lseu N 391 761 0.49 60.75 8.8e+08 9.2e+18 O 15120 30217 33.37 100.00 1.9e+04 7.3e+08
manna81 O 271 270 93.41 100.00 1 9.2e+18 O 879 878 742.08 100.00 1 9.7e+05
mitre T 11722 23373 3600.96 22.76 1.1e+09 9.2e+18 T 5026 10047 3601.78 14.11 1.3e+06 9.8e+14
mzzv11 T 509 978 3624.01 6.17 6.2e+07 9.2e+18 T 437 870 3604.00 24.80 1.2e+02 2.3e+11
mzzv42z T 1229 2413 3601.25 13.29 1.1e+08 9.2e+18 T 819 1629 3603.23 43.67 6.3e+02 5.5e+11
p0033 N 219 434 0.24 10.28 5.1e+08 9.2e+18 O 1496 2957 1.69 100.00 1.8e+03 7.6e+06
p0201 N 95 186 0.28 8.11 5.1e+08 2.2e+14 N 188144 373279 2165.83 85.27 5.1e+08 1.5e+21
p0548z T 279514 535298 3601.16 2.18 6.5e+08 9.2e+18 T 333934 667812 3601.01 0.03 6.4e+05 1.7e+14
p2756 T 5384 10572 3601.03 0.29 2.1e+09 9.2e+18 T 56113 112222 3601.00 0.52 1.2e+04 6.8e+12
pipex N 3888 7538 1.75 17.01 9.7e+08 2e+14 O 767681 1514866 1402.65 100.00 2.7e+06 7.3e+12
protfold T 112 216 3866.35 5.68 2.5e+08 9.2e+18 T 505 1002 4460.44 54.38 1.6e+08 5.6e+14
sentoy N 21775 36984 9.53 10.82 4.4e+08 9.2e+18 O 5729 11456 14.11 100.00 6.5e+04 1.3e+08
seymour N 210 378 430.49 21.67 6.5e+07 9.2e+18 T 779 1538 3605.73 11.23 1.5e+03 2.2e+09
stein15 N 74 123 0.06 25.00 1.9e+09 2.7e+15 O 66 121 0.10 100.00 6 2.4e+03
stein27 N 46 87 0.06 0.00 1.1e+09 5.6e+17 O 4283 8254 9.26 100.00 76 6.5e+04
timtab1-int T 99530 172894 3594.30 22.18 1.8e+09 9.2e+18 T 785007 1569491 3601.00 4.00 4.9e+08 3.4e+15

Table 2.2: Comparison between textbook and lexicographic implementation of Gomory’s algorithm (single-cut version)

26 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

Table 2.2 shows clearly that in most cases the TB version has huge coefficient sizes
and condition numbers, while in Lex all these values remain relatively small along the
entire run. Moreover, Lex could solve to proven optimality 9 of the 25 instances of our
testbed—some of these instances being notoriously hard for pure cutting plane methods.

For illustration purposes, Figure 2.4 gives a representation of the trajectory of the
LP optimal vertices to be cut (along with a plot of the basis determinant) when the
textbook and the lexicographic methods are used for instance stein15. In Figures 2.4(a)
and (b), the vertical axis represents the objective function value. As to the XY space, it
is a projection of the original 15-dimensional variable space. The projection is obtained
by using a standard procedure available e.g. in MATLAB (namely, multidimensional
scaling [15]) with the aim of preserving the metric of the original 15-dimensional space
as much as possible. In particular, the original Euclidean distances tend to be preserved,
so points that look close one to each other in the figure are likely to be also close in the
original space.

5

6

7

8

9

X

(a) TB solutions trajectory

Y

ob
je

ct
iv

e

5

6

7

8

9

X

(b) Lex solutions trajectory

Y

ob
je

ct
iv

e

X

Y

(c) Part of lex sol. traj. (objective = 8)

0 20 40 60 80
10

0

10
5

10
10

10
15

10
20

itrs

(d) Determinant

TB
Lex

Figure 2.4: Problem stein15 (single cut). (a)-(b) Solution trajectories for TB and Lex,
resp.; (c) Lower dimensional representation of the the Lex solution trajectory; the
filled circles are lexicographic optima used for cut separation; their immediate next
circles are optima given by the black-box dual-simplex solver, whereas the other points
correspond to the equivalent solutions visited during lexicographic reoptimization; the
double circle highlights the trajectory starting point. (d) Growth of determinants in
TB and Lex (logarithmic scale).

According to Figure 2.4(a), the textbook method concentrates on cutting points

2.6. Computational results 27

Without lex.simplex With lex.simplex

Iterations Iterations

V
ar
ia
bl
es

Figure 2.5: Fractional spectrography of the sequence of solutions provided by the
Gomory cutting plane method (one cut at a time).

belonging to a small region. This behavior is in a sense a consequence of the efficiency of
the underlying LP solver, that has no reason to change the LP solution once it becomes
optimal with respect to the original objective function—the standard dual simplex will
stop as soon as a feasible point (typically very close to the previous optimal vertex) is
reached. As new degenerate vertices are created by the cuts themselves, the textbook
method enters a feedback loop that is responsible for the exponential growth of the
determinant of the current basis, as reported in Figure 2.4(d).

On the contrary, as shown in Figures 2.4(b), the lexicographic method prevents this
by always moving the fractional vertex to be cut as far as possible (in the lex-sense)
from the previous one. Note that, in principle, this property does not guarantee that
there will be no numerical problems, but the method seems to be work pretty well in
practice.

Finally, Figure 2.4(c) offers a closer look at the effect of lexicographic reoptimiza-
tion. Recall that our implementation of the lexicographic dual simplex method involves
a sequence of reoptimizations, each of which produces an alternative optimal vertex
possibly different from the previous one. As a result, between two consecutive cuts our
method internally traces a trajectory of equivalent solutions, hence in the trajectory
plotted in Figure 2.4(b) we can distinguish between two contributions to the movement
of x∗ after the addition of a new cut: the one due to the black-box optimizer, an the one
due to lex-reoptimization. Figure 2.4(c) concentrates on the slice objective=8 of the
Lex trajectory. Each lexicographic optimal vertex used for cut separation is depicted as
a filled circle. The immediate next point in the trajectory is the optimal vertex found
by the standard black-box dual simplex, whereas the next ones are those contributed
by the lexicographic reoptimization. The figure shows that lexicographic reoptimization
has a significant effect in moving the points to be cut, that in some cases are very far
from those returned by the black-box dual simplex.

Figure 2.5 gives an alternative representation of the fractional solutions visited dur-
ing the optimization of stein15. We call it fractional spectrography, since it depicts

28 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

the spectrum of fractionalities along the execution of the algorithm. Fractional spec-
trography is a pseudo-color plot of the 3-dimensional data set formed by iterations,
variables, and variable values. Iterations are represented in the x-axis, variables in the
y-axis, while the z-axis, representing variable values, is a grayscale color. Variables are
represented in their lexicographic order: variable 0 is the objective function, variable 1
is the lexicographically first variable, x1, and so on. For a problem with only binary
variables, the white color encodes a 1 and the black color a 0. Nonbinaries variables as,
for example, the objective function, are normalized into the interval [0, 1]. All shadings
between black and white are fractional values. This coding helps giving a visualiza-
tion of the degree of fractionality of a solution. In Figure 2.5, the left chart shows the
behavior of the textbook implementation of Gomory cutting planes. It is clear that,
since around iteration 250, the method starts visiting fractional solutions that are closer
and closer one to each other, until the chart assumes an almost uniform gray shading
indicating heavy fractionality persistency. On the contrary, the right-hand-side part of
Figure 2.5 shows the much crisper look of the lexicographic version, where the fractional
components tend to flip between integer values and fractionalities are quickly repaired.

To support the interpretation above even further, we performed the experiment of
just restarting the LP solver from scratch after having generated the FGCs, so that
it is more likely that a “substantially different” optimal solution is found. This small
change had a significant impact on the performance of the textbook method (though
not comparable to that derived from the use of the lexicographic method), showing the
importance of breaking the correlation of the optimal LP bases.

A second set of experiments was carried out on the multi-cut version of Gomory’s
algorithm, where cuts are generated in rounds. To be specific, after each LP reoptimiza-
tion we consider all the tableau rows with fractional basic variable, and generate two
FGCs from each row—one from the row itself, and one from the same row multiplied
by -1.

The corresponding results are reported in Table 2.3: the multi-cut version of Lex
performed even better than in the single-cut mode: in 13 out of the 26 instances the
method reached the optimum.

Table 2.4 reports the results of our two heuristics, Heur1 and Heur2. A comparison
with the previous table shows that both heuristics are effective in controlling the coef-
ficient size, determinant, and condition number. The average closed gap is significantly
better than in TB, but clearly worse than in Lex.

2.6.
C
om

putationalresults
29

Textbook Lex
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 N 29 9277 711.79 9.07 8.8e+02 2.8e+09 T 413 133647 3604.53 24.86 6.1e+04 9.1e+11
air05 N 43 13342 1061.33 5.32 2.1e+03 2.4e+09 T 776 224190 3600.25 24.66 8.9e+03 7.2e+09
bm23 N 107 1348 0.48 18.09 1.6e+09 1.4e+12 O 658 8290 1.11 100.00 3.4e+02 2.6e+06
cap6000 N 339 3378 200.75 8.47 3.9e+07 6.9e+15 N 5200 36832 1436.66 30.27 3.9e+07 2.7e+18
hard_ks100 N 1752 10689 1037.46 100.00 1.9e+08 4.5e+15 O 105 519 0.29 100.00 3.6e+05 1.7e+12
hard_ks9 N 265 1830 0.18 100.00 9.6e+04 1.8e+10 O 139 601 0.11 100.00 3e+04 4e+09
krob200 O 101 5029 339.18 100.00 2.4e+02 4.2e+08 O 39 1640 62.86 100.00 1.4e+02 1.7e+07
l152lav N 440 25793 1638.96 32.97 1.1e+03 3.6e+09 O 742 25091 116.45 100.00 1.5e+04 1e+09
lin318 O 18 467 22.51 100.00 9.3 3.8e+05 O 26 951 106.25 100.00 21 7.9e+06
lseu N 116 2543 2.78 46.03 6.3e+08 7e+14 O 15662 219216 85.02 100.00 1.1e+05 4.7e+10
manna81 O 1 271 4.24 100.00 1 1.3e+05 O 10 279 9.68 100.00 1 2.7e+05
mitre T 154 47919 3798.87 84.80 2.2e+08 1e+18 T 225 71317 3659.66 87.70 1.7e+08 1.2e+16
mzzv11 T 20 14379 1940.34 33.59 1.2e+04 1.7e+10 T 16 14440 3603.24 31.07 7.2e+05 3.3e+13
mzzv42z T 20 6887 426.10 22.62 1.4e+06 3.7e+12 T 20 15550 3602.99 20.17 3e+07 3.5e+13
p0033 N 368 4511 3.51 95.60 7.8e+08 9.7e+13 O 499 4419 0.94 100.00 2.1e+03 1.8e+07
p0201 N 211 5876 23.34 24.19 4.2e+08 1.9e+14 T 176477 4083975 3601.02 98.24 3.4e+06 1.5e+15
p0548 T 781 42639 217.06 52.02 5.5e+08 2.4e+20 N 1000 51456 46.07 51.78 2.2e+07 1.2e+15
p2756 T 231 9369 274.22 78.63 8.4e+08 1.2e+17 T 22936 326045 3601.11 79.09 3.6e+07 1.2e+17
pipex N 2680 41857 11.67 50.23 6.3e+08 1.9e+13 O 355901 3170373 665.78 100.00 4.3e+06 6.2e+13
protfold T 8 4808 19687.73 8.76 1.3e+08 1.5e+14 T 149 59515 3613.59 45.26 15 2.5e+07
sentoy N 52 707 0.18 3.39 4.7e+08 2.5e+14 O 5348 69208 14.33 100.00 9.1e+04 1.4e+10
seymour N 12 7950 1626.75 16.45 5.1e+07 5.9e+13 T 107 62266 3604.82 26.89 3.3e+02 1.2e+08
stein15 N 51 1261 0.37 50.00 1.6e+09 3e+11 O 66 688 0.12 100.00 6.3 1.7e+03
stein27 N 40 1821 1.06 0.00 1.2e+09 4.8e+12 O 3132 35859 9.72 100.00 77 1.7e+05
timtab1-int T 148 44479 14.09 28.92 1.4e+08 1.1e+15 N 2982 921030 353.47 44.20 1.2e+08 1.1e+16

Table 2.3: Comparison between textbook and lexicographic implementation of Gomory’s algorithm (multi-cut version)

30
C
hapter

2.
Lexicography

and
degeneracy:

C
an

a
pure

cutting
plane

algorithm
w
ork?

Heur1 Heur2
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 M 29 9277 711.79 9.07 8.8e+02 2.8e+08 M 26 7671 359.91 11.90 2.5e+03 9.1e+10
air05 M 43 13342 1061.33 5.32 2.1e+03 7.5e+09 M 26 7632 399.20 5.32 1.1e+03 3.1e+09
bm23 N 107 1348 0.48 18.09 1.6e+09 1.4e+18 M 660 13828 331.01 25.54 2.3e+06 6.9e+14
cap6000 N 339 3378 200.75 8.47 3.9e+07 2.6e+12 M 437 5478 1884.77 9.10 1.4e+06 4.5e+14
hard_ks100 N 1752 10689 1037.46 100.00 1.9e+08 1.1e+13 O 3234 6806 432.71 100.00 7.1e+03 9.9e+09
hard_ks9 O 265 1830 0.18 100.00 9.6e+04 2.3e+05 O 281 2138 0.41 100.00 2.4e+05 5.8e+10
krob200 O 101 5029 339.18 100.00 2.4e+02 1.3e+07 O 105 6371 442.80 100.00 2.6e+02 9.6e+07
l152lav M 440 25793 1638.96 32.97 1.1e+03 1.7e+05 M 200 13912 1118.15 34.49 1.2e+04 7.7e+10
lin318 O 18 467 22.51 100.00 9.3 5.4e+08 M 29 1559 262.08 99.01 24 1.6e+08
lseu N 116 2543 2.78 46.03 6.3e+08 9.2e+18 M 520 16394 333.86 47.78 2.2e+05 8.3e+12
manna81 O 1 271 4.24 100.00 1 9.2e+18 O 1 271 4.39 100.00 1 9.8e+04
mitre T 154 47919 3798.87 84.80 2.2e+08 9.2e+18 O 153 22616 885.86 100.00 5.8e+04 8.1e+13
mzzv11 M 20 14379 1940.34 33.59 1.2e+04 9.2e+18 M 50 21526 2188.58 40.21 1.9e+02 1.5e+11
mzzv42z M 20 6887 426.10 22.62 1.4e+06 9.2e+18 M 70 15777 1593.59 38.97 1.3e+03 1.5e+12
p0033 N 368 4511 3.51 95.60 7.8e+08 3.4e+18 O 201 2222 0.41 100.00 1.1e+04 6.1e+08
p0201 N 211 5876 23.34 24.19 4.2e+08 9.2e+18 M 670 25540 1462.61 36.08 1.1e+06 8.2e+13
p0548 N 781 42639 217.06 52.02 5.5e+08 9.2e+18 M 350 22082 1360.48 47.03 3.5e+04 1e+15
p2756 N 231 9369 274.22 78.63 8.4e+08 9.2e+18 M 250 15315 1127.85 78.17 5.7e+03 5.7e+12
pipex N 2680 41857 11.67 50.23 6.3e+08 9.2e+18 M 2240 40953 390.15 49.08 1.2e+08 6.7e+14
protfold N 8 4808 19687.73 8.76 1.3e+08 9.2e+18 T 21 6994 3788.34 8.76 1.6 3.5e+06
sentoy N 52 707 0.18 3.39 4.7e+08 9.2e+18 M 780 15678 346.80 19.74 3.5e+05 9.8e+13
seymour N 12 7950 1626.75 16.45 5.1e+07 9.2e+18 M 20 9993 2336.60 21.67 3.7 2.6e+06
stein15 N 51 1261 0.37 50.00 1.6e+09 1.1e+17 M 500 13772 242.22 50.00 54 6.5e+05
stein27 N 40 1821 1.06 0.00 1.2e+09 9.2e+18 M 280 13604 151.34 0.00 5.8 1.3e+04
timtab1-int N 148 44479 14.09 28.92 1.4e+08 9.2e+18 M 1320 413451 747.77 31.95 1.8e+06 7.3e+14

Table 2.4: The two heuristics compared (multi-cut version).

2.6. Computational results 31

Figures 2.6 and 2.7 give some illustrative plots for instance sentoy. The figures
clearly show the typical degenerate behavior of TB, with instable phases of rapid growth
of determint/coefficients/κ exploring small space regions with shallow cuts. It is worth
observing the striking difference in the plots of the average cut depth, computed as the
geometric distance of the cut from the separated vertex, averaged over all the cuts in a
round. Even more interesting, the TB and Lex have a completely different behavior as
far as the optima distance (computed as the Euclidean distance between two consecutive
fractional vertices to be cut) is concerned. As a matter of fact, as already shown by
Figure 2.4, lexicographic reoptimization is quite successful in amplifying the dynamic
(and diversity) of the fractional solutions.

32 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

0 1 2 3 4 5 6

x 10
4

−7840

−7830

−7820

−7810

−7800

−7790

−7780

−7770

cuts

ob
je

ct
iv

e
bo

un
d

Bound

200 400 600 800 1000 1200
10

0

10
10

10
20

10
30

10
40

de
te

rm
in

an
t

TB

0 1 2 3 4 5 6

x 10
4

10
0

10
10

10
20

10
30

10
40

Lex

0 200 400 600 800 1000 1200

10
5

10
10

10
15

cuts

ka
pp

a

0 1 2 3 4 5 6

x 10
4

10
5

10
10

10
15

cuts

TB

Lex

Figure 2.6: Comparison between the textbook and lexicographic implementations of
the multi-cut algorithm on sentoy.

2.6. Computational results 33

0 200 400 600 800 1000 1200

10
5

10
10

10
15

av
er

ag
e

ab
s

va
lu

e
of

 c
oe

ff

TB

0 1 2 3 4 5 6

x 10
4

10
5

10
10

10
15

Lex

0 200 400 600 800 1000 1200

10
−10

10
−5

10
0

av
er

ag
e

cu
t d

ep
th

0 1 2 3 4 5 6

x 10
4

10
−10

10
−5

10
0

0 200 400 600 800 1000 1200

0.5

1

1.5

2

2.5

3

op
tim

a
di

st
an

ce

0 1 2 3 4 5 6

x 10
4

0.5

1

1.5

2

2.5

3

Figure 2.7: Comparison between the textbook and lexicographic implementations of
the multi-cut algorithm on sentoy

34 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

2.7 Approximating MIG cuts for pure integer programs

Using MIG cuts in an all-integer context has the undesired feature of introducing con-
tinuous slack variables. This fact can be a problem for two main reasons. First, obser-
vations in Section 2.5 do not hold any more for MIG cuts, since Definition 1 relies on the
Chvátal-Gomory rounding argument. Second, fractional values affected by round off er-
rors are introduced in the all-integer initial formulation, and can significantly contribute
to the numerical degradation of the method.

State-of-the-art cut generators use various heuristics to try to ensure the validity of
a cut. For example, they try to guess the rational representation of the tableau row and
round the coefficients accordingly, in a conservative way. This is important to reduce the
propagation of numerical errors during iterations, even if it is unlikely to be applicable
for hard problems or after a certain number of iterations. Often, cut generators even
weaken the right-hand-side of the derived MIG cuts. However, as already discussed,
cut weakening can be a very poor choice in an iterative framework intended to produce
long sequences of stable cuts (see Section 2.5).

A common practice in B&C codes consists in discarding cuts that have a certain
probability of being invalid, or are numerically unpleasant. Typical criteria used to
discard cuts are the size of coefficients, the dynamism (ratio between the largest and
the smallest absolute value of coefficients), and the density. Discarding cuts is quite
successful in limiting numerical in B&C codes, but it is badly suited for a pure cutting
plane algorithm since it can lead to early termination.

In an early stage of our work, we tested the COIN-OR [52] MIG cut generator
embedded in the textbook cutting plane framework, and compared its performance to
that of our lexicographic implementation using FGCs. Results are reported in Table 2.5,
showing that the FGC lexicographic method outperforms the textbook implementation
even though the latter uses the stronger MIG cuts.

2.7.
A
pproxim

ating
M
IG

cuts
for

pure
integer

program
s

35

TB (with MIGs) Lex (with FGCs)
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 T 190 55919 3602.92 16.25 6.9e+08 8.5e+15 T 413 133647 3604.53 24.86 6.1e+04 9.1e+11
air05 M 112 26087 2609.82 8.33 2e+08 1.1e+14 T 776 224190 3600.25 24.66 8.9e+03 7.2e+09
bm23 T 5697 51954 3602.98 31.21 1.9e+11 6.5e+18 O 658 8290 1.11 100.00 3.4e+02 2.6e+06
cap6000 E 29 267 3.23 62.68 2.7e+07 7.1e+11 N 5200 36832 1436.66 30.27 3.9e+07 2.7e+18
hard_ks100 E 42 143 0.05 — 1.5e+07 5.4e+15 O 105 519 0.29 100.00 3.6e+05 1.7e+12
hard_ks9 E 1096 6654 17.40 — 6.7e+09 7.3e+19 O 139 601 0.11 100.00 3e+04 4e+09
krob200 E 248 15879 1615.20 92.83 1.1e+09 8.4e+12 O 39 1640 62.86 100.00 1.4e+02 1.7e+07
l152lav E 145 10626 703.54 35.28 4.1e+08 2.9e+14 O 742 25091 116.45 100.00 1.5e+04 1e+09
lin318 E 88 10082 1761.61 96.38 1e+09 5.8e+14 O 26 951 106.25 100.00 21 7.9e+06
lseu E 43 631 0.12 69.96 6.8e+08 4.9e+12 O 15662 219216 85.02 100.00 1.1e+05 4.7e+10
manna81 O 1 870 0.41 100.00 1 3.6e+06 O 10 279 9.68 100.00 1 2.7e+05
mitre E 11 1235 2.03 100.00 4.6e+08 1.6e+16 T 225 71317 3659.66 87.70 1.7e+08 1.2e+16
mzzv11 E 93 40159 2551.53 60.95 1.3e+08 8.5e+15 T 16 14440 3603.24 31.07 7.2e+05 3.3e+13
mzzv42z E 87 38099 1277.54 42.28 3.7e+08 2.6e+14 T 20 15550 3602.99 20.17 3e+07 3.5e+13
p0033 E 466 6316 21.57 79.69 1.5e+10 9.4e+15 O 499 4419 0.94 100.00 2.1e+03 1.8e+07
p0201 E 113 6987 22.27 67.92 2.3e+09 1.1e+13 T 176477 4083975 3601.02 98.24 3.4e+06 1.5e+15
p0548 E 191 5590 35.18 94.84 1.5e+09 7.5e+15 N 1000 51456 46.07 51.78 2.2e+07 1.2e+15
p2756 E 48 812 4.19 98.41 1.3e+07 9.9e+09 T 22936 326045 3601.11 79.09 3.6e+07 1.2e+17
pipex E 334 3814 4.29 48.95 2.9e+10 9.4e+19 O 355901 3170373 665.78 100.00 4.3e+06 6.2e+13
protfold T 52 22482 3625.47 21.73 8.5e+04 1e+09 T 149 59515 3613.59 45.26 15 2.5e+07
sentoy E 56 476 0.11 28.24 5.9e+08 1.5e+12 O 5348 69208 14.33 100.00 9.1e+04 1.4e+10
seymour T 109 53009 3611.00 26.89 1.4e+06 3.6e+13 T 107 62266 3604.82 26.89 3.3e+02 1.2e+08
stein15 T 6793 99742 3601.70 75.00 2.1e+09 1.7e+21 O 66 688 0.12 100.00 6.3 1.7e+03
stein27 T 2439 62996 3601.19 0.00 1.8e+06 4.1e+14 O 3132 35859 9.72 100.00 77 1.7e+05
timtab1-int E 158 26804 521.49 38.77 6.9e+08 1.2e+17 N 2982 921030 353.47 44.20 1.2e+08 1.1e+16

Table 2.5: Comparison between MIG cuts in a textbook implementation of Gomory’s algorithm, and FGC cuts with the lexicographic simplex
(multi-cut version)

36 Chapter 2. Lexicography and degeneracy: Can a pure cutting plane algorithm work?

0 1

1

(a)

0 1

1

δ

φ(ai0)

(b)

0 1

1

δ

φ(ai0)

(c)

Figure 2.8: Different subadditive functions: (a) FGC, (b) MIG, (c) d-MIG

We also tried to embed the COIN-OR MIG separator in our lexicographic frame-
work. Unfortunately, due to the aforementioned sophisticated policies applied during
separation, it is difficult to ensure that all the theoretical requirements of the Gomory’s
convergence proof are fulfilled, and the performance turned out to be very poor also in
practice. To take control over all aspects of MIG separation, we therefore decided to
implement our own version. First we tested a naïve implementation, without any par-
ticular strategy for protecting against possible numerical errors. As expected, invalid
cuts appeared very soon, after just few iterations.

Our goal was to weaken MIG cuts in very controlled way, so as to obtain an all-
integer counterpart that ensures cut validity (under the assumptions of Section 2.5) and
preserves the strong properties leading to a finitely-convergent cutting plane method.
To this end, it is well known [62] that a FGC, in its fractional form, can be obtained
by applying the subadditive function φ(aij) = daije− aij = 1− fij to the coefficients of
row i. Similarly, MIG cuts can be obtained using the subadditive function

φMIG(aij) = φ(aij)− δj

where
δj = max

{
0,

φ(aij)− φ(ai0)
1− φ(ai0)

}
See Figure 2.8 for an illustration. So let us rewrite the MIG cut in the following form:∑

j∈N\B

(φ(aij)− δj)xj ≥ φ(ai0) (2.4)

Note that this latter cut shares with (2.1) the sign pattern used (together with the
lexicographic property) to prove convergence; see Section 2.3.1.

Now, given α ∈ Z+ we can approximate (from below) δj by replacing it with its
discretized counterpart kj/α, where kj is the largest positive integer such that kj/α ≤ δj .
By construction, the resulting d-MIG (d for discretized) cut

∑
j∈N\B

(φ(aij)−
kj
α

)xj ≥ φ(ai0) (2.5)

2.7. Approximating MIG cuts for pure integer programs 37

is a weakening of the MIG cut (hence its validity) that dominates the FGC. In other
words, d-MIG cuts play an intermediate role between MIG cuts and FGCs, and they get
closer and closer to MIG cuts as parameter α increases. Our procedure might resemble
the strengthening procedure of Letchford and Lodi [45]. However the cuts in [45] are
substantially different from ours, since d-MIG cuts are a dominated (but hopefully more
stable) version of MIGs while there is no strict dominance relationship between MIGs
and cuts in [45].

Since α is chosen beforehand, all computations above can be done in integers. In
order to derive the cut we can therefore use the numerically more stable rounding
function defined in (2.3). Note that the slack substitution phase needed to add the cut
to the previous LP, may involve fractional slacks variables from other cuts. There are
two ways of handling this potential source of inaccuracy. The first is to multiply (2.5)
by α so that the cuts added to the problem are all-integer. The second possibility is
based on the fact that all slacks are integer multiples of the common fraction 1/α, so it
is easy to compute their rational representation when needed for the slack substitution.
In a preliminary computation, the second method exhibited a slightly better numerical
stability, so it is the one implemented in our code.

Figure 2.9 illustrates, for a small problem (bm23), the effect of separating d-MIG
cuts of different approximation levels within a lexicographic framework, till proved
optimality is reached. In the figure on the right-hand side, the the x-axis reports
approximation error 1/α for α = 1, 2, 4, 8, and 16, namely 1, 0.5, 0.25, 0.125, and
0.0625 respectively. Tighter approximations were tried but turned out to be numerically
unstable, and the run was aborted before convergence. The y-axis reports the number
of bits required during the overall process to represent cut coefficients (e.g., to obtain
an approximation error of 0.0625, we need approximately 29 bits). It can be seen
that, as the approximation gets closer to the real MIG (from left to right in the x-
axis), the size of coefficients first grows exponentially, and then tends to saturate along
the MIG asymptote. Figure 2.9 (left) illustrates the evolution of the coefficient sizes
when moving from FGCs (approximation error 1) to cuts closer and closer to MIG
cuts (approximation error 0.25 and 0.0625). On the x-axis we report the iteration
(i.e., cut) number, whereas the y-axis gives the maximum number of bits required to
represent cut coefficients in each iteration. According to the figure, the three versions
with approximation error 1, 0.25 and 0.0625 converge to the optimal solution in 651, 663,
and 714 iterations, respectively. This is quite unsatisfactory, as the increased strength
of d-MIG cuts reduces the overall number of iterations by, at most, 9%. Moreover, the
coefficient fluctuation is highly amplified when the approximation error becomes smaller
and smaller. These results were confirmed on other instances, and seem to indicate
that the size of coefficients of d-MIG cuts grows exponentially with α, thus making
their usage impractical even when cuts are embedded in a lexicographic framework.
This also suggests that MIG cuts themselves can be very complex to manage by a pure
cutting plane method.

38
C
hapter

2.
Lexicography

and
degeneracy:

C
an

a
pure

cutting
plane

algorithm
w
ork?

0 100 200 300 400 500 600 700

10

20

30

B
its

GMI integer approximations

0.0625 approx. (651 itrs.)

0 100 200 300 400 500 600 700

10

20

30

B
its

0.25 approx. (663 itrs.)

0 100 200 300 400 500 600 700

10

20

30

Iterations/Cuts

B
its

1 approx. = FGC (714 itrs.)

1 0.5 0.25 0.125 0.0625
5

10

15

20

25

30

Approximation error

B
its

Effect of GMI integer approximation on coefficients

Figure 2.9: Gomory’s lexicographic method (one cut at a time) using d-MIG cuts on instance bm23

2.8. Conclusions and future work 39

2.8 Conclusions and future work

Pure cutting plane algorithms have been found not to work in practice because of nu-
merical problems due to the cuts becoming increasingly parallel (a phenomenon accom-
panied by dual degeneracy), increasing determinant size and condition number, etc. For
these reasons, cutting planes are in practice used in cut-and-branch or branch-and-cut
mode.

In this chapter we have discussed an implementation of the lexicographic version of
Gomory’s fractional cutting plane method and of two heuristics mimicking the latter
one. In computational testing on a battery of MIPLIB problems, we compared the
performance of these variants with that of the standard Gomory algorithm, both in the
single-cut and in the multi-cut (rounds of cuts) version, and showed that they provide a
radical improvement over the standard procedure. In particular, we reported the exact
solution of ILP instances from MIPLIB such as stein15, stein27, and bm23, for which
the standard Gomory cutting plane algorithm is not able to close more than a tiny
fraction of the integrality gap.

We have identified the right choice of direction in rounding the tableau coefficients
when generating cuts, which turned out to be very effective (together with the lexico-
graphic simplex) in producing numerically stable cuts.

Future work should address the integration of lexicographic simplex with other kinds
of cuts, including MIG cuts. We made a first step in this direction, by introducing a
numerically more stable discretized version of MIG cuts. Our preliminary computational
results seem however to indicate that these cuts (and hence MIG cuts) are intrinsically
more difficult to handle than FGCs, at least within a cutting plane method for pure
ILPs.

Chapter 3

Minimal Infeasible Subsystems and
Benders cuts

3.1 Introduction

There are many situations in mathematical programming where cutting planes can be
generated by solving a certain Cut Generation Linear Program (CGLP) whose feasible
solutions define a family of valid inequalities for the problem at hand. Disjunctive cuts
and Benders cuts are two familiar examples.

Benders cuts were originally proposed in [12] as a machinery to convert a generic
mixed-integer program involving integer variables x and continuous variable y into an
integer program involving the x variables only, possibly plus a single continuous variable
η taking into account the overall contribution to the objective function of the continuous
variables (say dT y). The continuous y variables are projected away by a standard
projection technique based on dynamic cutting-plane generation. At each iteration, one
solves the current master problem relaxation in the (x, η) space, and sends the optimal
solution (x∗, η∗) to the so-called slave problem. This is an LP in the y space that tries
to define suitable y-variables y∗ such that (x∗, y∗) is feasible for the original problem,
and η∗ = dT y∗. If the slave problem is feasible, we are done. Otherwise, a so-called
(feasibility or optimality) Benders cut in the (x, η) space is generated by using Farkas’
characterization of infeasible LPs, the cut is added to the master problem, and the
method is iterated.

The definition of the CGLP is however only the first step for the effective use of the
associated cuts, as three main topics need to be addressed:

i) When to cut? Possible answers range from “only when an integer super-optimal
solution is available" (as in the original proposal of Benders, where cuts are applied
only to cut the optimal solution of the current master problem) to “whenever a
fractional (or integer infeasible) solution is available" (as in modern branch-and-
cut frameworks).

ii) What to cut? The usual choice in integer programming is to cut the optimal
solution of an LP relaxation. However this may lead to unstable behavior and

42 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

slow convergence, so stabilization through box constraints or quadratic penalty
functions may be needed–this is not usually done in standard branch-and-cut
algorithms, but it is common practice e.g. in bundle methods.

iii) How to choose the cut? Given the point x∗ to be separated, choose the “best
possible" cut(s) among the violated ones.

All three points above play an important role in the design of an effective solution
method. In this chapter we focus on (iii), and in particular we address the topic of
selecting in an effective way Benders cuts for general Mixed-Integer Linear Programs
(MIPs). As we aim at understanding the properties that make a single Benders cut
“a good cut" in a branch-and-cut context, in the present study we do not address
alternative solution approaches that generate rounds of Benders cuts (as opposed to just
one or two cuts) at each separation call—though we believe that the idea of generating a
large number of simultaneous cuts can play an important role in speeding up the overall
convergence of any cutting plane method, including the Benders’ one.

We propose alternative selection criteria for Benders cuts, and analyze them com-
putationally. As customary in mixed-integer programming, the effectiveness of the
generated cuts is measured by the quality of the root node bound.

Our approach is based on the correspondence between minimal infeasible subsystems
of an infeasible LP, and the vertices of the so-called alternative polyhedron. The choice of
the “most effective" violated Benders cut then corresponds to the selection of a suitable
vertex of the alternative polyhedron, hence a clever choice of the dual objective function
is crucial—whereas the textbook Benders approach uses a completely random selection
policy, at least when feasibility cuts are generated.

Computational results on a testbed of MIPLIB instances are presented, where the
quality of Benders cuts is measured in terms of “percentage of gap closed" at the root
node, as customary in cutting plane methods. We show that the proposed methods
allow for a speedup of 1 to 2 orders of magnitude with respect to the textbook one.

3.2 Benders cuts: theory ...

Suppose we are given a MIP problem

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0, x integer

y ≥ 0

(3.1)

where x ∈ <n, y ∈ <t, and matrix Q has m rows.
Classical Benders decomposition states that solving such a problem is equivalent to

3.2. Benders cuts: theory ... 43

solving

min cTx+ η

Ax ≥ b
η ≥ uT (r − Tx), u ∈ VERT

vT (r − Tx) ≤ 0, v ∈ RAY

x ≥ 0, x integer

(3.2)

where the additional variable η takes into account the objective function term dT y,
while sets VERT and RAY contain the vertices and extreme rays (respectively) of the
polyhedron D defined by:

πTQ ≤ dT

π ≥ 0
(3.3)

The above formulation has exponentially many inequalities, so an iterative solution
approach based on cutting planes is needed, that can be outlined as follows.

1. Solve the so-called master problem:

min cTx+ η

Ax ≥ b
{previously generated Benders cuts}

x ≥ 0, x integer

(3.4)

including (some of) the Benders cuts generated so far (none at the very beginning).
Let (x∗, η∗) be an optimal solution of the master problem.

2. Solve the so-called dual slave problem:

maxπT (r − Tx∗)
πTQ ≤ dT

π ≥ 0

(3.5)

3. If the dual slave problem is unbounded, choose any unbounded extreme ray v,
and add the so-called Benders feasibility cut

vT (r − Tx) ≤ 0

to the master and go to Step 1. Otherwise, let the optimal value and an optimal
vertex be z∗ and u respectively. If z∗ ≤ η∗ then stop. Otherwise, add the so-called
Benders optimality cut

η ≥ uT (r − Tx)

to the master problem, and go to Step 1.

44 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

The distinction between optimality cuts (involving the η variable) and feasibility
cuts (that assert some property of the feasible x vector) is very important in practice,
and will be analyzed in greater detail in the sequel.

As already noted by other authors, but seldom applied in practice, Benders cuts
can be generated to separate any solution (integer or not) of the master problem. As a
consequence, these cuts can easily be embedded into a modern branch-and-cut scheme
where Benders cuts (among others) are generated at each node of the branching tree.

Note that:

• Although presented for the MIP case, the Benders framework is by no means
limited to it. In particular, any problem of the form

min c(x) + dT y

g(x) ≥ 0

F (x) +Qy ≥ r
y ≥ 0

(3.6)

with arbitrary c(), g() and F () is suitable to be solved with this method, provided
that we have a solver for the master problem (see [32]). This also means that, given
any arbitrary partition of the variables, any linear programming problem can be
casted into the Benders framework, by projecting away a subset of the variables.
This is indeed done in practice with problems that simplify considerably (e.g.,
decompose) after fixing a subset of their decision variables—this is the case, e.g.,
in Stochastic Linear Programs (SLPs).

• The Benders method is in fact a pure cutting plane approach in which, given
a solution (x∗, η∗) of a problem relaxation (the master), we look for a violated
valid inequality. In particular, the search for such an inequality is done by solving
an LP problem (the dual slave), which acts as a Cut Generating LP akin to the
one used in disjunctive programming (as a matter of fact, disjunctive cuts can be
viewed as Benders cuts derived from a compact extended formulation).

• The set of Benders cuts corresponds to the vertices and extreme rays of D and is
independent of the current master solution (x∗, η∗), which is used only to decide
which is next cut to add. For this purpose a suboptimal (or even infeasible) master
solution can be used as well, as e.g. in the recent proposals by Rei e al. [65] and
by Poojari and Beasley [64].

Given the considerations above, in the following we focus on a generic LP of the
form

3.3. ... and practice 45

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0

y ≥ 0

(3.7)

This LP may be the root relaxation of a MIP problem, or just a large-scale LP problem
suitable for Benders decomposition (e.g., a SLP problem).

3.3 ... and practice

The first question we asked ourselves was: What can be considered a modern, yet clas-
sical, implementation of Benders decomposition to be used for benchmarking purposes?
As a matter of fact, any implementation of the Benders approach has to face a num-
ber of implementation issues that affect heavily the overall performance of the method,
and many authors using Benders cuts tend to classify their methods as just “standard
implementations" without giving sufficient details.

A first issue is how to obtain a good, yet easily computable, initial lower bound on
η, so as to prevent the generation of several dominated (and thus useless) optimality
cuts. From a theoretical point of view, we are interested in the best-possible optimality
cut of the form

η ≥ πT r − 0Tx

so πT r can be obtained by just solving the LP:

maxπT r

πTQ ≤ dT

πTT = 0T

π ≥ 0

(3.8)

However, if the slave problem does not have a special structure (i.e., if it does not
decompose nicely), the introduction of the coupling matrix T yields an LP problem of
the same size as the original LP, so this approach is not always viable computationally.
Therefore, in our tests we prefer to calculate a trivial bound on dT y based only on
the lower and upper bounds on the y variables (if no bounds are given, we just write
η ≥ −M for a suitably large M).

Then we addressed the relative contribution of optimality and feasibility cuts to the
convergence of the method. Indeed, according to our computational experience these
two classes of cuts behave quite differently in many important respects:

• For many problems where term dT y gives a significant contribution to the overall
optimal value, optimality cuts can be much more effective in moving the bound

46 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

than feasibility cuts, because they involve the η variable explicitly.

• Optimality cuts are typically quite bad from a numerical point view. In partic-
ular, optimality cuts tend to exhibit an higher dynamism than feasibility cuts,
i.e., a higher ratio between the maximum and minimum absolute value of the
cut coefficients. This was somewhat expectable, because optimality cuts have to
take into account the objective function, which may be of a completely different
magnitude (and precision) with respect to the constraints.

• Optimality cuts tend to be much denser than the feasibility ones. Again, this is
not surprising since the role of optimality cuts is to provide a lower bound on
the objective function term η that is based on the value of the variables x of the
master problem, and it is unlikely that just a few master variables can succeed in
producing a tight bound.

As a consequence, it is important to have some control on the kind (and quality) of
Benders cuts generated at each iteration. Unfortunately, Benders decomposition—as it
is typically implemented in the literature—is heavily biased toward feasibility cuts. As
a matter of fact, as long as a violated feasibility cut exists, the dual slave is unbounded
and hence no optimality cut is generated. As noted by Benders himself [12], however,
if we solve the dual slave with the primal simplex method, then when we discover an
unbounded ray we are “sitting on a vertex" of polyhedron D, and thus we can generate
also an optimality cut with no additional computational effort. A main drawback of
this approach is that optimality cut produced is not guaranteed to be violated, and in
any case its discovery was quite “random" as the corresponding vertex is by no mean a
one maximizing a certain quality index such as cut violation, depth, etc.

The lack of control on the quality of the Benders cuts is even more striking when
feasibility cuts are generated, since the textbook method does not give any rule to choose
among the unbounded rays. To illustrate this important (and often underestimated)
point, suppose that we want to apply a textbook Benders decomposition approach to
the well-known Asymmetric Traveling Salesman Problem (ATSP). Our compact MIP
formulation then involves binary variables xij associated with the arcs of digraph G =
(V,A), and continuous flow variables ykij that describe a flow of value 1 from a fixed
source node (say node 1) to sink node k, for all k ∈ V \ {1}. In this example, system
Ax ≥ b corresponds to in- and out-degree restrictions, whereas system Tx+Qy ≥ r is
made by |V | − 1 independent blocks corresponding to the flow-conservation equations
for each k, plus the coupling constraints ykij ≤ xij for all k ∈ V \ {1} and (i, j) ∈
A. It is not hard to see that, in this case, Benders cuts are of the feasibility type
only, and correspond to the classical Subtour Elimination Constraints (SECs) of the
form

∑
(i,j)∈δ+(S) xij ≥ 1. These cuts are known to be facet-defining (assuming G is

complete digraph), hence they are very strong in practice—so we can conclude that
“Benders cuts make a wonderful job". What is clearly inefficient is instead the way
these cuts would be handled by the standard Benders method. First of all, SECs
would be generated only after having solved to proven optimality the current master,

3.4. Benders cuts and Minimal Infeasible Subsystems 47

and used to cut integer points only. This is clearly inefficient, since SECs should be
generated at each node of the branching tree, or at least whenever the incumbent
solution is updated (as in the old-day method by Miliotis [59, 60]). But even if SECs were
generated within a modern branch-and-cut framework, what is completely missing in
the Benders method is a sensible cut selection criterion—once a violated SEC exists, the
dual slave becomes unbounded and any violated SEC can be returned by the separation
procedure—whereas we know that SEC density (among other characteristics) plays a
crucial role in speeding-up convergence.

The considerations above prompted us to introduce an effective criterion for choos-
ing among violated (optimality or feasibility) Benders cuts, very much in the spirit of
disjunctive cut generation that is also based on CGLPs (see Balas, Ceria, and Cor-
nuéjols [7], and also Fischetti, Lodi and Tramontani [27]). As far as we know, no
research effort was devoted to this particular topic in the literature, with one notable
exception—the acceleration procedure by Magnanti and Wong [54]. This procedure
provides a criterion to choose, among equivalent optimal vertices of the dual slave poly-
hedron, a “Pareto-optimal" one that corresponds to a maximally-violated optimality
cut that is not strictly dominated (within the master feasible solution set) by any other
maximally-violated cut. The procedure has however some drawbacks:

• According to its original definition, the procedure would require the dual slave
to have a bounded optimal value, hence it could not be applied in a completely
general context involving feasibility cuts—this drawback can however be partially
overcome by introducing artificial dual bounds.

• The user has to provide a point in the relative interior of the master feasible set.
This is quite a simple task if the the master has a very special structure, as in the
cases addressed by Magnanti and Wong in their study, but is NP-hard in general
if the master is a MIP, since we need a point in the relative interior of the convex
hull of the integer feasible points, which is usually not known. Moreover, the
outcome of the procedure depends on the choice of the interior point.

• The method may be computationally heavy, as it requires to solve two LPs to
generate a single cut, the second LP being often quite time-consuming due to
the presence of an additional equation that fixes the degree of violation to the
cut—this equation is in fact very dense and numerically unstable.

• The Magnanti-Wong criterion benefits from the existence of several equivalent
optimal solutions of the dual slave problem (i.e., several maximally-violated opti-
mality cuts), which is however not very frequent when fractional (as opposed to
integer) points of the master are cut.

3.4 Benders cuts and Minimal Infeasible Subsystems

The CGLP of a Benders cut can always be seen as a feasibility problem: given a master
solution (x∗, η∗), it is possible to generate a violated cut if and only if the following

48 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

primal slave problem is infeasible:

dT y ≤ η∗

Qy ≥ r − Tx∗

y ≥ 0

(3.9)

or equivalently, by LP duality, if the following dual slave problem is unbounded:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

π, π0 ≥ 0

(3.10)

If the separation is successful, given the dual solution (extreme ray) (π, π0) the generated
cut is

πT (r − Tx)− π0η ≤ 0

In practice, one is interested in detecting a “minimal source of infeasibility" of (3.9),
so as to detect a small set of rows that allow to cut the master solution. According to
Gleeson and Ryan [34], the rows of anyMinimal (with respect to set inclusion) Infeasible
Subsystem (MIS) of (3.9) are indexed by the support of the vertices of the following
polyhedron, sometimes called the alternative polyhedron:

πTQ ≤ π0d
T

πT (r − Tx∗)− π0η
∗ = 1

π, π0 ≥ 0

(3.11)

where the unbounded objective function—namely, the cut violation to be maximized—
has been fixed to a normalization positive value (if the alternative polyhedron is empty,
we are done). By choosing an appropriate objective function it is therefore possible to
optimize over the alternative polyhedron, thus selecting a violated cut corresponding
to a MIS of (3.9) with certain useful properties. Therefore, the choice of the objective
function is a main issue to be addressed when designing a separation procedure based
on a CGLP, as in the Benders method.

A natural objective function whose purpose is to try to minimize the cardinality of
the support of the optimal vertex (and hence to find a small-cardinality MIS 1) is

min
m∑
i=1

πi + π0 (3.12)

As we are only interested in solutions with a positive cut violation, and since
{(π, π0) ≥ 0 : πTQ ≤ π0d

T } is a cone, we can swap the role of the objective function
(3.12) and of the normalization condition in (3.11), yielding the following equivalent

1Finding a minimum-cardinality MIS is an NP-hard problem in general; see, e.g., Amaldi et al. [3]

3.5. Computational results 49

CGLP akin to the one used for disjunctive cuts by Balas, Ceria, and Cornuéjols [7]:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

m∑
i=1

πi + π0 = 1

π, π0 ≥ 0

(3.13)

It is worth noting that the feasible solution set of the above CGLP is never empty nor
unbounded, so a violated cut can be generated if and only if the CGLP has a strictly
positive optimal value. The latter formulation is preferable from a computational point
because the normalization constraint

∑m
i=1 πi+π0 = 1, though very dense, is numerically

more stable than its “cut violation" counterpart πT (r − Tx∗)− π0η
∗ = 1. Moreover, at

each iteration only the CGLP objective function is affected by the change in the master
solution, hence its re-optimization with the primal simplex method is usually quite fast.

A geometric interpretation of (3.13) is as follows. The CGLP feasible set is now
defined as the intersection of the homogenization of the dual polyhedron D with the
normalization hyperplane

∑m
i=1 πi + π0 = 1. It is not difficult to see that there is a

one-to-one correspondence between the vertices of this feasible set and the extreme rays
(if π0 = 0) and vertices (if π0 6= 0) of D. Therefore, the reformulation does not actually
change the set of Benders cuts that can be generated, but it is nevertheless useful in
that it allows for a more clever choice of the violated cut to be separated.

3.5 Computational results

The effectiveness of our CGLP formulation has been tested on a collection of problems
from the MIPLIB 2003 library [2]. Among the instances in this testbed, we have chosen
the mixed-integer cases with a meaningful number of integer and continuous variables.
Moreover, we discarded some instances with numerical instability and which, after the
variables were partitioned, were too easy to solve even by the classical Benders method
2. Table 3.1 shows our final testbed with the main characteristics of each instance.

Standard variable partitioning has been applied—integer (and binary) variables are
viewed as master variables x, and the continuous variables are viewed as slave variables
y.

We implemented two variants of the classical (textbook) Benders method, as well
as two variants of our MIS-based CGLP, namely:

tb: This is the original method as proposed by Benders [12]. If the dual slave problem is
bounded, we generate one optimality cut, otherwise we generate both a feasibility
and an optimality cut (the optimality cut being added to the master problem only
if it is violated by the current master solution).

2A couple of instances exhibit a block structure of the slave problem and just a few iterations where
enough to terminate the method.

50 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

Problem # variables # integer # continuous # constraints
10teams 2025 1800 225 230
a1c1s1 3648 192 3456 3312
aflow40b 2728 1364 1364 1442
danoint 521 56 465 664
fixnet6 878 378 500 478
modglob 422 98 324 291
momentum1 5174 2349 2825 42680
pp08a 240 64 176 136
timtab1 397 171 226 171
timtab2 675 294 381 294
tr12-30 1080 360 720 750

Table 3.1: Testbed characteristics

tb_noopt: This is a standard Benders implementation method as often seen on text-
books. This method always generate only one cut per iteration—in case of un-
boundedness, only the feasibility cut associated with the unbounded dual-slave
ray detected by the LP solver is added to the master.

mis: This is our basic MIS-based method. It uses the CGLP (3.13) to solve the sepa-
ration problem, hence it generates only one cut per iteration.

mis2: This is a modified version of mis: after having solved the CGLP, if the generated
cut is an optimality one, we enforce the generation of an additional feasibility cut
by imposing the condition π0 = 0.

In our experiments, we handled the equations in the MIP model (if any) explicitly,
without replacing them with pairs of inequalities; this implies the presence of free dual
multipliers and the use of their absolute value in the normalization condition.

The implementation was done in C++ on a Linux 2.6 platform and all tests were
performed on an Intel Core2 Quad CPU Q6600 with 4GB of RAM. We used ILOG
Cplex 11.0 as the black-box LP solver; we disabled the LP presolver and forced the use
of the primal simplex method for the solution of the dual slaves so as to be able to get
a meaningful output even in case of unbounded problems. Before solving an instance,
we performed a standard bound shifting in order to reduce the number of slave variable
bounds to dualize. For this reason, the optimal LP value reported in our tables may
differ from the value reported in the literature.

The quality of the generated Benders cuts is measured in terms of “percentage gap
closed" at the root node, as customary in cutting plane methods. The results are
shown in Tables 3.2 and 3.3. Results with tb_noopt are not reported since this method
was never better (and often much worse) than tb: a typical behavior is illustrated in
Figures 3.1 and 3.2.

3.5.
C
om

putationalresults
51

Time Iterations
Problem Method 80% 90% 95% 99% 80% 90% 95% 99% bestBound optimum totTime totIter

10teams
tb 0.08 0.21 0.22 0.26 24 35 38 43 897.00 897.00 0.51 71
mis 0.04 0.05 0.06 0.07 9 11 14 19 897.00 897.00 0.21 66
mis2 0.04 0.05 0.05 0.07 9 11 14 19 897.00 897.00 0.22 66

a1c1s1
tb - - - - - - - - 707.61 997.53 1000.45 3714
mis 3.68 6.01 10.62 19.39 144 218 296 482 997.53 997.53 39.95 914
mis2 86.58 189.93 280.78 - 62 118 173 - 982.38 997.53 451.98 296

aflow40b
tb 0.03 0.03 0.04 0.09 1 2 5 13 1005.66 1005.66 0.24 44
mis 0.05 0.05 0.07 0.16 1 1 2 7 1005.66 1005.66 0.89 44
mis2 0.04 0.04 0.07 0.17 1 1 2 7 1005.66 1005.66 0.90 44

danoint
tb 21.22 24.30 29.16 29.16 595 654 766 766 62.64 62.64 36.15 1251
mis 0.18 0.18 0.18 1.03 43 43 43 87 62.64 62.64 1.74 186
mis2 3.00 3.00 3.00 5.42 43 43 43 72 62.64 62.64 12.46 167

fixnet6
tb 0.75 1.19 1.61 2.14 183 254 310 368 1200.88 1200.88 3.20 523
mis 0.05 0.12 0.16 0.34 39 65 83 139 1200.88 1200.88 0.70 230
mis2 0.28 0.43 0.64 1.02 26 39 56 87 1200.88 1200.88 1.79 161

modglob*
tb - - - - - - - - - - - -
mis 0.34 0.34 1.38 2.01 62 62 303 473 20430900.00 20430947.62 50.31 3573
mis2 0.58 0.87 3.00 6.06 34 61 274 613 20430900.00 20430947.62 44.83 3079

momentum1*
tb - - - - - - - - - - - -
mis 0.35 0.59 0.73 1.60 0 3 5 18 72793.30 72793.35 26.21 207
mis2 - - - - - - - - - - - -

pp08a
tb 0.01 0.01 0.01 1.03 9 14 16 339 2748.35 2748.35 4.11 825
mis 0.13 0.28 0.33 0.52 125 195 213 280 2748.35 2748.35 1.71 696
mis2 0.03 0.04 0.04 0.68 9 13 14 179 2748.35 2748.35 2.20 540

timtab1
tb 60.15 61.70 67.09 77.27 676 705 778 963 28655.10 28694.00 83.70 1046
mis 1.51 2.33 3.08 5.03 601 831 978 1294 28694.00 28694.00 6.13 1431
mis2 2.81 3.48 4.13 5.09 362 433 494 575 28694.00 28694.00 5.83 635

timtab2
tb 444.26 517.35 663.03 898.50 1162 1388 1731 2165 83269.00 83592.00 1003.04 2327
mis 17.96 35.51 52.70 119.58 1091 1493 1812 2965 83592.00 83592.00 204.90 4080
mis2 14.36 21.33 29.74 46.28 536 682 827 1131 83592.00 83592.00 64.14 1395

tr12-30
tb 1.22 1.95 3.14 19.14 146 188 222 254 14210.43 14210.43 357.80 518
mis 18.83 36.41 59.49 88.98 547 669 768 860 14210.43 14210.43 123.18 1015
mis2 0.63 0.66 0.66 12.69 17 18 18 249 14210.43 14210.43 13.42 272

Table 3.2: Comparison of the effectiveness of various separation methods in moving the lower bound at the root node. We report the computing
time and number of iterations needed to reach 80%, 90%, 95% and 99% of the optimal root relaxation value, as well as the total running times
and number of iterations needed for convergence (within a time limit of 2,000 seconds). Times are given in CPU seconds. (*) indicates failed
cut generation due to numerical problems.

52
C
hapter

3.
M
inim

alInfeasible
Subsystem

s
and

B
enders

cuts
Problem Method # cuts # opt. # feas. Avg Dens. Master Rate Avg T. Sep (s)

10teams
tb 107 36 71 383 1.14E-04 1.94E-04
mis 66 0 66 53 3.97E-05 1.94E-04
mis2 66 0 66 53 3.44E-05 2.39E-04

a1c1s1
tb 5893 3714 2179 76 1.65E-04 6.01E-03
mis 914 906 8 26 2.63E-05 3.05E-02
mis2 577 296 281 14 4.13E-05 1.52E+00

aflow40b
tb 44 0 44 252 4.74E-06 4.24E-03
mis 44 0 44 242 -5.93E-06 1.86E-02
mis2 44 0 44 242 1.04E-05 1.89E-02

danoint
tb 1412 1251 161 48 3.09E-06 2.02E-02
mis 186 186 0 37 5.25E-06 8.72E-03
mis2 180 167 13 35 4.99E-06 7.38E-02

fixnet6
tb 806 523 283 46 1.05E-05 1.24E-03
mis 230 210 20 22 9.38E-06 2.01E-03
mis2 321 160 161 24 1.60E-05 9.59E-03

modglob*
tb - - - - - -
mis 3573 3557 16 31 6.74E-06 2.30E-03
mis2 3088 3077 11 29 5.84E-06 6.25E-03

momentum1*
tb - - - - - -
mis 414 383 31 143 3.18E-04 2.61E-02
mis2 - - - - - -

pp08a
tb 901 825 76 40 7.97E-06 3.14E-04
mis 696 688 8 17 3.52E-06 5.91E-04
mis2 613 540 73 16 3.45E-06 2.46E-03

timtab1
tb 2083 1042 1041 56 2.52E-06 4.37E-04
mis 1431 1354 77 17 4.31E-06 1.10E-03
mis2 1268 633 635 10 8.82E-06 4.88E-03

timtab2
tb 4609 2316 2293 103 8.98E-05 5.98E-04
mis 4080 3918 162 45 1.90E-05 3.29E-03
mis2 2783 1388 1395 23 3.79E-05 1.31E-02

tr12-30
tb 1026 513 513 144 4.13E-03 7.69E-04
mis 1015 999 16 44 3.20E-04 4.55E-03
mis2 544 272 272 19 6.75E-05 4.02E-02

Table 3.3: Statistics on the Benders cuts generated by the different methods. We report the number of generated (optimality and feasibility)
cuts, their average density, the rate of growth of the master solution time as a function of the number of iterations (standard linear regression
on the master-problem running times vs. iterations), and the average separation time in CPU seconds. (*) indicates failed cut generation due to
numerical problems.

3.6. Conclusions 53

As reported in Table 3.2 tb is the most efficient method only in 1 out of 11 instances,
namely aflow40, and only with little advantage over the competitors. On the other
hand, mis and mis2 are much more effective on 10 out of 11 instances, with speedups
of 1 to 2 orders of magnitude. As expected, the average density of the cuts generated
by mis and mis2 is considerably smaller than tb, see Table 3.3. This has a positive
effect on the rate of growth of the master solution time as a function of the number of
iterations, as reported in column Master Rate in the table.

A closer analysis of instance a1c1s1 provides some insights on the strength of the
proposed methods: at each iteration, while tb generates weak feasibility and optimality
cuts, with no selection criteria for both, mis is able to cut the current master solution
with just a good optimality cut. This is however not always the best strategy: for
example, in timtab1, timtab2 and tr12-30, feasibility cuts are really crucial for the
effectiveness of the method and should be preferred—hence mis2 becomes the leading
method.

A comparison between mis and mis2 shows that mis candidates as the method of
choice, as it is usually faster due to the extra computing time that mis2 spends in
generating the additional feasibility cut (at least, in our present implementation); see
Table 3.3. Nevertheless, as already mentioned, there are instances such that timtab2
and tr12-30 where the extra separation effort is rewarded by a significant improvement
of the overall performance.

3.6 Conclusions

We have investigated alternative cut selection criteria for Benders cuts. By using the
correspondence between minimal infeasible subsystems of an infeasible LP and the ver-
tices of a so-called alternative polyhedron, we were able to define a simple yet effective
cut-generation LP allowing for the selection of strong Benders cuts. Computational re-
sults on a set of MIPLIB instances show that the proposed method allows for a speedup
of 1 to 2 orders of magnitude with respect to the textbook one.

54 Chapter 3. Minimal Infeasible Subsystems and Benders cuts

0 500 1000 1500 2000
Iterations

0

200

400

600

800

1000

1200

1400

L
o
w
e
rB
o
u
n
d

fixnet6: Lower Bound vs. Iterations

tb
tb_noopt

mis
mis2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iterations

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

L
o
w
e
rB
o
u
n
d

timtab2: Lower Bound vs. Iterations

tb
tb_noopt

mis
mis2

Figure 3.1: Lower bound growth vs. iterations with different separation methods.
The dotted line is the known optimal value. For timtab2, tb_noopt was not able to
improve its initial null lower bound.

3.6. Conclusions 55

0 2 4 6 8 10 12
Time

0

200

400

600

800

1000

1200

1400
L
o
w
e
rB
o
u
n
d

fixnet6: Lower Bound vs. Time

tb
tb_noopt

mis
mis2

0 200 400 600 800 1000 1200
Time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

L
o
w
e
rB
o
u
n
d

timtab2: Lower Bound vs. Time

tb
tb_noopt

mis
mis2

Figure 3.2: Lower bound growth vs. time with different separation methods. The
dotted line is the known optimal value. For timtab2, tb_noopt was not able to improve
its initial null lower bound.

Chapter 4

Fast Approaches to Improve the
Robustness of a Railway Timetable

4.1 Introduction

The Train Timetabling Problem (TTP) consists in finding an effective train schedule
on a given railway network. The schedule needs to satisfy some operational constraints
given by capacities of the network and security measures. Moreover, it is required to
exploit efficiently the resources of the railway infrastructure.

In practice, however, the maximization of some objective function is not enough:
the solution is also required to be robust against delays/disturbances along the network.
Very often, the robustness of optimal solutions of the original problem turns out to be
not enough for their practical applicability, whereas easy-to-compute robust solutions
tend to be too conservative and thus unnecessarily inefficient. As a result, practitioners
call for a fast yet accurate method to find the most robust timetable whose efficiency
is only slightly smaller than the theoretical optimal one. This is typically obtained by
adding “buffer times” to the schedule according to certain simple rules (see §2.2 in [43])

The purpose of the present chapter is to propose and evaluate new methods to
improve the robustness of a given TTP solution. In particular, we address the aperiodic
(non cyclic) TTP version described in [17]. Our approach combines Linear Programming
(LP) with Stochastic Programming (SP) and Robust Optimization techniques.

We propose the following three-stage framework as a practical tool for improving
and testing robust solutions for the TTP:

stage 1) nominal problem solution: the TTP is modeled without taking into ac-
count robustness, and solved (not necessarily to optimality) by a standard MIP
solver or by using ad-hoc heuristics.

stage 2) robustness training: borrowing an expression typical of the Artificial In-
telligence field, starting from the previous stage solution the model is “trained to
robustness”, typically by exploiting a restricted set of samples (scenarios).

stage 3) robustness validation: the robustness of the final solution found in stage

58 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

2 is evaluated by using a validation tool, thus allowing for a fair comparison of
different training methods.

In the present chapter we focus mainly on the second stage, robustness training. We
assume nominal solutions are given in input while, as far as the validation stage is
concerned, we use a simple LP validation model.

4.2 Literature review

The TTP problem has two main variants: the periodic and aperiodic versions. The
periodic TTP’s goal is to design a timetable that is operated cyclically after a (small)
period of time; this is a typical requirement for passenger trains in order to come
up with an easy-to-remember timetable. The first authors who developed a model
for generating periodic timetables were Serafini and Ukovic [68], who introduced a
mathematical model called Periodic Event Scheduling Problem (PESP). In PESP, a set
of repetitive events is scheduled under periodic time-window constraints. Consequently,
the events are scheduled for one cycle in such a way that the cycle can be repeated.
Most models for periodic TTP are based on PESP. A natural LP formulation of PESP
is quite weak, due to kind of big-M constraints (where M is the period). An alternative
stronger formulation is treated in Nachtigall [61] and Liebchen and Peeters [46, 63]
among others, and is based on cycle bases and separation of valid inequalities.

As to robustness, Kroon et al. [43] describe a stochastic optimization variant of
PESP. Their model explicitly takes into account stochastic disturbances of the railway
processes, distinguishing between a planned timetable and several realizations of the
timetable under pre-determined stochastic disturbances. The model can be used to
allocate time supplements and buffer times to the processes in the planned timetable
in such a way that the average delay of the realizations of the trains is minimized. In
order to keep the computation times within an acceptable bound, they start with an
existing timetable and fix the precedences among trains. They show that a substantial
increase in robustness can be achieved by taking into account stochastic disturbances in
the design of the timetable. For the case of one trip serving 10 stations, Liebchen and
Stiller [47] provide a theoretical explanation for the effects observed empirically in Kroon
et al. [43]. Very recently, a new notion of robustness, called recoverable robustness, has
been proposed in [48], which integrates the notion of robustness and recoverability into
a common framework. Applications to integrated timetabling/delay management in
railway systems are described and evaluated in [48, 49, 20].

The aperiodic TTP is especially relevant on heavy-traffic, long-distance corridors,
where the capacity of the infrastructure is limited due to greater traffic densities, and
competitive pressure among the train operators is expected to increase in the near
future. In the Caprara et al. [17] setting, a train operator applies for allocating its
trains on the infrastructure, and specify a profit for the “ideal timetable" they are
asking for. Then the infrastructure manager collects all requests from train operators
and computes a feasible timetable maximizing the overall profit, i.e., the difference

4.3. The Nominal Model 59

between the profits of the scheduled trains and a cost-penalty function, which takes into
account the deviations of the final timetables with respect to the ideal ones (possibly
leaving some trains unscheduled).

Different ILP models based on a graph representation of the problem were presented
in [17, 18]. In these papers the problem is modeled by means of a directed acyclic multi-
graph, in which nodes correspond to arrival and departure events from the stations and
arise at some discretized time instants, and arcs correspond to train stops within a
station or to train trips. A Lagrangian relaxation method is used to derive bounds on
the optimal solution value as well as to drive a heuristic procedure.

4.3 The Nominal Model

In this section we describe the specific aperiodic TTP problem we consider, and give a
basic event-based formulation for the “nominal" version where robustness is not taken
into account.

Following [17], the aperiodic TTP can be described as follows: given a railway
network, described as a set of stations connected by tracks, and an ideal train timetable,
find an actual train schedule satisfying all the operational constraints and having a
minimum distance from the ideal timetable.

The entities involved in modelling the problem are the following:

railway network: a graph N = (S,L), where S is the set of stations and L is the set
of tracks connecting them.

trains: a train corresponds to a simple path on the railway network N . The set of
trains is denoted by T . For each train h ∈ T we have an ideal profit πh (the
profit of the train if scheduled exactly as in the ideal timetable), a stretch penalty
θh (the train stretch being defined as the difference between the running times
in the actual and ideal timetables) and a shift penalty σh (the train shift being
defined as the absolute difference between the departures from the first station in
the actual and ideal timetables).

events: arrivals and departures of the trains at the stations. The set of all the events
is denoted by E. With a small abuse of notation, we will denote by thi both the
i-th event of train h and its associated time. We also define

• A: set of all arrival events
• D: set of all departure events

whereas AS , DS and ES denote the restriction of the above sets to a particular
station S. Each train h is associated with an ordered sequence of length len(h) of
departure/arrival events thi such that thi+1 ≥ thi , the first and last event of train h
being denoted by th1 and thlen(h), respectively. In addition, let thi denote the ideal
time for event thi .

60 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

(partial) schedule: a time assignment to all the events associated with a subset of
trains.

objective: maximize the overall profit of the scheduled trains, the profit of train h

being computed as
ρh = πh − σh shifth − θh stretchh

where
shifth = |th1 − th1 |

and
stretchh = (thlen(h) − th1)− (thlen(h) − th1)

denote the shift and stretch associated with train h, respectively.Trains with nega-
tive profit are intended to remain unscheduled and do not contribute to the overall
profit.

Operational constraints include:

time windows: it is possible to shift an event from its ideal time only within a given
time window;

headway times: for safety reasons, a minimum time distance between two consecutive
arrival/departure events from the same station is imposed;

track capacities: overtaking between trains is allowed only within stations (assumed
of infinite capacity).

As already mentioned, in the present chapter we do not address the solution of the
nominal TTP problem explicitly, in that a nominal solution is assumed to be provided
in input. Nevertheless, we next outline the structure of a MIP formulation for the
nominal TTP problem, since a relaxed version of it is at the basis of the LP models
used in Sections 4.5 and 4.6.

Although in the nominal problem one is allowed to leave some trains unscheduled, to
simplify our presentation we consider the situation where one is required to schedule all
the trains. A natural event-based model in the spirit of the Periodic Event Scheduling
Problem (PESP) formulation used in the periodic (cyclic) case [68] can be sketched as
follows:

z∗ = max
∑
h∈T

ρh

thi+1 − thi ≥ dhi,i+1 ∀h ∈ T, i = 1, . . . , len(h)− 1 (4.1)

|thi − tkj | ≥ ∆a ∀thi , tkj ∈ AS ,∀S ∈ S (4.2)

|thi − tkj | ≥ ∆d ∀thi , tkj ∈ DS , ∀S ∈ S (4.3)

thi+1 < tkj+1 ⇔ thi < tkj ∀thi , tkj ∈ DS ,∀S ∈ S (4.4)

4.3. The Nominal Model 61

ρh = πh − σh|th1 − th1 | − θh((thlen(h) − th1)− (thlen(h) − th1)) ∀h ∈ T (4.5)

l ≤ t ≤ u ∀t ∈ E (4.6)

Constraints (4.1) impose a minimum time difference di,i+1 between two consecutive
events of the same train, thus imposing minimum trip duration (trains are supposed to
travel always at the maximum allowed speed for the track) and minimum stop time at
the stations.

Constraints (4.2)-(4.3) model the headway times between two consecutive arrival or
departure events in the same station (∆d and ∆a being the minimum departure and
arrival headway, respectively). Since these constraints are nonlinear and we do not
know in advance the order in which events occur at the stations, in our MIP model we
introduce a set of binary variables xh,ki,j to be set to 1 iff thi ≤ tkj along with a big-M
coefficient M , so that conditions

|thi − tkj | ≥ ∆

can be translated to
thi − tkj ≥ ∆−Mxh,ki,j

tkj − thi ≥ ∆−Mxk,hj,i

xh,ki,j + xk,hj,i = 1

Given the linearization of constraints (4.2)-(4.3), it is easy to translate the track capacity
constraints (4.4) as

xh,ki,j = xh,ki+1,j+1

Constraints (4.5) define the profits of the trains, whereas constraints (4.6) model
the user-defined time windows of each event.

It is important to notice that, although we are interested in integer values (minutes)
for the events to be published in the final timetable, we do not force the integrality on
variables tj . This has the important consequence that, after fixing the event precedence
variables x, the model becomes a plain linear model. On the other hand, the possible
fractional value of the final time variables t need to be handled somehow in a post-
processing phase to be applied before publishing the timetable. For arrival events, one
can just round the corresponding fractional times to the nearest integer since there is no
problem of an arrival arises a little earlier (or later) than published. An easy procedure
for departure times is instead to simply round down all the t-values even if this results
into a slightly infeasible published timetable, so as to guarantee that all events arise
not earlier than their published time value. In a sense, this policy amounts to using an
“infinite" time discretization during the optimization phase, the difference between the
actual and the published event times being perceived by the travelers as a small (less
than one minute) delay.

62 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

As far as the objective function is concerned, the nonlinear term

|th1 − th1 |

giving the shift sh of train h can be easily linearized as

sh ≥ th1 − th1

sh ≥ th1 − th1

4.4 The Stochastic Programming Paradigm

Having stated the problem as a MIP, a well known tool to find robust solutions is the
(two-stage) Stochastic Programming approach; see [14],[66] for an introduction to the
SP methodology. In SP, the set of constraints is decomposed in structural constraints,
which represent the deterministic part of the model, and control constraints which have
a stochastic nature and whose coefficients depend on the particular scenario. Roughly
speaking, the approach allows one to take decisions in the first stage by ignoring the
stochastic part of the model, but enforces some costly recourse action when indeter-
minacy will eventually occur. Thus a natural optimization objective for this two-stage
strategy is to minimize the total expected cost:

min
x∈X

cTx+ E[Q(x, ξ(ω))]

where x denotes the first-stage decision whose feasibility set is X, ω ∈ Ω denotes a
scenario that is unknown when the first-stage decision x has to be made, and Q(x, ξ(ω))
represents the optimal value of the second-stage recourse problem corresponding to first-
stage decision x and parameters ξ(ω).

If Ω contains a finite number of scenarios {ω1, ω2, . . . , ω|Ω|} with associated proba-
bilities pk, k ∈ 1, 2, . . . , |Ω|, then the expectation can be evaluated as a finite sum, and
the two-stage model (with linear recourse) becomes a standard linear model:

w∗ = min
x∈X

cTx+
|Ω|∑
k=1

pkq
T
k rk, rk ∈ Yk,∀k = 1 . . . |Ω| (4.7)

where rk are the recourse variables with linear costs qk, and Yk is a polyhedron depending
on the first-stage variables x.

As |Ω| is often very large, various sampling-based approaches have been proposed to
estimate the second-stage objective function. Interior sampling methods use samples
during the algorithm execution to estimate, from time to time, algorithmic parameters
such as function values, gradients, optimality cuts. Exterior sampling methods, instead,
use the Sample Average Approximation (SAA) algorithm to estimate the optimal ob-
jective. We have chosen exterior sampling, since it has some advantages over interior
sampling [69]: ease of numerical implementation, good theoretical convergence prop-

4.4. The Stochastic Programming Paradigm 63

erties [72], well developed statistical inference (validation and error analysis, stopping
rules). Furthermore, it is easily amenable to variance reduction techniques, ideal for
parallel computations.

4.4.1 The Sample Average Approximation Method

The SAA consists in approximating the mean of the random variableQ(x, ξ(ω)) with the
sample mean of {Q(x, ξ(ω1)), Q(x, ξ(ω2)), . . . , Q(x, ξ(ωN))} independent and identically
distributed (i.i.d.) samples from the distribution of Q(x, ξ(ω)). If Q(x, ξ(ω)) has finite
mean and variance, the sample mean Q̄N (x, ξ(ωi)) = 1

N

∑N
i=1Q(x, ξ(ωi)) is an unbiased

estimator of the actual mean:

E[Q̄N (x, ξ(ωi))] = E[Q(x, ξ(ω))]

and it satisfies the following central limit theorem:

√
N [Q̄N (x, ξ(ωi))− E[Q(x, ξ(ω))]]⇒ N (0, σ2) as N →∞

where ⇒ denotes convergence in distribution, N (0, σ2) is a normal random variable
with zero mean and variance σ2 = var Q(x, ξ(ω)).

The SAA approximation of (4.7) reads:

w∗N = min
x∈X

cTx+
1
N

N∑
k=1

qTk rk, rk ∈ Yk, ∀k = 1 . . . N (4.8)

Under mild assumptions it was proved that the optimal value of SAA problem (4.8)
converges with probability 1 to w∗ (the optimal value of the stochastic problem) as N
tends to infinity (see [72]).

Also, it is possible to use SAA to estimate the optimality gap by deriving lower and
upper bounds on w∗. These bounds will be used to quantify the confidence intervals of
the optimal solution of the stochastic model (see Section 4.7, Figure 4.9). Indeed, an
upper bound on w∗ is

cT x̂+ E[Q(x̂, ξ(ω))] = cT x̂+ E[Q̄N (x̂, ξ(ωi))] (4.9)

where x̂ is a given feasible, yet suboptimal, first-stage decision vector. The expectation
in the right hand side of (4.9), by its own, can be estimated as the mean of N ′ � N

(say) independent SSA Q̄jN (x̂, ξ(ωji)) , obtaining:

UB =
1
N ′

N ′∑
j=1

Q̄jN (x̂, ξ(ωji)) (4.10)

σ2
u = var Q̄N (x̂, ξ(ωi)) =

1
(N ′ − 1)N ′

N ′∑
j=1

(Q̄jN (x̂, ξ(ωji))− ŪB) (4.11)

64 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

It is easy to show (see [50]) that a lower bound on w∗ is given by E[w∗N]. Again, we can
compute this expectation by sampling:

LB =
1
N ′

N ′∑
j=1

w∗jN (4.12)

σ2
l = var w̄∗N =

1
(N ′ − 1)N ′

N ′∑
j=1

(w∗jN − LB) (4.13)

4.4.2 Sampling

Sampling of delays has been carried out using the following per-line model. A line
L is defined as a sequence of stations operated by trains during the 24 hours. Each
line section (the path between two consecutive stations i and j) can have a certain
probability P(i,j) to be affected by delay. Also, each time interval [l, k] in the 24-hour
time horizon can have a certain probability of delay, say P[l,k]. Then each single train
h arrives at the last station with a cumulative random delay δh. The actual delay
incurred by train h operating on section (i, j) in time interval [l, k] is computed using
the following formula:

δh(i,j)([l, k]) = δhP[l,k]

P(i,j)∑
(i,j)∈L P(i,j)

(4.14)

where we normalize sections delay probabilities in order to distribute the cumulative
delay δTP[l,k] incurred by train T operating on line L through each line section (i, j).
Note that P(i,j) and P[l,k] could be deterministic numbers between 0 and 1, but typically
they are treated as random variables.

When using random sampling, the outcome can be affected by a large variance,
making it difficult to interpret. So we decided to use LatinHypercube (LH) variance
reduction technique when sampling from each distribution of P(i,j), P[l,k] and δh. Other
techniques such as, e.g., Importance Sampling [21] can in principle fit our simulation
setting as well, but they are quite involved. On the contrary, LH sampling is of general
applicability and comes with a straightforward implementation. The standard approach
to get a sample from a particular probability distribution is to apply the inverse of the
desired Cumulative Distribution Function (CDF) to a sample drawn from a uniform
distribution. The process is then repeated until the required number of samples N is
collected. Using LH sampling, instead, we first subdivide the [0, 1] interval in N equal
subintervals, and from each of them we draw a sample from a uniform distribution
spanning the subinterval. Then the obtained sample vector is inverted through the CDF
and randomly permuted. For more theoretical insights on LH sampling, the interested
reader is referred to [51].

LH sampling proved to be quite effective in our application. Figure 4.1 shows the
reduction in variance σ when sampling from an exponential distribution with or with-
out LH sampling. In our computational testing, we observed an even larger variance

4.5. Validation Model 65

reduction (one order of magnitude or more).

0 0.5 1 1.5
0

5

10

15

20

25

With LHS

σ = 0.19907

0 0.5 1 1.5
0

5

10

15

20

25

Without LHS

σ = 0.24352

Figure 4.1: Reduction of variance σ with LH when approximating, through sampling,
the exponential probability distribution function (solid line).

4.5 Validation Model

An important component in our framework is robustness validation. Validation is often
carried out inside the model itself, as is the case when a SP approach is used. However,
we decided to implement an external simulation-based validation module that is inde-
pendent from the optimization model itself, so that it can be of general applicability
and allows one to compare solutions coming from different methods. The module is
required to simulate the reaction of the railway system to the occurrence of delays, by
introducing small adjustments to the planned timetable received as an input parameter.
Validation is a major topic on its own. Indeed, the set of actions the railway system
can make to react to disruptions is quite large—see for example [39]—and the deci-
sion making process is often complicated by strict real-time requirements and complex
business rules. Validation can be carried out by optimization methods, as proposed in
[48, 49, 20]. However, the complexity of such models grows rapidly as soon as we allow
complex decisions to be made. Thus, simulation methods are often used to measure
empirically the robustness of a given timetable—see, for example, [10]. For the purpose
of the present chapter, we decided to implement a simple LP-based validation tool based
on the following simplified assumptions.

• Limited adjustability in response to delays with respect to the given timetable:
In this chapter, timetabling robustness is not concerned with major disruptions
(which have to be handled by the real time control system and require human
intervention) but is a way to control delay propagation, i.e., a robust timetable
has to favor delay compensation without heavy human action. As a consequence,
at validation time no train cancellation is allowed, and event precedences are fixed
with respect to the planned timetable.

• Speed of validation: The validation tool should be able to analyze quickly the

66 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

behavior of the timetable under many different scenarios.

Given these guidelines, we designed a validation model which analyzes a single delay
scenario ω at a time. As all precedences are fixed according to the input solution to be
evaluated, constraints (4.1-4.3) all simplify to linear inequalities of the form:

ti − tj ≥ di,j

where di,j can be a minimum trip time, a minimum rest or an headway time. We will
denote with P the set of ordered pairs (i, j) for which a constraint of type (4.1) can be
written. The problem of adjusting the given timetable t under a certain delay scenario
ω can thus be rephrased as the following simple linear programming model with decision
variables tω:

min
∑
j∈E

wj
(
tωj − tj

)
(4.15)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P (4.16)

tωi ≥ ti ∀i ∈ E (4.17)

Constraints (4.16) correspond to the linear inequalities just explained, in which the
nominal right-hand-side value di,j is updated by adding the (possibly zero) extra-time
δωi,j from the current scenario ω. Weights wj appearing in objective function (4.15) are
related to the relative importance of the events, and typically depend on the number of
passengers affected.

Constraints (4.17) are non-anticipatory constraints stating the obvious condition
that one is not allowed to anticipate any event with respect to its published value in the
timetable. Since these values are known, these constraints act as simple lower bounds
on the decision variables. Instead, we impose no upper bounds since we allow for an
unlimited stretch of the timetable to recover from delays, i.e., a feasible timetable is
always achievable.

The objective function is to minimize the “cumulative delay” on the whole network.

Given a feasible solution, the validation tool keeps testing it against a large set of
scenarios, one at a time, gathering statistical information on the value of the objective
function and yielding a concise figure (the average cumulative delay) of the robustness
of the timetable.

4.6 Finding Robust Solutions

In this section we present three different approaches to cope with robustness. We
introduced two simplifying hypotheses: (1) all input trains have to be scheduled; (2) all
event precedences are fixed according to a given input “nominal” solution.These strong
assumptions were made to obtain tractable (LP) models.

4.6. Finding Robust Solutions 67

4.6.1 A Fat Stochastic Model

Our first attempt to solve the robust version of the TTP is to use a standard scenario-
based SP formulation. The model can be outlined as:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)

∑
h∈T

ρh ≥ (1− α)z∗ (4.18)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (4.19)

tωi ≥ ti ∀i ∈ E,∀ω ∈ Ω (4.20)

ti − tj ≥ di,j ∀(i, j) ∈ P (4.21)

l ≤ t ≤ u (4.22)

The structure of the model is similar to that used in the validation tool, but takes
into account several scenarios at the same time. Moreover, the nominal timetable values
tj are now viewed as first-stage decision variables to be optimized–their optimal value
will define the final timetable to be published. The model is composed by the original
one and a copy of it with a modified right hand side for each scenario. The original
variables and the correspondent second-stage copies in each scenario are linked through
non-anticipatory constraints.

The objective is to minimize the cumulative delay over all events and scenarios. The
original objective function

∑
ρh is taken into account through constraint (4.18), where

α ≥ 0 is a tradeoff parameter and z∗ is the objective value of the reference solution.

For realistic instances and number of scenarios this model becomes very time con-
suming (if not impossible) to solve–hence we called it “fat". On the other hand, also in
view of its similarity with the validation model, it plays the role of a kind of “perfect
model" in terms of achieved robustness, hence it has been used for benchmark purposes.

4.6.2 A Slim Stochastic Model

Being the computing time required by the full stochastic model quite large, we present
an alternative model which is simpler yet meaningful for our problem. In particular, we
propose the following recourse-based formulation:

min
∑

(i,j)∈P,ω∈Ω

wi,js
ω
i,j (4.23)

68 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

∑
h∈T

ρh ≥ (1− α)z∗ (4.24)

ti − tj + sωi,j ≥ di,j + δωi,j ∀(i, j) ∈ P, ∀ω ∈ Ω (4.25)

sωi,j ≥ 0 ∀(i, j) ∈ P, ∀ω ∈ Ω (4.26)

ti − tj ≥ di,j ∀(i, j) ∈ P (4.27)

l ≤ t ≤ u (4.28)

In this model we have just one copy of the original variables, plus the recourse
variables sωi,j which account for the unabsorbed extra times δωi,j with respect to the
minimum train trip times. It is worth noting that the above “slim" model is inherently
smaller than the fat one. Moreover, one can drop all the constraints of type (4.25) with
δωi,j = 0, a situation that occurs very frequently in practice since most extra-times in a
given scenario are zero.

As to objective function, it involves a weighted sum of the recourse variables. Find-
ing meaningful values for weights wi,j turns out to be very important. Indeed, we will
show in Section 4.7 how to define these weights so as to produce solutions whose robust-
ness is comparable with that obtainable by solving the (much more time consuming)
fat model.

4.6.3 Light Robustness

A different way to produce robust solutions is to use the Light Robustness (LR) ap-
proach proposed recently by Fischetti and Monaci [28]. This method is based on the
consideration that, roughly speaking, robustness is about putting enough slack on the
constraints of the problem. In its simpler version, the LR counterpart of the LP model

min{cTx : Ax ≤ b, x ≥ 0}

reads

min f(γ) (4.29)

Ax− γ ≤ b− β (4.30)

cTx ≤ (1 + α)z? (4.31)

x ≥ 0 (4.32)

0 ≤ γ ≤ β (4.33)

where βi is a parameter giving the desired protection level (or slack) on constraint i, and
γi ≥ 0 is a decision variable giving the corresponding unsatisfied slack. The objective
is to minimize a given function f of the γ variables (typically, a linear or quadratic
expression). Moreover, (4.31) gives a bound (controlled by α) on the efficiency loss due
to the increased robustness of the solution , where z? is the value of the input nominal
solution.

4.7. Computational Results 69

Instance #Stations #Sched.Trains

BZVR 27 127
BrBO 48 68
MUVR 48 48
PDBO 17 33

Table 4.1: Nominal solution characteristics

In our TTP model, a typical constraint reads

ti − tj ≥ di,j

and its LR counterpart is simply

ti − tj + γi,j ≥ di,j + ∆i,j γi,j ≥ 0

where ∆i,j is the required protection level parameter.

4.7 Computational Results

We carried out tests on four single-line medium-size TTP instances provided by the
Italian railway company, Trenitalia. Data refers to unidirectional traffic on different
corridors.

An almost-optimal heuristic solution for each of these instances was computed by
using the algorithm described in [17]. The algorithm is a Lagrangian heuristic based on
the computation of paths on a time-expanded network, whose computing time was in
the order of minutes on a Pentium IV, 2.4 GHz PC. The corresponding solutions were
used as the input nominal solutions to freeze the event precedences and to select the
trains to schedule. Solution characteristics are given in Table 4.1.

We implemented our framework in C++ and carried out our tests on a AMD
Athlon64 X2 4200+ computer with 4GB of RAM . ILOG CPLEX 10.1 [40] was used as
MIP solver.

According to the sampling model described in Section 4.4.2, we generated an extra
time δh(ω) corresponding to each train h and to each scenario ω, drawing them from
an exponential distribution with mean µ = 5%. In lack of more detailed data from
the Italian railways operator about the actual distribution of delays in line sections, we
assume a proportional distribution of delays along line segments. Accordingly, proba-
bilities P(i,j) in (4.14) are proportional to the length of train segments, barring a small
additive white Gaussian noise (standard deviation σ = 0.01, i.e., a random adjustment
of 1-2%), and probabilities P[l,k] are deterministically set to 1.

Given this setting, the first test we performed was aimed at comparing four differ-
ent training methods for each reference solution, with different values of the tradeoff
parameter α, namely 1%, 5%, 10% and 20%. We compared the following alternative

70 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

methods:

• fat : fat stochastic model (50 scenarios only)

• slim1 : slim stochastic model with uniform objective function–all weights equal
(400 scenarios)

• slim2 : slim stochastic model with enhanced objective function (400 scenarios),
where events arising earlier in each train sequence receive a larger weight in the
objective function. More specifically, if the i-th event of train h is followed by k
events, its weight in(4.23) is set to k + 1. The idea behind this weighing policy
is thatunabsorbed disturbances sωi,j in a train sequence are likely to propagate to
the next ones, so the first ones in the line are the most important to minimize.

• LR: Light Robustness model with objective function as in slim2 (using the slim1
objective function produces significantly worse results).Protection level parame-
ters are set to ∆ = −µ ln 1

2 , where µ is the mean of the exponential distribution.
This is the protection level required to absorb a delay drawn from such a distribu-
tion with probability 1

2 . For example, setting a buffer of 1 minute we can absorb
half of the times an exponentially distributed disturbance of mean 1.44 minutes.

As to the validation model, weights wj appearing in objective function (4.15) are
assumed to be equal to 1, i.e., all events are considered equally important.

The results are shown in Table 4.2, while graphical representations are given in
Figures 4.2 and 4.3.

According to the figures, slim2 always yields a very tight approximation of fat, while
slim1 is often poorer. As to LR, it usually produces good results that are only slightly
worse than slim2, mainly in the most-realistic cases where the tradeoff parameter α is
small. As to computing times (reported in Table 4.2), the fat model is one order of
magnitude slower than slim1 and slim2, although it uses only 50 scenarios instead of
400. LR is much faster than any other method—more than two orders of magnitude
w.r.t the fat stochastic models. Therefore, LR qualifies as the method of choice for
addressing large-scale real cases, as it guarantees good levels of robustness and requires
very short computing times.

4.7. Computational Results 71

1% 5% 10% 20%
6000

7000

8000

9000

10000

11000

12000

13000
Line BrBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

1% 5% 10% 20%
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200
Line PDBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

Figure 4.2: Comparison of different training models applied to the best reference
solution for each instance. On the x-axis there is the efficiency loss (α) while the y-axis
reproduces the confidence intervals of the validation figure (run with 500 scenarios).

72 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

1% 5% 10% 20%
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

1% 5% 10% 20%
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4 Line BZVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

Figure 4.3: Comparison of different training models applied to the best reference
solution for each instance. On the x-axis there is the efficiency loss (α) while the y-axis
reproduces the confidence intervals of the validation figure (run with 500 scenarios).

4.7.
C
om

putationalR
esults

73

α Fat Slim1 Slim2 LR

Line Delay WAD(%) Time(s) Delay WAD(%) Time(s) Delay WAD(%) Time(s) Delay WAD(%) Time(s)

0% BZVR 16149 – 9667 16316 – 532 16294 – 994 16286 – 2.27
0% BrBO 12156 – 384 12238 – 128 12214 – 173 12216 – 0.49
0% MUVR 18182 – 377 18879 – 88 18240 – 117 18707 – 0.43
0% PDBO 3141 – 257 3144 – 52 3139 – 63 3137 – 0.25

Tot: 49628 – 10685 50577 – 800 49887 – 1347 50346 – 3.44

1% BZVR 14399 16.4 10265 15325 45 549 14787 17 1087 14662 18 2.13
1% BrBO 11423 21.6 351 11646 42 134 11472 21 156 11499 23 0.48
1% MUVR 17808 12.9 391 18721 37 96 17903 12 120 18386 8 0.48
1% PDBO 2907 15.6 250 3026 51 57 2954 11 60 2954 13 0.27

Tot: 46537 66.5 11257 48718 175 836 47116 61 1423 47501 62 3.36

5% BZVR 11345 15.9 9003 12663 48 601 11588 19 982 12220 22 1.99
5% BrBO 9782 18.9 357 11000 50 146 9842 22 164 10021 23 0.51
5% MUVR 16502 14.5 385 18106 41 86 16574 13 107 17003 11 0.45
5% PDBO 2412 14.7 223 2610 44 49 2508 20 57 2521 19 0.28

Tot: 40041 64 9968 44379 183 882 40512 74 1310 41765 75 3.23

10% BZVR 9142 21.4 9650 10862 50 596 9469 24 979 10532 33 2.01
10% BrBO 8496 19.1 387 10179 51 132 8552 20 157 8842 23 0.51
10% MUVR 15153 14.7 343 17163 49 84 15315 15 114 15710 13 0.43
10% PDBO 1971 19.9 229 2244 49 50 2062 27 55 2314 37 0.25

Tot: 34762 75.1 10609 40448 199 862 35398 86 1305 37398 106 3.2

20% BZVR 6210 28.5 9072 7986 50 538 6643 31 1019 8707 52 2.04
20% BrBO 6664 22.1 375 8672 53 127 6763 23 153 7410 30 0.52
20% MUVR 13004 17.1 384 15708 52 91 13180 18 116 13576 19 0.42
20% PDBO 1357 28.4 230 1653 49 55 1486 34 60 1736 53 0.28

Tot: 27235 96.1 10061 34019 204 811 28072 106 1348 31429 154 3.26

40% BZVR 3389 35.4 10486 4707 50 578 3931 37 998 5241 51 2.31
40% BrBO 4491 27.7 410 6212 52 130 4544 29 166 6221 52 0.53
40% MUVR 10289 21.8 376 13613 52 95 10592 25 108 11479 34 0.45
40% PDBO 676 37.1 262 879 49 55 776 41 57 1010 52 0.28

Tot: 18845 122 11534 25411 203 858 19843 132 1329 23951 189 3.57

Table 4.2: Comparison of different training methods with respect to computing time, percentage WAD and validation function (cumulative delay
in minutes), for different lines and tradeoff α.

74 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

0 len(h)
i

w
ei

gh
t

λ =∞

λ = 30

λ = 15

λ = 6

λ = 3

Figure 4.4: Alternative weighing functions for slim2 and LR, giving weight wij as a
function of position i in the line.

We also tried a variation of the slim2 (and LR) objective function. The variation is
motivated by observations in [43] about the optimal distribution of buffers on a single
corridor. There, it was observed that buffers that are placed too early risk to be left
unused, because the probability to face any delay at this early position is too small.
As a consequence, it might be worthwhile to lower the weights wi,j arising in the early
sections of the line. Figure 4.4 plots different parametric variants of the slim2 objective
function. All of the them obey a common formula, namely:

(1− e−λi)(len(h)− i)

parametrized in λ (λ =∞ gives the original slim2 weighing scheme). Table 4.3 reports
the percentage improvements with respect to case λ =∞ for slim2 and LR, respectively.
It turns out that the new objective function typically produces slightly worse results for
LR, while slim2 takes advantage of it for large values of λ. In any case, the improvement
is not substantial (up to 3-4%).

One might also wonder what is the effect of the input nominal solution to the
subsequent robustness improving phase. To answer this question, we performed the
following experiment. We took the scheduled trains in the heuristic nominal solutions
of [17] used in the previous experiments, and we constructed the MIP model described
in Section 4.3, where the choice of precedences is left open. Then we collected a series
of heuristic nominal solutions of increasing efficiency for that model. This was obtained
by running the MIP solver with a 5-minute time limit and by storing all the incumbent
solutions produced during the run. Moreover, we ran the solver with a 1-hour time
limit so as to produce an almost optimal solution of value, say, zref . (For all instances,

4.7. Computational Results 75

Slim2

λ BZVR BrBO MUVR PDBO

α = 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

3 -1.9 2.6 1.7 3.5 0 -2.5 -2.3 -0.1 -1.2 -0.8 -1.2 -5.3 -2.3 0.2 -0.1 -1.7
6 -0.7 2.6 1.6 3 0.4 -1.3 0.6 2.8 -0.8 -0.9 0.2 -1.5 -1.8 0.2 1 3.6
15 0 3.7 1.7 4.9 1.1 1.2 3.4 3.8 -0.6 -0.3 0 1 -0.3 0.7 1.8 1.4
30 0.4 3.6 0.1 3.5 0.8 1.8 2.2 3.7 0 0.2 0.3 0.7 0.3 -0.2 1.1 1.8

LR

λ BZVR BrBO MUVR PDBO

α = 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

3 -0.3 -0.2 1.1 -2.2 -0.1 0.2 -0.5 -0.5 0.1 -0.4 1.2 0.2 -0.7 -0.7 -2.2 0.2
6 -0.2 -0.8 2 -2 0.1 0.6 0.5 -0.7 0.4 0.2 -0.1 1.3 -1.5 -0.3 0.2 -1.7
15 -0.3 -0.5 1.7 -1.1 0.1 0.3 0.4 -0.5 -0.2 0.7 1.3 0.6 -1.3 0 -0.7 1.3
30 0.1 -0.1 1.2 -0.7 0.3 0.2 0 -0.7 -0.4 0.4 0.9 -0.8 -0.4 -0.8 -0.4 -0.9

Table 4.3: Percentage robustness improvement with respect to λ =∞ for the different
weighing functions plotted in Figure 4.4; a negative value corresponds to a worse
robustness.

the optimality gap after 1 hour was less than 4%.) Then, we compared the robustness
achieved by our fat model when starting from these solutions, by allowing for a relative
efficiency loss α with respect to zref . The left-hand side part of Table 4.4 gives the
outcome of the experiment, for two instances (BrBO and MUVR). Columns correspond
to the 10 best solutions obtained within the 5-minute time limit, sorted from left to
right by increasing efficiency. E.g., for instance BrBO, the 10 solutions have a loss of
efficiency ranging from 5.5% to 0.4% with respect to zref . Rows correspond to the
different thresholds α used (1%, 5%, 10%, and 20%). The table entries then give the
percentage increase in robustness (as measured by the validation tool) with respect to
robustness measured when starting from the almost optimal solution of value zref . E.g.,
for BrBO, if we allow for a 10% efficiency loss with respect to zref and start from a
nominal solution which is already 4.5% worse, we lose 13.9% in terms of robustness
achievable through the fat training method. Missing entries correspond to infeasible
cases.

As expected, starting from a worse nominal solution reduces the degree of freedom
in the subsequent training phase, leading to a robustness loss. This negative effect could
in principle be counterbalanced by the different precedence structure of the solution,
in the sense that a less-efficient solution could involve precedence patterns leading to
improved robustness. However, our experiments seem to indicate that the precedence
structure of the solutions plays only a secondary role. This support the viability of
our approach, where only the most-efficient nominal solution available is “trained" for
robustness.

To better quantify the effect of fixing all precedences when improving robustness of
the nominal solution, we performed a second experiment consisting of solving the MIP
version of the LR model where all precedences are left unfixed. Note that this is only
viable for LR, since the other models are too large to be attacked by a general-purpose

76 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

MIP solver. As in our previous experiments, we considered a loss of efficiency α ranging
from 1 to 20% with respect to the almost-optimal solution value zref . The solution
of value zref was also used to provide a first incumbent to the MIP solver. In these
runs the MIP solver performed quite well, in that the optimality gap after 1 hour of
computing time was less than 1% for all instances. (Note however that the model does
not take into account the possibility of leaving some trains unscheduled.)

The results of our second experiment are reported in the right-hand side part of
Table 4.4. For PDBO and BZVR, the MIP model did not find any better solution than
the incumbent, so these cases are not reported in the table. The last column of Table 4.4
reports the percentage robustness improvement of the MIP LR model described above,
over the linear LR model described in Section 4.6.3. E.g., for case BrBO with a threshold
α of 10% with respect to zref , the MIP version of LR is able to improve by only 4.3%
over the simple linear LR. Furthermore, the second-last column of Table 4.4 reports,
for comparison sake, the percentage difference between the solution robustness obtained
by the MIP LR and the robustness obtained by using fat on the same almost optimal
solution zref . Results show that the new scheme produces only marginal robustness
improvements with respect to the simple linear LR. This confirm that, for the cases in
our testbed, the precedence structure of the solutions is not really important, efficiency
being the key figure in determining the maximum achievable robustness. However, this
may be no longer the case for more complex network topologies.

BrBO

Fat LR-MIP

α vs Fat vs LR

eff(%)= -5.5 -4.5 -3.9 -2.7 -2.2 -1.7 -1.3 -1.2 -0.8 -0.4 0.0 0.0 0.0

1% – – – – – – – – -4.1 -2.7 0.0 -0.4 -0.1
5% – -20.3 -18.2 -8.1 -7.4 -4.4 -2.8 -3.1 -1.6 -2.2 0.0 1.7 4.1
10% -23.9 -13.9 -15.2 -5.2 -5.6 -2.9 -1.9 -2.8 -1.4 -2.6 0.0 -1.0 4.3
20% -22.2 -11.9 -14.9 -4.6 -4.5 -3.1 -2.1 -2.8 -2.4 -3.0 0.0 -11.8 2.7

MUVR

Fat LR-MIP

α vs Fat vs LR

eff(%)= -27.4 -14.9 -9.9 -9.2 -7.6 -6.8 -2.7 -1.6 -1.6 -1.3 0.0 0.0 0.0

1% – – – – – – – – – – 0.0 -0.6 0.0
5% – – – – – – -3.7 -1.7 -1.2 -1.7 0.0 -1.2 -0.1
10% – – -19.2 -16.5 -12.6 -10.1 -1.6 -0.8 -0.3 0.2 0.0 -1.4 1.1
20% – -25.5 -13.1 -12.7 -9.1 -8.6 -2.1 -0.9 0.1 -0.8 0.0 -4.3 1.4

Table 4.4: Effects of nominal input solution on robustness.

A simple yet often used in practice policy to enforce robustness in a timetable is to
allocate a buffer that is just proportional to the train duration. Figure 4.5 gives the
results of this simple policy on a sample instance, where we first compute the maximum
total amount of buffer we can allocate for a given efficiency loss, and then distribute it
proportionally along the line. According to the figure, the proportional buffer allocation
policy and slim1 behave quite similarly. This is not surprising, since model slim1

4.7. Computational Results 77

actually favors a proportional buffer allocation—this is confirmed in the other instances
as well (not shown in the figure). On the other hand, much better results are obtained
by applying more clever optimization methods, showing the practical relevance of the
optimization approaches.

0% 1% 5% 10% 20%

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 2
LR
Uniform
slim 1

4.34%

2.20%

1.11%

0.23%

Figure 4.5: Comparison of a simple “proportional” buffer allocation strategy against
the proposed methods. The percentages shown are the total amount of buffer it was
possible to allocate within a given tradeoff.

While the validation output gives a reliable measure of how robust a solution is
against delays, other figures exist that summarize somehow the “static" structure of
a solution. These figures are useful to get insights into the structure of the solutions
obtained with different training methods. In particular, we used the weighted average
distance (WAD) of the allocated buffer from the starting point. The WAD of the single
train h is calculated as

WADh =
1∑len(h)−1

i=1 si,i+1

len(h)−1∑
i=1

si,i+1(thi+1 + thi)/2
thlen(h) − th1

(4.34)

where si,i+1 is the amount of buffer allocated from ti to ti+1. The WAD is a number
between 0 and 1 which measures how the buffers are distributed along the train trip.
For example, a value of 0.5 means that the same amount of buffers were allocated in
the first half and in the second half of the trip; values smaller or bigger than 0.5 relate
to a shift in buffers distribution towards the begin or the end of the trip, respectively.
The WAD of an entire line is calculated as the mean of all the WADs of the trains of
the line. The reader is referred to [43] for a more detailed discussion.

A comparison of the various WADs is reported in Table 4.2 and illustrated in Fig-
ures 4.6 and 4.7. It can be seen that there is a significative correlation between the

78 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

degree of approximation of the various WADs with respect to “perfect WAD" (WADfat)
and the robustness of the solution–as computed by the validation tool and reported in
Figure 4.2 and 4.3. In Figures 4.6 and 4.7, slim1 WAD is almost always 50%, meaning
a uniform allocation of buffers. On the other hand, the other methods tend to allocate
buffers earlier in the line, resulting in a lower value of the WAD. Moreover, as the al-
lowed efficiency loss increases (x axis), the WAD increases as well, meaning that uniform
allocation becomes a good choice. We can also note that LR behaves better for small
efficiency losses. Indeed, LR uses a fixed buffer β to deal with disturbances. When the
problem is less constrained in efficiency, these buffers can become too small, and the LP
solver will start to distribute the buffer excess, in a somehow unpredictable way, so as to
meet the increased degree of freedom, thus degrading the performance of the method.
E.g., this is the case of lines BZVR and PDBO. Moreover, BZVR and PDBO are more
congested than other two instances, which also explains the better performance of the
uniform allocation strategy.

Figure 4.8 reports how the buffers are distributed along the line. The figure is
obtained by normalizing each line by the length of the corridor, and averaging the
buffers allocated in each normalized line section. The averages are then normalized by
the total amount of allocated buffer, so that the area of each chart approximately sums
up to 1. E.g., slim1 allocates buffers almost uniformly along the line—the particular
structure of the timetable being responsible of local fluctuations. It is clear that slim2
produces a very tight approximation of fat, while slim1 does not. It is worth noting that
LR uses a smoother allocation of buffers, while slim1 yields a better approximation of
their oscillations, but misses the global allocation policy. In this respect, slim2 performs
quite well instead. This is due to the fact that LR does not exploit directly the scenario
information, thus it has to cope with very little information. Again, note that the
poorest method (slim1) produces an almost uniform distribution of the buffers, whereas
the best ones tend to allocate them earlier. This confirms the findings reported in [43].

Finally, given the intrinsic approximation of the stochastic methods due to the
evaluation of the expectation, we have computed lower and upper bounds on the optimal
solutions of the stochastic models, as described in Section 4.4. A typical plot obtained
for the slim stochastic model is reported in Figure 4.9, showing very narrow estimation
gaps. Similar results are obtained with the other models, except fat that behaves a
little worse due the reduced number of scenarios.

4.8 Conclusions and future work

In this chapter we have described a three-stage framework as a practical tool for building
and testing robust solutions for the Train Timetabling Problem. We mainly focused on
robustness improvement of a given nominal solution. Robustness was then validated in
terms of the total cumulative delay, computed by solving an LP model.

We examined different robustness improving models. The best performing, in terms
of validated cumulative delay, is a “fat" stochastic reformulation of the nominal TTP
problem. However, the solution of this model turned out to be very hard (if not impos-

4.8. Conclusions and future work 79

1% 5% 10% 20%
0

10

20

30

40

50

60
Line BrBO

Efficiency loss

W
A

D
 (

%
)

1% 5% 10% 20%
0

10

20

30

40

50

60
Line PDBO

Efficiency loss

W
A

D
 (

%
)

fat
slim 1
slim 2
LR

fat
slim 1
slim 2
LR

Figure 4.6: Comparison of different training models from the WAD point of view
(WAD is given within its confidence intervals).

80 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

1% 5% 10% 20%
0

10

20

30

40

50

60
Line BZVR

Efficiency loss

W
A

D
 (

%
)

1% 5% 10% 20%
0

10

20

30

40

50

60
Line MUVR

Efficiency loss

W
A

D
 (

%
)

fat
slim 1
slim 2
LR

fat
slim 1
slim 2
LR

Figure 4.7: Comparison of different training models from the WAD point of view
(WAD is given within its confidence intervals).

4.8. Conclusions and future work 81

0% 10% 20% 30% 40% 50% 60% 70% 80%
0

0.5

1

1.5

2

2.5

3

3.5

4

 trip length (%)

 a
llo

ca
te

d
bu

ffe
r

(%
)

Buffer allocation curves in MUVR (eff.loss. 10%)

fat
slim 1
slim 2
LR

Figure 4.8: Comparison of different training models from the allocated-buffer point of
view.

82 Chapter 4. Fast Approaches to Improve the Robustness of a Railway Timetable

1% 5% 10% 20%
4000

6000

8000

10000

12000
Line BrBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

1% 5% 10% 20%
0

500

1000

1500

2000

2500
Line PDBO

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

1% 5% 10% 20%
0.6

0.8

1

1.2

1.4

1.6
x 10

4 Line MuVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

1% 5% 10% 20%
2000

4000

6000

8000

10000

12000

14000
Line BZVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

Figure 4.9: Confidence intervals of upper and lower bounds of the optimal solution of
stochastic model slim2

4.8. Conclusions and future work 83

sible) for practical instances. A “slim” version performed much better, provided that a
clever objective function is used. The fastest method, Light Robustness (LR), proved
to be quite accurate when dealing with a reasonable robustness–efficiency tradeoff, al-
lowing for a fast solution of large instances. On the whole, Light Robustness qualifies
as a suitable tool for addressing large-scale real scenarios, and can even be embedded in
the nominal solver to find optimized train-precedence patterns leading to more robust
timetables.

Future direction of research should address the important topics below.
In the present chapter, we quantified (for the LR model) the gain in terms of ro-

bustness resulting from relaxing the requirement that all precedences in the nominal
solution must be preserved. It would be interesting to extend this analysis to the (much
more difficult to solve) slim2 model.

We performed our computations on real-world unidirectional corridors operated by
the Italian railways operator; it would be interesting to address more complex network
topologies.

Finally, in our study we used a simplified LP-based validation tool to estimate the
cumulative delay in a set of random scenarios. An interesting research topic would be
to measure the actual price required to recover a delayed timetable by using the same
strategies used in real-world delay management.

Bibliography

[1] A branch-and-cut algorithm for the resolution of large-scale symmetric traveling
salesman problems. SIAM Rev., 33:60?100, 1991.

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):1–12, 2006.

[3] E. Amaldi, M. E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsystem
problem, IISs and IIS-hypergraphs. Mathematical Programming, 95(3):533–554,
2003.

[4] J. L. Arthur and A. Ravindran. PAGP, a partitioning algorithm for (linear) goal
programming problems. ACM Trans. Math. Softw., 6(3):378–386, 1980.

[5] A. Bachem and W. Kern. Linear Programming Duality. An Introduction to Ori-
ented Matroids. Number 074 in Universitext. Springer, 1992.

[6] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics, 89(1-3):3–44, December 1998.

[7] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science, 42:1229–1246, 1996.

[8] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Operations
Research Letters, 19:1–9, 1996.

[9] M. L. Balinski and A. W. Tucker. Duality theory of linear programs: A constructive
approach with applications. SIAM Review, 11(3):347–377, July 1969.

[10] F. Barber, S. Cicerone, D. Delling, G. Di Stefano, M. Fischetti, L. Kroon, D. Sal-
vagnin, P. Tormos, C. Weber, and A. Zanette. New frameworks for the interaction
between robust and online timetable planning, and for monitoring the status quo
of the system. Technical Report ARRIVAL-D3.4, ARRIVAL Project, 2008.

[11] E. M. L. Beale. Survey of integer programming. OR, 16(2):219–228, jun 1965.

[12] J.F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, Dec. 1962.

[13] L. Bertacco. Exact and Heuristic Methods for Mixed Integer Linear Programs. PhD
thesis, University of Padova, 2005.

86 Bibliography

[14] John R. Birge and Francois Louveaux. Introduction to Stochastic Programming
(Springer Series in Operations Research and Financial Engineering). Springer, 1st
ed. 1997. corr. 2nd printing edition, 2000.

[15] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling: Theory and Appli-
cations. Springer, 2005.

[16] A. Caprara, M. Fischetti, and A. N. Letchford. On the separation of maximally
violated mod-k cuts. In Proceedings of the 7th International IPCO Conference on
Integer Programming and Combinatorial Optimization, pages 87–98, London, UK,
1999. Springer-Verlag.

[17] A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling
problem. Operations Research, 50(5):851–861, 2002.

[18] A. Caprara, M. Monaci, P. Toth, and P.L. Guida. A lagrangian heuristic algo-
rithm for a real-world train timetabling problem. Discrete Applied Mathematics,
154(5):738–753, 2006.

[19] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics, 4:305–337, 1973.

[20] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni,
and Alfredo Navarra. On the interaction between robust timetable planning and de-
lay management. Technical Report ARRIVAL-TR-0116, ARRIVAL project, 2007.

[21] Charles E. Clark. Importance sampling in Monte Carlo analyses. Operations Re-
search, 9(5):603–620, 1961.

[22] W. Cook, S. Dash, R. Fukasawa, and M. Goycoolea. Numerically safe gomory
mixed-integer cuts. 2008.

[23] G. Cornuéjols. Valid inequalities for mixed integer linear programs. Math. Pro-
gram., 112(1):3–44, 2007.

[24] G. Cornuéjols, L. Liberti, and G. Nannicini. Improved strategies for branching on
general disjunctions. Optimization Online, 2008.

[25] Balas E. and A. Saxena. Optimizing over the split closure. Mathematical Program-
ming, DOI 10.1007/s10107-006-0049-5, 2006.

[26] M. Fischetti and Lodi A. Optimizing over the first Chvátal closure. Mathematical
Programming B, 110(1):3–20, 2007.

[27] M. Fischetti, A. Lodi, and A. Tramontani. Experiments with disjunctive cuts.
Technical report, November 2007. In preparation.

[28] M. Fischetti and M. Monaci. Light robustness. Technical Report ARRIVAL-TR-
0119, ARRIVAL Project, 2008.

Bibliography 87

[29] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[30] R.S. Garfinkel and G.L. Nemhauser. Integer Programming. New York: John Wiley
and Sons, 1972.

[31] A. M. GEOFFRION. Lagrangian relaxation and its uses in integer programming.
Mathematical Programming Study, 2:82–114, 1974.

[32] Arthur M. Geoffrion. Generalized benders decomposition. Journal of Optimization
Theory and Applications, 10:237–260, 1972.

[33] Alex Orden George B. Dantzig and Philip Wolfe. The generalized simplex method
for minimizing a linear form under linear inequality restraints. Pacific J. Math.,
5(2):183–195, 1955.

[34] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities.
ORSA Journal on Computing, 2(1):61–63, 1990.

[35] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Society, 64:275–278, 1958.

[36] R. E. Gomory. An algorithm for the mixed integer problem. Technical Report
RM-2597, The RAND Cooperation, 1960.

[37] R. E. Gomory. An algorithm for integer solutions to linear programming. In
R. L. Graves and P. Wolfe, editors, Recent Advances in Mathematical Programming,
pages 269–302, New York, 1963. McGraw-Hill.

[38] R. E. Gomory. Early integer programming. Operations Research, 50:78–81, Jan. -
Feb. 2002.

[39] Mads Hofman, Line Madsen, Julie Jespersen Groth, Jens Clausen, and Jesper
Larsen. Robustness and recovery in train scheduling - a case study from DSB S-
tog a/s". In Riko Jacob and Matthias Müller-Hannemann, editors, ATMOS 2006 -
6th Workshop on Algorithmic Methods and Models for Optimization of Railways. In-
ternationales Begegnungs- und Forschungszentrum f"ur Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.

[40] ILOG Inc. ILOG CPLEX 10.1 User’s Manual, 2007.

[41] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4:373–395, 1984.

[42] L. Khachian. A polynomial algorithm for linear programming. Doklady Akad Nauk
USSR, 244(5):1093–1096, 1979.

88 Bibliography

[43] L.G. Kroon, R. Dekker, and M.J.C.M. Vromans. Cyclic railway timetabling: a
stochastic optimization approach. In Algorithmic Methods for Railway Optimiza-
tion, Lecture Notes in Computer Science, pages 41–66. Springer Berlin / Heidel-
berg, 2007.

[44] Adam N. Letchford and Andrea Lodi. Strengthening chvátal-gomory cuts and
gomory fractional cuts. Operations Research Letters, 30:74–82, 2002.

[45] A.N. Letchford and A. Lodi. Strengthening chvátal-gomory cuts and gomory frac-
tional cuts. Oper. Res. Lett., 30(2):74–82, 2002.

[46] C. Liebchen and L. W.P. Peeters. On cyclic timetabling and cycles in graphs.
Technical Report 761-2002, TU Berlin, Mathematical Institute, 2002.

[47] C. Liebchen and S.Stiller. Delay resistant timetabling. Technical Report
ARRIVAL-TR-0056, ARRIVAL Project, 2006.

[48] Christian Liebchen, Marco Lübbecke, Rolf H. Möhring, and Sebastian Stiller. Re-
coverable robustness. Technical Report ARRIVAL-TR-0066, ARRIVAL-Project,
2007.

[49] Christian Liebchen, Michael Schachtebeck, Anita Schöbel, Sebastian Stiller, and
André Prigge. Computing delay resistant railway timetables. Technical Report
ARRIVAL-TR-0071, ARRIVAL Project, October 2007.

[50] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior
of sampling methods for stochastic programming. Annals of Operations Research,
142(1):215–241, February 2006.

[51] W. L. Loh. On latin hypercube sampling. The Annals of Statistics, 24(5), 1996.

[52] R. Lougee-Heimer. The common optimization interface for operations research:
Promoting open-source software in the operations research community. IBM J.
Res. Dev., 47(1):57–66, 2003.

[53] A. Lodi M. Fischetti. Optimizing over the first Chvàtal closure. In M. Juenger and
V. Kaibel, editors, Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science 3509, pages 12–22. Springer-Verlag Berlin Heidelberg,
2005.

[54] T.L. Magnanti and R.T. Wong. Accelerating Benders decomposition: algorithmic
enhancement and model selection criteria. Operations Research, 29:464–484, 1981.

[55] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer
and mixed integer programming. Discrete Applied Mathematics, 123(1-3):397–446,
November 2002.

Bibliography 89

[56] H. Marchand and L.A. Wolsey. Aggregation and mixed integer rounding to solve
mips. Papers 9839, Catholique de Louvain - Center for Operations Research and
Economics, 1998.

[57] F. Margot. Testing cut generators for mixed-integer linear programming. Optima,
77, 2008.

[58] R. R. Meyer. On the existence of optimal solutions to integer and mixed integer
programming problems. Mathematical Programming, 7:223–235, 1974.

[59] P. Miliotis. Integer programming approaches to the travelling salesman problem.
Mathematical Programming, 10:367–378, 1976.

[60] P. Miliotis. Using cutting planes to solve the symmetric travelling salesman prob-
lem. Mathematical Programming, 15:177–178, 1978.

[61] K. Nachtigall. Periodic network optimization and fixed interval timetables. Habil-
itation Thesis, Deutsches Zentrum für Luft-und Raumfahrt, Braunschweig, 1999.

[62] G. Nemhauser and L. Wolsey. Integer and combinatorial optimization. Wiley, 1988.

[63] L. W. P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus
University Rotterdam, 2003.

[64] C. Poojari and J. Beasley. Improving Benders decomposition using a genetic algo-
rithm. Technical report, 2006. Submitted to INFORMS Journal on Computing.

[65] W. Rei, J. F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders de-
composition by local branching. Technical report, January 2006. To appear in
INFORMS Journal on Computing, January 2006.

[66] A. Ruszczynski and A. Shapiro, editors. Stochastic Programming (Hanbooks in
Operations Research and Management Series). Elsevier Publishing Company, 2003.

[67] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

[68] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling prob-
lems. SIJDM: SIAM Journal on Discrete Mathematics, 2, 1989.

[69] A. Shapiro. Monte carlo sampling approach to stochastic programming. In ESAIM:
Proceedings, volume 13, pages 65–73, December 2003.

[70] M. Tamiz, D. F. Jones, and E. El-Darzi. A review of goal programming and its
applications. Annals of Operations Research, (1):39–53, 1995.

[71] T. Terlaky. Book review: Computational techniques of the simplex method. Com-
putational Optimization and Applications, 26(2):209–210, November 2003.

90 Bibliography

[72] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. The sample
average approximation method applied to stochastic routing problems: A compu-
tational study. Computational and Applied Optimization, 24, 2003.

