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Summary

The object of this thesis is to analyze the deep neural networks, math-
ematical models used in this circumstance for the classi�cation of data,
and to search for innovative solutions to the problems they are a�ected,
for example the reduction of training time or the reduction of the number
of tunable hyperparameters.

In the Machine Learning �eld there are many models and architec-
tures to solve certain tasks: we focused on the neural networks because
in the last few years they reached remarkable levels of accuracy in the
classi�cation task, one of the key problems of data science.

Another reason that guided us towards the analysis of these struc-
tures is the fact that there is not yet a complete understanding of their
functioning or how performances are a�ected by the parameters, there-
fore it is still possible to achieve signi�cant improvements with relatively
simple techniques.

Two new methods will be presented, called minibatch persistency and
adaptive Nesterov, targeted respectively to reduce training time and to
automatically adapt the value of the stepsize: in addition to the di�erent
implementations, it will be made an analysis of the experimental results
aimed at understanding strengths and weaknesses of each method.

The thesis is organized as follows: in Chapter 1 the deep neural net-
works and their functioning are described, besides giving the notation
used in the following chapters. Chapter 2 describes a new method called
minibatch persistency together with the results obtained from the ex-
periments. In Chapter 3 we discuss the role of the learning rate in
the training of neural networks, in addition to the presentation of poli-
cies such as the Cyclical Learning Rate and the adaptive learning rates.
Also, in Chapter 3 we describe our new adaptive Nesterov method and
the relative tests performed. Finally in Chapter 4 some conclusions and
observations are drawn, together with future works.

iii





Contents

Summary iii

Contents v

1 Deep Learning 1

1.1 Feedforward neural networks . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Training the neural network: SGD and backpropagation . . . . . . . 2
1.3 SGD with momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Other neural network elements . . . . . . . . . . . . . . . . . . . . . . 6

2 Minibatch Persistency 11

2.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Tests and experiment setup . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 VGG16 and ResNet34 . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Improving the performance . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Role of learnig rate on neural networks 25

3.1 Cyclical Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Adaptive learning rates . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Alternative computation of learning rate: Adaptive Nesterov . . . . . 29
3.4 Tests of Adaptive Nesterov . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Improving the performance . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Conclusions 41

Bibliography 43

List of Figures 45

List of Tables 47

v





Chapter 1

Deep Learning

Deep Learning it is a branch of Machine Learning based on learning
data representation through the use of a neural network architecture,
speci�cally deep neural networks.
Let's start �rst with de�ning the neural network model which is only
vaguely inspired by information processing in the human nervous sys-
tem: the idea is that many neurons can be connected to each other to
carry out complex computations. Such structure therefore corresponds
to a graph whose nodes are the neurons and each directed edge is a
connection between two neurons.

1.1 Feedforward neural networks

A feedforward neural network is described by a directed acyclic graph
G = (V,E) and a weight function w : E → R; we assume that the
network is organized in layers such that the set of nodes can be decom-
posed into a union of disjoint subsets, V =

⋃T
t=0 Vt, such that every edge

connects some node in Vt−1 to some node in Vt, for t ∈ T .
The input layer, V0, contains n+1 neurons where n is the dimensionality
of the input space, the output of the neuron i in V0 being denoted as xi
(the last neuron always outputs 1).
Called vt,i the i-th neuron of the t-th layer, at,i(x) and ot,i(x) respec-
tively the input and the output of vt,i when the network is fed with the
input vector x. Consequently the output of the neuron i at layer t + 1
is given by:

at+1,i(x) =
∑

r:(vt,r,vt+1,i)∈E

w((vt,r, vt+1,i))ot,r(x)

ot+1,i(x) = σ(at+1,i(x))

(1.1.1)

where σ : R → R is the activation function of the neuron, typically
the threshold function σ(a) = 1[a>0] or the sigmoid function σ(a) =
1/(1 + e−a). As we can see from Figure 1.1, the input of a node is
the weighted sum, according to w, of the outputs of the neurons in
the previous layer, and the output is the application of the activation
function σ on its input.
Layers V1, ..., VT−1 are called hidden layers and the last layer VT is called

1



2 Deep Learning

output layer: the value T therefore represents the number of layers in
the network (excluding the input layer) or its depth; if T > 1 we call
the net a deep neural network.
Below is depicted an explanatory �gure:
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Figure 1.1: Scheme of a feedforward neural network.

1.2 Training the neural network: SGD and backpropagation

Once we have speci�ed the architecture of the neural network by �xing
V , E and σ, the hypothesis class is composed by all the functions hV,E,σ,w
for any choice of w : E → R. Therefore the parameters specifying a
hypothesis in the hypothesis class are the weights over the edges of the
network.
As proved by Bartlett and Ben-David [1], it is NP hard to implement
the ERM rule with respect to HV,E,σ for a network with a single hidden
layer as well as �nding weights that result in close-to-minimal empirical
error. ERM, which stands for Empirical Risk Minimization, is a learning
paradigm in which an algorithm tries to �nd an predictor (called also
hypothesis, model) that minimizes the training error - the error the
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predictor incurs over the training sample (also called empirical error).
Klivans and Sherstov [13] proved an even more general result: under
some cryptographic assumption, any hypothesis class which contains
intersections of halfspaces cannot be learned e�ciently.
Given the extreme complexity of the problem, it is preferable to look
for a solution using a heuristic technique such as Stochastic Gradient
Descent (SGD) [4]; it is proven that SGD is a successful learner if the loss
function is convex, but in neural networks the loss function is highly non-
convex: our hope is that the algorithm will �nd a reasonable solution
anyway [5].
Once �xed the architecture of the network, that is �xing (V,E, σ), the
problem of �nding a hypothesis in HV,E,σ with a low risk corresponds
to the problem of tuning the weights over the edges; since E is a �nite
set, we can think of the weights as a vector w ∈ R|E| and the function
calculated by the network when it is fed with the input vector x ∈ Rn

can be denoted by hw : Rn → Rk. Let's indicate by ∆(hw(x),y) the loss
of predicting hw(x) when the target is y ∈ Y . A typical loss function
could be the squared loss, ∆(hw(x),y) = 1

2 ‖hw(x)− y‖2.
Finally, given a distribution D over the sample domain, the risk of the
network, LD, is equal to:

LD(w) = E
(x,y)∼D

[∆(hw(x),y)].

The resulting standard stochastic gradient descent algorithm for mini-
mizing the risk is:

Algorithm 1 Stochastic Gradient Descent for minimizing LD(w)

1: parameters: η > 0 ∈ R+, T ∈ N
2: initialize w(1) = 0
3: for t = 1, 2, ..., T do

4: sample (x,y) ∼ D
5: pick vt ∈ ∂∆(h

w(t)(x),y)/∂w
6: update w(t+1) = w(t) − η vt
7: output: w(T+1)

In more detail the SGD framework applied to the Neural Networks
is as follows:

The most relevant di�erences are the initialization of w to a random
vector with elements close to zero, and the fact that the gradient does
not have a closed form solution and is instead calculated using the back-
propagation algorithm. Note that it is also possible to return the best
performing w(t) on a validation set instead of w(T+1) (value of w at the
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Algorithm 2 Stochastic Gradient Descent for Neural Networks

1: parameters: η > 0 ∈ R+, T ∈ N
2: initialize w(1) ∈ R|E| from a zero mean distribution

3: for t = 1, 2, ..., T do

4: sample (x,y) ∼ D
5: calculate vt = backpropagation(x,y,w(t), (V,E, σ))
6: update w(t+1) = w(t) − η vt
7: output: w(T+1)

Algorithm 3 Backpropagation algorithm

1: denote V0, ..., VT the layers of the graph, where Vt = {vt,1, ..., vt,kt}
2: denote with σ′ the derivative of the activation function σ
3: de�ne wt,i,j as the weight of (vt,j , vt+1,i)
4: forward pass:

5: set o0 = x

6: for t = 1, 2, ..., T do

7: for i = 1, 2, ..., kt do
8: set at,i =

∑kt−1

j=1 wt−1,i,j ot−1,j

9: set ot,i = σ(at,i)
10: backward pass:

11: set δT = oT − y
12: for t = T − 1, T − 2, ..., 1 do
13: for i = 1, 2, ..., kt do
14: δt,i =

∑kt+1

j=1 wt,j,i δt+1,j σ
′(at+1,j)

15: output: ∀ (vt,j , vt+1,i) ∈ E set ∂∆(hw(x),y)
∂wt,i,j

to δt,i σ
′(at,i) ot−1,j

last iteration).
The presented version of the SGD algorithm is the on-line variant (lines
4 and 5 of Algorithm 2) which means that the true gradient of the loss
function ∆(hw(x),y) is approximated by the gradient of a single exam-
ple: consequently, as the algorithm iterates through the training set, it
performs a weight update for each training example.Typically several
passes are made over the training set (line 3 of Algorithm 2) until the
algorithm converges.
There is an alternative version to the on-line one, called minibatch vari-
ant: an update of the parameters is performed for every minibatch of m
training examples. In particular, the gradient of a minibatch of size m
is computed as the average of the m gradients of the given examples in
the minibatch, with respect to the considered loss function. Let Li(θ)
denote the contribution to the loss function of the i-th training example
in the minibatch, with respect to the weight vector θ. Then for every
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minibatch of size m, the weight update rule at iteration t is as follows:

∇θL(θt) =
1

m

m∑
i=1

∇θLi(θt)

vt = γ vt−1 + η∇θL(θt)

θt+1 = θt − vt

(1.2.1)

The above update policy corresponds to lines 5 and 6 of Algorithm
2 and contains a momentum factor as proposed by Qian [21], which we
will see in the next section.

1.3 SGD with momentum

SGD has trouble navigating areas where the surface of the loss function
curves much more steeply in one dimension than in another, which are
quite common around local minima [24]. In these cases SGD oscillates
across the slopes of the ravine without making signi�cant progress along
the bottom towards the local optimum, as in Figure 1.2a.

(a) SGD without momentum. (b) SGD with momentum.

Figure 1.2: Optimization paths of SGD with and without momentum.

Momentum [21] is a method that helps accelerating SGD in the rele-
vant direction and reduces oscillations, as we can see in Figure 1.2b. It
achieves this by adding a fraction γ of past update vector to the current
gradients. The update rule at iteration t is:

vt = γ vt−1 + η∇θL(θt)

θt+1 = θt − vt
(1.3.1)

where ∇θL(θt) is the gradient of the loss function with respect to pa-
rameters θt, η is the learning rate, and γ is the momentum factor, usually
set between 0.5 and 0.9. The momentum term increases for dimensions
whose gradients point in the same directions and reduces updates for
dimensions whose gradients change directions. The end result is faster
convergence and reduced oscillations.
Nesterov momentum [19] is a slightly di�erent version of the momentum
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update that has recently raised much interest (albeit the original pro-
posal is dated back to 1983). For convex functions, it enjoys stronger
theoretical converge guarantees if compared to standard momentum.
Although the loss function of neural networks is highly non-convex, in
practice it consistently delivers fast convergence to good minima.
The core idea behind Nesterov momentum is that, instead of calculat-
ing gradient at the current position, the gradient is calculated at the
approximated next position. Computing θ− γ vt−1 gives an approxima-
tion of the next position of the parameters, from which the gradients
can be calculated. The Nesterov update rule then becomes:

vt = γ vt−1 + η∇θL(θt − γvt−1)

θt+1 = θt − vt
(1.3.2)

In Figure 1.3 there is a graphical representation of the di�erence be-
tween standard and Nesterov momentum. Momentum �rst computes
the current gradient (small blue vector) and then takes a big jump in
the direction of the past update vector (big blue vector). Nesterov Mo-
mentum instead �rst makes a big jump in the direction of the previous
accumulated gradient (brown vector), measures the gradient (red vector)
and then makes a correction (green vector).

Figure 1.3: Di�erence between standard and nesterov momentum update vectors.

1.4 Other neural network elements

Later in this thesis, neural networks more advanced than those presented
in Section 1.1 will be used. In particular, for the purpose of image
classi�cation, there exist structures of neurons and connections between
them that have become a standard in terms of e�ectiveness. In this
section we will brie�y introduce the most important ones, referring to
other authors for a more detailed analysis [23].
Let's start by saying that an image, considered for simplicity in black
and white (grayscale), it is nothing but a matrix of n xm pixels in which
each pixel takes a value in {0, ..., 255} or [0, 1] (respectively from black
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to white). To apply such an image as input to the network in Figure
1.1 we have to resize (eg. row-major) the matrix into a vector of length
nm.
One of the most important structures is the convolutional layer, which
takes its name from the convolution operation between a kernel and an
image: the primary purpose of convolution is to extract features from
the input image as can be see in the example of Figure 1.4:

(a) Input image. (b) Kernel matrix. (c) Resulting image.

Figure 1.4: Convolution of an image with a edge detector kernel.

Convolution preserves the spatial relationship between pixels and the
type of features extracted vary a lot (e.g., geometric �gure detection).
The idea is that the more �lters we have, the more image features get
extracted and the better our network becomes at recognizing patterns
in unseen images.
In practice a network that uses convolutional layers (called Convolu-
tional Neural Netowrk - CNN) learns the values of the kernel matrices
during the training process (as it happens with weights over the edges),
but it is still necessary to specify parameters such as the number of �lters
and �lter size before the training phase. The multiple levels of repre-
sentation given by the various convolutional layers of a CNN manage to
capture increasingly more abstract concepts from the input image.
Another very common element is the Recti�ed Linear Unit (ReLU), and
it is applied to the output of a neuron or to the feature image: if the
value of an output is negative it is replaced by zero, otherwise is not
changed. The ReLU is a non-linear operation and its output is given
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by:

ReLU(x) = max(0, x)

As found by Krizhevsky et al. [16] the ReLU activation function
greatly accelerate the convergence of SGD if compared to other activa-
tion functions, such as the sigmoid or tanh functions.
After doing the convolutional step it is appropriate to reduce the dimen-
sionality of the obtained feature map to prevent over�tting. To do so we
de�ne a spatial neighborhood (for example, a 2 x 2 window) and take
the largest element (Max Pooling) from the feature map within that
window; one can also take the average (Average Pooling) or sum of all
elements in that window.
In Figure 1.5 in shown the Max Pooling of a feature map using a 2 x 2
window, moved each time by 2 cells (also called stride).

Figure 1.5: Example of Max Pooling.

In addition to controlling over�tting, pooling also makes the network
invariant to small transformations, distortions and translations in the
input image: this is very useful since we can detect objects in an image
no matter where they are located.
The various layers of the network in Figure 1.1 are called fully connected
layers, and they are characterized by the fact that each node of a layer
t is connected to all the other nodes of layers t − 1 and t + 1. Fully
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connected layer is a traditional Multi-Layer Perceptron: the output from
the convolutional and pooling layers represent high-level features of the
input image which can then be classi�ed into various classes by the fully
connected layers.





Chapter 2

Minibatch Persistency

In the previous chapter it was presented the on-line version of the gradi-
ent descent algorithm, called Stochastic Gradient Descent, in which the
network weights are updated for each example in the training dataset:
this variant of the algorithm has the advantage of frequently updating
the parameter, which can result in faster learning on some problems,
and the noisy update process can allow the model to avoid local min-
ima. The main disadvantage of this approach lies in the fact that is
more computationally expensive than other con�gurations of gradient
descent, taking signi�cantly longer to train models on large datasets.
In the last few years, the enormous growth in availability and power of
parallel architectures (notably, GPUs) made it progressively more con-
venient the use of larger minibatches: this variant of the gradient de-
scent algorithm, called Mini-Batch Gradient Descent, splits the training
dataset into small batches that are used to calculate an approximation of
the expected value of the gradient of the loss function and then updates
the net parameters accordingly. This version of the algorithm has the
advantage of providing a computationally more e�cient process than
stochastic gradient descent at the price of adding an additional hyper-
parameter to the learning model.
It has been observed in practice that when using a large minibatch there
is a degradation in the generalization properties of the model. Keskar
et al. [11] suggested that the reason for poor generalization when us-
ing large minibatches is that training in this way tends to converge to
sharp minima, which lead to poorer generalization if compared to smaller
minibatches. They also observed that the large batch methods lack the
explorative properties of small batch methods and tend to converge on
minima closest to the initial starting point.
Ho�er et al. [10] have shown empirically that the "generalization gap"
stems from the relatively small number of updates rather than the batch
size and therefore it is possible to maintain generalization performance
with large minibatches by performing the same number of SGD up-
dates. They suggested that there is no inherent "generalization gap":
large-batch training can generalize as well as small-batch training by
adapting the number of iterations. This implies however a computa-

11
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tional overhead proportional to the mini-batch size, which reduces the
positive e�ect of the increased parallelism.
Based on the previous results, Luschi et al. [18] proposed to scale the
learning rate linearly with the batch size to cope with large minibatches:
the produced results seem to indicate that increasing the batch size re-
sults in both a degradation of the test performance and a progressively
smaller range of learning rates that allows stable training.
All the published works however give for granted that a "disposable
minibatch" strategy is adopted, namely: within one epoch, the current
minibatch is changed at each SGD iteration.
Our goal then is to use large minibatches to exploit the memory and the
parallelism of modern GPUs while maintaining a good generalization
capability of the model.

2.1 The idea

We investigated a new strategy that reuses a same minibatch for K
consecutive SGD iteration, namely we do K successive updates of the
net weights using the same minibatch before using another one. We
call the parameter K minibatch persistency, being K = 1 the standard
update rule. This approach also has the practical advantage of reducing
the computational overhead related to the operation of loading new data
into the GPU memory.
The intuition behind this idea is that large minibatches contain a lot
of information about the training set, that we do not want to waste by
dropping them too early. Of course using consecutively too many times
the same minibatch is risky in terms of over�tting, hence one has to
computationally evaluate the viability of the approach.
As a result the Algorithm 2 seen in the previous chapter now becomes:

Algorithm 4 Stochastic Gradient Descent for Neural Networks with Minibatch Persis-

tency

1: parameters: η > 0 ∈ R+, T ∈ N
2: initialize w(1) ∈ R|E| from a zero mean distribution

3: for t = 1, 2, ..., T do

4: sample (x(bs),y(bs)) ∼ D
5: for i = 1, 2, ...,K do

6: calculate vt+i−1 = backpropagation(x(bs),y(bs),w(t), (V,E, σ))
7: update w(t+i) = w(t+i−1) − η vt+i−1

8: output: w(KT+1)

where bs is the size of the minibatch and K is the minibatch persis-
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tency parameter.
The above update policy contains a momentum factor as proposed by
Qian [21]. The choice to include it is therefore arbitrary and motivated
by the fact that momentum has now become a standard.

2.2 Tests and experiment setup

The computational tests were performed on the CIFAR-10 dataset [15]
using a reduced version of the AlexNet architecture [16], following as a
reference what was recently done by Luschi et al. [18].
The other two network architectures used are ResNet-34 and VGG16:
the former was considered as described in [8] while the latter was modi-
�ed on the �nal fully-connected layers, with a single one with 512 hidden
nodes.
In particular the reduced AlexNet implementation uses convolutional
layers with stride equal to 1, kernel sizes equal to [11, 5, 3, 3, 3], number
of channel per layer equal to [64, 192, 384, 256, 256], max-pool layers
with 2 x 2 kernels and stride 2, and 256 hidden nodes for the fully-
connected layer.
The CIFAR-10 dataset was shu�ed and partitioned into 50,000 exam-
ples for the training set and the remaining 10,000 for test set.
Since our experiments are just aimed at evaluating the impact of di�er-
ent values of the minibatch persistency parameter K for a given mini-
batch size m, we decided to use the basic training algorithm described
previously: in particular we did not use dropout [9] or data augmenta-
tion. Momentum coe�cient γ and learning rate η were �xed, respec-
tively to 0.5 and 0.001/0.01; the optimization method was minibatch
SGD with cross entropy loss, a combination of Softmax function and
negative log likelihood loss (NLLLoss).
Fixing a priori the momentum coe�cient and learning rate (indepen-
dently of the minibatch size) has some drawbacks as described by Wil-
son et al. [26]. Therefore the resulting accuracies measured on the test
set are certainly not competitive with the state of the art.
The machine used to perform the runs is equipped with an Intel® Xeon®

E5v4 CPU @ 3.00 GHz, 64 GB of RAM and a single Nvidia® GTX 1080
Ti GPU, coupled with a custom Linux installation. All the code was
implemented in Python v3.6.6 and the reference framework used is Py-
Torch v0.4.0
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2.3 Results

Each �gure in the following sections plots the percentage accuracy and
the value of the loss function (on the test dataset) for minibatch per-
sistency parameter K ∈ {1, 2, 5}, as a function of the total computing
time (sub�gure on the left) and of the number of epochs (sub�gure on
the right). As computing time we considered the wall-clock time, mea-
sured in seconds. Since within a single epoch each training example is
evaluated K times, one would expect the computing time to perform
each epoch be multiplied by K: this is why to have a fair comparison of
di�erent values ofK it is important to report computing times explicitly.

2.3.1 AlexNet

Figures from 2.1 to 2.6 report the results of our experiments for mini-
batch sized m = 32, 256 and 512 and learning rate equal to 0.001 and
0.01. According to [18] the best performance for CIFAR-10 and a re-
duced AlexNet architecture is achieved for m ≤ 8, while minibatches of
size 256 or 512 are considered too large to produce relevant results: as
it is possible to see this is no longer true when minibatch persistency is
used.
Figures 2.1 and 2.2 refers to a small minibatch of size m = 32: when
the learning rate is equal to 0.001, higher values of K improve accu-
racy measured with respect to epochs, however there is not an equal
improvement in computing time. When η is equal to 0.01 the accuracy
(measured with respect to epochs or time) seems not to be much in�u-
enced by K. It is interesting to note how completing 100 epochs with
K = 5 took roughly 3 times more time than when K = 1, which is less
than the factor 5 one would expect.
If we look at the loss graphs for m = 32, independently from the learn-
ing rate, when K increases the over�tting starts earlier: this behaviour
is not unexpected, as mentioned previously the minibatch is probably
too small to be representative of the whole training dataset.
When a bigger size minibatch is used, m = 256, the results change sig-
ni�cantly (Figures 2.3 and 2.4). Here over�tting is always present but
it does not lead to a deterioration of accuracy: in fact, the maximum
accuracy has a greater value and it is reached earlier when K is large
(for both values of η).

We can also see that the additional iterations over the same (large)
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(a) Test accuracy.

(b) Test loss.

Figure 2.1: Results with m = 32, η = to 0.001 and K = 1, 2 and 5. AlexNet.

(a) Test accuracy.

(b) Test loss.

Figure 2.2: Results with m = 32, η = to 0.01 and K = 1, 2 and 5. AlexNet.
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(a) Test accuracy.

(b) Test loss.

Figure 2.3: Results with m = 256, η = to 0.001 and K = 1, 2 and 5. AlexNet.

(a) Test accuracy.

(b) Test loss.

Figure 2.4: Results with m = 256, η = to 0.01 and K = 1, 2 and 5. AlexNet.
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(a) Test accuracy.

(b) Test loss.

Figure 2.5: Results with m = 512, η = to 0.001 and K = 1, 2 and 5. AlexNet.

(a) Test accuracy.

(b) Test loss.

Figure 2.6: Results with m = 512, η = to 0.01 and K = 1, 2 and 5. AlexNet.
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accuracy loss

con�guration K max-value time(s) epoch min-value time(s) epoch

1 0.6364 607.4 80 0.03472 273.5 36

32_001 2 0.6449 429.1 47 0.03557 174.0 19

5 0.6445 606.5 30 0.03869 162.0 8

1 0.6913 777.8 95 0.03185 82.7 10

32_01 2 0.6938 870.5 95 0.03353 55.7 6

5 0.6891 1741.8 86 0.04040 101.9 5

1 0.4453 627.5 100 0.00601 627.5 100

256_001 2 0.5773 618.7 99 0.00473 618.7 99

5 0.6176 620.7 84 0.00486 288.3 39

1 0.6602 354.5 52 0.00423 266.0 39

256_01 2 0.6562 264.6 39 0.00444 129.8 19

5 0.6617 230.1 26 0.00495 53.8 6

1 0.2781 612.6 100 0.00389 612.6 100

512_001 2 0.4454 636.6 100 0.00300 636.6 100

5 0.6040 605.6 95 0.00235 567.6 89

1 0.6576 628.3 94 0.00210 587.9 88

512_01 2 0.6639 358.4 53 0.00212 222.1 33

5 0.6600 242.8 32 0.00219 99.0 13

Table 2.1: Best accuracy and loss for each con�guration of m, η and K with the respective

times and epochs. AlexNet architecture.

minibatch have a smaller temporal impact compared to using a small
minibatch: this con�rms that minibatch persistency has a positive e�ect
in terms of GPU exploitation when the minibatch is big enough.
The same considerations can be made for even a larger minibatch of
size 512 (�gures 2.5 and 2.6): repeating multiple iterations on the same
minibatch produces clearly positive results. It should also be said that
the value of η = 0.001 it is probably too low and therefore we are only
observing the initial part of the optimization process.
The above results are rather encouraging and show that the use of large
minibatches becomes more appealing when combined with the minibatch
persistency technique.
Table 1 shows the values of best accuracies and losses for each combina-
tion of minibatch size, learning rate and minibatch persistency param-
eter, with the respective times and values of the epoch. The numerical
values refer to the same runs as the graphs just presented.
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2.3.2 VGG16 and ResNet34

Additional runs have been performed on VGG16 and ResNet34 (the
architecture speci�cations are present in Section 2.2), considering as
minibatch size the value 512 and as learning rate the values 0.01 and
0.1. All other parameters remained unchanged from the previous runs.
Figures 2.7 and 2.8 refers to VGG16: with a bigger and more complex
network the bene�ts of using the minibatch persistency changes slightly.
While for AlexNet the minibatch persistency technique produces almost
no increase in maximum accuracy but an improvement of computing
time (�gure 2.6) it produces almost opposite results with VGG16.
In particular, looking at Figure 2.7a we can see how the maximum ac-
curacy reached increases signi�cantly, even if using high values of K is
more subject to over�tting. Contrary to what happened for AlexNet,
reusing the same minibatch K times makes the execution time roughly
K times longer: this could be due to the fact that data loading on the
GPU is no longer the bottleneck of executions. A more performing GPU
(or multiple GPUs) could change this e�ect. The same considerations,
albeit mitigated, remain valid even when η is equal to 0.1 (Figure 2.8).

(a) Test accuracy.

(b) Test loss.

Figure 2.7: Results with m = 512, η = to 0.01 and K = 1, 2 and 5. VGG16.
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(a) Test accuracy.

(b) Test loss.

Figure 2.8: Results with m = 512, η = to 0.1 and K = 1, 2 and 5. VGG16.

Looking at the accuracy obtained by ResNet34 on CIFAR-10, Figures
2.9 and 2.10, there is a marked deterioration in performance compared
to what happened for VGG16. The larger value of η (0.1) highlights
this behaviour even more.
An important thing to observe is that even the standard SGD method,
K = 1, performs worse on ResNet34 than on VGG16. If we look at the
number of parameters (weights on the edges) of ResNet34, which deter-
mines the complexity of the model, we can explain the results obtained:
ResNet34 with 21.2 million parameters, compared to 2.5 of AlexNet and
14.7 of VGG16, is much more complex than these two. Probably the
complexity of the dataset is too low compared to that of the network,
which ends up over�tting it without producing good results.

Table 2 summarizes the values of best accuracies and losses for each
combination of minibatch size, learning rate and minibatch persistency
parameter, with the respective times and values of the epoch.

2.4 Improving the performance

After testing the e�ectiveness of our method under controlled condi-
tions (i.e., by removing or minimizing the e�ect of other variables such
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(a) Test accuracy.

(b) Test loss.

Figure 2.9: Results with m = 512, η = to 0.01 and K = 1, 2 and 5. ResNet34.

(a) Test accuracy.

(b) Test loss.

Figure 2.10: Results with m = 512, η = to 0.1 and K = 1, 2 and 5. ResNet34.
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accuracy loss

con�guration K max-value time(s) epoch min-value time(s) epoch

1 0.8621 835.6 74 0.00141 93.2 8

VGG16_ 512_1 2 0.8644 1737.5 81 0.00157 90.0 4

5 0.8535 3016.6 58 0.00177 263.8 5

1 0.7783 603.9 53 0.00176 38.5 3

VGG16_512_01 2 0.7974 1392.5 65 0.00171 175.0 8

5 0.7872 2708.9 52 0.00189 368.4 7

1 0.8390 3452.9 96 0.00154 215.9 6

ResNet34_512_1 2 0.8355 3583.1 51 0.00173 985.3 14

5 0.8085 3548.8 21 0.00199 508.7 3

1 0.7561 1479.3 41 0.00205 578.9 16

ResNet34_512_01 2 0.7534 1266.2 18 0.00209 704.7 10

5 0.7439 5228.1 31 0.00219 509.3 3

Table 2.2: Best accuracy and loss for each con�guration of m, η and K with the respective

times and epochs. VGG16 and AlexNet34 architectures.

as learning rate, optimization method, and dropout), we decided to test
the minibatch persistency method in conditions closer to the real ones
in which one wants to maximize the performance of a neural network.
In particular, of the three architectures seen in the previous section we
considered AlexNet because it is the one that scales better with our ma-
chine. We have taken as reference two di�erent implementations [28, 17]
that use a reduced version of AlexNet and try to reach the maximum
possible accuracy. To do this, in addition to using a particular parame-
ter con�guration, they introduce a technique called Data Augmentation.
Since a typical convolutional neural network enjoies the invariance prop-
erty, namely it can successfully recognize images in which the objects
represented are translated or rotated, it is possible to increase the qual-
ity of the results produced by the network.
Data Augmentation refers to any method that arti�cially increases the
original training set with label-preserving transformations and can be
represented as the mapping:

φ : S → T

where, S is the original training set and T is the augmented set of S.
The arti�cially in�ated training set is thus represented as:

S ′ = S ∪ T

Note that the term "label-preserving transformations" refers to the fact
that if image x is an element of class y then φ(x) is also an element of
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class y. The are two main types of transformations, geometric trans-
formations which alter the geometry of the image and the photometric
transformations which modify the colour channels. Common examples
of the former are �ip, rotation, scaling, cropping, translation, and of the
latter are colour jittering and edge enhancement.
Besides augmenting the size of the dataset, Data Augmentation is also
a form of regularization, as observed by Yaeger et al. [27]. These two
properties make Data Augmentation a technique that greatly improves
deep learning algorithms performances in most cases [25].
In particular we used a random horizontal �ip (with probability equal
to 0.5) and random translation of 4 pixels (with padding equal to 0, p =
0.5) as geometric transformations to the CIFAR10 dataset. The use of
data augmentation is the single improvement that has mostly increased
the performance of the network. With respect to the setup previously
presented, we incremented the epochs to 300 and we scheduled a de-
creasing learning rate value during the training: lr=0.1 for the �rst 150
epochs, lr=0.01 from 150 to 225 epochs, and then lr=0.001 for the last 75
epochs. The momentum coe�cient and the other parameters remained
unchanged. It should be noted that this particular scheduling of the
learning rate is the one that gave us the best results, considering that
we want the best performing con�guration against which to compare
our minibatch persistency method.
Figure 2.11 reports the results of three runs with K = 1, 2, 5 with the
con�guration just presented. We can see immediately that something
went wrong for K = 5, most likely due to severe over�tting which has
made the parameters of the network diverge.
From the run with K = 1 (that is the standard SGD method) we get
results in line with our expectations, reaching a maximum accuracy of
0.7544, very similar to what obtained by other implementations from the
literature. The behaviour of the loss function when K = 2 is very di�er-
ent from what has been observed so far: after reaching a minima (∼25
epochs) the loss increases but then it suddenly drops (∼150 epochs)
when the learning rate is reduced. As a result in the �nal epochs, when
the learning rate is decreased, the accuracy obtained by the minibatch
persistency method outperforms that obtained from the standard SGD
method, reaching a value of 0.7646.
It can also be noted that the total computing time seems not to be in-
�uenced by the parameter K: this could be due to a good exploitation
of our GPU with the AlexNet architecture and consequently the total
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running time is dominated by the data transfer to the GPU.

(a) Test accuracy.

(b) Test loss.

Figure 2.11: Results with m = 512, scheduled η and K = 1, 2 and 5. AlexNet.



Chapter 3

Role of learnig rate on neural networks

The learning rate is a parameter that controls how much network weights
are adjusted with respect to the loss gradient, as already seen in Section
1.2 and Section 2.1.
Bengio [2] underlines how the learning rate is often the single most im-
portant hyper-parameter: too small a learning rate will make a training
algorithm converge slowly, while too large a learning rate will make the
algorithm diverge. Typical values of the learning rate for a neural net-
work trained with normalized inputs range between 1 and 10−6, although
the exact values greatly depend on the parametrization of the model.
A good starting value could be 0.01, which typically works for standard
multi-layer neural networks.
In common practice the learning rate is decreased monotonically dur-
ing the training, following a particular scheduling: Bergstra and Bengio
[3] proposed a value inversely proportional to the number of iterations,
µt ∝ µ0

t , or alternatively, a step decay method could be used. In order
to �nd the best range of values for the learning rate, one could set up a
small validation batch and observe the trend of the loss function.

3.1 Cyclical Learning Rate

Smith [22] proposed a simple yet innovative approach: the global learn-
ing rate varies cyclically within a range of values (instead of setting it
to a �xed value). This method is motivated by the observation that a
varying learning rate during training is bene�cial overall and achieves
remarkable classi�cation accuracy. Furthermore, unlike adaptive learn-
ing rates, the Cyclical Learning Rate (CLR) method requires very lit-
tle additional computation. Another observation is that increasing the
learning rate might have a short term negative e�ect and yet achieve a
long term positive e�ect.
The operation of the CLR method is straightforward: one sets mini-
mum and maximum boundaries and the learning rate cyclically varies
between these bounds. Several functional forms are possible, such as
triangular window (�gure 3.1), parabolic or sinusoidal window: all seem
to produce equivalent results.

25
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Figure 3.1: Triangular, or linear, learning rate policy. The parameter stepsize corresponds

to the number of iterations in half a cycle.

It is also possible to change the maximum or the minimum bound
as the iterations go on, thus adding another layer of complexity. Figure
shows some possibilities.

(a) The amplitude of the cycle decreases by half
after each period.

(b) The amplitude of the cycle decreases expo-
nentially as the iterations go on.

Figure 3.2: Examples of di�erent cyclical policies.

When considering the loss function topology we can understand why
CLR methods work. Bengio et al. [6] argue that the di�culty in min-
imizing the loss arises from saddle points rather than sharp local min-
ima. These saddle points can considerably slow down training, mostly
because the objective function tends to be �at in many direction and
give the illusory impression of the existence of a local minimum. It is
also worth noting that the ratio of the number of saddle points to local
minima increases exponentially with the dimensionality of the parame-
ters. Consequently, increasing the learning rate has the bene�cial e�ect
of allowing a more rapid traversal (or escape) of those saddle points.
An even more empirical reason as to why CLR works is that it is likely
that the optimum learning rate will be between the bounds, and near
optimal learning rates will be used throughout training.
From tests it results that the �nal accuracy is quite robust w.r.t. the
stepsize parameter, but a good choice for it should be between 2 and 10
times the number of iterations in an epoch. Regarding the values of the
boundaries, a reasonable estimate can be obtained with one training run
of the network for a few epochs. Simply running the training process
for several epochs while letting the learning rate increase linearly from
a very low value, thus obtaining a plot of the accuracy over learning
rate: then note the values that correspond to an increase and a fall in
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accuracy as minimum and maximum boundary values respectively.

3.2 Adaptive learning rates

The challenge of using learning rate schedules is that their hyperparam-
eters have to be de�ned in advance and they depend heavily on the type
of model and dataset. Another problem is that the same learning rate is
applied to all parameter updates. If we have sparse data, we may want
to update the parameters in di�erent way.
Adaptive gradient descent algorithms such as Adagrad [7], Adadelta [29],
and Adam [12], provide an alternative to classical SGD. These methods
provide heuristic approach without requiring tuning hyperparameters for
the learning rate schedule manually. The drawback is that calculating
di�erent learning rates at each iteration has a signi�cant computational
cost that the vanilla SGD does not have.
Adagrad [7] is an algorithm for gradient-based optimization that adapts
the learning rate to the parameters, performing larger updates for in-
frequent and smaller updates for frequent parameters. Often, when the
input instances are of very high dimension, in any any particular instance
only a few features are non-zero and consequently these infrequently oc-
curring features are highly informative. Thanks to this characteristic
Adagrad has good performance with sparse data.
Adagrad modi�es the learning rate η at each step t for every parameter,
based on the past gradients that have been computed for that speci�c
parameter. Using the same notation already presented in formula 1.2.1,
the update rule at each iteration is:

θt+1 = θt −
η√

Gt + ε
�∇θL(θt) (3.2.1)

where η is the usual learning rate, Gt is a diagonal matrix where
each diagonal element is the sum of the squares of the past gradients up
to iteration t, � in an element-wise matrix-vector multiplication, and
∇θL(θt) is the gradient of the loss function. Most implementations use
a default value for η (eg. 0.01) and then they leave it as is. The accu-
mulation of past squared gradients in the denominator also represents
its main weakness, as the accumulated sum keeps growing during train-
ing. Consequently the learning rate, intended as the fraction, becomes
smaller and smaller, eventually becoming in�nitesimally small at which
point the optimization process stops.
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Adadelta [29] is derived from Adagrad, but it has the purpose of �xing
the monotonically decreasing learning rate. Instead of accumulating all
past squared gradients, the sum of gradients is recursively de�ned as
a decaying average of all past squared gradients; the update rule now
becomes:

E[∇θL(θt)
2]t = γE[∇θL(θt−1)

2]t−1 + (1− γ)∇θL(θt)
2

θt+1 = θt −
η√

E[∇θL(θt)2]t + ε
�∇θL(θt)

(3.2.2)

It is also possible to remove completely the learning rate from the
equation and substitute it with the root mean squared error of parameter
updates: η at the numerator can be replaced with

√
E[∇θL(θt−1)2]t−1 + ε.

In this way we do not even need to set a default learning rate, as it has
been eliminated from the update rule.
Adam [12], as stated by Kingma and Ba, is designed to combine the
advantages of Adadelta and momentum: it stores an exponentially de-
caying average of past squared gradients and also keeps an exponentially
decaying average of past gradients. The �rst and second moment of the
gradients, respectively mt and vt, are calculated as:

mt = β1mt−1 + (1− β1)∇θL(θt)

vt = β2mt−1 + (1− β2)∇θL(θt)
2 (3.2.3)

Due to the initialization of mt and vt as vectors of 0's, the bias-
corrected �rst and second moment estimates m̂t and v̂t are computed:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(3.2.4)

with βt is denoted β to the power t.
At the end the Adam update rule is given by:

θt+1 = θt −
η√
v̂t + ε

� m̂t (3.2.5)

The authors suggest default values for η, βt1, β
t
2 and ε which should

work well for machine learning problems. These values, together with
the optimization algorithm, are now present in the most important ma-
chine learning libraries and frameworks.
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3.3 Alternative computation of learning rate: Adaptive Nes-
terov

The idea we tried to develop is halfway between doing a scheduling
of the learning rate and computing the learning rate with an adaptive
method. Of the �rst method it tries to maintain the low computational
complexity (overhead) by not calculating a di�erent learning rate for
each parameter but using one that is the same for all, while from the
second method it keeps the automatic calculation of the learning rate
at each iteration.
The approach we are going to present is largely inspired from the so-
called Polyak's stepsize [20], a subgradient method applied to a convex
optimization problem. Without conducting a complete examination of
the Polyak method, let's have a look at the general operation.
Suppose we have a convex function f(θ), f : Rn → R and we know the
value of the function in a speci�c point θk ⊆ Rn in the parameter space,
as shown in Figure 3.3a.

(a) Convex function, the x axis represents a di-
rection d in the parameter space parametrized
by ε.

(b) Vectors d and g(θk) in the parameter space
θ ⊆ Rn.

Figure 3.3: Convex function f and relative parameter space θ ⊆ Rn.

If we consider a general direction d in the parameter space parametrized
by ε, then we can write the linear interpolation:

f(θk + εk d) ≈ f(θk) + gT (θk) εk d (3.3.1)

where g(θk) = ∂f
∂θ

∣∣∣
θk
, d ∈ Rn and ε ∈ R.

We know that there is an optimal value f ∗ = f(θ∗) = f(θk + ε∗ d). We
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would like to calculate the value of ε∗ which brings close to f ∗:

ε∗k =
|f(θk)− f ∗|
gT (θk) d

(3.3.2)

Actually, ε∗ does not get us exactly to f ∗ since we have done a linear
interpolation of a convex function, but for small values of |θk−θ∗| it is a
good approximation. If we consider g(θk) as the direction d, we obtain
the Polyak's stepsize:

ε∗k = γk
|f(θk)− f ∗|
||g(θk)||2

(3.3.3)

where 0 < γk < 2 in the original formulation. This term is introduced
since the approximation in formula 3.3.1 could be more or less accurate,
depending from the topology of the function f . Polyak's stepsize works
best when the optimal function value f ∗ is known, but the same method
can also be applied to an estimate of f ∗.
Our hope is that the same idea works with a highly non-convex function,
such as the loss function of deep neural network. It should be noted
that without the convexity requirement we loose all the convergence
guarantees of the Polyak method [20].
Suppose we have a non-convex loss function L(θ), L : Rn → R and we
are at the iteration k, where the parameter vector is θk ⊆ Rn, as in the
�gure below:

(a) Non-convex loss function, the x axis repre-
sents a direction g(θk) in the parameter space
parametrized by ε.

(b) Vectors vt−1 and g(θk) in the parameter
space θ ⊆ Rn.

Figure 3.4: Non-convex function L and relative parameter space θ ⊆ Rn.

The proposed algorithm is a hybrid between Nesterov momentum
and Polyak's stepsize, hence the name Adaptive Nesterov. We maintain
the past update vector as it is done in the momentum method (Section
1.3) and we include the computation of η at each iteration.
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More in detail, suppose we are at the iteration k and we have the pa-
rameter vector θk and the past update vector −vk−1: we move in the
parameter space by a fraction α of the vector −vk−1. In this temporary
point θk

′
= θk − αvk−1 we compute the gradient of the loss function

g(θk
′
) = ∇θL(θk′) = ∂L

∂θ

∣∣
θk′
, as it would happen in Nesterov momentum.

At this point we have to decide how much to follow the direction along
the vector g(θk

′
), namely we have to choose a value for η.

At this point we use the equation 3.3.3 for computing the value of η,
setting f ∗ to 0 since we suppose that there exists a con�guration of pa-
rameters that correctly classi�es all the data in the training set. This is
true under mean squared error or cross-entropy loss functions [14], the
latter used in our implementation. We are aware that the approxima-
tion could be very rough due to the non-convexity of the loss function
and the assumption on f ∗. Thus, the parameter η at each iteration k is
computed as:

ηk = γk
|L(θk

′
)|

||g(θk′)||2
(3.3.4)

where γk expresses the degree of con�dence in following the gradient,
similarly to what happens in equation 3.3.3. In our tests, this value was
actually �xed to 1.
At this point we have done a step ηk along the direction g(θk

′
), reaching

the point θk+1. Finally we update the vector vk to the current iteration.
The update rule for the algorithm just presented is:

ηk = γk
L(θk − αvk−1)

||g(θk − αvk−1)||2

vk = α vk−1 + ηk g(θk − αvk−1)

θt+1 = θt − vt

(3.3.5)

where we set α equal to 0.9 and γk equal to 1.
The relative pseudocode follows: Note that the learning rate hyper-
parameter disappears from the parameters needed by the algorithm be-
cause it is dynamically calculated at each iteration over a new minibatch.

3.4 Tests of Adaptive Nesterov

The setup used to perform the tests of the adaptive Nesterov method
is the same to the one previously presented in Section 2.2. In partic-
ular, the three network architectures (reduced AlexNet, VGG16 and
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Algorithm 5 Stochastic Gradient Descent with Nesterov momentum and adaptive stepsize

1: parameters: η > 0 ∈ R+, T ∈ N
2: initialize w(1) ∈ R|E| from a zero mean distribution

3: for t = 1, 2, ..., T do

4: sample (x(bs),y(bs)) ∼ D
5: w(t′) = w(t) − αvt−1

6: calculate g(w(t′)) = backpropagation(x(bs),y(bs),w(t′), (V,E, σ))

7: ηt = γt
Loss(w(t′))

||g(w(t′))||2

8: vt = αvt−1 + ηt g(w(t′))
9: update w(t+1) = w(t) − vt

10: output: w(T+1)

ResNet34) and the dataset on which they were trained remained un-
changed.
Regarding the standard minibatch SGD with Nesterov momentum used
as reference, a learning rate schedule was executed according to recent
implementations: η = 0.1 for the �rst 40 epochs, then it was set to 0.01
for the following 30 epochs and to 0.001 for the remaining 30 epochs.
The momentum term was set to 0.5. Compared to what was done in
Chapter 2, the minibatch size was set to 512 for all con�gurations, since
we are only interested on the impact that the learning rate has on the
di�erent methods.
The only change made compared to the pseudocode just presented (Al-
gorithm 5) is the clipping of ||g(θk

′
)||2 in the range [10−4, 1010] in order

to prevent the divergence of network parameters, and the clipping of
ηt in the range [0.001, 0.1] to have a fair comparison with the standard
SGD with scheduled η. The following �gures refer to the test dataset, a
fraction of 10,000 samples taken from the CIFAR-10 dataset.
Figure 3.5 reports the results of our experiments when comparing mo-
mentum SGD with scheduled learning rate (blue curve) against the
adaptive Nesterov method (orange curve), both trained on AlexNet ar-
chitecture. First we can observe that the accuracy achieved by the two
methods is very similar: 67.82% and 67.65% respectively. But what
changes is when these values are reached: the standard SGD method
reaches it after about 320 seconds while the adaptive method after only
140 seconds. Another interesting thing to observe is that the computa-
tion of ηt at each iteration does not seem to have much in�uence on the
computing time, since the di�erence to execute 100 epochs is only 17
seconds. This is positive since we wanted an adaptive method with low
overhead.
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When looking at the loss function trend (Figure 3.5b) the two methods
seem rather similar in a �rst phase, but they di�er in the �nal training
phase. The higher values of the loss assumed by the adaptive Nesterov
method can be justi�ed by looking at the ε values: the higher (clipped)
values of ε make the optimization process less conservative, thus wors-
ening the objective function. However, this negative e�ect does not
in�uence the general accuracy.

(a) Test accuracy.

(b) Test loss.

(c) Value of ε as the number of iterations increases.

Figure 3.5: Performance di�erence between SGD with scheduled learning rate and the

adaptive nesterov method. AlexNet.

The positive results obtained with AlexNet are not con�rmed for
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the VGG16 network, as we can see by looking at Figure 3.6. There
is a noticeable di�erence in accuracy between the scheduled SGD and
the adaptive method: it seems like the optimization process stopped
very early, after a rapid attainment of what could be a local minimum.
Looking at the loss function it would seem that the adaptive method has
a clear advantage, although this does not translate into better accuracy.
The values assumed by ε during training are partially unexpected, and
are similar to what happens with AlexNet.

(a) Test accuracy.

(b) Test loss.

(c) Value of epsilon as the number of iterations increases.

Figure 3.6: Performance di�erence between SGD with scheduled learning rate and the

adaptive nesterov method. VGG16.
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Looking at the results obtained for ResNet34, Figure 3.7, the same
considerations made for VGG16 remain valid. A di�erence between
ResNet34 and VGG16 (compared to AlexNet) is execution time, slightly
larger for the adaptive method. This can be explained by the fact that
the calculation of sums and vector products takes longer as the size
of the vectors increase, size which depends on the number of network
parameters.

(a) Test accuracy.

(b) Test loss.

(c) Value of epsilon as the number of iterations increases.

Figure 3.7: Performance di�erence between SGD with scheduled learning rate and the

adaptive Nesterov method. ResNet34.
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3.5 Improving the performance

Our goal is to see how our adaptive method behaves when the number
of epochs increases and data augmentation is added, that is trying to
make the network perform better in the classi�cation of data (as already
done for the minibatch persistency method).
We also want to see if the disadvantages of this method remain: a max-
imum accuracy lower than the standard method, despite a better loss
function. We want to understand if the behaviour of the learning rate
during the training phase (constantly high value in the second half of
training) will repeat with di�erent training conditions.
The experimental setup remains the one presented in Section 2.4 except
for the use of all three network architectures considered so far (AlexNet,
VGG16 and ResNet34). Data augmentation is performed by a random
horizontal �ip and a random translation of 4 pixels. Scheduling of the
learning rate for the standard SGD method was: lr=0.1 for the �rst
150 epochs, lr=0.01 from 150 to 225 epochs and then lr=0.001 for the
last 75 epochs. It should be noted that this particular scheduling of the
learning rate is the one that gave us the best results, considering we
want the best performing con�guration against which to compare our
adaptive method. The momentum coe�cient and the other parameters
remained unchanged.
Since our method is a possible alternative to either scheduling the learn-
ing rate or using an adaptive method, we decided to compare it also with
the CLR policy (Section 3.1) applied to the standard SGD algorithm
with Nesterov momentum. Remember that CLR does not require any
additional computation since the learning rate at each iteration is given
by a simple triangular function, and from this point of view it has an
advantage over our method. The cycle stepsize remains as a parameter
to be tuned, although the authors claim that the �nal accuracy is quite
robust to cycle length. As suggested, we used a value of 10 times the
number of iterations in an epoch as cycle lenght.
Summarizing, the following results present the behaviour of our designed
adaptive Nesterov method against a scheduled and a cyclical learning
rate algorithms, both using SGD with momentum.
Figure 3.8 presents the result of our experiments for minibatch sizes
m = 512 and AlexNet architecture. The accuracy achieved by our adap-
tive method is very similar but slightly higher in the �nal phase than the
scheduled learning rate approach. The cyclical learning rate produces
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slight �uctuations in the loss function which re�ects in broad �uctua-
tions in the measured accuracy. As for the loss function, the adaptive

(a) Test accuracy.

(b) Test loss.

(c) Value of ε as the number of iterations in-
creases, linear scale.

(d) Value of ε as the number of iterations in-
creases, logarithmic scale.

Figure 3.8: Performance di�erence between scheduled learning rate, adaptive nesterov

method and CLR. AlexNet.

method is better than the scheduled η, with a lower minimum value.
The behaviour of the stepsize during the training drastically changes
with respect to what we observed in the tests of Figure 3.5: a wide
range of values are assumed and clipping is very limited. The learning
rate has a decreasing trend similar the scheduled one, sign of a more
conservative convergence of the optimization process.

The considerations made above for AlexNet remain valid also for



38 Role of learnig rate on neural networks

VGG16 and ResNet34 (Figures 3.9 and 3.10 respectively), except for
minor details. Our adaptive method su�ers of a greater computational
time with respect to the other two approaches, due to the calculation of
ηk from equation 3.3.5, which is no longer negligible when the vectors
contain millions of elements.
We can also notice that the behaviour of the loss function is very similar

(a) Test accuracy.

(b) Test loss.

(c) Value of ε as the number of iterations in-
creases, linear scale.

(d) Value of ε as the number of iterations in-
creases, logarithmic scale.

Figure 3.9: Performance di�erence between scheduled learning rate, adaptive Nesterov

method and CLR. VGG16.

in each of the three con�gurations, but for the undulatory pattern typical
of CLR (Figures 3.9b and 3.10b). Figures 3.9d and 3.10d relative to
VGG16 and ResNet34, respectively, show the value of ε in logarithmic
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scale as the number of iterations increases: the range of values assumed
in the second half of training is very spread out, possible compromising
the achievement of a good minimum of the loss function.

(a) Test accuracy.

(b) Test loss.

(c) Value of ε as the number of iterations in-
creases, linear scale.

(d) Value of ε as the number of iterations in-
creases, logarithmic scale.

Figure 3.10: Performance di�erence between scheduled learning rate, adaptive Nesterov

method and CLR. ResNet34.





Chapter 4

Conclusions

Machine learning and, in particular, deep learning are �elds in strong
growth in recent years and around which much interest has been concen-
trated. Important steps have already been taken towards understanding
the functioning of the neural networks, the role played by the learning
rate during the training, and the link between the loss function topology
and the ability to generalize of the network.
However, it is still possible to make important developments towards
a deeper understanding of neural networks, or improving accuracy and
computational times with relatively simple ideas, as evidenced by recent
publications of Smith et al. [22] or Luschi et al. [18]. Our techniques
must therefore be framed in this context.
Our �rst method, called minibatch persistency, derives from the idea
that large minibatches contain a lot of information about the training
set, and is aimed at exploiting the growing power of parallel architec-
tures (GPUs). This technique consists in executing K consecutive SGD
iteration using the same minibatch, K = 1 being the standard update
rule. From the various tests executed we observed that using a value
of K greater than 2 often leads to a rapid over�t and often it is not
bene�cial. When K = 2 the positive e�ect of reusing a minibatch is
more consistent across di�erent con�gurations of parameters and archi-
tectures. We can therefore say that it is worth considering using this
technique when training a neural network, in addition to those already
consolidated.
The second method, called adaptive Nesterov, is a transposition of the
Polyak's stepsize to the highly non-convex environment typical of the
deep neural network loss functions, where the direction of movement is
that of the Nesterov method. The resulting algorithm is a hybrid be-
tween a scheduled learning rate method and an adaptive one: it tries to
maintain low computational complexity while automatically calculating
the stepsize at each iteration, thus removing a tunable hyperparameter.
The resulting performances are very close to those of the compared es-
tablished methods, especially with more advanced con�gurations. This
technique can be a valid alternative to the scheduled and the adaptive
methods.
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From the various tests performed it is clear that two architectures,
VGG16 and ResNest34, a�ect the calculation time more than AlexNet.
Probably with a more performing architecture (multiple GPUs instead of
one), the total computing time gap between the various methods would
be reduced as it happens for AlexNet. Regarding the values assumed
by accuracy and loss function, there would be no di�erences as they
are dependent on the complexity of the model class (aside from other
parameters).
Future work may concern hybrid techniques usingminibatch persistency,
such as reusing the minibatch only in the initial part of training or
changing the stepsize in the subsequent iterations to mitigate over�t.
For adaptive Nesterov one could improve and develop the formula with
which it is calculated the stepsize at iteration k, for example deriving
from what was done by Hayashi et al. [14]. It would still be appropriate
to conduct more tests on di�erent architectures, datasets and parame-
ters, to fully understand the impact of these methods.
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