
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria

Informatica

Unconventional Training
of Deep Neural Networks

Supervisor Candidate

Matteo Fischetti Matteo Stringher

Academic Year 2018/19
April 1, 2019

Summary

Deep learning is increasingly drawing attention, since recent discoveries
have showed high potential. Researchers from any field contribute every
day to a growing number of papers in the field. Major players in the
IT field, such as Google, Microsoft and Facebook, publish their ideas and
participate to the growth of Deep Learning as well. The overall work has
led to great improvements in computer vision, natural language processing,
audio recognition, and many other tasks.

In this work we want to address the training problem in an unconven-
tional way to get a different point of view from the traditional one. The
loss curve is still poorly understood: theoretical and experimental work is
trying to better understand it, but it seems there is still much uncovered
and the number of growing publications adds new insights. The highly di-
mensional space and the deep structure make it harder to understand than
traditional machine learning techniques. Therefore, we try unconventional
and easier procedures trying to verify some conjectures.

Chapter 2 introduces the problem and studies shape and differences in
minima of the loss curve. This works leads to slightly better accuracy. In
chapter 3 we try to train deep neural networks with Simulated Annealing,
by random moves, without using the derivative. Chapter 4 uses a mixed
approach between Stochastic Gradient Descent and Simulated Annealing,
trying to converge in a faster way to a mininum. This last part leads to
a better accuracy with considerable improvements to standard techniques.
Full code is available at github.com/strmet/thesis.

III

github.com/strmet/thesis

Contents

Summary III

1 Deep Learning 1
1.1 Machine Learning foundations 2
1.2 Feedforward neural networks: The structure 3
1.3 Training a neural network 4

1.3.1 Stochastic Gradient Descent 5
1.3.2 Backpropagation . 6

1.4 Gradient descent variants 9
1.5 Neural Network Architectures 11
1.6 Other meaningful techniques 17

1.6.1 Dropout . 18
1.6.2 Batch Normalization 19
1.6.3 Data augmentation 20

2 Training by restarts 21
2.1 The idea . 21
2.2 Our algorithm . 23
2.3 Results with CIFAR10 . 24

3 Training Deep Neural Networks with Simulated Annealing 31
3.1 The idea . 31
3.2 Simulated Annealing . 32
3.3 Our algorithm . 33
3.4 Results . 34

3.4.1 LeNet-like structure 35
3.4.2 VGG16 and MobileNet 39

V

VI Contents

4 Hyper-parameter tuning by Simulated Annealing 41
4.1 The idea . 41
4.2 Results . 43

5 Conclusions 51

Bibliography 53

VI

Chapter 1

Deep Learning

Machine learning is one branch of artificial intelligence. It powers many
systems such as spam filtering, product recommendations, online fraud
detection, battery saving in smartphones, and other tasks. The growth in
the research community has been followed by a huge rise in the number of
projects in the industry leveraging the new technology.

Deep learning is a subset of Machine Learning, based on learning data
representation through the use of neural network architectures, specifically
deep neural networks. Inspired by human processing behaviour, deep neu-
ral networks have set new state-of-art results in speech recognition, visual
object recognition, object detection, and many other domains. In con-
trast with previous methods in machine learning, deep neural networks
allow to extract features and classify sets of data by itself. Before their in-
troduction, constructing a pattern-recognition or machine-learning system
required careful engineering and considerable domain expertise to design
a feature extractor that transformed the raw data into a suitable internal
representation or feature vector [23]. A neural network is made of several
layers with different characteristics, mostly convolutional and linear. Each
of them recognises different patterns and features in the input set. Zeiler
and Fergus [42] have introduced a visualization technique that reveals the
input stimuli that excite individual feature maps at any layer in the model,
showing the evolution of features during training. Their work showed that
very first layers learn basic features such as lines or corners. The infor-
mation is then combined along with the depth of the network, allowing
complex structures, e.g., cat or dog shape. The key aspect of deep learning

1

2 1. Machine Learning foundations

is that these layers of features are not designed by human engineers: they
are learned from data using a general-purpose learning procedure. This
characteristic is bringing a lot of interest in the field.

1.1 Machine Learning foundations

The learning model for a classificaiton problem needs the following infor-
mation:

• Domain set: An arbitrary set called X . This is the input set that
must be predicted. The domain is represented by a number of features
p. For example in computer vision, when classifying objects, each
pixel of the image is a feature.

• Label set: Y the set of possible outputs.

• The learner’s output: The learner is requested to output a pre-
diction rule, h : X → Y . This function is called a predictor, an
hypothesis; most likely it is referred to as the classifier.

• Training data: S = ((x1, y1) . . . (xm, ym)) is a finite sequence of
pairs in X × Y . This is the input needed by the learner to train the
model.

• Validation data: has the same structure of the training data, but
it is not used during training to make decisions; instead, its purpose
is to assess the predictive capability of the model. Usually the data
available are split according to the 80/20% rule, i.e., 80% for training
and the remainder for validation.

• A simple data-generation model: The examples in the dataset
are generated by some probability distribution D over X . This could
be any arbitrary probability distribution. Moreover, a labelling func-
tion is needed, such as f : X → Y . This function is unknown to the
learner: this is what is trying to approximate. In summary, each pair
in training data S is generated by first sampling a point xi according
to D and then labelling it as yi = f(xi).

2

Deep Learning 3

• Measure of success: We define the error of a classifier to be the
probability that it does not predict the correct label on a random
data point generated by the aforementioned underlying distribution.
Then we can define the error of a prediction rule h as

LD,f (h)
def
= P

x∼D
[h(x) 6= f(x)]

def
= D({x : h(x) 6= f(x)}) (1.1)

In other terms: the error of such h is the probability of randomly
choosing an example x for which h(x) 6= f(x). LD,f (h) is often called
generalization error, or risk.
Given any set H and some domain Z, let ` be any function H × Z
to the set of of nonnegative real numbers ` : H × Z → R+. For our
prediction problems, we have that Z = X ×Y . We now define again
the risk function to be the expected loss of a classifier h ∈ H w.r.t.
a probability distribution D over Z, namely,

LD(h)
def
= E

z∼D
[`(h, z)] (1.2)

However, we can not access the loss function since D is unknown.
Similarly, we can define the empirical risk to be the expected loss
over a given sample S = (z1, . . . , zm) ∈ Zm, such that:

LS(h)
def
=

1

m

m∑
i=1

` (h, zi) (1.3)

Many attempts have been done to bound LS(h) as close as possible
to LD(h), such as in [30] and with a focus in deep learning in [29].
The aim is to guarantee a generalization gap to be small for a given
S and/or to approach zero with a fixed model class as the size of the
training set increases, i.e., |S| gets bigger. Namely, the generalization
gap is defined as:

generalization gap def
= LD(h)− LS(h) (1.4)

1.2 Feedforward neural networks: The struc-
ture

A feedforward neural network is described by a directed acyclic graph G =

(V,E) and a weight function w : E → R. We assume that the network is

3

4 3. Training a neural network

organized in layers such that the set of nodes can be decomposed into a
union of disjoint subsets, V =

⋃T
t=0 Vt, such that every edge connects some

node in Vt−1 to some node in Vt, for t = 1, . . . , T .
The input layer, V0, contains n + 1 nodes (or neurons), where n is the

dimensionality of the input space, the output of the neuron i in V0 being
denoted as xi. The last neuron, which represents the bias, always outputs
1. We denote by vt,i the i-th neuron of the t-th layer, and by at,i(x) and
ot,i(x), respectively, the input and the output of vt,i when the network is
fed with the input vector x. Consequently, the output of neuron i in layer
t+ 1 is given by:

at+1,i(x) =
∑

r:(vt,r,vt+1,i)∈E

w((vt,r, vt+1,i))ot,r(x)

ot+1,i(x) = σ(at+1,i(x))

(1.5)

where σ : R→ R is the activation function of the neuron, e.g. the threshold
function σ(a) = 1[a>0] or the sigmoid function σ(a) = 1/(1 + e−a). As we
can see from Figure 1.1, the input of a node is the weighted sum, according
to w, of the outputs of the neurons in the previous layer, and the output
is the application of the activation function σ on its input.

Layers V1, ..., VT−1 are called hidden layers and the last layer VT is called
output layer: value T therefore represents the number of layers in the
network (excluding the input layer) or its depth; if T > 1 we call the net a
deep neural network; see 1.1 for an illustration.

1.3 Training a neural network

Once we have specified a neural network by (V,E, σ, w), we obtain a func-
tion hV,E,σ,w : R|V0|−1 → R|VT |. Usually the hypothesis of a neural network
is defined by fixing the graph as well as the activation function σ and
letting the hypothesis class be all functions of the form hV,E,σ,w for some
w : E → R. The tuple (V,E, σ) is often called the architecture of the
network. The hypothesis class by is denoted as

HV,E,σ = {hV,E,σ,w : w is a mapping from E to R} (1.6)

Understanding the capability of such networks, i.e., what functions hy-
potheses in HV,E,σ can implement, is a very interesting topic. Hornik [12]

4

Deep Learning 5

v0,1x1

v0,2x2

v0,3x3

v0,4constant

v1,1

v1,2

v1,3

v1,4

v1,5

v1,6

v2,1

v2,2

v2,3

v2,4

v2,5

v2,6

v2,7

v3,1 Output

v3,2 Output

Hidden
layer
1 (V1)

Hidden
layer
2 (V2)Input

layer
(V0) Output

layer
(V3)

Figure 1.1: A network with two hidden layers

showed that any arbitrary function can be drawn with a single hidden
layer network, but an exponential number of neurons is needed. Then, the
research community started to focus on deeper networks with multiple lay-
ers, which have been proven to be very effective. Such networks are trained
using Stochastic Gradient Descent (SGD) and backprogation.

1.3.1 Stochastic Gradient Descent

The problem can be thought in a similar way without focusing on the
graph structure of neural networks. Since E is a finite set, we can think
of the weight function as a vector w ∈ R|E|. Suppose the network has n
input neurons and k output neurons, and denote by hw : Rn → Rk the
function calculated by the network if the weight function is defined by w.
Then we call ∆ (hw(x),y) the loss of predicting hw(x) when the target is
y ∈ Y . This function must be continuous and differentiable. The aim is to
minimize the following value:

LD(w) = E
(x,y)∼D

[∆ (hw(x),y)] (1.7)

The gradient of a differentiable function f : Rd → R at w, denoted by
∇f(w) is the vector of partial derivates of f , namely,∇f(w) =

(
∂f(w)
∂w1

, . . . , ∂f(w)
∂wd

)
.

5

6 3. Training a neural network

Gradient descent is an iterative algorithm: starting from an initial value
it updates the parameters until the function approaches a minimum. The
update step is

w(t+1) = w(t) − η∇f
(
w(t)

)
(1.8)

where η is the so called learning rate.
The Gradient Descent algorithm can be modified in order to be able

to train faster complex network structures. Stochastic Gradient Descent
(SGD) only needs the expected value of the random vector to be equal
to gradient direction. In practice, when using SGD only a subset of the
training data (called minibatch) is used in order to perform a step. In the
following the number of examples in the minibatch will be called minibatch
size. The general procedure is formalized in Algorithm 1. Usually, param-
eter η is decreased during the computation in order to avoid fluctuations
close the minimum (later on referred as scheduled SGD).

Other successful attempts have been done by Smith in [37], where the
network has been optimized using a cyclic learning rate (triangular and
exponential policy). Such an approach where the learning rate cyclically
varies between these bounds is sufficient to obtain near optimal classifica-
tion results, often with fewer iterations. Moreover, this approach has no
additional overhead. Decreasing the learning rate is not the only way to
reach the minimum. Smith et al. [38] suggest increasing the batch size,
a technique that allows to reduce the noise due to stochasticity. Even if
using large batches has been proven to reduce the validation accuracy [18],
they have proven that similar results to scheduled SGD can be achieved
increasing the batch size, whilst using fewer parameter updates.
SGD is the de facto standard when training neural networks.

1.3.2 Backpropagation

Since no closed form can be found to calculate the overall gradient, an
iterative algorithm is needed to compute all the partial derivatives. Back-
propagation leverages the chain rule to compute gradients for each layer Vt.
The SGD algorithm must be modified as specified in Algorithm 2 and 3.
After the forward regular pass where some values are stored, the gradient
is backpropagated.

6

Deep Learning 7

Algorithm 1 SGD for minimizing LD(w)

Parameters: Scalar η > 0, integer T > 0

Initialize: w(1) = 0

1: for t = 1, 2, . . . ,T do
2: sample z ∼ D
3: pick vt ∈ ∂`

(
w(t), z

)
4: update w(t+1) = w(t) − ηvt
5: end for
6: Output: w = 1

T

∑T
t=1 w

(t)

The proposed algorithms use the global derivative, but other attempts
to solve the problems have been tested. In fact, the network can be effi-
ciently trained computing the gradient on local loss functions at each layer.
This greedy method allows more parallelizable implementations, since there
is no need to backpropagate the gradient.

Algorithm 2 SGD for Neural Networks
Parameters: Scalar η > 0, integer T > 0

Input: Layered graph (V,E), differentiable function σ : R→ R
1: w(1) = random_initialization()
2: for t = 1, 2, . . . , T do
3: Sample (x,y) ∼ D
4: Calculated gradient vi = backpropagation (x,y,w, (V,E), σ)

5: Update w(i+1) = w(i) − ηivi
6: end for
7: Output: w is the best performing w(i) on the validation set

Different loss functions are used in deep learning to train the network,
such as the L1-Loss or the MSE-Loss, but the most common is the cross-
entropy. Let’s define `k as the k-th output of the last layer of the network
and recall that yik is the expected value of xi. Then the Cross Entropy is:

L(w) = −
N∑
i=1

K∑
k=1

yik log `k (xi) (1.9)

7

8 3. Training a neural network

Algorithm 3 Backpropagation
Input: example (x, y), weight vector W, layered graph (V,E), activa-
tion function σ : R→ R
Initialize: denote layers of the graph V0, . . . , VT where Vt =

{vt,1, . . . , vt,kt} define Wt,i,j as the weight of (vt,j, vt+1,i)

1: Forward pass:
2: Set o0 = x

3: for t = 1, . . . , T do
4: for i = 1, . . . , kt do
5: Set at,i =

∑kt−1

j=1 Wt−1,i,jot−1,j

6: Set ot,i = σ (at,i)

7: end for
8: end for
9: Backward pass:
10: Set δT = oT − y

11: for i = 1, . . . , kt do
12: δt,i =

∑kt+1

j=1 Wt,j,iδt+1,jσ
′ (at+1,j)

13: end for
14: ∀ (vt−1,j, vt,i) ∈ E set the partial derivative to δt,iσ′ (at,i) ot−1,j

8

Deep Learning 9

1.4 Gradient descent variants

SGD is the general method to update weights in a neural network, but many
improvements have been proposed in literature. Most of them modify the
learning rate and the update rule in order to speed up the training. It has
been shown that local minima are not the only trouble during training, in
fact, saddle points slow down the computation too. They are surrounded
by high error plateaus that can dramatically slow down learning, and give
the illusory impression of the existence of a local minimum [3]. Escaping
from such saddle points can be accomplished with vanilla SGD but it might
be very slow, since steps are very short and not effective.

Momentum, introduced by Polyak as the “heavy ball” method, is
widely recognized to accelerate the computation by adding a component of
inertia to the optimization process. The general formula is modified into
the following:

zk+1 = βzk + η∇f
(
wk
)

wk+1 = wk − αzk+1
(1.10)

where ∇f(wk) is the gradient of the loss function with respect to the pa-
rameters, η is the learning rate, and β is the momentum factor, usually set
between 0.5 and 0.9. Momentum smooths and speeds up the computation.
In fact, when the function is constrained in a canyon, momentum allows
to more rapidly update the steepest direction allowing faster convergence.
In such a way saddle points can be overcome and the new update rule can
avoid to stop on a false local minimum. Moreover, momentum allows to
avoid fluctuations over a local minimum.

Nesterov Accelerate Gradient (NAG) [28] modifies the equation by
adding a correction term to the gradient computation:

zt+1 = βzt − η∇f (wt + βzt)

wt+1 = wt + zt+1

(1.11)

The difference is that the previous update zt is accounted before evaluating
the gradient. Computing w + βzt thus gives us an approximation of the
next position of the parameters, a rough idea where our parameters are
going to move [33]. In such a way the ball is “less heavy” and slows down
before the hill slopes up again, increasing responsiveness. Like momentum,

9

10 4. Gradient descent variants

(a) SGD

(b) Momentum

Figure 1.2: SGD and Momentum (pictures taken from https://distill.
pub/2017/momentum/)

10

https://distill.pub/2017/momentum/
https://distill.pub/2017/momentum/

Deep Learning 11

βzt

wt

∇f(wt)

wt+1

zt+1

βzt

wt

∇f(wt + βzt)

wt+1

zt+1

Figure 1.3: Momentum on the left; Nesterov on the right. Nesterov corrects
the direction using the previous zt.

NAG is a first-order optimization method with better convergence rate
guarantee than gradient descent in certain situations [35]. However, it
must be underlined that the theory predicts that any advantages in terms
of asymptotic local rate of convergence will be lost in a noisy environment
such as stochastic optimization.

Momentum and NAG modify the direction of the move, while other
methods mainly focus on setting a different learning rate at each iteration.
Many improvements have been added to SGD to train the network in a
faster way (Adam, Adagrad, Adadelta, RMSprop).

1.5 Neural Network Architectures

This section will provide an overview of the most known convolutional ar-
chitectures, which well suit image classification. Thanks to deep learning,
many tasks can be accomplished, such as single and multi object recogni-
tion and image segmentation and some others. The former is considered
the touchstone for deep learning and usually algorithms are tested on the
most famous architectures. The ImageNet Large Scale Visual Recognition
Challenge is a benchmark in object category classification and detection
on hundreds of object categories and millions of images [34]. The compe-
tition is run each year and new test images are collected (from Flickr and
other search engines) and labeled especially for this competition among
1000 object categories taken from the ImageNet dataset.

LeNet is a quite old structure, but is very important since it intro-
duces some core concepts as the convolutional filter, already mentioned
before, and the pooling operation. Images store the information as multi-
dimensional arrays where ordering matters along different channel axes (e.g.

11

12 5. Neural Network Architectures

red, green and blue in the RGB notation). Affine transformation cannot
exploit all this information since the topological information is not taken
into account, while discrete convolution preserves the notion of ordering
[6]. A kernel of values, which represents one filter, slides across the input
feature map. At each location, the product between each element of the
kernel and the input element it overlaps is computed and then, the results
are summed up to obtain the output in the current location. In such a way
the information about closeness of some pixels is preserved. An example is
as follows.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

∗
1 0 1

0 1 0

1 0 1

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

1 0 1

0 1 0

1 0 1

An example of static kernel for edge detection is the following: −1 −1 −1

−1 8 −1

−1 −1 −1

 (1.12)

In a neural network many convolution filters are stacked in a layer. The
output size oj of a convolutional layer along axis j is affected by:

• ij: input size along axis j

• kj: kernel size along axis j

• sj: stride (distance between two consecutive positions of the kernel)
along axis j. Strides act as a form of subsampling.

• pj: zero padding along axis j. In other words the image is surrounded
by a number pj of zeros.

Convolutional filters in neural networks are adapted to the task, modifying
the values of the kernel, thanks to the SGD algorithm.

Pooling is an important feature, that plays a key role in the classifi-
cation. Pooling operations reduce the size of feature maps by using some

12

Deep Learning 13

Figure 1.4: Image perception as seen by the neural network

Figure 1.5: LeNet-5 architecture as published in the original paper.

function (e.g max / avg) over a set of input values. Pooling is used to
downsample the image and restrict the feature space.

The two operations, convolution and pooling, allow to automatically
extract and undersample features, this sets apart neural networks from
other machine learning classifiers. In fact, convolution is adapted to the
task and static filter, such as (1.12), are not used. At each layer m the fea-
tures extracted are summed and the activation function is applied, letting
to combine the information in layer m+ 1.

LeNet [22] is one of the first successful network applying the aforemen-
tioned concepts. As shown in Figure 1.5, the network has only seven layers.
Layer C1 is a convolutional layer with six features map, then S2 is an ex-
ample of a pooling layer. The image is downsampled to a 14 × 14 pixels
image. The layer C5 filters the images another time and then two classical
fully connected layers classify the images.

AlexNet [21] was the ILSVRC 2012 winner; it has a similar framework
to LeNet but has a much bigger structure and was run for the first time

13

14 5. Neural Network Architectures

ConvNet Configuration
A A-LRN B C D E

11 weight layers 11 weight layers 13 weight layers 16 weight layer 16 weight layers 19 weight layers

Input (224 x 224 RGB image)

conv3-64
conv3-64
LRN

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

maxpool

conv3-128 conv3-128
conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 1.1: The structure as published in [36].

on a GPU. Most of the computations during the training are in a matrix
form, GPUs allow to parallelize most of the computation allowing massive
speed ups (50x). Krizhevsky et al. trained on two GPUs the network with
60M+ parameters, but still it has only seven layers.

VGG [36] published in 2014 has shown that very small convolution filters
can be effective. This results in a much lower number of parameters, thus
allowing to increase the depth of the network. Using smaller convolutional
kernels (3 × 3 vs 7 × 7) allowed to introduce many more non-linear recti-
fication layers instead of a single one. Table 1.1 shows that some of the
convolutional layer are sized 1 × 1, this lets to increase the non-linearity
in the decision function without affecting the receptive fields of the con-
volutional layers. The structure shown in the table aims at classifying the
complex ImageNet dataset, but lighter models can be used for easier tasks.

GoogLeNet [39], published in 2015, won the ILSVRC14, achieving new
state-of-art results. VGG is often criticised due to the high number of pa-
rameter updates, hence resulting in slowness in modest GPUs; moreover,
the high number of parameters may lead to overfitting. It has been shown

14

Deep Learning 15

6464

22
4

224

conv1

128 128

11
2

conv2

256 256 256

56

conv3

512 512 512

28

conv4

512 512 512

14

conv5

1

40
96

fc6

1

40
96

fc7

1

fc8+softmax

K

Figure 1.6: VGG16 plot 1

that most of the parameters are very close to zero, hence previous struc-
tures have been tested with more sparse ones, but this did not lead to
improvements due to hardware and software implementations. The main
idea of the GoogleLeNet architecture is to consider how an optimal local
sparse structure of a convolutional vision network can be approximated
and covered by readily available dense components [22]. So the GoogLeNet
structure added a module called inception module that approximates a
sparse CNN with a normal dense construction (Figure 1.7). Another ma-
jor change that GoogLeNet made, was to replace the fully-connected layers
at the end with a simple global average pooling which averages out the
channel values across the 2D feature map. In fact, in previous structures
the last few layers accounted for most of the parameters.

ResNet [10] had set new state-of-art results in 2015, showing the effec-
tiveness of very deep networks for the first time. Previously the increase of
the network had lead to worse results. The degradation was due to the fact
that not all systems are easy to optimize. The problem had been addressed
with the use of deep residual learning. The idea introduced by He et al. is
that blocks such as the one depicted in Figure 1.8 are easier to optimize.
The shortcut do only backprogate the signal a few layers before, so there
is no need to modify the backproagation algorithm. The work has brought
interest in much more deep networks, as in [41]. Figure 1.9 shows how
research in deep learning has affected and remarkably improved traditional
techniques.

1Credits to PlotNeuralNet (github.com/HarisIqbal88/PlotNeuralNet)

15

https://github.com/HarisIqbal88/PlotNeuralNet

16 5. Neural Network Architectures

Figure 1.7: Inception module

Figure 1.8: A building block

16

Deep Learning 17

ILS
VRC'15

 ResN
et

ILS
VRC'14

 Goo
gle

Net

ILS
VRC'14

 VGG

ILS
VRC'13

ILS
VRC'12

 Alex
Net

ILS
VRC'11

ILS
VRC'10

3.57
6.7 7.3

11.7

16.4

25.8
28.2

Figure 1.9: Improvements starting from 2010 (Top-5 accuracy on Ima-
geNet)

SqueezeNet [15], published with the title ’SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and < 0.5MB model size’, had re-
duced the model complexity. Some applications may be run with very
low computational resources, such as mobile phones. Complex structures,
such as the ones explained so far, may easily drain batteries and resources.
SqueezeNet:

• Replaces 3x3 filters with 1x1 filter

• Decreases the number of input channels to 3x3 filters

• Downsamples late in the network so that convolution layers have large
activation maps

SqueezeNet is useful when dealing with easier tasks, where maximum ac-
curacy is not needed.

1.6 Other meaningful techniques

Apart from the structures presented above, other procedures have remark-
ably improved state-of-art results and are here presented.

17

18 6. Other meaningful techniques

dropout ×
×

×

×

×

×

×

Figure 1.10: Dropout

1.6.1 Dropout

Dropout, published along with [21], showed how to improve test accuracy
by restricting the training phase. Overfitting is greatly reduced by ran-
domly omitting half of the feature detectors on each training case [11]. In
every training batch some neurons’ connections are temporarily removed,
leading to a simpler version of the complete neural network. As stated by
the authors, dropout prevents complex co-adaptations in which a feature
detector is only helpful in the context of several other specific feature de-
tectors. The easiest way to accomplish this is to drop each neuron with
probability p independent of the others (usually p is set to 0.5). Thus it
follows some information is not backpropagated along the network.

Dropout is a relatively cheap form of regularization compared to more
traditional techniques in machine learning, such as Ridge or Lasso, where
computing the penalty term introduces significant overhead. One reason
why dropout gives major improvements over standard training is that it
encourages each individual hidden unit to learn a useful feature without
relying on specific other hidden units to correct its mistakes. An example
is shown in Figure 1.11, where features learned by first layer hidden units for
(1.11a) backprop and (1.11b) dropout on the MNIST dataset are visualized:
it can be seen that the use of dropout empowers feature detection.

18

Deep Learning 19

(a) Without dropout (b) With dropout

Figure 1.11: Dropout visualization

Another interesting regularizing technique, called Cutout, has set new
state-of-art results, by masking part of the images [4]. Instead of dropping
values during the training process, some information is dropped on purpose.

1.6.2 Batch Normalization

Batch normalization allows to improve the speed of training. Ioffe and
Szegedy [16] suggested that the distribution of each layer’s input changes
during training, thus slowing due to the so-called internal covariate shift.
Previously, batch normalization was applied only to the input values: batch
normalization applies it at each layer. Moreover, it allows to regularize
the model and to avoid the need for Dropout. The algorithm adds some
overhead due to normalization at each layer, but allows to speed up the
training anyways. The procedure is formalized in Algorithm 4

Algorithm 4 Batch Normalization
Input: Values of x over a mini-batch B = {x1...m}
Output: {yi = BNγ,β (xi)}

1: Mini-batch mean: µB ← 1
m

∑m
i=1 xi

2: Mini-batch variance: σ2
B ← 1

m

∑m
i=1 (xi − µB)2

3: Normalize: x̂i ← xi−µB√
σ2
B+ε

4: Scale and shift: yi ← γx̂i + β ≡ BNγ,β (xi)

19

20 6. Other meaningful techniques

1.6.3 Data augmentation

A big issue in Deep Learning, that makes sometimes impractical its imple-
mentation in the real world, is the high demand for (labeled) data, which
can be hardly to retrieve. Data augmentation lets to enlarge the size of the
dataset and generally reduce the test error. Traditional transformations
consist of using a combination of affine transformation to manipulate the
training data, typical examples for images are: shifting, zooming in/out,
rotation, flipping, distortion. For each image a duplicate is created, thus
enlarging the training set. More recent work uses Generative Adversar-
ial Networks (GANs) to create new input sets [24] [26]. Roh et al. [32]
have tested the efficacy of different techniques on a subset of the ImageNet
dataset.

20

Chapter 2

Training by restarts

2.1 The idea

In the first stage of the thesis, we focused on training with multiple restarts.
The idea comes to mind after realizing that most of the training time
is spent close to the minimum 0, i.e., when all the images are correctly
classified. Such a behaviour is shown in Figure 2.1: the cost function easily
drops to zero and varies multiple times very close to the minimum.

0 50 100 150 200 250 300
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Lo
ss

Training loss
SGD

Figure 2.1: Training loss on VGG16

The loss curve of neural networks is still unclear: the highly dimensional
space makes it difficult to perform analyses. Kawaguchi [17] have stated

21

22 1. The idea

20 40 60 80 100 120 140 160 180 200

10
−4

10
−3

10
−2

10
−1

10
0

Epochs

Le
ar

ni
ng

 r
at

e

Learning rate schedule

Default, lr=0.1

Default, lr=0.05

T
0

= 50, T
mult

= 1

T
0

= 100, T
mult

= 1

T
0

= 200, T
mult

= 1

T
0

= 1, T
mult

= 2

T
0

= 10, T
mult

= 2

Figure 2.2: Learning rate schedules (image taken from [25])

that the number of possible local minima grows exponentially with the
number of parameters. Our work aims at exploring the loss function.

A similar idea has been already covered in a different way by Loshchilov
and Hutter [25]. They proposed to periodically simulate warm restarts of
SGD, where in each restart the learning rate is initialized to some value
and is scheduled to decrease. In their work the cosine function has been
exploited and adapted in order to decrease the learning rate at each epoch.
The learning rate is selected according to the following formula:

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur
Ti

π

))
(2.1)

where ηmin and ηmax bound the learning rate, and Tcur accounts for how
many epochs have been performed since the last restart. An example of
some schemes is shown in Figure 2.2. Warm restarts allows to escape
from sharp minima and to reach flat minima, which are believed to better
generalize [18]. However, Dinh et al. [5] have argued that flat minima in
practical deep learning hypothesis spaces can be turned into sharp minima
via re-parameterization without affecting the generalization gap.

An approach similar has been studied by Smith [37], but his work was
not focused on restarts. Instead of monotonically decreasing the learning
rate, his method lets the learning rate cyclically vary between reasonable
boundary values. Smith’s work aims at improving the speed of convergence,
not escaping from bad local minima.

Loshchilov and Hutter’s work inspired another idea. In the original
work each run was to used to ensemble the results and better predict the

22

Training by restarts 23

output values. In [14] the authors suggest to take M snapshots of the
models obtained by SGDR right before the restart and to use those to
build an ensemble (Figure 2.3 shows the different scheme).

Figure 2.3: On the left a run without snapshots. The ensemble can be
obtained by saving multiple models during the training as shown on the
right (picture taken from [14]).

2.2 Our algorithm

The algorithm presented in chapter 1 has been modified in order to restart
according to the parameter ε: when the loss on the training set goes below
that threshold, the model is restarted. Our work focuses on “cold restarts”,
we do not vary the learning rate according to the cosine or similar function.
The modified algorithm is shown in Algorithm 5. At step 5 the cost function
on the training set is calculated over a sample of minibatches randomly
chosen, otherwise another epoch would be necessary; this has been proven
to be enough effective.

23

24 3. Results with CIFAR10

Number of minibatches RMSE Number of minibatches RMSE

1 4.470e-05 6 2.302e-05
2 3.627e-05 7 1.949e-05
3 2.909e-05 8 2.150e-05
4 2.368e-05 9 1.519e-05
5 2.063e-05 10 1.536e-05

Table 2.1: Estimating the training cost with a sample of minibatches.
RMSE with respect to the true value.

Algorithm 5 SGD for Neural Networks with restarts
Parameters: Scalar η > 0, integer T > 0, ε ∈ R+, n_batches > 0

number of minibatches used to estimate the training loss
Input: Layered graph (V,E), differentiable function L

1: w(1) = random_initialization()
2: for i = 1, 2, . . . , T do
3: Extract a minibatch (x,y)

4: Calculate gradient vi = backpropagation (x,y,w, (V,E), L)

5: Update w(i+1) = w(i) − ηvi
6: training_cost = train_cost_estimate(n_batches)
7: if training_cost < ε then
8: w(i+1) = random_initialization()
9: end if
10: end for
11: Output: w is the best performing w(i) on the validation set

2.3 Results with CIFAR10

Before looking at the results, it is useful to ensure that estimates of the
loss on the training set, based on a sample of minibatches, are meaning-
ful. Figure 2.4 shows how using an increasing number of minibatches leads
to better estimates; ten minibatches seem to be enough affordable. Ta-
ble 2.1 shows how the RMSE easily drops by increasing the number of
minibatches. Such results confirm that a sample of 5-10 minibatches can
effectively estimate the true value over the whole training set.

24

Training by restarts 25

0 20 40 60 80 100 120 140
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Lo
ss

Training loss estimation
True values
1 minibatch

(a) One minibatch

0 20 40 60 80 100 120 140
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Lo
ss

Training loss estimate
True values
5 minibatches

(b) Five minibatches

0 20 40 60 80 100 120 140
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Lo
ss

Training loss estimate
True values
10 minibatches

(c) 10 minibatches

Figure 2.4: Training loss estimates

25

26 3. Results with CIFAR10

VGG16 ResNet34

Loss Accuracy Loss Accuracy

SGD without restart 0.001432 84.92 0.001589 83.07
Restart ε = 1e−6 0.001318 84.43 0.001468 82.96
Restart ε = 1e−7 0.001333 84.88 0.001429 83.47

Table 2.2: Restart applied to VGG16 and ResNet34

CIFAR-10 [20] has been used to benchmark our technique. It is made
of 60, 000 28 × 28px images: 50, 000 are used for training, and 10, 000 for
testing. Figure 2.5 shows the first results obtained by testing with the
AlexNet structure. SGD with momentum (η = 0.001 and β = 0.9) has
been used, which has been proven to obtain the best results in terms of
speed and accuracy. Figure 2.5a clearly shows how the model restarts un-
der a threshold, in this case set to 0.0001. Figure 2.5b plots the validation
loss, which easily overfits. Restarts let to train multiple models and obtain
different loss values over the validation dataset. The minimum ranges be-
tween [0.0021, 0.0023]. Overfitting does not seem to appear on the accuracy
curve in Figure 2.5d, which seems to be stable after epoch 50. These early
results show that the validation accuracy reached is similar, even though
most of the times the accuracy obtained with restarts is lower due to the
fact that the training process is not complete, thus suggesting that a lower
ε should be used. In the following, only the validation accuracy plot will
be shown.

Figure 2.6 shows the same analysis on VGG16 changing the hyper-
parameter. In this case it is clear that at each restart the optimization
process is over using ε set to 1e−7. The values of the validation loss are
bouncing multiple times, making it harder to evaluate. Figure 2.7 shows
that a value of 1e−6 is still insufficient, leading to worse results.

Other tests have shown different results as the complexity and depth
of the network increases. ResNet34 in Figure 2.9 has shown that models
can significantly differ. In fact, the models obtain different results at each
initialization. In the first phase the restart technique has led to improved
results w.r.t. to the standard SGD.

26

Training by restarts 27

0 50 100 150 200 250 300
Epochs

0.000

0.001

0.002

0.003

0.004

Lo
ss

Training loss
= 1e 4

Standard SGD

(a) Training loss

0 50 100 150 200 250 300
Epochs

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Lo
ss

Validation loss
= 1e 4

Standard SGD

(b) Validation loss

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train accuracy

= 1e 4 train
Standard SGD train

(c) Training accuracy

0 50 100 150 200 250 300
Epochs

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Validation accuracy

= 1e 4
Standard SGD

(d) Validation accuracy

Figure 2.5: Restart applied to AlexNet with ε = 1e−4, η = 0.001 and
β = 0.9

27

28 3. Results with CIFAR10

0 50 100 150 200 250 300
Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Lo
ss

Training loss
SGD without restart

= 1e 7

(a) Training loss

0 50 100 150 200 250 300
Epochs

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

Lo
ss

Validation loss
SGD without restart

= 1e 7

(b) Validation loss

0 50 100 150 200 250 300
Epochs

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train accuracy

SGD without restart train
= 1e 7 train

(c) Training accuracy

0 50 100 150 200 250 300
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Validation accuracy

SGD without restart
= 1e 7

(d) Validation accuracy

Figure 2.6: Restart applied to VGG16 with ε = 1e−7, η = 0.001 and
β = 0.9

28

Training by restarts 29

0 50 100 150 200 250 300
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Validation accuracy

SGD without restart
= 1e 6

Figure 2.7: Restart applied to VGG16 with ε = 1e−6, η = 0.001 and
β = 0.9

0 50 100 150 200 250 300
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Validation accuracy

SGD without restart
= 1e 6

Figure 2.8: Restart applied to ResNet34 with ε = 1e−6, η = 0.001 and
β = 0.9

29

30 3. Results with CIFAR10

0 50 100 150 200 250 300
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Validation accuracy

SGD without restart
= 1e 7

Figure 2.9: Restart applied to ResNet34 with ε = 1e−7, η = 0.001 and
β = 0.9

30

Chapter 3

Training Deep Neural Networks
with Simulated Annealing

3.1 The idea

SGD is the de facto standard when training neural networks. Leveraging
the gradient, SGD allows to rapidly find a good set of weights in such an
high dimensional space; moreover, the use of minibatches leads to achieve a
considerable speed up. We now want to try new algorithms with the hope
to trade computing time with improved accuracy.

SGD has still unsolved problems, such as gradient vanishing/explosion,
party solved by ResNets [10], improved initialization [43], ReLu [8]. More-
over, the high interest and research to better understand how the loss
function is shaped suggests that the optimization process should be pos-
sible with other procedures as well. We want to tackle this problem in a
different way. Achieving state-of-art results with a derivative-free approach
would probably mean that the loss function generated by the dataset and
the network structure is quite easy and flat.

As already mentioned, it is well known that small minibatches allow
to reach a better test error, thus suggesting that sub-optimal procedures
can better generalize. In the context of local learning, Nøkland and Hiller
Eidnes [31] have recently stated that local learning appears to add an in-
ductive bias that reduces overfitting. The well known dropout, which acts
as regularizer, modifies the gradient, leading to a sub-optimal gradient.
Neelakantan et al. [27] have proved that adding noise to the gradient helps

31

32 2. Simulated Annealing

to avoid overfitting, but also can result in lower training loss. These ex-
amples suggest that other algorithmic procedures should be tested in order
to better investigate the training cost function. Moreover, other neural
structures, discarded from SGD, could be successfully trained by other al-
gorithms. Motivated by what explained so far, we have decided to adapt
the simulated annealing algorithm coming from discrete optimization to
the continuous space.

3.2 Simulated Annealing

Simulated Annealing (SA), published by Kirkpatrick et al. [19], is a well-
known algorithm in discrete optimization. Leveraging a physical analogy,
it allows to escape from local minima and more effectively search for the
global optimum than hill climbing. It is one of the oldest metaheuristics
and has been adapted to solve many combinatorial optimization problems.
SA is a stochastic local search algorithm that, starting from some initial
solution, iteratively explores the neighbourhood of the current solution [7].
At high temperatures the particles are free to move, and the structure is
subject to substantial changes. The temperature decreses over time, and
so does the probability for a particle to move, until the system reaches its
ground state, the one of lowest energy.

Let us introduce the formal notation for the discrete space; in the next
section it will be adapted to our needs. Let s ∈ S be a solution in the
set S of all possible candididate solutions and f : S → R be the objective
function. An optimal solution s∗ is a candidate solution for which holds
f (s∗) ≤ f(s) ∀s ∈ S. ∆ (s, s′) is the objective function difference of two
candidate solutions s, s′. Let T be the temperature, with initial value T0
and final Tf . SA allows to accept worsening moves. The most commonly
used acceptance criterion is the so called Metropolis condition where the
probability acceptance is

p =

{
e−

∆(s,s′)
T if ∆ (s, s′) > 0

1 if ∆ (s, s′) ≤ 0
(3.1)

At each iteration the temperature is decreased according to the cooling
factor α:

Ti+1 = α× Ti (3.2)

32

Training Deep Neural Networks with Simulated Annealing 33

Usually the temperature is “annealed” multiple times; it means, that the
temperature is restored multiple times to the initial value. With an equal
worsening of the objective function value, a solution is more likely to be
accepted when the temperature is high, while when the temperature is
low, typically towards the end the search, improving candidate solutions
are prioritized.

3.3 Our algorithm

We have adapted SA to work in the continuous space. Let us start by
recalling that for an objective function L(w) differentiable, there exists a
gradient

∇(w) (3.3)

We are not going to exploit it, our method will completely be derivative-
free. Given the set of parameters w, we generate a random move ∆(w)

and then we evaluate the new loss in a nearby point w′ defined as:

w′ := w − ε∆(w) (3.4)

with ε > 0. Now, if the norm of ε∆(w) is little enough, we know, thanks
to the Taylor approximation, that

L(w′) ' L(w)− ε∇T (w)∆(w) (3.5)

Then the objective function improves if:

∇(w)T∆(w) > 0 (3.6)

We are in the continuous space, so we can try the opposite direction, hoping
to improve the objective function.

w′′ := w + ε∆(w) (3.7)

To summarise, we always choose among two possible moves:

w′ := w − ε∆(w)

w′′ := w + ε∆(w)

If one of the two improves L(w), then we surely accept the best move,
otherwise we accept according to the Metropolis formula explained before.

33

34 4. Results

The algorithm is formalized in Algorithm 6. In the following, Simulated
Annealing in the minibatch version will be refereed as Stochastic Simulated
Annealing (SSA).

Our approach is completely derivative-free, thus meaning that there
is no need for a continuous loss function to optimize. We can, indeed,
optimize over discrete functions, such as the accuracy of the model, which
is the ultimate goal in classification tasks.

Algorithm 6 Stochastic Simulated Annealing for Neural Networks
Parameters: Scalar ε > 0, ε ∈ R+, 0 < α < 1

Input: Layered graph (V,E), loss function L to be minimized
1: Divide the training dataset in N minibatches
2: Initialize: w(1) = random_initialization()
3: i = 1
4: for t = 1, . . . , Nepochs do
5: for n = 1, . . . , N do
6: Extract the n-th minibatch (x,y)

7: Generate random move ∆(w)

8: wbest = arg min{L(w(i) ± ε∆(w))}
9: w(i+1) = wbest

10: prob = e−
L(wbest,x,y)−L(w(i),x,y)

T

11: if L(wbest,x,y) > L(w(i),x,y) and prob < random(0, 1) then
12: w(i+1) = w(i)

13: end if
14: i = i + 1
15: end for
16: T = α× T
17: end for
18: Output: w is the best performing w(i) on the validation set at the

end of each epoch

3.4 Results

Before looking at the results, it is useful to compare the distribution of
the gradient and our random move, which is drawn by a Gaussian random

34

Training Deep Neural Networks with Simulated Annealing 35

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
(w)

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Gradient distribution after 3 epochs

Figure 3.1: Gradient distribution

variable, so that each ∆(w)i ∼ N (0, 1), where ∆(w)i is a generic element in
∆(w). As Figure 3.1 shows, the gradient has a distribution that looks like
to the Gaussian one. However, the parameter ε must be properly set to a
reasonable value. Figure 3.2 shows a comparison between the distribution
of the gradient, multiplied by the typical learning rate 0.01, and our random
move. In the last picture the two distributions seem to very similar.

During the analysis of the algorithm a static ε has been shown to be
highly inefficient, leading either to a very slow convergence or to bad results.
We have then decided to adapt this parameter during training to the results
obtained. More specifically, if the value of ε leads to a worse objective
function value, ε is decreased by a factor of 10, similarly to what happens
with scheduled SGD.

3.4.1 LeNet-like structure

Before analysing the results over complex networks, the algorithm has been
tested with the LeNet structure. In our implementation, the number of
convolutional filters has been increased to 32 and 64 for the first two layers,
whilst the fully connected hidden layer has been set to 1000 neurons.

Information about the training process has been kept. Figure 3.3 shows
how the empirical probability of accepting worsening moves decreases dur-
ing the training phase. Diversification and intensification have been divided
almost equally setting T0 to 1 and α to 0.97. With such parameters the
probability slowly decreases to 0 in 200 epochs.

Figure 3.4 plots the number of worsening moves accepted vs not ac-

35

36 4. Results

0.006 0.004 0.002 0.000 0.002 0.004 0.006
(w)

0

10000

20000

30000

40000

50000

60000

70000

80000

Fr
eq

ue
nc

y

Comparison between gradient and random move (1)
Move (1e-3)
Gradient (learning rate = 0.01, no momentum)

(a) Random move with ε =1e−3

0.0004 0.0002 0.0000 0.0002 0.0004
(w)

0

10000

20000

30000

40000

50000

60000

70000

80000

Fr
eq

ue
nc

y

Comparison beetwen gradient and random move (2)
Move (1e-4)
Gradient (learning rate = 0.01, no momentum)

(b) Random move with ε = 1e−4

0.0005 0.0004 0.0003 0.0002 0.0001 0.0000 0.0001 0.0002 0.0003
(w)

0

10000

20000

30000

40000

50000

60000

70000

80000

Fr
eq

ue
nc

y

Comparison between gradiend and random move (3)
Move (1e-5)
Gradient (learning rate = 0.01, no momentum)

(c) Random move with ε =1e−5

Figure 3.2: Gradient comparison with random move

36

Training Deep Neural Networks with Simulated Annealing 37

Figure 3.3: Probability decay

Figure 3.4: The number of worsening moves accepted and not accepted for
each epoch.

37

38 4. Results

0 200 400 600 800 1000
Epochs

0.000

0.001

0.002

0.003

0.004

Lo
ss

Training loss comparison
SSA
SGD

(a) Train loss

0 200 400 600 800 1000
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train accuracy comparison

SSA
SGD

(b) Train accuracy

0 200 400 600 800 1000
Epochs

0.000

0.001

0.002

0.003

0.004

Lo
ss

Validation loss comparison
SSA
SGD

(c) Validation loss

0 200 400 600 800 1000
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Validation accuracy comparison

SSA
SGD

(d) Validation accuracy

Figure 3.5: SSA on LeNet-like structure and MNIST. SGD: η = 0.001,
β = 0. SSA: starting ε = 0.01, α = 0.97, T0 = 1

cepted for each epoch. The red bar indicates a drop by a factor of 10

of ε. As explained before when the number of worsening moves is over a
threshold the ε value is reduced. Most of the worsening moves are accepted
during the diversification phase but, starting from epoch 400, they tend to
be rejected. The plot allows to understand that, as the optimization pro-
cess goes further, the random moves become less effective. In fact, apart
from what is shown to the left of the red bar, the trend of worsening moves
increases using the same ε.

The results obtained with the LeNet structure show that optimization in
deep learning using SA is possible. Even though SGD performs significantly
better, SA can find a good model in a reasonable time. In Figure 3.5d
the accuracy still improves in the final phase, but the process has been
stopped to epoch 1000. Conclusions cannot be drawn on overfitting, since
the validation loss with SGD does not increase and the SSA’s optimization

38

Training Deep Neural Networks with Simulated Annealing 39

0 200 400 600 800 1000
Epochs

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

Lo
ss

Validation loss comparison
SSA
SGD

(a) Validation loss

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Validation accuracy comparison

SSA
SGD

(b) Validation accuracy

0 200 400 600 800 1000
Epochs

0.000

0.001

0.002

0.003

0.004

Lo
ss

Loss comparison
SSA train
SSA validation
SGD train
SGD validation

(c) Loss comparison

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SSA train
SSA validation
SGD train
SGD validation

(d) Accuracy comparison

Figure 3.6: Comparison on VGG16 with Fashion-MNIST. SGD: η = 0.001,
β = 0. SSA: starting ε = 0.01, α = 0.97, T0 = 1

process is not over (the minimum of 0 is not reached by the training set
loss). In any case, the validation and training curves for SSA are almost
overlapping.

3.4.2 VGG16 and MobileNet

More complex networks and datasets have been tested. In the research
community MNIST is being discarded in favour of Fashion-MNIST [40],
which lets to use the same input parameters (28× 28px grayscale images).
The results on the LeNet structure are very similar to the ones presented
before. Instead the tests on VGG16 (Figure 3.6), show that SSA does
not scale to more complex problems. While at the end the two validation
loss curves are very close, the gap in accuracy is increased. Moreover, in
Figure 3.6c the gap between the SGD and SSA’s training loss is increased.

39

40 4. Results

0 20 40 60 80 100
Epochs

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

Lo
ss

Validation loss comparison

SSA
SGD

(a) Validation loss

0 20 40 60 80 100
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Validation accuracy comparison

SSA
SGD

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.001

0.002

0.003

0.004

Lo
ss

Loss comparison

SSA train
SSA validation
SGD train
SGD validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SSA train
SSA validation
SGD train
SGD validation

(d) Accuracy comparison

Figure 3.7: Comparison on MobileNet with Fashion-MNIST. SGD: η =

0.001, β = 0. SSA: starting ε = 0.01, α = 0.97, T0 = 1

MobileNet [13], similar in the core concept to SqueezeNet, has been tested
as well, but worse results have been achieved. It must be underlined that
even SGD does not achieve zero on the training loss in a steady way as in
VGG or ResNet.

Even tough the first tests have achieved acceptable results, models
trained with SSA can hardly overcome SGD, due to the fact that the ran-
dom move is not effective enough. In the next chapter a combination of
SGD and SA will be studied, showing that the derivative multiplied with
high learning rates can be more effective than random moves with low ε.

40

Chapter 4

Hyper-parameter tuning by
Simulated Annealing

4.1 The idea

Hyper-parameters are usually very hard to optimize, as they depend on
the algorithm and on the underlying dataset. Hyper-parameter search is
commonly performed manually, via rules-of-thumb or by testing sets of
hyper-parameters on a predefined grid [2]. In SGD, momentum is widely
recognized to increase the speed of convergence. Instead, the learning rate
is highly dependent on the depth of the network (generally on the model
complexity) and on dataset difficulty. Usually they are set on a best-
practice basis, but methods such as CLR let to reduce the number of choices
[37]. Bergstra and Bengio [1] showed empirically and theoretically that
randomly chosen trials are more efficient for hyper-parameter optimization
than trials on a grid. We now introduce a new method, which allows to set
only a few bounds and then the optimization process runs independently.
In this way there is no need to set other parameters. This process could
be extended to other techniques, such as momentum or Nesterov, creating
a large pool of choices.

Leveraging the core concepts of Simulated Annealing, we use the deriva-
tive to set the direction. Rather than using conventional learning rates, we
explore higher learning rates hoping to accelerate the optimization process.
Then the move is accepted according to the Metropolis criterion. The ap-
proach is formalized in Algorithm 7, and will be later referred as SGD-SA.

41

42 1. The idea

Algorithm 7 SGD-SA
Parameters: A set of learning rates H, integer T > 0, α ∈ [0, 1]

Input: Layered graph (V,E), loss function L differentiable
1: w(1) = random_initialization()
2: i = 1
3: Divide the training dataset in N minibatches
4: for t = 1, . . . , Nepochs do
5: for n = 1, . . . , N do
6: Extract the n-th minibatch (x, y)
7: Sample ηi ∼ U(H)

8: Calculate gradient vi = backpropagation (x,y,w, (V,E), L)

9: Update w(i+1) = w(i) − ηivi
10: prob = e−

L(wbest,x,y)−L(w(i),x,y)

T

11: if L(wbest,x,y) > L(w(i),x,y) and prob < random(0, 1) then
12: w(i+1) = w(i)

13: end if
14: i = i + 1
15: end for
16: T = T × α
17: end for
18: Output: w is the best performing w(i) on the validation set at the

end of each epoch

42

Hyper-parameter tuning by Simulated Annealing 43

Figure 4.1: Probability decay during training (AlexNet, set H1, T0 = 1,
α = 0.93). At each worsening move, the probability has been saved. Most
of the training time is spent in the diversification phase.

4.2 Results

The algorithm has been tested with two different set of parameters. The
first having higher learning rates than the second one.

H1 = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05}

H2 = {0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01}
The cooling factor α has been reduced to 0.93 for all the following tests,
since few epochs are used. As depicted in Figure 4.2, the number of worsen-
ing moves is much lower than in the previous tests. Results show that the
training process is much slower, in particular with the first set H1, usually
leading to worsening moves, but a higher accuracy is reached multiple times
with different structures. The first set seems to perform poorly on AlexNet,
while it reaches a better accuracy on both VGG16 and ResNet34. Instead,
the second set H2 improves the results on all the networks. Highlighted
results are shown in Tables 4.1, 4.2 and show that a slower learning process
generally achieves better results. Usually the training accuracy curve is not

43

44 2. Results

Figure 4.2: The number of worsening moves accepted and not accepted for
each epoch (AlexNet, set H2, T0 = 1, α = 0.93). The number of worse
moves is two times lower than SSA with random moves.

44

Hyper-parameter tuning by Simulated Annealing 45

0 20 40 60 80 100
Epochs

0.002

0.003

0.004

0.005

0.006

Lo
ss

Validation loss comparison
SGD
Scheduled SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Validation accuracy comparison

SGD
Scheduled SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Lo
ss

Loss comparison
SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4.3: AlexNet on CIFAR10. SGD: η = 0.1, β = 0. SGD SA:
α = 0.93, T0 = 1, set H1. Scheduled SGD: η = 0.1 first 30 epochs, 0.01

following 40 epochs, 0.001 final 30 epochs.

shown in the same plot with the validation one, but it can seen (Figures
4.4d, 4.5d, 4.7d, 4.8d), that SGD-SA reaches training accuracy equal to 1

in a slower time, but then the validation accuracy is generally higher than
SGD. Moreover, the accuracy curve shows another interesting aspect: most
of the times scheduled SGD stops the training process with η = 0.1 in the
first 30 epochs and then the curve is steady, resulting in lower validation
accuracy.

SGD-SA has been proven to be more effective than pure simulated an-
nealing. It allows to reduce overfitting, and similarly to CLR it lets to drop
the burden of choosing hyper-parameters: only the set H must be chosen.

45

46 2. Results

0 20 40 60 80 100
Epochs

0.002

0.003

0.004

0.005

0.006

Lo
ss

Validation loss comparison
SGD
Scheduled SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Validation accuracy comparison

SGD
Scheduled SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Lo
ss

Loss comparison
SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4.4: AlexNet on CIFAR10. SGD: η = 0.1, β = 0. SGD SA:
α = 0.93, T0 = 1, set H2. Scheduled SGD: η = 0.1 first 30 epochs, 0.01

following 40 epochs, 0.001 final 30 epochs.

Alexnet VGG16 ResNet34

Loss Accuracy Loss Accuracy Loss Accuracy

SGD (η = 0.1) 0.001931 67.41 0.001465 84.6 0.001547 82.28
SGD-SA 0.002083 66.29 0.001019 86.54 0.001316 83.19
Scheduled SGD 0.002032 68.4 0.001406 84.73 0.001472 82.58
SGD (η = 0.001) with momentum 0.002137 66.68 0.001432 84.92 0.001589 83.07

Table 4.1: Set H1

46

Hyper-parameter tuning by Simulated Annealing 47

0 20 40 60 80 100
Epochs

0.002

0.004

0.006

0.008

0.010
Lo

ss
Validation loss comparison

SGD
Scheduled SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Validation accuracy comparison

SGD
Scheduled SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

Lo
ss

Loss comparison
SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4.5: VGG16 on CIFAR10. SGD: η = 0.1, β = 0. SGD SA: α =

0.93, T0 = 1, setH1. Scheduled SGD: η = 0.1 first 30 epochs, 0.01 following
40 epochs, 0.001 final 30 epochs.

Alexnet VGG16 ResNet34

Loss Accuracy Loss Accuracy Loss Accuracy

SGD (η = 0.1) 0.001931 67.41 0.001465 84.6 0.001547 82.28
Scheduled SGD 0.002032 68.4 0.001406 84.73 0.001472 82.58
SGD (η = 0.001) with momentum 0.002137 66.68 0.001432 84.92 0.001589 83.07
SGD-SA 0.001949 69.02 0.001032 85.99 0.001119 84.06

Table 4.2: Set H2

47

48 2. Results

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Validation loss comparison
SGD
Scheduled SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Validation accuracy comparison

SGD
Scheduled SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Loss comparison
SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4.6: VGG16 on CIFAR10. SGD: η = 0.1, β = 0. SGD SA: α =

0.93, T0 = 1, setH2. Scheduled SGD: η = 0.1 first 30 epochs, 0.01 following
40 epochs, 0.001 final 30 epochs.

48

Hyper-parameter tuning by Simulated Annealing 49

0 20 40 60 80 100
Epochs

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Lo
ss

Validation loss comparison
SGD
Scheduled SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Validation accuracy comparison

SGD
Scheduled SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.002

0.004

0.006

0.008

Lo
ss

Loss comparison
SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy comparison

SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4.7: ResNet34 on CIFAR10. SGD: η = 0.1, β = 0. SGD SA:
α = 0.93, T0 = 1, set H1. Scheduled SGD: η = 0.1 first 30 epochs, 0.01

following 40 epochs, 0.001 final 30 epochs.

49

50 2. Results

0 20 40 60 80 100
Epochs

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Lo
ss

Validation loss comparison
SGD
Scheduled SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Validation accuracy comparison

SGD
Scheduled SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.002

0.004

0.006

0.008

Lo
ss

Loss comparison
SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy comparison

SGD train
SGD validation
Scheduled SGD train
Scheduled SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4.8: ResNet34 on CIFAR10. SGD: η = 0.1, β = 0. SGD SA:
α = 0.93, T0 = 1, set H2. Scheduled SGD: η = 0.1 first 30 epochs, 0.01

following 40 epochs, 0.001 final 30 epochs.

50

Chapter 5

Conclusions

Deep learning growth is constantly pushing new projects in the industry,
which recognizes the potential of the new technology.

Our work is aimed at clarifying some points in deep learning. Chapter 2
shows that the learning process and initialization lead to different results.
Therefore, each new structure and learning process must be studied in
terms of hyper-parameters. Chapter 3 tries to demonstrate that these
loss curves are quite easy to train and flat. Then, we have tried to leave
the derivative and use, instead, random moves. This work suggests that
improvements must be done, since a Gaussian distributed random move
is not enough effective. Chapter 4 mixes SGD and SA with the aim to
train the network in a faster way using higher learning rates. The new
procedure has showed to be not as fast as typical SGD, but gives better
results in terms of validation accuracy and loss. These results have been
confirmed on all the architectures we tested. Moreover, the new proposed
algorithm, allows to have fewer hyper-parameters with respect to scheduled
SGD.

Future work could more extensively test Simulated Annealing on neural
networks with different generated random moves. The improved results
achieved in the last chapter suggest that hyper-parameter tuning by SA
should be studied more extensively.

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPUs used for this research.

51

Bibliography

[1] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. J. Mach. Learn. Res., 13:281–305, February 2012. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2188385.2188395.

[2] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning.
CoRR, abs/1502.02127, 2015. URL http://arxiv.org/abs/1502.02127.

[3] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages 2933–2941. Curran Associates,
Inc., 2014. URL http://papers.nips.cc/paper/5486-identifying-and-
attacking-the-saddle-point-problem-in-high-dimensional-non-convex-
optimization.pdf.

[4] Terrance Devries and Graham W. Taylor. Improved regularization of convolutional
neural networks with cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.
org/abs/1708.04552.

[5] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima
can generalize for deep nets. CoRR, abs/1703.04933, 2017. URL http://arxiv.
org/abs/1703.04933.

[6] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning, 2016. URL http://arxiv.org/abs/1603.07285. cite arxiv:1603.07285.

[7] Alberto Franzin and Thomas Stützle. Revisiting simulated annealing: A
component-based analysis. Computers & Operations Research, 104, 12 2018. doi:
10.1016/j.cor.2018.12.015.

[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-
ral networks. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, edi-
tors, Proceedings of the Fourteenth International Conference on Artificial Intel-
ligence and Statistics, volume 15 of Proceedings of Machine Learning Research,
pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL http:
//proceedings.mlr.press/v15/glorot11a.html.

53

http://dl.acm.org/citation.cfm?id=2188385.2188395
http://arxiv.org/abs/1502.02127
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/1603.07285
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html

54 Bibliography

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statisti-
cal Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/
abs/1512.03385.

[11] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012. URL http://arxiv.org/abs/1207.0580.

[12] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Netw., 4(2):251–257, March 1991. ISSN 0893-6080. doi: 10.1016/0893-
6080(91)90009-T. URL http://dx.doi.org/10.1016/0893-6080(91)90009-T.

[13] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR, abs/1704.04861,
2017. URL http://arxiv.org/abs/1704.04861.

[14] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q.
Weinberger. Snapshot ensembles: Train 1, get M for free. CoRR, abs/1704.00109,
2017. URL http://arxiv.org/abs/1704.00109.

[15] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size. CoRR, abs/1602.07360, 2016. URL http:
//arxiv.org/abs/1602.07360.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.
URL http://arxiv.org/abs/1502.03167.

[17] Kenji Kawaguchi. Deep learning without poor local minima. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 586–594. Curran Asso-
ciates, Inc., 2016. URL http://papers.nips.cc/paper/6112-deep-learning-
without-poor-local-minima.pdf.

[18] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization
gap and sharp minima. CoRR, abs/1609.04836, 2016. URL http://arxiv.org/
abs/1609.04836.

[19] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. Optimization by simulated
annealing. Science, 220 4598:671–80, 1983.

54

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1207.0580
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.00109
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836

BIBLIOGRAPHY 55

[20] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012. URL http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.
ISSN 0018-9219. doi: 10.1109/5.726791.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature,
521(7553):436–444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.
1038/nature14539.

[24] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P. Xing. Recurrent
topic-transition GAN for visual paragraph generation. CoRR, abs/1703.07022,
2017. URL http://arxiv.org/abs/1703.07022.

[25] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts.
CoRR, abs/1608.03983, 2016. URL http://arxiv.org/abs/1608.03983.

[26] Marco Marchesi. Megapixel size image creation using generative adversarial net-
works. CoRR, abs/1706.00082, 2017. URL http://arxiv.org/abs/1706.00082.

[27] Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol
Kurach, and James Martens. Adding gradient noise improves learning for very deep
networks. CoRR, abs/1511.06807, 2015. URL https://arxiv.org/abs/1511.
06807.

[28] Yurii Nesterov. A method of solving a convex programming problem with con-
vergence rate O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376, 1983. URL
http://www.core.ucl.ac.be/~{}nesterov/Research/Papers/DAN83.pdf.

[29] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity
control in neural networks. In Peter Grünwald, Elad Hazan, and Satyen Kale,
editors, Proceedings of The 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pages 1376–1401, Paris, France, 03–06
Jul 2015. PMLR. URL http://proceedings.mlr.press/v40/Neyshabur15.html.

[30] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Ex-
ploring generalization in deep learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 5947–5956. Curran Associates, Inc.,

55

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1703.07022
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1706.00082
https://arxiv.org/abs/1511.06807
https://arxiv.org/abs/1511.06807
http://www.core.ucl.ac.be/~{}nesterov/Research/Papers/DAN83.pdf
http://proceedings.mlr.press/v40/Neyshabur15.html

56 Bibliography

2017. URL http://papers.nips.cc/paper/7176-exploring-generalization-
in-deep-learning.pdf.

[31] Arild Nøkland and Lars Hiller Eidnes. Training Neural Networks with Local Error
Signals. arXiv e-prints, art. arXiv:1901.06656, Jan 2019.

[32] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection for
machine learning: a big data - AI integration perspective. CoRR, abs/1811.03402,
2018. URL http://arxiv.org/abs/1811.03402.

[33] Sebastian Ruder. An overview of gradient descent optimization algorithms.,
2016. URL http://arxiv.org/abs/1609.04747. cite arxiv:1609.04747Comment:
Added derivations of AdaMax and Nadam.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexan-
der C. Berg, and Fei-Fei Li. Imagenet large scale visual recognition challenge.
CoRR, abs/1409.0575, 2014. URL http://arxiv.org/abs/1409.0575.

[35] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, New York, NY, USA, 2014.
ISBN 1107057132, 9781107057135.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.
org/abs/1409.1556.

[37] Leslie N. Smith. Cyclical learning rates for training neural networks, 2015. URL
http://arxiv.org/abs/1506.01186. cite arxiv:1506.01186Comment: Presented
at WACV 2017; see https://github.com/bckenstler/CLR for instructions to imple-
ment CLR in Keras.

[38] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning
rate, increase the batch size. CoRR, abs/1711.00489, 2017. URL http://arxiv.
org/abs/1711.00489.

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),
2015. URL http://arxiv.org/abs/1409.4842.

[40] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

[41] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR,
abs/1605.07146, 2016. URL http://arxiv.org/abs/1605.07146.

56

http://papers.nips.cc/paper/7176-exploring-generalization-in-deep-learning.pdf
http://papers.nips.cc/paper/7176-exploring-generalization-in-deep-learning.pdf
http://arxiv.org/abs/1811.03402
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1605.07146

BIBLIOGRAPHY 57

[42] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer
International Publishing. ISBN 978-3-319-10590-1.

[43] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup initialization: Resid-
ual learning without normalization. CoRR, abs/1901.09321, 2019. URL http:
//arxiv.org/abs/1901.09321.

57

http://arxiv.org/abs/1901.09321
http://arxiv.org/abs/1901.09321

	Summary
	Deep Learning
	Machine Learning foundations
	Feedforward neural networks: The structure
	Training a neural network
	Stochastic Gradient Descent
	Backpropagation

	Gradient descent variants
	Neural Network Architectures
	Other meaningful techniques
	Dropout
	Batch Normalization
	Data augmentation

	Training by restarts
	The idea
	Our algorithm
	Results with CIFAR10

	Training Deep Neural Networks with Simulated Annealing
	The idea
	Simulated Annealing
	Our algorithm
	Results
	LeNet-like structure
	VGG16 and MobileNet

	Hyper-parameter tuning by Simulated Annealing
	The idea
	Results

	Conclusions
	Bibliography

