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Abstract

In our work, we have proposed new techniques for the training of Convolutional Neu-
ral Network (CNN) based on the embedding of Stochastic Gradient Descent (SGD)
within metaheuristic frameworks; in particuar, Simulated Annealing (SA) and Variable
Neighborhood Search (VNS). Their performances have been tested by training a deep
neural network in solving the image classification problem. Afterwards, the results were
compared with the ones of state-of-art techniques. Moreover, an in-depth analysis high-
lighted the most effective features and the main flaws of the examined metaheuristics in
the context of neural network training. The test results have shown that the application
of metaheuristics in general improves the generalizability of the solutions. In terms of
performances, SA-based algorithms typically performed slightly worse than state-of-art
techniques; VNS-based ones, instead, have demonstrated their potential in outperform-
ing state-of-art techniques.
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1. Introduction

The purpose of this work is to design, analyze, and test new approaches to the Neural
Network Training Problem (NNTP) based on metaheuristic strategies. Unfortunately,
this problem is too wide to be fully analyzed here since its formulation changes signifi-
cantly due to different learning definitions, network structures, and dataset types. The
analysis is then limited to the supervised definition of learning, applied to the image
classification problem performed by convolutional neural networks (CNN). This choice
is supported by the amount of data available for this version of the problem and by the
suitability for the application of metaheuristic elements.

The most popular state-of-art algorithms used to solve the NNTP are based on Gra-
dient Descent (GD): a local search algorithm that iteratively moves the network in the
direction of the maximum decrease of the cost function. These algorithms introduce
sophisticated mechanisms to enhance the effectiveness of the GD basic procedure with
the underlying purpose of converging to the closest local optimum, whereas standard
optimization algorithms try to avoid getting stuck in local minima and search for the
global optimum instead. This unconventional behavior can be justified by the difficulty
of finding global optima derived from the curse of dimensionality that affects the solution
space.

Metaheuristics are problem-independent frameworks designed to approach generic op-
timization problems, based on the concepts of intensification and diversification: respec-
tively, move the solution toward a local minimum to improve its cost and move the
solution toward unexplored sectors of the solution space to search for the global opti-
mum. From this point of view, the state-of-art algorithms for the NNTP implement
intensification only, whereas metaheuristics balance these two features to obtain better
performance.

The new optimization algorithms are designed to exploit both approaches, hence their
design can be intuitively described as state-of-art algorithms with diversification and
intensification techniques. The resulting algorithms have a metaheuristic structure, while
the majority of the components not explicitly defined by the framework are embeddings
of state-of-art algorithms or strongly inspired by them.

The performance of the newly introduced algorithms compared to the state-of-art ones
depends on many factors: the relationship between intensification and diversification,
the effectiveness of diversification in reducing the overfitting, and the role of the curse of
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1. Introduction

dimensionality. The algorithms are tested on multiple datasets and multiple networks to
evaluate the impact of these factors: the purpose is to tell if the overhead introduced to
implement the metaheuristics structure and the diversification leads to significant results
or if the problem itself is not suitable to be tackled with strategies different from local
searches.
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2. State-of-art training techniques

The most popular optimization algorithms for neural network training implement
Gradient Descent (GD) with additional mechanisms to improve its performance. The
idea of gradient descent is to perform downhill steps, with respect to the loss function,
until a minimum is found: this process leads to a global minimum for convex surfaces and
to a local minimum for non-convex surfaces. The downhill direction is the anti-gradient
of the loss function with respect to the weights, which indicates the direction of the
maximum decreasing of the loss function. For simplicity, consider the training process
as a sequence of moves and introduce a subscript to parameters to indicate explicitly the
move they refer to. Denoting with θ the weights of the network, with ∇L the gradient
of the loss function L, and with η the learning rate, we can define the update rule for
the weights as follows.

θt+1 = θt − η ∇L(θt) (2.1)

Although the resulting rule is simple and quite intuitive, it clearly highlights two prob-
lems: the efficient computation of the gradient and the choice of the learning rate.

2.1. Common strategies

The gradient is a key element in all state-of-art techniques: the way it is exploited in
combination with the learning rate and, eventually, with advanced features distinguishes
an optimizer from another. However, the intermediate steps in the computation of the
gradient do not change the results of the algorithms since only the final result has a role
in the updating rule. On the other hand, the specific procedure chosen influences how
the dataset is analyzed and how the training is performed. The consequence of these
observations is that different optimizers share the most efficient strategy to compute the
gradient and the resulting management of the training process accordingly.

2.1.1. Gradient computation

An exact computation of the gradient requires an analysis of the whole training set,
resulting in a very complex procedure that is unfeasible for most of the problems; such
implementation of GD is called batch GD. A stochastic approach, called stochastic
GD, consists in estimating the real gradient on expectation: this can be easily done
by computing the gradient using a single sample taken uniformly at random from the
training set. The procedure has very low complexity but, on the other hand, provides
very noisy gradients. A compromise between these two approaches consists in computing
the gradient on a mini-batch, a set of elements sampled from the training set. Although
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2. State-of-art training techniques

this is still a stochastic approach, it is typically named “mini-batch GD”, even though
mini-batch stochastic GD would be more appropriate. If the sampling is performed
appropriately, the result is still equal to the gradient on expectation; moreover, the
larger number of samples reduces the noise and leads to more accurate results with
a feasible impact on complexity. The use of mini-batches implies the introduction of a
hyper-parameter to indicate the number of samples in each mini-batch: its value depends
on the situation but is typically in the range 50∼500. Since this third solution is more
efficient than the first one and less unstable than the second one, this procedure has
become a standard part of all the most common techniques.

2.1.2. Epochs and mini-batches management

From the optimization algorithms point of view, the training process is a sequence
of updates to the weights of the network, each one depending on the gradient and few
technique-specific parameters, both obtained by the analysis of a mini-batch. Besides,
some algorithms assume that the mentioned sequence of updates is divided into epochs
to perform a periodic hyper-parameter update. As a consequence, the training is divided
into epochs: each epoch analyses the whole training set by dividing it into mini-batches
and analyzing them one by one. The process can be described effectively with two
loops: the outer loop counts the epochs while the inner loop iterates over the mini-
batches obtained from the training set. Observe that the mini-batches must be sampled
from the training set hence it is unlikely to have the same set of mini-batches in different
epochs.

2.2. Stochastic Gradient Descent (SGD)

In the literature and machine learning libraries, the stochastic gradient descent (SGD)
optimizer is an implementation of the GD algorithm with the mini-batch technique as
described above. In its simplest version, the updating rule used is the one presented in
Equation 2.1 and the learning rate is constant during the whole execution. Although
more sophisticated versions introduce additional elements in the update rule, as SGD
with momentum, or use a finer control on the learning rate, as scheduled SGD, the main
structure of these algorithms is the same as SGD.

The standard structure of a training algorithm based on SGD is described with pseu-
docode in Algorithm 1.

2.2.1. SGD with momentum

In vanilla SGD, each move depends only on the current status of the network and the
current mini-batch analyzed, ignoring the information carried by previous moves. Al-
though the management of the full history of the moves executed would introduce a huge
overhead, storing some essential information may be useful to improve the convergence.
An effective realization of this idea requires storing only cumulative information about
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2.2. Stochastic Gradient Descent (SGD)

Algorithm 1: Stochastic gradient descent pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, η: learning rate.

Function SGD training(θ, D)

t← 0
θt ← θ

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

∇L(θt)← compute gradient(θt, b, L)

θt+1 ← θt − η∇L(θt)
t← t+ 1

return θt

the direction of previous moves in an additional variable called momentum. The momen-
tum appears then as an additional term in the update rule with the role of enhancing
the movements in the directions followed by the previous moves, roughly implementing
a notion of inertia.

Classic momentum

The classic momentum implementation stores only the last move, requiring a single
additional variable v, which is then used to introduce a new term in the update rule,
whose impact can be controlled with an additional hyper-parameter µ. The update rule
must be extended to update both the weights θ and the momentum v, as shown in the
equation below.

vt+1 = θt+1 − θt

θt+1 = θt + µvt − η∇L(θt)
(2.2)

This rule formulation is simple to understand but for it to be implemented efficiently
some minor modification must be applied, as described in Algorithm 2.

Nesterov Accelerated Gradient (NAG)

A more advanced technique that exploits the momentum is Nesterov Accelerated Gra-
dient (NAG). Whereas the classic momentum exploits only the previous moves history,
the NAG also looks forward to the consequences of the next move to anticipate the
corrections. The procedure followed by the update is conceptually divided into three
steps: firstly, the parameters move to an intermediate point by applying the momen-
tum, secondly, the gradient is computed on the intermediate point, finally, the gradient

7



2. State-of-art training techniques

Algorithm 2: SGD with momentum pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, v: momentum, η: learning rate, µ: momentum
coefficient.

Function SGD with momentum training(θ, D)

t← 0
θt ← θ
vt ← 0

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

∇L(θt)← compute gradient(θt, b, L)

vt+1 ← µvt − η∇L(θt)
θt+1 ← θt + vt+1

t← t+ 1

return θt

is used to move the parameters to the final position. The update rule can be formulated
as follows:

vt+1 = θt+1 − θt

θt+1 = θt + µvt − η∇L(θt + µvt) .
(2.3)

Although is not strictly required by the formulation, the implementation can be simpli-
fied by introducing a variable y to explicitly store the value of the intermediate position

yt+1 = θt + µvt . (2.4)

The relation between these parameters and their updates is described in Figure 2.1.

Moreover, the presented formulation indicates that the gradient is computed within
the optimization move, whereas machine libraries typically assume that the gradient
is computed before the optimization move. In particular, the move resulting from the
update rule follows the steps θt → yt+1 → θt+1, where the gradient is computed on the
middle step. An alternative, that keeps unaltered the overall sequence of moves, consists
of following the steps yt → θt → yt+1, with the advantage that the gradient is computed
on the first step; however, this implies that the y variable refers to the weights of the
network, while θ becomes a utility variable. The pseudocode that considers these aspects
is provided in Algorithm 3.

The techniques presented till now (SGD, SGD with momentum, and NAG) exploit
the gradient and the momentum to explore effectively the solution space; although the

8



2.2. Stochastic Gradient Descent (SGD)

Figure 2.1.: Relationship between θ, y and v parameters over time.

update rules of the resulting strategies are all similar, their performance and behavior
present significant differences. The example reported in Figure 2.2 shows how the differ-
ent techniques compute the sequence of moves when the parameters are in a ravine area,
where the loss function decreases much more steeply in a dimension as compared with
the others. SGD is improved with the use of momentum, obtaining a faster convergence;

Figure 2.2.: Comparison of update rules for (a) SGD, (b) SGD with momentum, and (c)
NAG.

then it is further improved with the look-ahead of the gradient, correcting the moves
before they are performed: the obtained technique, NAG, is the best performer among
the three.

2.2.2. Scheduled SGD (SSGD)

The Scheduled SGD (SSGD) is an improvement of SGD that, differently from mo-
mentum variants, does not modify the update rule of SGD, but rather introduces a
more sophisticated mechanism to control the learning rate. The learning rate and the
gradient influence directly how far the new solution will be from the previous one, since
the difference between them is ∆θ = −η ∇L(θt). As a consequence, the learning rate

9



2. State-of-art training techniques

Algorithm 3: Nesterov accelerated gradient pseudocode.

Parameters: y: network weights, D: training set, L: loss function, E: number
of epochs, θ: intermediate weights, v: momentum, η: learning
rate, µ: momentum coefficient.

Function NAG training(y, D)

t← 0
yt+1 ← y
θt ← yt+1

vt ← 0

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

∇L(yt+1)← compute gradient(yt+1, b, L)

θt+1 ← yt+1 − η∇L(yt+1)
vt+1 ← µvt − η∇L(yt+1)
yt+2 ← θt+1 + µvt+1

t← t+ 1

return yt+1

can be tuned to travel large distances obtaining a faster convergence, but making it
harder to get close to the local optimum, or to travel small distances resulting in a slow
convergence, but with the opportunity of getting close to the local optimum.

The SSGD algorithm exploits large learning rates at the beginning of the training to
reach the neighborhood of the local optimum, whereas later it exploits small learning
rates to get as close as possible to the local optimum. The learning rate is managed by an
additional element, the scheduler, that implements an annealing procedure to gradually
decrease the learning rate during the training. Although it is possible to design different
annealing procedures, in the present work only the multi-step strategy will be taken into
consideration. The pseudocode for SSGD, independent from the implementation of the
scheduler, is provided in Algorithm 4.

The multi-step scheduler management of the learning rate can be mathematically
expressed as a linear combination of step functions. The learning rate is not decreased
gradually: it is kept constant for most of the training and updated only in specific epochs
that performs a step operation, which decreases significantly the learning rate. A simple
example of the learning rate curve and how it influences the solution space exploration
is provided in Figure 2.3.

A generic implementation of the multi-step scheduler requires two lists: the list of

10



2.2. Stochastic Gradient Descent (SGD)

Algorithm 4: Scheduled SGD pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, η: learning rate.

Function SSGD training(θ, D)

t← 0
θt ← θ

foreach epoch e ∈ {0, . . . , E − 1} do
η ← scheduler(e)

foreach mini-batch b ∈ D do

∇L(θt)← compute gradient(θt, b, L)

θt+1 ← θt − η∇L(θt)
t← t+ 1

return θt

epochs at which steps are performed and the list of corresponding learning rates. How-
ever, assuming that each learning rate should be used for the same number of epochs
and that the list of learning rates is a geometric progression, it is possible to define a
multi-step procedure with only three constants: the number of epochs per learning rate,
the initial learning rate and the common ratio of the progression. Under these reasonable
assumptions, the resulting scheduler is very simple and its pseudocode is presented in
Algorithm 5.

Figure 2.3.: Example of learning rate curve and solution space exploration for SSGD
algorithms.

11



2. State-of-art training techniques

Algorithm 5: Multi-step scheduler pseudocode.

Parameters: e: epoch, η0: initial learning rate, s: epochs per learning rate, d:
learning rate decay.

Function multistep scheduler(e)

n← ⌊e / s⌋
η ← η0 · d n

return η

2.3. Adaptive Moment Estimation (ADAM)

Adaptive Moment Estimation (ADAM) is a technique based on the application of the
estimation of mean and variance of the gradient to the basic update rule presented in
Equation 2.1. Gradient’s first and second moment estimations are exploited to tune
the learning rate of each parameter of the network individually. Moreover, the mean
estimation replaces the actual gradient in the update rule. Although the learning rate
is still a hyper-parameter, it is auto-tuned by the algorithm, hence its initial value has
little importance and can be left at a default value. Moreover, the default values of the
constants, that will be introduced for the estimation and for numerical stability, lead to
good performance and, since their correlation with the results is not as obvious as for
the learning rate, tuning these hyper-parameters is likely to result in overfitting. Hence,
ADAM can be used without the need for tuning any hyper-parameter, since - although
they are present in the algorithm - their impact is auto-corrected or already leads to
good performance.

The estimations are performed by storing the exponentially decaying averages of the
past gradients and squared gradients, as described by the following equations.

mt = β1mt−1 + (1− β1)∇L(θt)
vt = β2vt−1 + (1− β2)∇L2(θt)

(2.5)

The moment estimations are initialized as 0’s vectors, introducing a bias toward zero,
especially in the early stages of the algorithm. This effect is compensated by computing
bias-corrected estimations as follows.

ˆ︂mt =
mt

1− βt
1ˆ︁vt = vt

1− βt
2

(2.6)

The values suggested by the authors for the constants are β1 = 0.9 and β2 = 0.999 [2].

As anticipated, each move begins with the computation of the estimations as their
values are used to update the weight of the network: the variance estimation tunes the

12



2.3. Adaptive Moment Estimation (ADAM)

learning rate while the mean estimation indicates the direction of the move. The update
rule follows.

θt+1 = θt −
η√ˆ︁vt + ϵ

ˆ︂mt (2.7)

The equation introduces the smoothing term ϵ to avoid the division by zero and increase
the numerical stability of the updating rule; typically this constant is in the order of
10−8.

The operations performed to estimate moments and to perform the update rule are
numerous compared with other optimization algorithms, but also element-wise. Hence,
for time-constrained applications, they can be parallelized to improve the time complex-
ity. The pseudocode for ADAM is provided in Algorithm 6 for completeness since it
follows closely the steps described in Equations 2.5, 2.6, and 2.7.

Algorithm 6: Adaptive moment estimation pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, m: mean estimation, v: variance estimation, η:
learning rate, β1, β2, ϵ: constants.

Function ADAM training(θ, D)

t← 0
mt, vt ← 0
θt ← θ

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

∇L(θt)← compute gradient(θt, b, L)

mt ← β1 mt−1 + (1− β1) ∇L(θt)
vt ← β2 vt−1 + (1− β2) ∇L2(θt)ˆ︂mt ← mt/(1− βt

1)ˆ︁vt ← vt/(1− βt
2)ˆ︁η ← η/(

√ˆ︁vt + ϵ)

θt+1 ← θt − ˆ︁η ˆ︂mt

t← t+ 1

return θt
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3. Metaheuristics

The definition of metaheuristic used in this work is provided by Sörensen and Glover in
[3]: the following quotation, extracted from their paper, describes shortly and effectively
the concept of metaheuristic applied both to algorithms and to frameworks.

A metaheuristic is a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop heuristic optimiza-
tion algorithms. The term is also used to refer to a problem-specific imple-
mentation of a heuristic optimization algorithm according to the guidelines
expressed in such a framework.

The definition does not provide indications on how the frameworks should be designed,
hence many different formulations of metaheuristics were published. On the other hand,
the problem-independence condition is strong and forces the frameworks to use concepts
that can be applied to a generic optimization problem. For this reason, metaheuristics
perform the optimization through the exploration of the solution space of the problem;
since such set is required to define any optimization problem, its existence is guaranteed.

The solution space exploration purpose is to find a global optimum of the problem.
However, this task implies two different sub-tasks: the first one, called diversification,
consists in exploring a large part of the solution space, and derives from the “global”
property of the desired solution; the second one, called intensification, consists in search-
ing for local optima and derives from the “optimum” property of the desired solution.
Observe that intensification alone is likely to produce local optima, while diversification
alone is likely to produce non-optimal solutions, consequently the aim of each meta-
heuristic is to balance these two approaches to maximize their effectiveness.

Although it is not specified in the definition of a generic optimization problem, meta-
heuristics assume a basic regularity of the solution space to introduce additional concepts,
such as the distance between solutions and the neighborhood of a solution. The distance
between solutions is a measure of their differences and, under the assumption that close
solutions have similar costs, it is meaningful to define the neighborhood of a solution as
the set of solutions that are within a fixed distance from it. Metaheuristics explore of the
solution space exploiting these concepts. The overall strategy is shared between them
and can be described as follows: the algorithm starts with an initial solution, then a se-
quence of moves is performed until a stopping condition is satisfied. Each move consists
in replacing the current solution with a new one, that can be taken from its neighbor-
hood, sampled at a fixed distance from it or computed following a framework-specific
strategy.
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Metaheuristic frameworks are, by definition, problem-independent but metaheuristic
algorithms are not. The gap between a problem-independent description and a problem-
specific algorithm requires an interface that maps the framework’s concepts to specific
definitions, compliant with the problem characteristics. The implementation of this
interface influences significantly the performance of the resulting algorithm, besides, an
optimal interface for a specific framework may be not optimal for another one.

The metaheuristics applied to the neural network training problem were chosen ac-
cording to their suitability with the problem itself. The main peculiarity of the problem
is the size of the solution space: the huge number of dimensions imposes tight bounds
on both time and space complexities. Hence, any feasible framework should introduce a
small overhead and store only minimal information on the solutions. These requirements
are satisfied by simulated annealing and variable neighborhood search.

3.1. Simulated Annealing (SA)

Simulated annealing (SA) [4] is a metaheuristic framework inspired by the ability of
physical systems to reach the state of minimal energy during a cooling process. The
search for the minimum is modeled as a system that is cooling: the exploration of the
solution space is divided into a sequence of stages, influenced by a temperature parameter
that gradually decreases.

An implementation of SA requires two global variables to save the state of the sys-
tem: one to track the solution currently under examination and the other to store the
current temperature of the system. A stage explores the solution space by sampling the
neighborhood of the current solution a fixed number of times. Each sampled solution
has a chance to become the current solution: if its cost is good enough, it is accepted
and becomes the current solution; otherwise, it is rejected and simply ignored. More in
detail, the acceptance test takes into account the current temperature of the stage and
the cost difference between the sampled solution and the current solution. Improving
solutions are always accepted while worsening solutions have only a certain probability
to be accepted. This probability is lower for worse solutions and decreases as the tem-
perature decreases, implying that accepting worsening solutions gets less likely as the
algorithm proceeds. The possibility of accepting a worsening solution is a key element
of SA since it allows escaping local minima.

The behavior of the algorithm in each stage changes during the computation: when the
temperature is high, worsening moves can easily be accepted, hence the solution space
can be explored widely (diversification). On the contrary, when the temperature is low,
almost only improving solutions are accepted (intensification). These observations lead
to the conclusion that, at first, the exploration is performed mainly with a diversification
approach but, as the stages proceed, the dominant approach becomes the intensification.
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3.1. Simulated Annealing (SA)

Both intensification and diversification are present in all stages, but their impact on the
algorithm changes according to the current temperature.

The pseudocode for simulated annealing is reported in Algorithm 7. Observe that
many elements used are not defined within the framework, and are left to the developer:
the neighborhood and the cost function are problem-dependent elements, which could
not be specified, while the initial temperature, the termination condition, the value of k,
and the updating rule for the temperature are problem-independent elements that can
be seen as degrees of freedom to customize the implementation of SA. All these elements
have a significant impact on the performance of the algorithm, hence they must be set
carefully.

Algorithm 7: Simulated annealing pseudocode.

Parameters: S0: initial solution, T : temperature.

Function SA framework(S0)

S ← S0

T ← initial temperature(S0)

while ⋆ termination condition ⋆ do

for ⋆ k times ⋆ do

S∗ ∈ neighborhood(S)
∆← cost(S∗) - cost(S)

P ← e−∆/T

if random(0,1) < P then
S ← S∗

T ← function(T )

return S

3.1.1. Implementation details

The definition of all the problem-independent elements is based on the guidelines
proposed by M. W. Park and Y. D. Kim in [5], whereas the definitions of neighbor-
hood and cost are postponed to later sections because these may change for different
implementations of the framework.

The initial temperature T0 is based on the average worsening, ∆∗, of a sampled solution
and an initial acceptance probability P0. Park and Kim suggest to compute the average
worsening on a trial stage where only uphill moves contribute to the average; on the other
hand, this procedure is sensitive to outliers, that occur frequently in the early stages of
neural network training due to the random initialization of the network. This sensitivity
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can be mitigated by removing the top 10% and the bottom 10% of the worsening values,
that are likely to contain outliers. The initial acceptance probability typical value varies
from 0.1 to 0.9; in this work, the default value is 0.5, even if there may be cases where
a different value is preferred. Finally, the initial temperature is computed by inverting
the equation used in the acceptance test, as follows:

T0 = −
∆∗

logP0
. (3.1)

The pseudocode for the computation of the initial temperature is reported in Algo-
rithm 8.

Algorithm 8: Temperature initialization pseudocode.

Parameters: S0: initial solution.

Function initial temperature(S0)

S ← S0
delta list ← ⋆ empty list ⋆

for ⋆ k times ⋆ do

S* ∈ neighborhood(S)
∆← cost(S*) - cost(S)

if ∆ > 0 then

delta list.append(∆)

delta list.sort()
⋆ remove top 10% and bottom 10% from delta list ⋆

∆∗ ← delta list.mean()
P0 ← 0.5
T0 ← −∆∗/ lnP0

return T0

The choice of the termination condition is influenced by the peculiarities of the problem
and by the structure of the training. The training process is divided into epochs, whose
number is chosen to avoid seeing too many or too few times the training set, that would
result in, respectively, overfitting or underfitting. In this work, the number of training
epochs is always supposed to be fixed, hence the most appropriate termination condition
consists in repeating the while cycle once for each epoch.

The number of sampling in each stage, denoted as k in the pseudocode, should be a
value proportional to the size of the instance of the problem. However, for the training
problem, each stage corresponds to an epoch that scans the full training set, resulting
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in a fixed number of iterations, given by the size of the training set divided by the size
of each mini-batch. As a consequence, the value of k can be computed automatically
following these indications, resulting in a choice that respects the guidelines since k is
proportional to the size of the dataset.

One of the most common temperature updating rule is the proportional cooling func-
tion, that fundamentally bases the evolution of the temperature to a geometric progres-
sion. The progression is fully defined by the initial value and by the common ratio: the
former is the already defined initial temperature T0 while the latter is an additional pa-
rameter α, which controls the speed of the cooldown. The definition of the progression,
by recurrence and in closed form, follows.

Ti = α Ti−1 ↔ Ti = αi T0 (3.2)

Typical values for α stand between 0.8 and 1.0 excluded; in this work, the default value
is 0.9, even though there may be cases where a different value is preferred.

3.2. Variable Neighborhood Search (VNS)

Variable neighborhood search (VNS) [6] is a metaheuristic framework based on the
assumption that the effectiveness of metaheuristics is due to the ability of the algorithms
to change the neighborhood during the search. Consequently, the authors designed a
simple framework that exploits the mentioned assumption without introducing complex
elements.

An implementation of VNS requires a global variable to store the best solution found so
far. Differently from SA, the exploration does not produce a single sequence of solutions,
where the last one is the best. The algorithm iteratively explores a neighborhood, finds
its local optimum, and then moves to the next one. The neighborhood to explore next
is relative to the best solution found: each solution generates a list of neighborhood
structures that are sequentially explored, hence multiple definitions of neighborhood are
required. The neighborhood exploration, having the objective of finding a local optimum,
follows a local search procedure: if the resulting optimum outperforms all previously
found solutions, it is used to update the best solution variable. The exploration of a
neighborhood may lead to a new best solution, and to the analysis of a new list of
neighborhoods, or it may leave unaltered the best solution, hence forcing one to explore
the same set of neighborhoods.

The exploration of a neighborhood searching for a local optimum is an archetypal
intensification procedure, whereas the change of neighborhood is purely a diversification
move. Hence, the behavior of the VNS framework is an alternation of intensification and
diversification procedures, where each one is clearly separated from the others.
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The pseudocode for VNS is reported in Algorithm 9. Observe that the framework
leaves four elements undefined: the cost, the neighborhood structures, the local opti-
mization procedure, and the termination condition.

Algorithm 9: Variable neighborhood search pseudocode.

Parameters: S0: initial solution.

Function VNS framework(S0)

SB ← S0
k ← 1

while ⋆ termination condition ⋆ do

S ∈ neighborhood(SB, k)
S∗ ← local optimization(S)

if cost(S ∗) < cost(SB) then

SB ← S∗

k ← 1

else
k ← k + 1

return SB

3.2.1. Implementation details

As for SA, we temporarily postpone the definitions of purely problem-dependent el-
ements, as the neighborhood structures and cost, since they may change for different
implementations of the framework. Although the termination condition and local opti-
mization procedure can be expressed in a problem-independent fashion, they must be
adapted to the peculiarities of the neural network training problem. The required mod-
ifications are discussed below while their actual definition will be provided when used in
an actual algorithm.

The local optimization procedure searches for a solution that cannot be further im-
proved with local changes. Observe that it is not feasible to prove that a solution is a
local optimum for the neural network training problem due to the high dimensionality of
the solution space. However, we can relax the definition of local optimum by assuming
that a solution whose neighborhood was analyzed deeply without finding any improving
solution is a local optimum. The definition of “analyzed deeply” cannot be provided
mathematically, so it must be decided by the developer according to the confidence he
requires for declaring a solution to be a local optimum.

The termination condition originally suggested by N. Mladenović and P. Hansen, the
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authors of VNS, is based on the number of different neighborhoods computable for each
solution: defining a fixed number N of neighborhoods, the algorithm terminates when
k > N , meaning that it is not possible to retrieve a new neighborhood to explore. On
the other hand, the definition of the neighborhood of a solution may be parametric in
k and may be defined for any natural or real value of k (e.g., the kth neighborhood of
a reference solution is the set of solutions at a distance lower than k from the reference
solution, given a certain concept of distance). In this case, the above mentioned condition
fails. A parametric definition for the neighborhood structures is suitable for the neural
network training problem, so it is now necessary to use another stopping condition.
The exploration of the solution space for this problem is performed through epochs,
consequently it is reasonable to assign to the VNS algorithm as many iterations of the
while loop as epochs, resulting in the same termination condition of SA.
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metaheuristics

In the literature, the application of metaheuristic frameworks to the training of neu-
ral networks is known to be an effective strategy for some specific formulations of the
problem. However, the majority of the publications to date analyses only small Artifi-
cial Neural Networks (ANN) [7], whereas very little work has been done for other types
of network. An important exception to this trend is the study of a SA-based imple-
mentation of SGD and its application on convolutional neural networks (CNN) by M.
Fischetti and M. Stringher [8]. Their technique, named SGD-SA, is described below and
represents the starting point for the SA-based techniques proposed in the present work.

The neural network training problem peculiarity of distinguishing a training set for
the optimization algorithm and a test set for the evaluation of its results, introduces
the concepts of underfitting and overfitting. These can be related to intensification and
diversification, the key concepts of metaheuristic procedures, through the following ob-
servations. The intensification phase is performed on the training set with the purpose
of reducing both training and test errors. However, if this phase is applied too aggres-
sively, the solution will fit very well the training set, but will perform poorly on the
test set, leading to overfitting. On the other hand, the diversification phase is, typically,
less dependent on the training set when it explores the solution space, suggesting that
training and test errors should be similar. However, if this phase is too aggressive, the
solution space will be “randomly” explored and it is unlikely that the solution obtained
is any good, leading to underfitting.

The training techniques that will be introduced below indirectly balance the effects
of overfitting and underfitting by acting on the intensification and diversification pro-
cedures. The aim is to obtain the best from both strategies: get a low training error
through the intensification phase, and a comparable test error thanks to the diversi-
fication phase. The design of these techniques takes into account the metaheuristic
frameworks, the dataset analysis, and the state-of-art techniques. The overall structure
of each algorithm is defined by the metaheuristic it implements, but it is adapted to be
suitable for the iterative analysis of the training set in the form of mini-batch. When
not explicitly defined by the framework, the details of the algorithms are inspired by the
problem’s peculiarities or by the state-of-art techniques.

The descriptions of the algorithms below are focused on the details that characterize
each one of them, while the already described structures deriving from the metaheuristic
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frameworks or from state-of-art techniques will only be swiftly referred to. Moreover, a
pseudocode very close to actual code is provided for each algorithm, with the purpose
of highlighting problems that can occur in actual implementations, but can be masked
by high level pseudocode.

4.1. Simulated Annealing based techniques

The simulated annealing framework, described in Section 3.1, introduces little over-
head to the optimization procedures, hence it is suitable for the design of training algo-
rithms. SA does not require to store a large number of solutions and very few operations
are performed on them at each iteration. The result is an algorithm with low space and
time complexities, which allows the management of large solutions with feasible re-
sources. Moreover, the double loop of SA can be adapted to implement the strategy of
state-of-art algorithms to analyze the training set by means of epochs and mini-batches.

4.1.1. Common elements

The implementation of SA-based metaheuristics for the neural network training re-
quires many design choices to be made. However, the overall structure of such algorithms
is inherited by the framework, hence it is shared among the algorithms; meaning that
there are choices common to all the algorithms of this kind. The most important common
elements are described below.

In-place network modification

Consider the pseudocode for SA presented in Algorithm 7, and analyze the space and
time complexity with respect to the size of a solution. The current solution examined is
stored in a global variable and, at each iteration, a new solution is generated from the
current one and saved in a variable. Then, if the acceptance test is successful, the value
of the previous solution is overwritten with the value of the new one. Simplistically, the
algorithm requires to store two solutions and performs two operations on solutions.

Suppose that the new solution generated in each iteration is not stored in a new
variable but straightaway overwrites the current solution, before the acceptance test
is taken. If the generated solution passes the acceptance test no further operations
are required, whereas the previous solution must be reset in case of test failure. This
version of the algorithm requires to store only one solution and performs one operation
on solutions if the acceptance test is passed, two otherwise. Since it is reasonable to
assume that the majority of tests are passed, this strategy is more efficient both in time
and space.

Observe that if the previous assumption does not hold, it is likely that the number of
moves performed is too small to lead to a good solution. This situation may occur for
bad parameters (e.g., too low initial temperature) or unwise design (e.g., bad definition
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of neighborhood). In such cases, the algorithm cannot work well and must be redesigned.
A second observation is related to the solution reset. The information required to restore
the previous solution, represented by the gradient, is the same used to generate the new
solutions, hence both strategies implicitly need to store it. Since such information is
required by both strategies, it is ignored in the comparison.

Stochastic cost computation

The cost associated to the solutions vary from technique to technique, but it is possible
to distinguish two types of cost function: dataset independent and dataset dependent.
Cost functions belonging to the dataset independent type can be computed directly from
a solution, without any additional knowledge (e.g., norm functions), whereas dataset de-
pendent costs require the training set as an additional information (e.g., loss functions).
In the SA pseudocode, the cost of a solution is computed with the solution only, hence
ignoring the dataset dependent costs, whose complexity must be carefully managed while
adapting the framework.

Typically, the computation of an exact dataset dependent cost requires to scan the
whole training set. However this would make SA-based algorithms unfeasible in practice
since cost computations are performed at each move. The problem of solution cost com-
putation is identical to the problem of gradient computation analyzed in Section 2.1.1,
hence the same stochastic approach can be used. Instead of scanning the whole train-
ing set, a single mini-batch is analyzed for the computation of the cost: the procedure
loses accuracy but decreases significantly the complexity, making SA-based algorithms
feasible. The dataset dependent costs are then computed stochastically, as it is done for
the gradient, whereas dataset independent costs can be computed directly as indicated
in the SA pseudocode.

Gradient-related neighborhood

The neighborhood of a solution is defined as the set of solutions that, according to the
gradient, may lead to an improvement. The anti-gradient points towards the direction
of the maximum decrease of the loss function, hence the solutions found in this direction
are likely to improve the previous solution. Formally, the neighborhood of a solution is
a half-line in the solution space, starting from the reference solution and extending in
the direction of the anti-gradient, which can be expressed as follows:

N(S) = {S′ | ∃ η ∈ R+, S′ = S − η∇} (4.1)

The sampling of an element from this set is performed indirectly through parameter
η, since there is one-to-one correspondence with the solutions in the neighborhood.
The random generation of η follows a specific probability distribution that is inspired
by the role of learning rate in SGD, whose update rule is similar to the structure of
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Figure 4.1.: Plot of the probability density function of η, in logarithmic scale for the
x-axis. The percentages indicate portions of the area under the curve, hence
the probabilities of the correspondent intervals.

neighborhood. The typical learning rate for SGD spans between multiple orders of
magnitude, hence the probability distribution of η must be able to assign a reasonable
probability to very different values. For example, a näıve uniform distribution would
annihilate the probability of choosing small values and enhance it for large values. The
strategy used in our work consists in generating the magnitude order, with an uniform
probability distribution, and then performing an exponentiation to get the actual value.
Supposing a range for η from 0.01 to 1, its value is computed as follows.{︄

m ∽ U(−2, 0)
η = 10m

(4.2)

The resulting distribution can be expressed by means of its Probability Density Function
(PDF) as follows:

f(η) =

⎧⎪⎨⎪⎩
0 x < 10−2

1
2 ln(10)x 10−2 < x < 100

0 x > 100 .

(4.3)

A simple plot of the function, reported in Figure 4.1, shows that the probability at
which a sampled learning rate belongs to any specific order of magnitude i, expressed
as the interval [10−i, 10−i+1], is the same for all the values of i, hence the learning rate
can assume all the values in the desired range with a reasonable probability. The same
property holds also for wider ranges of η, however for our purposes the range [10−2, 100]
is enough.

Temperature initialization

The temperature initialization procedure adopted by SA-based techniques follows
closely the pseudocode provided in Algorithm 8; however, some cost functions are less
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sensitive to outliers and do not require to apply the outlier removal strategy presented
above. The structure of the temperature initialization procedure is obtained by applying
trivial modifications to a training epoch, thus a detailed description of the procedure is
omitted (it can be inferred by the training epochs, whose pseudocode is provided, and by
the SA framework description). Moreover, the variances between different techniques’
temperature initialization procedures are due to differences in the training epoch, hence
the analysis of these procedures would be redundant.

4.1.2. SGD-SA

The SGD-SA technique is the result of introducing in simple SGD the ability of reject-
ing moves, according to a SA criterion. As for SGD, each mini-batch is used to compute
a move, but the replacement of the previous solution occurs only if the SA acceptance
test is passed. The cost function is the loss: it is computed before and after the mod-
ification of the weights and the difference is fed to the acceptance test. Moreover, the
SA procedure requires that for each move the solution to test is sampled randomly from
the current solution neighborhood: differently from SGD, the learning rate is chosen
randomly for each move. Observe the extreme cases of SGD-SA: if the temperature
is infinite, the algorithm accepts all moves, hence it behaves as SGD with randomized
learning rate, whereas if the temperature tends to zero, all worsening moves are rejected,
hence the algorithm behaves as a randomized SGD which avoids any worsening move.

The SA ability of accepting worsening moves and the randomization in the learning
rate are diversification mechanisms added to the SGD algorithm. The more balanced
exploitation of intensification and diversification reduces the overfitting, however, the
less effective intensification reduces the ability of the model to improve the solutions.
The overall performance depends on the tradeoff between these two aspects.

The pseudocode presented in Algorithm 10 describes in detail the SGD-SA technique.
The most noticeable differences from the SA framework pseudocode are due to the in-
place modification of the network: the costs of the solutions are computed in different
moments and the acceptance test has become a rejection test.

4.1.3. SGD-SA-R

The SGD-SA-R technique, where the ‘R’ stands for regularization function, is a new
method designed as an improvement of SGD-SA, following its structure but changing
the cost function. This technique patches some flaws of SGD-SA which introduce a bias
on the acceptance test, making it easier to be passed. The SGD-SA cost function is the
same function whose gradient is used to compute the moves, therefore it is unlikely that
the cost of the new solution, generated following the anti-gradient of the cost function,
will be worse. Moreover, the cost is computed with respect to the same mini-batch,
hence the new solution cost, which took advantage of the information carried by the
cost gradient, is not a fair estimation of the real cost on the training set. The problems
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Algorithm 10: SGD-SA pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, C: cost, T : temperature, α: cooling factor.

Function SGD-SA(θ, D)

T ← initial temperature(θ)

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

Ci ← compute loss(θ, b, L)

∇L← compute gradient(θ, b, L)

η ← 10rand(−2,0)

θ ← θ − η∇L
Cf ← compute loss(θ, b, L)
∆← Cf − Ci

P ← e−∆/T

if rand(0, 1) ≥ P then

θ ← θ + η∇L

T ← Tα

return θ

of SGD-SA can be overcame by changing the cost function: if the cost function and the
generation of new solutions are independent, then the comparison between the solution
costs can be performed more fairly.

The cost function decides which solutions are accepted, so it must measure the prop-
erties aspired in a solution. A good solution should have a low training error and should
generalize well: the first property is expressed by the loss, while the second property
cannot be measured directly. However, simpler models are more likely to generalize well
because it is harder to overfit the training set without complicating the model. The
choice of the new cost function is inspired by the regularization, which adds a term to
the loss in order to take into account the complexity of the model: the most common
functions used to measure the complexity are the L1 and L2 norms.

As a result, new solutions are generated exploiting the gradient of the loss while the
acceptance test is based on their complexity. This formulation makes the acceptance
test completely independent from the training set, hence reducing the overfitting, while
at the same time exploits the gradient to provide potentially good solutions. Although
the behavior of the norm, applied to a sequence of solutions following the loss gradient,
has a major impact on the algorithm performance, it is unpredictable. Hence it is hard
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to estimate a priori the performance of SGD-SA-R: even if it was designed to repair
SGD-SA flaws, no performance improvement can be ensured.

The pseudocode for SGD-SA-R is provided in Algorithm 11; it differs from SGD-SA
pseudocode only in the cost computation. In early epochs, the norm function is likely
to generate a large number of outlier solutions, with respect to their costs, hence the
temperature initialization must perform the outliers’ removal procedure.

Algorithm 11: SGD-SA-R pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, C: cost, T : temperature, α: cooling factor, i: norm
type.

Function SGD-SA-R(θ, D)

T ← initial temperature(θ)

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

Ci ← compute norm(θ, i)

∇L← compute gradient(θ, b, L)

η ← 10rand(−2,0)

θ ← θ − η∇L
Cf ← compute norm(θ, i)
∆← Cf − Ci

P ← e−∆/T

if rand(0, 1) ≥ P then

θ ← θ + η∇L

T ← Tα

return θ

4.1.4. SGD-SA-LR

The SGD-SA-LR technique, where “LR” stands for loss regularized, performs a trade-
off between SGD-SA and SGD-SA-R by using a cost function which depends both on the
loss and on the norm. The idea is that SGD-SA-R’s independence from the loss slows
down the improvement of the solution, albeit it is effective in reducing the overfitting.

Again, the cost function is inspired by the regularization strategy: the cost is a linear
combination between the loss and the norm; assuming that none of them can have a null
coefficient, it is possible to use the following formulation.

Cost = Loss+ λ Norm (4.4)
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The parameter λ is a crucial hyper-parameter: it manages the impact which the two
components have on the cost, influencing both the behavior and the performance of the
algorithm. As an example, for λ = 0 the technique degenerates to SGD-SA, whereas for
λ→ +∞ it degenerates to SGD-SA-R.

Due to its importance, the tuning of λ is critical. However, it is hard to compute an
ad-hoc value for each instance of the problem: the norm of a solution, and its behavior
during the training, depend on the specific structure and size of the considered network.
Consequently, the value of λ requires a parameter tuning process in order to be set to a
reasonable value. Nevertheless, with some experience it is probably possible to design a
rule-of-thumb to find an acceptable value, avoiding the overhead of the hyper-parameter
tuning.

The pseudocode for SGD-SA-LR is reported in Algorithm 12 and, by construction, it is
similar to both SGD-SA and SGD-SA-R ones. The norm component in the cost leads to
the generation of outliers in early epochs, as previously discussed for SGD-SA-R, hence
the temperature initialization procedure must remove the outliers before computing the
temperature.

Algorithm 12: SGD-SA-LR pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, C: cost, T : temperature, α: cooling factor, i: norm
type, λ: loss norm coefficient.

Function SGD-SA-LR(θ, D)

T ← initial temperature(θ)

foreach epoch e ∈ {0, . . . , E − 1} do
foreach mini-batch b ∈ D do

Ci ← compute loss(θ, b, L) + λ compute norm(θ, i)

∇L← compute gradient(θ, b, L)

η ← 10rand(−2,0)

θ ← θ − η∇L
Cf ← compute loss(θ, b, L) + λ compute norm(θ, i)
∆← Cf − Ci

P ← e−∆/T

if rand(0, 1) ≥ P then

θ ← θ + η∇L

T ← Tα

return θ
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4.1.5. SGD-SA-DB

The SGD-SA-DB technique, where “DB” stands for double (mini-)batch, is an im-
provement of SGD-SA that removes the bias in the acceptance test, keeping the loss as
cost function. As discussed for SGD-SA-R, the bias originates in the computation of
the costs of the generated solutions: the dependency between the process that generated
the solutions and the cost function leads to a stochastically unfair result. The bias is
removed if and only if the computation of the cost is stocastically valid both for the
initial solution and the corresponding generated one, allowing for a fair comparison.

Instead of using two different functions for the gradient and for the cost, SGD-SA-DB
uses the loss for both, but with two different mini-batches. Since the loss of a given
set of weights depends both on the function and on the mini-batch sampled, computing
the loss with different mini-batches is similar to using two different functions. For each
move, two mini-batches must be sampled from the training set: one to compute the
gradient, hence the new solution, and the other to compute the cost of both the initial
and the new solution. Although the number of mini-batches per move is doubled, it does
not imply that the overall number of moves is halved: a mini-batch used to compute the
gradient can still be used in a different move to compute the cost.

The pseudocode for SGD-SA-DB is reported in Algorithm 13. The main difference
with respect to previously presented algorithms is the management of two mini-batches
per move: given an ordered sequence of mini-batches composing the training set, the
i-th move uses the pair formed by the i-th and (i + 1)-th mini-batches. This sliding
window mechanism is implemented introducing a little overhead at the beginning and
at the end of each move.

4.2. Variable Neighborhood Search based techniques

The variable neighborhood search, described in Section 3.2, provides a simple structure
to perform intensification and diversification, and its complexity depends mostly on the
specific strategies which implement these two operations. Whereas the diversification
procedure must be designed ad-hoc, the intensification can be performed by effective
state-of-art techniques, directly embedded in the framework.

The limit on the number of epochs is shared by both state-of-art techniques and by
the framework, hence in VNS-based techniques such limit must be managed carefully.
The idea is to perform, in each epoch of the VNS, a single optimization step instead
of the full search for the local optimum, as indicated in the framework. If we consider
a single optimization step as a training epoch of a state-of-art technique, we get that
VNS stopping condition actually limits the number of training epochs performed by the
embedded technique.
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Algorithm 13: SGD-SA-DB pseudocode.

Parameters: θ: network weights, D: training set, L: loss function, E: number
of epochs, C: cost, T : temperature, α: cooling factor.

Function SGD-SA-DB(θ, D)

T ← initial temperature(θ)

foreach epoch e ∈ {0, . . . , E − 1} do
bgrad ← ⋆ “last” mini-batch ∈ D ⋆

foreach mini-batch b ∈ D do

btest ← b

Ci ← compute loss(θ, btest, L)

∇L← compute gradient(θ, bgrad, L)

η ← 10rand(−2,0)

θ ← θ − η∇L
Cf ← compute loss(θ, btest, L)
∆← Cf − Ci

P ← e−∆/T

if rand(0, 1) ≥ P then

θ ← θ + η∇L

bgrad ← btest

T ← Tα

return θ

4.2.1. ADAM-VNS

The ADAM-VNS technique exploits the effectiveness of the ADAM optimizer to per-
form the intensification, while the diversification is performed by adding Gaussian noise
to the weights.

The canonical VNS intensification stops when it reaches a local minimum; however, for
this problem, it is not feasible to test the local optimality of a solution, hence a different
stopping criterion is used. The local search stops when the current solution does not
show any significant improvement in the last epochs: if the current cost has improved
less than a fixed threshold in comparison with the cost of a fixed number of precedent
epochs, then the current solution is declared an approximation of a local minimum.

The cost function used in ADAM-VNS is the loss: it has a key role for the behavior
of the algorithm since it is the parameter used to decide if the local optimality criterion
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is satisfied by the current solution. The cost fluctuations derived from a stochastic com-
putation may interrupt the improvement of a solution prematurely, or waste resources
for the optimization of a solution stuck in a local optimum. The inaccuracy derived
from a stochastic approach is not acceptable in this context, hence the loss must be
computed on the whole training set. This choice is computationally heavy since in each
epoch the training set is analyzed twice: once for the ADAM training and once for the
cost computation. Although the computation of the loss is faster than the training, the
overall complexity is roughly doubled, if compared with a stochastic approach.

The introduction of Gaussian noise in the diversification procedure leads to a proba-
bilistic neighborhood structure, whose size is expressed parametrically with respect to
the standard deviation of the noise: higher values enhance the probability of finding
farther solutions. VNS diversification aims to randomly perturb the current solution,
allowing it to escape from a local minimum; consequently, the actual structure of the
neighborhood is not as important as the effectiveness of the perturbation applied.

The pseudocode for ADAM-VNS is presented in Algorithm 14. Although the code, if
compared to VNS pseudocode, shows many differences, in term of structure, the resulting
behavior is the same. The local search of ADAM is still performed until an approximated
local optimum is found, even if here it is performed one epoch at the time. This implies
that the local optimality must be checked at each iteration, since in each epoch the single
optimization step may not lead to a local optimum. The algorithm can be rearranged
to follow more closely the VNS pseudocode. However, this version is more similar to
the previously presented technique and allows one to use common tools to manage the
results.
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Algorithm 14: ADAM-VNS pseudocode.

Parameters: θ: network weights, D: training set, L: loss function.

Function ADAM-VNS(θ, D)

θB ← θ
k ← 1

foreach epoch e ∈ {0, . . . , E − 1} do
θ ← ADAM training epoch(θ, D)

if compute loss(θ, D, L) < compute cost(θB, D, L) then
θB ← θ
k ← 1

I ← ⋆ relative improvement in the last p epochs ⋆
if I < ⋆ improvement threshold ⋆ then

θ ← θB + gaussian noise(0, σk)
k ← k + 1

return θB
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The training techniques described in the previous sections have been implemented and
tested to evaluate their performance. The software and hardware tools used to achieve
this goal are described below.

5.1. Hardware elements

The neural network training is known to be a resource-demanding process: the datasets
and the networks involved are typically large structures that must be analyzed many
times before obtaining significant results. On the other hand, the dataset analysis by
means of mini-batches is suitable to be parallelized, so it can be performed efficiently
by GPUs. However, general-purpose processing cannot be performed by GPUs without
additional software: for NVIDIA’s ones, such a technology is named CUDA. Hence,
for efficiency purposes, all the trainings performed in this project were computed by
CUDA-enabled NVIDIA GPUs.

The development of the project was performed locally on a Dell G3 provided with a
i7-8750H Intel processor, 16 GB of RAM, and a NVIDIA GeForce GTX 1060. Although
its technical specifications were more than acceptable for a single training, the large
number of tests planned would have required too much time to be completed.

In order to get the required computing power, the Department of Information Engi-
neering of the University of Padova granted us exclusive access to two NVIDIA Titan Xp
(kindly provided by NVIDIA) installed on a remote machine in the department. More-
over, the technical characteristics of these GPUs allowed the management of multiple
training process simultaneously, further decreasing the computation time.

5.2. Software tools

5.2.1. Languages

The main language chosen is Python: the simplicity of its syntax and the large number
of libraries dedicated to machine learning made it the most suitable language for this
project. Secondarily, the management of the tests execution and the interaction with
the remote machine was performed with UNIX shell scripts.
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5.2.2. Libraries

The most important library imported into the project is the one providing the machine
learning tools. The choice was guided by the library suitability for designing and testing
custom optimization techniques. The library that most fitted the requirements was Py-
Torch, an open source machine learning framework. It allows to manipulate the training
process in great detail, still providing a developer-friendly environment. Moreover, Py-
Torch allows to easily move the computation to the GPUs, enhancing the performance
of the training.

The graphical visualization of test results is useful to better understand their meaning.
This functionality is provided by the Matplotlib library: a comprehensive plotting library
for Python.

5.2.3. External programs

The project was developed in Windows 10 with Visual Studio Code as IDE, Git as
version control software, and GitHub as host of the project repository. The tests were
managed locally in Fedora 32, while the actual execution was performed remotely by the
NVIDIA Titan Xp GPUs.

5.2.4. Version issue

The versions of programs and libraries on local and remote machines vary: the local
one uses Python 3.8.2, PyTorch 1.5.0, Torchvision 0.6.0, and Matplotlib 3.2.2, whereas
the remote one uses Python 3.6.4, PyTorch 0.4.0, Torchvision 0.2.1, and Matplotlib 2.2.2.
Although such difference does not lead to any significant problem, some parts of the code
had to be modified to work on both versions.

5.3. Code structure

The use of two different machines, one local and one remote, introduced the problem
of the synchronization of the code. As a consequence, the source code has been divided
in four files only, in order to prevent the occurrence of hard to spot errors related to the
unsynchronization between the machines. The content of the files is described below.

main.py The main file contains executable code to perform a training, following the
indications specified by the user through command line parameters. In particular,
the program can be divided into four tasks: parse the command line, load the
elements required (e.g., dataset), execute the training, save the results. However,
almost all the operations performed by the main are actually calls to functions in
util.

util.py The util file is the heart of the project since it contains all the functions of
the project. In particular, the functions perform the following operations: parse

36



5.3. Code structure

the command line, load elements, define training techniques, plot training related
results, import and export training results.

error.py The error file defines custom errors to improve the effectiveness of the debug.

model.py The model file contains the definition of ResNet34. The versions of PyTorch
on local and remote machines manage the model loading differently; hence, to
avoid two versions of the code, the ResNet34 network was not imported from the
library but, rather, defined in the model file. The network implementation was
taken from the source code of the latest version of PyTorch and then adapted to
the older one.
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The techniques presented above are tested by the training of a specific network on
different benchmark datasets. The test results of each technique are analyzed individu-
ally with the purpose of understanding the algorithm behavior and the reasons behind
its performance. Then, the test results of different techniques are compared to evalu-
ate their relative effectiveness and to highlight the impact that small variations in the
algorithms have on the performance.

6.1. Experimental setup

The scientific validity of the tests can be achieved only if they are performed identically
with the sole exception of the technique used for the training, which is the variable under
study. Excluding technique-related parameters, the other training elements are fixed for
all tests and are defined below.

6.1.1. Generic training parameters

The parameters described in this section define important properties of the training
which are independent from the dataset and the network. In particular we refer to the
number of epochs, the management of the random seeds, and the loss function.

The number of epochs manages the number of times the dataset is fully analyzed
and influences directly the complexity of the training. Empirical observations on the
considered techniques suggest that the performances stop improving after about 80-100
epochs of training. Consequently, the value chosen for the number of epochs is 100:
more epochs are likely to generate overfitting, while fewer would prematurely stop the
training.

The non-deterministic nature of the training process implies that different executions
may lead to different results, even if the same parameters are the same. Therefore, the
results of a single test are not representative of the overall performance of the technique
being tested. The influence of randomness on the results can be mitigated by repeating
each test multiple times with different random seeds. For this reason, the tests are
executed with 10 seeds: the integer numbers from 0 to 9.

The loss function chosen is the cross-entropy loss; which is one of the most commonly
used loss functions for a classification task. This function evaluates both the correctness
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and the confidence of each prediction, penalizing more the wrong with high confidence
predictions. A classification task with C classes can be solved by a network that estimates
the sample likelihood of belonging to each class. Given a vector x of size C (the output
of the network) and a class c (the correct class of the input), it is possible to define the
cross-entropy loss as follows [15]:

Loss (x, c) = − log

(︄
ex[c]∑︁C
i=1 e

x[i]

)︄
(6.1)

6.1.2. Datasets

The datasets chosen for the tests are MNIST [9], Fashion-MNIST [10], and CIFAR-
10 [11]. These datasets are well known in the literature and are commonly used as
benchmarks. Moreover, their size is quite large and the number of samples per class is
balanced both in the training and test sets. The basic information about the chosen
datasets is reported in Table 6.1.

Training images Test images
Total Per class Total Per class Image size Classes

MNIST 60000 5421-6742 10000 892-1135 28x28x1 10
F-MNIST 60000 6000 10000 1000 28x28x1 10
CIFAR-10 50000 5000 10000 1000 32x32x3 10

Table 6.1.: Basic structure of MNIST, Fashion-MNIST, and CIFAR-10

Despite the peculiarities of the datasets, the pre-processing performed is the same
for all of them. At each epoch, the training set is randomly shuffled, then partitioned
into mini-batches composed of 500 samples. Each image undergoes a data augmentation
process: firstly, it is scaled to size 32x32x3 for compatibility with the network used;
secondly, a padding of 4 pixels is added to each plane of the image; finally, the image
is randomly cropped, to get again the size 32x32x3, and normalized. Observe that the
cropping is not unique, due to the added padding. The slightly different images that
can be produced, starting from the same one, greatly reduce the overfitting.

6.1.3. Network

The tests are performed on ResNet34 [12]: a deep residual network composed by 34
layers and described in Figure 6.1. The residual network design requires a relatively small
number of weights and its performance was state-of-art in 2015, when this architecture
won important competitions. Machine learning libraries implement several versions of
ResNet, differing by the number of layers, but all with the same structure.
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Figure 6.1.: Schematic structure of ResNet34.

Although the ResNet34 network was designed to receive as input RGB images of size
224x224, it can work with smaller images, provided that they are compatible with the
network behavior. The constraints on the size of the input images are a consequence of
the following characteristics of the network: the first convolution requires an image with
3 channels and, in the forward propagation, the dimensions of the image are halved five
times. Therefore, the images compatible with ResNet34 must have exactly 3 channels
and dimensions larger than 32x32.

6.2. Results management

The tests produce two different types of results: the performance of the trained net-
work and a list of intermediate data, related to each epoch. The latter information
describes how the performance of the network evolved through the training, and pro-
vides additional details on the metaheuristic-specific operations executed in each epoch.
The performance is measured by the loss function and by the error function, defined as
the ratio between misclassified and the total number of samples. These functions are
computed on both the training and test sets in order to allow for an evaluation of the
overfitting. An example of the results returned by a single test is provided in Table 6.2
and Table 6.3.

Optimizer Dataset Seed Train loss Test loss Train error Test error

NAG MNIST 0 0.01466 0.03451 0.00538 0.0102

Table 6.2.: Performance measures of the NAG optimizer on a specific test.

Our tests have three main goals: evaluate the effectiveness of individual techniques,
understand the reasons behind the techniques performance, and compare the algorithms.
Therefore, the large amount of raw data produced by the tests is analyzed with different
strategies to obtain as much information as possible on the techniques under study.

The analysis of individual techniques is performed by evaluating their results on each
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Epoch Time Train loss Test loss Train error Test error

0 65.8 1.9389 1.9137 0.7084 0.7125
1 126.5 0.9848 0.9368 0.3154 0.3011
2 186.7 0.2460 0.2271 0.0785 0.0753
. . . . . . . . . . . . . . . . . .
99 4245.8 0.1959 0.7377 0.0698 0.2020

Table 6.3.: Training information (partial) for NAG on MNIST with seed 0.

dataset. Since every test is repeated multiple times, with different random seeds, the
corresponding results are grouped by seed and then aggregated. This procedure con-
sists in the application of three different functions to the data: the min function, the
arithmetic mean function, and the over function. We define the over function as the
average difference between the test and the training values, to evaluate the overfitting.
These functions, applied to both loss and error, describe the overall performance of an
algorithm for a specific dataset. As an example, the raw results of NAG on MNIST,
displayed in Table 6.4, are aggregated as shown in Table 6.5.

Optimizer Dataset Seed Training loss Test loss Training error Test error

NAG MNIST 0 0.01466 0.03451 0.00538 0.0102
NAG MNIST 1 0.01469 0.03916 0.00513 0.0118
NAG MNIST 2 0.01684 0.03202 0.00600 0.0100
NAG MNIST 3 0.01441 0.03627 0.00542 0.0113
NAG MNIST 4 0.01180 0.03588 0.00393 0.0099
NAG MNIST 5 0.01099 0.04260 0.00368 0.0120
NAG MNIST 6 0.01328 0.03998 0.00475 0.0117
NAG MNIST 7 0.01892 0.04058 0.00635 0.0122
NAG MNIST 8 0.01330 0.03601 0.00447 0.0105
NAG MNIST 9 0.02603 0.04458 0.00840 0.0136

Table 6.4.: Test results for NAG on MNIST.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03202 0.03816 0.02267 0.00990 0.01132 0.005969

Table 6.5.: Aggregated test-set results for NAG on MNIST.

The information on the epochs, returned by the tests, is useful to understand the
behavior of the techniques during the training, since it helps to correlate the algorithm
decisions with their effect on the performance. Due to its structure and size, such an
information is clearer if presented by means of plots. The test results for a specific
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technique can generate many similar plots; to avoid redundancy, a single series of data
is plotted for each technique. The chosen series is the one related to the test which best
performed on CIFAR-10. Such a series should be the best expression of the algorithm
on the hardest dataset considered, therefore the most meaningful.

Additional tests are performed whenever the previous results lead to multiple hypothe-
ses on the behavior of a technique. Differently from the main tests, designed to get a
complete view of the techniques, these ones are designed to verify specific claims. Thus,
the analysis can be limited to a single dataset, CIFAR-10, for time reasons.

The comparison between techniques is achieved with performance profile, a tool intro-
duced by E. D. Dolan and J. J. Moré [13] whose purpose is to compare the performance
of optimizers in a fairly and unbiased way. The implementation of performance profiling
we use is provided by D. Salvagnin [22].

6.3. Control-sample techniques

Three state-of-art techniques are tested to provide results that could be used as ref-
erence for the newly introduced techniques. The chosen techniques are: NAG, for the
exploitation of the history of moves; SSGD, for the management of the learning rate;
ADAM, for the automatic management of the learning rate.

All these algorithms are well known in the literature, so a deep analysis on their
behavior is not required here. In the present work, the results of their tests are simply
used as comparison for the newly introduced techniques. Below, key information is
reported for each one: the hyper-parameters used in the tests, the aggregated results in
tabular form, and a plot representing an example of training, obtained from the epochs
information related to the best run on CIFAR-10.

6.3.1. Results

NAG has two hyper-parameters to tune: the learning rate η and the momentum
coefficient µ. For the tests, these parameters were set to η = 0.1 and µ = 0.9.

SSGD with multi-step scheduler defines the behavior of the learning rate with three
hyper-parameters: the initial learning rate, the width, and the decay of the learning rate
at each step. For the test, the initial learning rate is set to 0.1, the width is set to 35
epochs, and the decay is set to 0.1. Therefore the learning rate will assume the following
values: 0.1 for epochs 0-34, 0.01 for epochs 35-69, and 0.001 for epochs 70-99.

ADAM has four hyper-parameters: the learning rate and three mathematical constants
used for the moment estimation. There is no reason to change the default values of the
constants, since their impact on performance is not trivial. Although the learning rate
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is an important parameter, it is auto-tuned by the algorithm and can then be left to
its default value. For completeness, the hyper-parameter are set as follows: β1 = 0.9,
β2 = 0.999, ϵ = 10−8, and η = 0.1.

The tests results for NAG, SSGD, and ADAM are reported, respectively, in Table 6.6,
Table 6.7, and Table 6.8, while examples of their behavior are displayed in Figure 6.2,
Figure 6.3, and Figure 6.4.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03202 0.03816 0.02267 0.00990 0.01132 0.005969
F-MNIST 0.03498 0.03897 0.02419 0.00990 0.01150 0.006378
CIFAR-10 0.6590 0.7438 0.5672 0.1811 0.1973 0.1342

Table 6.6.: Aggregated test-set results for NAG.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03020 0.03351 0.02122 0.00920 0.01051 0.006321
F-MNIST 0.02914 0.03449 0.02215 0.00910 0.01068 0.006500
CIFAR-10 0.6947 0.7219 0.4357 0.2137 0.2194 0.1178

Table 6.7.: Aggregated test-set results for SSGD.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03067 0.03658 0.02358 0.00860 0.01017 0.005774
F-MNIST 0.03154 0.03893 0.02576 0.00870 0.01050 0.005982
CIFAR-10 0.6761 0.7204 0.5994 0.1631 0.1704 0.1273

Table 6.8.: Aggregated test-set results for ADAM.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.2.: Best performance of NAG on CIFAR-10 (seed 1).
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(a) Training and test loss.

(b) Training and test error.

Figure 6.3.: Best performance of SSGD on CIFAR-10 (seed 2).
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(a) Training and test loss.

(b) Training and test error.

Figure 6.4.: Best performance of ADAM on CIFAR-10 (seed 6).
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6.4. Our new training techniques

The basic information reported for each new technique is the same as for state-of-art
algorithms: hyper-parameter settings, aggregated tests results, and a training example.
Moreover, observations on these data may lead to the formulation of hypotheses on the
algorithms behavior. The validity of such hypotheses is verified with additional tests,
whose results are reported.

6.4.1. SGD-SA results

SGD-SA requires two hyper-parameters: the cooling factor and the initial acceptance
probability used in the temperature initialization procedure. For the tests, the cooling
factor is set to 0.9, while the initial acceptance probability is set to 0.5. The role
of these parameters is to manage the SA process, hence they are required for every
technique based on SA: SGD-SA, SGD-SA-R, SGD-SA-LR, and SGD-SA-DB. If not
stated differently, they are implicitly initialized with the same values mentioned above.

The test results for SGD-SA are reported in Table 6.9. The performance, in terms of
error, is significatively worse than state-of-art techniques, whereas, in terms of loss, it is
comparable.
The overfitting is however very low, indicating that the diversification procedures

improved the generalizability of the solutions.

An example of training is displayed in Figure 6.5, while the information on the related
SA process is displayed in Figure 6.6. The number of worsening moves is very low
during all the training and the majority of them are accepted. This implies that almost
all moves are accepted, hence the SA process has minimal influence on the performance
of the algorithm.

The algorithm performance does not depend on the SA process, so there must be
another element that justifies it. We will analyze the randomness introduced in the
learning rate choice and the ability of the algorithm to reject moves, aiming to discover
which one leads to the observed behavior of SGD-SA.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03328 0.03787 0.01528 0.01040 0.01245 0.004822
F-MNIST 0.03134 0.03732 0.01227 0.01090 0.01225 0.003859
CIFAR-10 0.6222 0.7767 0.2404 0.2135 0.2362 0.06733

Table 6.9.: Aggregated test-set results for SGD-SA.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.5.: Best performance of SGD-SA on CIFAR-10 (seed 4).
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Figure 6.6.: Acceptance tests results for SGD-SA on CIFAR-10 (seed 4).

Randomness analysis

This test aims to verify if the performance observed in SGD-SA is due to the ran-
domness introduced in the choice of the learning rate. This hypothesis is analyzed by
comparing the performance of SGD-SA with a randomized version of SGD – a variant of
SGD-SA that does not perform any SA related mechanics but only the randomization
of the learning rate.

The test results for randomized SGD are displayed in Table 6.10, while the performance
profile comparison with the original SGD-SA is reported in Figure 6.7. The results show
that SGD-SA outperforms randomized SGD, however their performance is comparable.
In conclusion, it is reasonable to assume that the randomness is not the main cause of
the performance of SGD-SA, even if it has an important influence on SGD-SA.

Loss Error
Optimizer Min Mean Over Min Mean Over

Rand-SGD 0.6026 0.7592 0.2526 0.2003 0.2420 0.06835
SGD-SA 0.6222 0.7767 0.2404 0.2135 0.2362 0.06733

Table 6.10.: Aggregated test-set results for randomized SGD and SGD-SA on CIFAR-10.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.7.: Performance profile comparison: SGD-SA vs. randomized SGD.
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Temperature analysis

This test aims to verify if the performance observed in SGD-SA is due to the solution
rejection feature, introduced by the SA acceptance test. This hypothesis is analyzed
by comparing the performance of SGD-SA with a modified version of SGD-SA, which
reject all worsening moves. Such algorithm can be easily obtained by setting the initial
temperature of SGD-SA very close to 0 (we used 10−8).

The test results for the variant of SGD-SA are reported in Table 6.11, while the
performance profile comparison with the original SGD-SA is reported in Figure 6.8.
The results show that the variant of SGD-SA with null temperature greatly outperforms
SGD-SA. This confirms that the performance of SGD-SA is caused by its ability of
rejecting moves, independently from the overall SA process implemented.

Due to the significance of these results, an example of training for SGD-SA with null
temperature is reported in Figure 6.9, while the information on the related SA process
is reported in Figure 6.10.

Loss Error
Optimizer Min Mean Over Min Mean Over

SGD-SA (T=0) 0.5482 0.6010 0.2556 0.1819 0.1965 0.07461
SGD-SA 0.6222 0.7767 0.2404 0.2135 0.2362 0.06733

Table 6.11.: Aggregated test-set results for SGD-SA with and without null temperature
on CIFAR-10.

52



6.4. Our new training techniques

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Loss ratio

0.0

0.2

0.4

0.6

0.8

1.0

SGD-SA
SGD-SA (T=0)

(a) Loss comparison.

1.0 1.1 1.2 1.3 1.4 1.5
Error ratio

0.0

0.2

0.4

0.6

0.8

1.0

SGD-SA
SGD-SA (T=0)

(b) Error comparison.

Figure 6.8.: Performance profile comparison: SGD-SA vs. SGD-SA with null tempera-
ture.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.9.: Best performance of SGD-SA with null temperature on CIFAR-10 (seed 4).
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Figure 6.10.: Acceptance tests results for SGD-SA with null temperature on CIFAR-10
(seed 5).
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6.4.2. SGD-SA-R results

SGD-SA-R requires only one hyper-parameter to be set: the norm function used as
cost function. For the tests, both the L1 and the L2 norms are used, due to their
effectiveness in the regularization.

The test results for SGD-SA-R with L1 and L2 norm are reported in Table 6.12 and
Table 6.13, respectively. The performance, for both norms, is significantly worse than
state-of-art techniques. On the other hand, the overfitting is very low, indicating that
the independence between the solution generation and the cost function is an effective
diversification strategy.

An example of training, for both norms, is shown in Figure 6.11 and 6.12, while the
information on the related SA process is shown in Figure 6.13 and 6.14. Both examples
suggest that the SA procedure is executed as desired: the number of worsening solutions
is large and increases moderately during the training, indicating that the network is
getting more complex to better fit the training set. At the same time, the fraction of
worsening moves accepted is very high at the beginning, then it gradually decreases
during the training.

The large number of rejected moves, especially in the second half of the training, might
have reduced the ability of the algorithm to reach further improving solutions, resulting
in a decreased performance. Therefore, the algorithm could be improved by increasing
the number of accepted solutions. This can be achieved by increasing the temperature
of the system during the training either by setting a higher initial temperature or by
setting a cooling factor closer to 1. Both these strategies are tested below.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03218 0.03782 0.01195 0.01060 0.01236 0.003890
F-MNIST 0.03279 0.03790 0.01212 0.01060 0.01275 0.004166
CIFAR-10 0.7084 0.8254 0.1626 0.2370 0.2609 0.04798

Table 6.12.: Aggregated test-set results for SGD-SA-R with L1 norm.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03134 0.04476 0.009792 0.00960 0.01365 0.003418
F-MNIST 0.03186 0.03661 0.009729 0.00990 0.01202 0.003474
CIFAR-10 0.7029 0.8237 0.1857 0.2314 0.2548 0.06008

Table 6.13.: Aggregated test-set results for SGD-SA-R with L2 norm.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.11.: Best performance of SGD-SA-R with L1 norm on CIFAR-10 (seed 1).
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(a) Training and test loss.

(b) Training and test error.

Figure 6.12.: Best performance of SGD-SA-R with L2 norm on CIFAR-10 (seed 6).
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Figure 6.13.: Acceptance tests results for SGD-SA-R with L1 norm on CIFAR-10 (seed
1).

Figure 6.14.: Acceptance tests results for SGD-SA-R with L2 norm on CIFAR-10 (seed
6).
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High temperature analysis

This test aims to verify if a higher temperature during the training, due to a higher ini-
tial temperature, can improve SGD-SA-R. This hypothesis is analyzed by comparing the
performance of SGD-SA-R with the default temperature and with a higher temperature.
The temperature is raised indirectly by modifying the initial acceptance probability from
0.5 to 0.9.

The test results for SGD-SA-R with high temperature are shown in Table 6.14 and
Table 6.15, while the performance profile comparison with the SGD-SA-R with normal
temperature is reported in Figure 6.15 and Figure 6.16. The results show that increasing
the initial temperature improves the performance of SGD-SA-R, confirming our initial
hypothesis.

Loss Error
Optimizer Min Mean Over Min Mean Over

SGD-SA-R (L1+HT) 0.6688 0.7822 0.2196 0.2150 0.2493 0.06220
SGD-SA-R (L1) 0.7084 0.8254 0.1626 0.2370 0.2609 0.04798

Table 6.14.: Aggregated test-set results for SGD-SA-R (L1 norm) with and without high
temperature on CIFAR-10.

Loss Error
Optimizer Min Mean Over Min Mean Over

SGD-SA-R (L2+HT) 0.6534 0.7899 0.2439 0.2182 0.2317 0.07266
SGD-SA-R (L2) 0.7029 0.8237 0.1857 0.2314 0.2548 0.06008

Table 6.15.: Aggregated test-set results for SGD-SA-R (L2 norm) with and without high
temperature on CIFAR-10.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.15.: Performance profile comparison: SGD-SA-R with L1 norm vs. SGD-SA-R
with L1 norm and high temperature.
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(b) Error comparison.

Figure 6.16.: Performance profile comparison: SGD-SA-R with L2 norm vs. SGD-SA-R
with L2 norm and high temperature.
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Slow cooldown analysis

This test aims to verify if a higher temperature during the training, due to a slower
cooling, can improve SGD-SA-R. This hypothesis is analyzed by comparing the perfor-
mance of SGD-SA-R with the default temperature and with a higher temperature. The
temperature is raised indirectly by modifying the cooling factor from 0.9 to 0.95.

The test results for SGD-SA-R with slow cool down are displayed in Table 6.16 and
Table 6.17, while the performance profile comparison with the SGD-SA-R with normal
temperature is reported in Figure 6.17 and Figure 6.18. The results show that slowing
down the cooling of the system improves the performance of SGD-SA-R, confirming the
initial hypothesis.

Loss Error
Optimizer Min Mean Over Min Mean Over

SGD-SA-R (L1+SC) 0.6454 0.7392 0.2656 0.2108 0.2257 0.07515
SGD-SA-R (L1) 0.7084 0.8254 0.1626 0.2370 0.2609 0.04798

Table 6.16.: Aggregated test-set results for SGD-SA-R (L1 norm) with and without slow
cool down on CIFAR-10.

Loss Error
Optimizer Min Mean Over Min Mean Over

SGD-SA-R (L2+SC) 0.6315 0.6880 0.2516 0.2100 0.2268 0.07463
SGD-SA-R (L2) 0.7029 0.8237 0.1857 0.2314 0.2548 0.06008

Table 6.17.: Aggregated test-set results for SGD-SA-R (L2 norm) with and without slow
cool down on CIFAR-10.
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(b) Error comparison.

Figure 6.17.: Performance profile comparison: SGD-SA-R with L1 norm vs. SGD-SA-R
with L1 norm and slow cooldown.
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Figure 6.18.: Performance profile comparison: SGD-SA-R with L2 norm vs. SGD-SA-R
with L2 norm and slow cooldown.
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6.4.3. SGD-SA-LR results

SGD-SA-LR requires two hyper-parameters to be set: the norm function used in the
cost function and the lambda coefficient. For the tests, both the L1 and L2 norms are
used, due to their effectiveness in the regularization, whereas lambda is set to 0.1, as
empirically suggested by a simple parameter tuning.

The test results for SGD-SA-LR with L1 and L2 norms are reported in Table 6.18 and
Table 6.19, respectively. The performance, in terms of loss, outperforms the state-of-art
techniques, whereas, in terms of error, it is comparable. The overfitting is very low, indi-
cating that the use of the loss both in the generation of solutions and in the computation
of the cost does not significantly reduce the effectiveness of the diversification.

An example of training, for both norms, is displayed in Figure 6.19 and 6.20, while
the information on the related SA process is displayed in Figure 6.21 and 6.22. Similarly
to SGD-SA, the number of worsening moves is low, implying that the majority of moves
is automatically accepted. On the other hand, the number of accepted solutions among
the worsening moves decreases during the training. In conclusion, the observations
above indicate that the SA mechanism has a secondary role on the performance of the
algorithm; nevertheless, the moves rejection still has a crucial impact on the results.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03185 0.03692 0.01425 0.01070 0.01183 0.004276
F-MNIST 0.03191 0.03674 0.01521 0.00980 0.01202 0.004769
CIFAR-10 0.6226 0.7056 0.2884 0.2026 0.2264 0.08464

Table 6.18.: Aggregated test-set results for SGD-SA-LR with L1 norm.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03219 0.03815 0.01361 0.01100 0.01249 0.004369
F-MNIST 0.03063 0.03718 0.01422 0.00940 0.01202 0.004317
CIFAR-10 0.6051 0.6718 0.2557 0.1972 0.2200 0.07434

Table 6.19.: Aggregated test-set results for SGD-SA-LR with L2 norm.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.19.: Best performance of SGD-SA-LR with L1 norm on CIFAR-10 (seed 7).
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(a) Training and test loss.

(b) Training and test error.

Figure 6.20.: Best performance of SGD-SA-LR with L2 norm on CIFAR-10 (seed 1).
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Figure 6.21.: Acceptance tests results for SGD-SA-LR with L1 norm on CIFAR-10 (seed
7).

Figure 6.22.: Acceptance tests results for SGD-SA-LR with L2 norm on CIFAR-10 (seed
1).
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6.4.4. SGD-SA-DB results

SGD-SA-DB does not require any hyper-parameter to be set, except for SA related
ones, which are implicitly defined as for SGD-SA.

The test results for SGD-SA-DB are reported in Table 6.20. The performance is
much worse than state-of-art techniques. On the other hand, the overfitting is very low,
indicating that the idea of using two different mini-batches for each move is effective for
the diversification.

An example of training is displayed in Figure 6.23, while the information on the
related SA process is displayed in Figure 6.24. The analysis of the SA process suggests
an explanation for the poor performance of the technique. At the beginning of the
training the number of worsening moves is low, but almost all of them are accepted.
As the training proceeds, the number of worsening moves increases steeply, whereas
the number of accepted ones gradually decreases. Consequently, the number of moves
performed drops quickly, reducing the ability of the algorithm to find better solutions.
The plot suggests that the large variation in the number of worsening moves cannot be
captured effectively in the initialization of SA. Hence, after some epochs, the acceptance
test loses effectiveness, since it is not suitable for the generated moves anymore.

Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.03490 0.03972 0.01461 0.01130 0.01297 0.004749
F-MNIST 0.03225 0.03662 0.01228 0.00980 0.01228 0.004169
CIFAR-10 0.7515 0.9099 0.1207 0.2589 0.2987 0.03864

Table 6.20.: Aggregated test-set results for SGD-SA-DB.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.23.: Best performance of SGD-SA-DB on CIFAR-10 (seed 2).
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Figure 6.24.: Acceptance tests results for SGD-SA-DB on CIFAR-10 (seed 2).

6.4.5. ADAM-VNS results

ADAM-VNS requres only two hyper-parameters to be set: the basic standard devi-
ation of the noise and the threshold indicating the minimum valid improvement of a
solution. For the tests, the standard deviation of the noise is set to 0.05, while the
improvement threshold is set to 0.05, which means that a solution is considered a local
optimum if in the last 5 epochs improved less than 5%. The values of these parameters
were suggested empirically by the results of our parameter tuning.

The test results for ADAM-VNS are reported in Table 6.21. The performance is com-
petitive with state-of-art techniques: in terms of loss, it outperforms them, whereas,
in terms of error, it is comparable. The overfitting is low, indicating that the diver-
sification procedures introduced by the VNS framework are effective in improving the
generalizability.

An example of training is reported in Figure 6.25, while the information on the related
noise applied is reported in Figure 6.26. The implementation of ADAM-VNS implicitly
introduces a mechanism similar to early stopping, whose purpose is to reduce the over-
fitting. When a solution does not show any noticeable improvement, the intensification
procedure stops and VNS diversification procedure is applied. The analysis of the noise
suggests that this procedure is used many times during the ADAM-VNS training, hence
it is likely to reduce significantly the overfitting.
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(a) Training and test loss.

(b) Training and test error.

Figure 6.25.: Best performance of ADAM-VNS on CIFAR-10 (seed 9).
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Loss Error
Dataset Min Mean Over Min Mean Over

MNIST 0.02783 0.03442 0.01628 0.00770 0.00993 0.00378
F-MNIST 0.03220 0.03673 0.01765 0.00870 0.01060 0.00428
CIFAR-10 0.5731 0.6048 0.3716 0.1697 0.1789 0.09574

Table 6.21.: Aggregated test-set results for ADAM-VNS.

Figure 6.26.: Intensity of the perturbations for ADAM-VNS on CIFAR-10 (seed 9).

6.5. Comparison between techniques

The performances of the techniques, separately described above, are compared here by
means of performance profile. The data used to compute the performance profile is the
information provided by the tests on all the datasets. The comparisons are performed
between the state-of-art techniques and every other new technique that we introduced,
one by one, then only between all the SA-based techniques. Specifically, the properties
analyzed by the performance profile are: the loss, the error, the overfitting on the loss,
and the overfitting on the error. The overfitting is here measured as the difference
between the test and the training values, similarly to the over function, which in addition
computes the mean. With a little abuse of notation, the overfitting is denoted as the
over function in the figures, however no average operation is performed.
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6.5.1. Comparison of state-of-art techniques versus SGD-SA

The comparison between SGD-SA and state-of-art techniques is shown in Figure 6.27
and Figure 6.28. In terms of loss, SGD-SA shows competitive results, performing sim-
ilarly to ADAM and NAG; whereas, in terms of error, it performs significantly worse
than state-of-art techniques. SGD-SA shows a much smaller overfitting with respect
to state-of art techniques. This proves that the move rejection and the learning rate
randomization do improve the generalizability of the results.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.27.: Performance profile comparison over the test set: NAG vs. SSGD vs.
ADAM vs. SGD-SA.
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(a) Overfitting on loss comparison.
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(b) Overfitting on error comparison.

Figure 6.28.: Performance profile comparison for overfitting: NAG vs. SSGD vs. ADAM
vs. SGD-SA.
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6.5.2. Comparison of state-of-art techniques versus SGD-SA (T=0)

SGD-SA with null temperature is an extreme version of SGD-SA which rejects all
worsening moves. The null temperature breaks the SA mechanism, thus SGD-SA with
null temperature cannot be properly classified as a metaheuristic algorithm. Neverthe-
less, the promising results of this algorithm, presented in Section 6.4.1, suggest that
comparing its performance with state-of-art techniques and other SA-based ones may
lead to meaningful observations.

The comparison between SGD-SA with null temperature and state-of-art techniques
is shown in Figure 6.29 and Figure 6.30. In terms of loss, SGD-SA with null temperature
outperforms all the state-of-art techniques, while, in terms of error, it performs similarly
to NAG and SSGD. SGD-SA with null temperature shows a small overfitting with respect
to state-of art techniques, however this difference is less pronounced if compared to other
SA-based techniques. These results highlight the effectiveness of move rejection, even if
its application is not managed by the SA acceptance test, but by a simpler policy which
rejects all worsening moves.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.29.: Performance profile comparison over the test set: NAG vs. SSGD vs.
ADAM vs. SGD-SA (T=0).
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(a) Overfitting on loss comparison.
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(b) Overfitting on error comparison.

Figure 6.30.: Performance profile comparison for overfitting: NAG vs. SSGD vs. ADAM
vs. SGD-SA (T=0).
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6.5.3. Comparison of state-of-art techniques versus SGD-SA-R

The comparison between SGD-SA-R and state-of-art techniques is shown in Fig-
ure 6.31 and Figure 6.32. The results are similar to the ones obtained with SGD-SA
technique, thus leading to the same observations. In terms of loss, SGD-SA-R shows
competitive results, performing similarly to ADAM and NAG. In terms of error, it per-
forms significantly worse than state-of-art techniques. SGD-SA-R shows a much smaller
overfitting with respect to state-of art techniques. This proves that using different func-
tions for generating and evaluating solutions improves the generalizability of the results.
The results of SGD-SA-R with L1 and L2 norms are identical under the overfitting point
of view; however, the L2 norm leads to slightly better performance in terms of loss and
error.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.31.: Performance profile comparison over the test set: NAG vs. SSGD vs.
ADAM vs. SGD-SA-R.
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(a) Overfitting on loss comparison.
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(b) Overfitting on error comparison.

Figure 6.32.: Performance profile comparison for overfitting: NAG vs. SSGD vs. ADAM
vs. SGD-SA-R.
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6.5.4. Comparison of state-of-art techniques versus SGD-SA-LR

The comparison between SGD-SA-LR and state-of-art techniques is shown in Fig-
ure 6.33 and Figure 6.34. In terms of loss, SGD-SA-LR shows very good results, per-
forming better than ADAM and NAG, and slightly worse than SSGD. In terms of error,
it performs worse than every state-of-art technique. SGD-SA-LR shows a smaller over-
fitting with respect to state-of art techniques, however this difference is less pronounced
in comparison with any other SA-based technique. The results of SGD-SA-LR with L1
and L2 norms are identical in terms of loss and error; however, the L2 norm leads to a
slightly lower overfitting.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.33.: Performance profile comparison over the test set: NAG vs. SSGD vs.
ADAM vs. SGD-SA-LR.
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(a) Overfitting on loss comparison.
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(b) Overfitting on error comparison.

Figure 6.34.: Performance profile comparison for overfitting: NAG vs. SSGD vs. ADAM
vs. SGD-SA-LR.
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6.5.5. Comparison of state-of-art techniques versus SGD-SA-DB

The comparison between SGD-SA-DB and state-of-art techniques is shown in Fig-
ure 6.35 and Figure 6.36. In terms of loss, SGD-SA-DB performs worse than state-of-art
techniques, but the results are still somehow comparable. In terms of error, the results
are however poor. On the other hand, SGD-SA-DB shows an extremely small overfitting,
if compared with state-of art techniques.

It is interesting to observe that these results – high error and low overfitting – are
typical of intermediate solutions. Recalling the observation of Section 6.4.4, the small
number of moves performed due to the ineffectiveness of SA limits the ability of the
algorithm to find better solutions. The few moves accepted may cause the algorithm to
perform as if the training was interrupted prematurely. As a consequence, the idea of
using two batches per move may still be effective, even though the standard implemen-
tation of SA is not suitable for it.
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(a) Loss comparison.
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(b) Error comparison.

Figure 6.35.: Performance profile comparison over the test set: NAG vs. SSGD vs.
ADAM vs. SGD-SA-DB.
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(a) Overfitting on loss comparison.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Over ratio (error)

0.0

0.2

0.4

0.6

0.8

1.0

NAG
SSGD
ADAM
SGD-SA-DB

(b) Overfitting on error comparison.

Figure 6.36.: Performance profile comparison for overfitting: NAG vs. SSGD vs. ADAM
vs. SGD-SA-DB.
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6. Test results

6.5.6. Comparison of state-of-art techniques versus ADAM-VNS

The comparison between ADAM-VNS and state-of-art techniques is shown in Fig-
ure 6.37 and Figure 6.38. In terms of loss, ADAM-VNS outperforms all the state-of-art
techniques, while, in terms of error, it performs similarly to ADAM, and still outperforms
NAG and SSGD. ADAM shows a small overfitting with respect to state-of art techniques,
however this difference is less pronounced if compared to SA-based techniques. This ob-
servation suggests that the random Gaussian noise in combination with early stopping
(if applied during the training) improves the generalizability of the solutions, without
harming the intensification effectiveness of the algorithm.
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6.5. Comparison between techniques
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(b) Error comparison.

Figure 6.37.: Performance profile comparison over the test set: NAG vs. SSGD vs.
ADAM vs. ADAM-VNS.

91



6. Test results
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(b) Overfitting on error comparison.

Figure 6.38.: Performance profile comparison for overfitting: NAG vs. SSGD vs. ADAM
vs. ADAM-VNS.
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6.5. Comparison between techniques

6.5.7. Comparison of SA-based techniques

The comparison between SA-based techniques is shown in Figure 6.39 and Figure 6.40.
The results show that, in terms of loss and error, SGD-SA-LR is the best one, followed
by SGD-SA-R with L2 norm, SGD-SA, SGD-SA-R with L1 norm, and SGD-SA-DB. As
to overfitting, the best method is SGD-SA-DB, followed by SGD-SA-R, SGD-SA, and
SGD-SA-LR.

The results show a trade-off between effectiveness and overfitting: techniques with low
loss and error tend to have a large overfitting, whereas techniques with low overfitting
tend to have a poor performance. The complete independence between the solution
generation and the cost function, as in SGD-SA-R and SGD-SA-DB, is a very effective
diversification strategy but weakens the intensification of the algorithm. Techniques
where the solution generation and the cost function have common elements, as SGD-SA
and SGD-SA-LR, tend to perform better, at the cost of a slightly higher overfitting.

All the SA-based techniques presented were designed as improvements of SGD-SA.
In particular, SGD-SA-R introduces a different cost function, independent from the
solution generation and from the loss. As the results show, this modification reduces
overfitting, maintaining a similar performance. This technique is further modified by
introducing a partial dependency from the loss in the cost function, obtaining SGD-SA-
LR. The increased influence of the loss improved the intensification, resulting in a better
performance. Overall the results indicate SGD-SA-LR as the best SA-based technique.

SGD-SA with null temperature is not technically a SA-based algorithm, hence it
was not mentioned in the considerations above. However, it is interesting to observe
that it outperforms all SA-based techniques. Whereas, following the aforementioned
effectiveness-overfitting trade-off, it shows a larger overfitting with respect to SA-based
techniques. These results highlight that the effectiveness of SA-based algorithms is due to
the move rejection feature. Moreover, they suggest that the sophistication of this feature
does not lead to any improvement in the performance, but only in the overfitting.
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6. Test results
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Figure 6.39.: Performance profile comparison over the test set: SGD-SA vs. SGD-SA-R
vs. SGD-SA-LR vs. SGD-SA-DB vs. SGD-SA (T=0).

94



6.5. Comparison between techniques
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Figure 6.40.: Performance profile comparison for overfitting: SGD-SA vs. SGD-SA-R
vs. SGD-SA-LR vs. SGD-SA-DB vs. SGD-SA (T=0).
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7. Conclusions

In the present work, we have proposed new techniques for the training of Convolutional
Neural Networks (CNN) based on the embedding of Stochastic Gradient Descent (SGD)
within metaheuristic frameworks. The performances of our algorithms have been tested
by training a deep neural network to solve the image classification problem for different
benchmark datasets. Finally, the results have been used to compare the effectiveness of
our techniques with the state-of-art of SGD-based training algorithms.

The application of metaheuristic frameworks to the training of neural network has been
shown to profitably improve the generalization property of the solutions. On the other
hand, the additional structure introduced to SGD reduces the ability of the algorithms
to find better solutions: only few operations influence the training, whereas the others
increase the overhead.

The Simulated Annealing (SA) framework introduces the possibility of rejecting moves
that do not satisfy a specific criterion, allowing the algorithm to avoid poor solutions.
The test has proven the importance of this feature, attesting it as the most significant
element introduced by SA. The standard behavior of SA implies that the number of
accepted moves gradually decreases as the system cools down. However, in the context
of the neural network training, a reduced dynamic has a dramatic impact on the results.
Moreover, the properties of the generated solutions may change during the training,
whereas the parameters of SA are set at the beginning of the execution. As a conse-
quence, the SA criterion may become inadequate. The test results have shown that
the SA-based techniques can achieve performances comparable, in terms of loss, to the
state-of-art ones. In terms of error, instead, the performances are noticeably worse than
the state-of-art ones.

The Variable Neighborhood Search (VNS) framework introduces the concept of early
stopping in combination with the addition of random Gaussian noise. The test has
proven the usefulness of this feature in improving the generalizability of the solutions,
without a significant drop in the performances. The VNS framework normally requires
local optima to be found iteratively, but in the context of neural network training proving
a solution to be a local optimum is not feasible. This peculiarity of the problem requires
the formulation of an alternative stopping condition, different from local optimality.
Unfortunately, such condition is rather arbitrary. Hence the performance depends heav-
ily on the implementation quality of the condition and on parameter tuning. The test
results have shown that the VNS-based technique, with our implementation, achieved
better results than all state-of-art techniques considered, both in terms of loss and error.
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7. Conclusions

Future works may focus on the extensive study of VNS-based techniques, with the aim
of better understanding the reasons behind their promising results. In our experience, it
would be significant trying to define a cleaner stopping condition and to design new VNS-
based algorithms. A different research path may consist in the development of techniques
that exploit the specific metaheuristic features that have been proven effective for the
neural network training, yet without implementing the full frameworks.
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A. Detailed tests results

The above sections analyzed the test results aggregated in tables or summarized by
means of plots. The purpose of this appendix is to provide more detailed information
on test results. The data related to each training epoch is too large to be fully reported
(slightly less than 40000 table rows). Whereas, the unaggregated test results related
to the final performance of the trained networks are more manageable (less than 400
table rows) and are useful to better understand the variability in the performance of the
optimizers. The data reported below is raw and with 5 decimal places (no rounding has
been performed).
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

NAG MNIST 0 0.01466 0.03451 0.00538 0.01020
NAG MNIST 1 0.01469 0.03916 0.00513 0.01180
NAG MNIST 2 0.01684 0.03202 0.00600 0.01000
NAG MNIST 3 0.01441 0.03627 0.00542 0.01130
NAG MNIST 4 0.01180 0.03588 0.00393 0.00990
NAG MNIST 5 0.01099 0.04260 0.00368 0.01200
NAG MNIST 6 0.01328 0.03998 0.00475 0.01170
NAG MNIST 7 0.01892 0.04058 0.00635 0.01220
NAG MNIST 8 0.01330 0.03601 0.00447 0.01050
NAG MNIST 9 0.02603 0.04458 0.00840 0.01360
NAG F-MNIST 0 0.01210 0.03522 0.00438 0.00990
NAG F-MNIST 1 0.01703 0.04181 0.00628 0.01220
NAG F-MNIST 2 0.01534 0.03624 0.00535 0.01050
NAG F-MNIST 3 0.01474 0.03998 0.00502 0.01200
NAG F-MNIST 4 0.01493 0.03498 0.00505 0.01030
NAG F-MNIST 5 0.01212 0.03911 0.00407 0.01100
NAG F-MNIST 6 0.01360 0.04483 0.00477 0.01280
NAG F-MNIST 7 0.02048 0.03931 0.00687 0.01270
NAG F-MNIST 8 0.01226 0.03929 0.00433 0.01130
NAG F-MNIST 9 0.01527 0.03896 0.00510 0.01230
NAG CIFAR-10 0 0.19592 0.73775 0.06976 0.20200
NAG CIFAR-10 1 0.13104 0.74786 0.04662 0.18110
NAG CIFAR-10 2 0.16121 0.77685 0.05778 0.20160
NAG CIFAR-10 3 0.19951 0.72836 0.07070 0.20000
NAG CIFAR-10 4 0.15372 0.75124 0.05496 0.19140
NAG CIFAR-10 5 0.20041 0.72344 0.07214 0.19640
NAG CIFAR-10 6 0.14807 0.72719 0.05296 0.18930
NAG CIFAR-10 7 0.19237 0.78975 0.06834 0.21270
NAG CIFAR-10 8 0.14550 0.79635 0.05230 0.20130
NAG CIFAR-10 9 0.23778 0.65899 0.08494 0.19710

Table A.1.: Test results for NAG.
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SSGD MNIST 0 0.01158 0.03510 0.00402 0.01090
SSGD MNIST 1 0.01251 0.03315 0.00425 0.01100
SSGD MNIST 2 0.01324 0.03020 0.00445 0.01020
SSGD MNIST 3 0.01249 0.03227 0.00432 0.00990
SSGD MNIST 4 0.01199 0.03305 0.00405 0.01030
SSGD MNIST 5 0.01153 0.03148 0.00395 0.00920
SSGD MNIST 6 0.01263 0.03466 0.00403 0.01070
SSGD MNIST 7 0.01291 0.03598 0.00452 0.01100
SSGD MNIST 8 0.01172 0.03432 0.00403 0.01080
SSGD MNIST 9 0.01235 0.03491 0.00427 0.01110
SSGD F-MNIST 0 0.01239 0.03493 0.00417 0.00970
SSGD F-MNIST 1 0.01237 0.03539 0.00433 0.01210
SSGD F-MNIST 2 0.01207 0.03540 0.00393 0.01140
SSGD F-MNIST 3 0.01146 0.03373 0.00413 0.01040
SSGD F-MNIST 4 0.01234 0.03188 0.00428 0.01040
SSGD F-MNIST 5 0.01239 0.03423 0.00407 0.01110
SSGD F-MNIST 6 0.01261 0.03652 0.00427 0.01120
SSGD F-MNIST 7 0.01228 0.03600 0.00397 0.01050
SSGD F-MNIST 8 0.01267 0.02914 0.00433 0.00910
SSGD F-MNIST 9 0.01290 0.03772 0.00432 0.01090
SSGD CIFAR-10 0 0.27822 0.74318 0.09916 0.21870
SSGD CIFAR-10 1 0.28013 0.71874 0.10014 0.22040
SSGD CIFAR-10 2 0.28186 0.69467 0.09920 0.21370
SSGD CIFAR-10 3 0.28401 0.74246 0.10090 0.22420
SSGD CIFAR-10 4 0.28578 0.73109 0.10132 0.22190
SSGD CIFAR-10 5 0.29249 0.71826 0.10428 0.22250
SSGD CIFAR-10 6 0.28703 0.71795 0.10318 0.21380
SSGD CIFAR-10 7 0.28080 0.72048 0.09850 0.22010
SSGD CIFAR-10 8 0.30304 0.70331 0.10752 0.21510
SSGD CIFAR-10 9 0.28841 0.72900 0.10146 0.22330

Table A.2.: Test results for SSGD.
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

ADAM MNIST 0 0.01126 0.03843 0.00392 0.00990
ADAM MNIST 1 0.01366 0.03613 0.00453 0.01000
ADAM MNIST 2 0.01125 0.03866 0.00360 0.01030
ADAM MNIST 3 0.01102 0.03067 0.00355 0.00860
ADAM MNIST 4 0.01495 0.03710 0.00518 0.01020
ADAM MNIST 5 0.01111 0.03447 0.00397 0.00930
ADAM MNIST 6 0.01623 0.03817 0.00515 0.01100
ADAM MNIST 7 0.01423 0.04091 0.00517 0.01110
ADAM MNIST 8 0.01223 0.03484 0.00407 0.00990
ADAM MNIST 9 0.01409 0.03644 0.00482 0.01140
ADAM F-MNIST 0 0.01146 0.03730 0.00402 0.01140
ADAM F-MNIST 1 0.01228 0.03276 0.00438 0.00870
ADAM F-MNIST 2 0.01520 0.04330 0.00535 0.01150
ADAM F-MNIST 3 0.01691 0.04362 0.00563 0.01090
ADAM F-MNIST 4 0.01400 0.04261 0.00462 0.01160
ADAM F-MNIST 5 0.01278 0.04066 0.00435 0.01120
ADAM F-MNIST 6 0.01219 0.03154 0.00433 0.00940
ADAM F-MNIST 7 0.01173 0.03977 0.00412 0.01010
ADAM F-MNIST 8 0.01254 0.03559 0.00440 0.00940
ADAM F-MNIST 9 0.01255 0.04213 0.00398 0.01080
ADAM CIFAR-10 0 0.12738 0.73142 0.04510 0.17280
ADAM CIFAR-10 1 0.13048 0.71204 0.04596 0.17020
ADAM CIFAR-10 2 0.14150 0.75308 0.05192 0.17190
ADAM CIFAR-10 3 0.12314 0.74323 0.04266 0.17240
ADAM CIFAR-10 4 0.13297 0.72900 0.04694 0.17770
ADAM CIFAR-10 5 0.10435 0.69214 0.03652 0.16480
ADAM CIFAR-10 6 0.10033 0.67608 0.03642 0.16310
ADAM CIFAR-10 7 0.13260 0.73364 0.04718 0.16870
ADAM CIFAR-10 8 0.11231 0.74020 0.04054 0.17390
ADAM CIFAR-10 9 0.10485 0.69303 0.03714 0.16800

Table A.3.: Test results for ADAM.
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA MNIST 0 0.02170 0.03625 0.00747 0.01260
SGD-SA MNIST 1 0.02415 0.04607 0.00842 0.01460
SGD-SA MNIST 2 0.02580 0.03749 0.00842 0.01380
SGD-SA MNIST 3 0.02229 0.03438 0.00710 0.01040
SGD-SA MNIST 4 0.02454 0.03989 0.00852 0.01210
SGD-SA MNIST 5 0.02531 0.04115 0.00868 0.01280
SGD-SA MNIST 6 0.01663 0.03466 0.00557 0.01040
SGD-SA MNIST 7 0.02688 0.04205 0.00947 0.01500
SGD-SA MNIST 8 0.01936 0.03349 0.00653 0.01190
SGD-SA MNIST 9 0.01928 0.03328 0.00610 0.01090
SGD-SA F-MNIST 0 0.03363 0.04194 0.01128 0.01290
SGD-SA F-MNIST 1 0.01814 0.03134 0.00583 0.01110
SGD-SA F-MNIST 2 0.02302 0.03938 0.00775 0.01300
SGD-SA F-MNIST 3 0.03103 0.04027 0.01013 0.01190
SGD-SA F-MNIST 4 0.02279 0.03800 0.00768 0.01190
SGD-SA F-MNIST 5 0.03294 0.03534 0.01078 0.01200
SGD-SA F-MNIST 6 0.01705 0.03226 0.00578 0.01090
SGD-SA F-MNIST 7 0.01961 0.03320 0.00667 0.01250
SGD-SA F-MNIST 8 0.02041 0.03491 0.00693 0.01210
SGD-SA F-MNIST 9 0.03187 0.04656 0.01108 0.01420
SGD-SA CIFAR-10 0 0.96473 1.31343 0.17118 0.23790
SGD-SA CIFAR-10 1 0.59729 0.80533 0.20828 0.26470
SGD-SA CIFAR-10 2 0.48602 0.74949 0.14928 0.22050
SGD-SA CIFAR-10 3 0.35557 0.66711 0.12470 0.21960
SGD-SA CIFAR-10 4 0.37418 0.63771 0.13210 0.21350
SGD-SA CIFAR-10 5 0.46108 0.70533 0.16294 0.22930
SGD-SA CIFAR-10 6 0.45804 0.62216 0.15926 0.21390
SGD-SA CIFAR-10 7 0.57668 0.75699 0.20360 0.25210
SGD-SA CIFAR-10 8 0.65614 0.80818 0.23184 0.28330
SGD-SA CIFAR-10 9 0.43382 0.70134 0.14532 0.22700

Table A.4.: Test results for SGD-SA.
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

Rand-SGD CIFAR-10 0 0.57808 0.78522 0.18800 0.24730
Rand-SGD CIFAR-10 1 0.39584 0.66153 0.13728 0.21130
Rand-SGD CIFAR-10 2 0.49987 0.78300 0.17724 0.24440
Rand-SGD CIFAR-10 3 0.48945 0.74700 0.17328 0.24780
Rand-SGD CIFAR-10 4 0.53145 0.81209 0.19038 0.26340
Rand-SGD CIFAR-10 5 0.54389 0.78565 0.17994 0.24650
Rand-SGD CIFAR-10 6 0.49052 0.77912 0.17008 0.24310
Rand-SGD CIFAR-10 7 0.33725 0.60262 0.11834 0.20030
Rand-SGD CIFAR-10 8 0.73848 0.95668 0.23794 0.28410
Rand-SGD CIFAR-10 9 0.46162 0.67940 0.16440 0.23220

Table A.5.: Test results for Randomized-SGD.
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA T=0 MNIST 0 0.02150 0.03984 0.00742 0.01190
SGD-SA T=0 MNIST 1 0.02053 0.04330 0.00730 0.01190
SGD-SA T=0 MNIST 2 0.01754 0.03918 0.00622 0.01050
SGD-SA T=0 MNIST 3 0.01947 0.03739 0.00667 0.01090
SGD-SA T=0 MNIST 4 0.01715 0.03367 0.00590 0.00880
SGD-SA T=0 MNIST 5 0.01857 0.03241 0.00612 0.01050
SGD-SA T=0 MNIST 6 0.01643 0.03185 0.00567 0.01040
SGD-SA T=0 MNIST 7 0.04036 0.05749 0.01290 0.01630
SGD-SA T=0 MNIST 8 0.01683 0.03447 0.00600 0.01130
SGD-SA T=0 MNIST 9 0.01710 0.03363 0.00575 0.01020
SGD-SA T=0 F-MNIST 0 0.01607 0.03493 0.00557 0.01140
SGD-SA T=0 F-MNIST 1 0.02392 0.04083 0.00802 0.01360
SGD-SA T=0 F-MNIST 2 0.01641 0.03087 0.00558 0.01060
SGD-SA T=0 F-MNIST 3 0.01562 0.03129 0.00520 0.00900
SGD-SA T=0 F-MNIST 4 0.01928 0.03530 0.00670 0.01060
SGD-SA T=0 F-MNIST 5 0.02137 0.04057 0.00740 0.01190
SGD-SA T=0 F-MNIST 6 0.01860 0.03302 0.00663 0.01050
SGD-SA T=0 F-MNIST 7 0.02484 0.03822 0.00817 0.01250
SGD-SA T=0 F-MNIST 8 0.01518 0.03145 0.00512 0.01000
SGD-SA T=0 F-MNIST 9 0.02104 0.03649 0.00713 0.01210
SGD-SA T=0 CIFAR-10 0 0.30019 0.56471 0.10348 0.18240
SGD-SA T=0 CIFAR-10 1 0.33083 0.57848 0.11708 0.18980
SGD-SA T=0 CIFAR-10 2 0.35092 0.59764 0.12452 0.19510
SGD-SA T=0 CIFAR-10 3 0.34727 0.59079 0.12194 0.19380
SGD-SA T=0 CIFAR-10 4 0.37504 0.64251 0.13470 0.20610
SGD-SA T=0 CIFAR-10 5 0.30043 0.56118 0.10746 0.18190
SGD-SA T=0 CIFAR-10 6 0.29307 0.54824 0.10190 0.18380
SGD-SA T=0 CIFAR-10 7 0.46465 0.71972 0.16416 0.23030
SGD-SA T=0 CIFAR-10 8 0.33199 0.58520 0.11724 0.19610
SGD-SA T=0 CIFAR-10 9 0.35889 0.62126 0.12632 0.20560

Table A.6.: Test results for SGD-SA (T=0).
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-R L1 MNIST 0 0.02109 0.03365 0.00708 0.01060
SGD-SA-R L1 MNIST 1 0.02523 0.04026 0.00840 0.01430
SGD-SA-R L1 MNIST 2 0.03418 0.04518 0.01100 0.01420
SGD-SA-R L1 MNIST 3 0.03721 0.04556 0.01267 0.01410
SGD-SA-R L1 MNIST 4 0.02174 0.03577 0.00733 0.01250
SGD-SA-R L1 MNIST 5 0.01965 0.03218 0.00637 0.01060
SGD-SA-R L1 MNIST 6 0.02101 0.03309 0.00682 0.01240
SGD-SA-R L1 MNIST 7 0.02326 0.03760 0.00763 0.01140
SGD-SA-R L1 MNIST 8 0.02781 0.03979 0.00863 0.01270
SGD-SA-R L1 MNIST 9 0.02753 0.03511 0.00877 0.01080
SGD-SA-R L1 F-MNIST 0 0.01871 0.03605 0.00632 0.01100
SGD-SA-R L1 F-MNIST 1 0.02486 0.03641 0.00818 0.01280
SGD-SA-R L1 F-MNIST 2 0.01884 0.03279 0.00632 0.01060
SGD-SA-R L1 F-MNIST 3 0.03045 0.04104 0.01030 0.01520
SGD-SA-R L1 F-MNIST 4 0.03571 0.04040 0.01152 0.01340
SGD-SA-R L1 F-MNIST 5 0.02105 0.03634 0.00708 0.01170
SGD-SA-R L1 F-MNIST 6 0.02135 0.03461 0.00727 0.01190
SGD-SA-R L1 F-MNIST 7 0.02070 0.03391 0.00687 0.01170
SGD-SA-R L1 F-MNIST 8 0.03534 0.04660 0.01150 0.01530
SGD-SA-R L1 F-MNIST 9 0.03076 0.04084 0.01048 0.01390
SGD-SA-R L1 CIFAR-10 0 0.67034 0.79707 0.23702 0.27260
SGD-SA-R L1 CIFAR-10 1 0.52471 0.70891 0.18460 0.23700
SGD-SA-R L1 CIFAR-10 2 0.70618 1.00581 0.18222 0.24460
SGD-SA-R L1 CIFAR-10 3 0.56203 0.70837 0.19892 0.24540
SGD-SA-R L1 CIFAR-10 4 0.81473 0.93349 0.27392 0.31620
SGD-SA-R L1 CIFAR-10 5 0.73101 0.95406 0.20006 0.25140
SGD-SA-R L1 CIFAR-10 6 0.58637 0.72399 0.19770 0.25260
SGD-SA-R L1 CIFAR-10 7 0.65738 0.77333 0.23350 0.27260
SGD-SA-R L1 CIFAR-10 8 0.65771 0.78034 0.22360 0.26530
SGD-SA-R L1 CIFAR-10 9 0.71770 0.86844 0.19806 0.25170

Table A.7.: Test results for SGD-SA-R (L1).
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-R L2 MNIST 0 0.02204 0.03259 0.00665 0.01010
SGD-SA-R L2 MNIST 1 0.02297 0.03134 0.00747 0.01080
SGD-SA-R L2 MNIST 2 0.02405 0.03505 0.00765 0.01150
SGD-SA-R L2 MNIST 3 0.02160 0.03667 0.00693 0.01280
SGD-SA-R L2 MNIST 4 0.01784 0.03187 0.00588 0.01100
SGD-SA-R L2 MNIST 5 0.02241 0.03226 0.00707 0.01080
SGD-SA-R L2 MNIST 6 0.02683 0.03562 0.00887 0.01180
SGD-SA-R L2 MNIST 7 0.14992 0.14287 0.03793 0.03710
SGD-SA-R L2 MNIST 8 0.02119 0.03542 0.00697 0.01100
SGD-SA-R L2 MNIST 9 0.02087 0.03395 0.00690 0.00960
SGD-SA-R L2 F-MNIST 0 0.02569 0.03641 0.00827 0.01120
SGD-SA-R L2 F-MNIST 1 0.03075 0.03890 0.00927 0.01320
SGD-SA-R L2 F-MNIST 2 0.03995 0.04727 0.01207 0.01500
SGD-SA-R L2 F-MNIST 3 0.03023 0.03838 0.00952 0.01240
SGD-SA-R L2 F-MNIST 4 0.02908 0.03466 0.00908 0.01080
SGD-SA-R L2 F-MNIST 5 0.02836 0.03631 0.00932 0.01250
SGD-SA-R L2 F-MNIST 6 0.01970 0.03186 0.00655 0.00990
SGD-SA-R L2 F-MNIST 7 0.02266 0.03247 0.00760 0.01060
SGD-SA-R L2 F-MNIST 8 0.01856 0.03453 0.00623 0.01220
SGD-SA-R L2 F-MNIST 9 0.02380 0.03528 0.00755 0.01240
SGD-SA-R L2 CIFAR-10 0 0.53265 0.70287 0.18814 0.24560
SGD-SA-R L2 CIFAR-10 1 0.65353 0.83845 0.22470 0.27650
SGD-SA-R L2 CIFAR-10 2 0.63748 0.86286 0.20054 0.25850
SGD-SA-R L2 CIFAR-10 3 0.67668 0.84859 0.22790 0.27770
SGD-SA-R L2 CIFAR-10 4 0.56662 0.76257 0.17518 0.24330
SGD-SA-R L2 CIFAR-10 5 0.97093 1.17178 0.18070 0.25630
SGD-SA-R L2 CIFAR-10 6 0.62738 0.74392 0.17030 0.23140
SGD-SA-R L2 CIFAR-10 7 0.52814 0.71325 0.18468 0.24250
SGD-SA-R L2 CIFAR-10 8 0.58394 0.79076 0.19268 0.25220
SGD-SA-R L2 CIFAR-10 9 0.60293 0.80242 0.20232 0.26390

Table A.8.: Test results for SGD-SA-R (L2).
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-R L1 + HT CIFAR-10 0 0.64238 0.82727 0.22736 0.28860
SGD-SA-R L1 + HT CIFAR-10 1 0.47473 0.71061 0.16062 0.23650
SGD-SA-R L1 + HT CIFAR-10 2 0.48689 0.72886 0.15720 0.22440
SGD-SA-R L1 + HT CIFAR-10 3 0.49002 0.68572 0.16994 0.23020
SGD-SA-R L1 + HT CIFAR-10 4 0.54545 0.77957 0.18434 0.25560
SGD-SA-R L1 + HT CIFAR-10 5 0.93401 1.00803 0.33590 0.35450
SGD-SA-R L1 + HT CIFAR-10 6 0.48979 0.66877 0.17248 0.22620
SGD-SA-R L1 + HT CIFAR-10 7 0.50489 0.77009 0.16372 0.23230
SGD-SA-R L1 + HT CIFAR-10 8 0.57647 0.87810 0.15514 0.22920
SGD-SA-R L1 + HT CIFAR-10 9 0.48078 0.76450 0.14380 0.21500

Table A.9.: Test results for SGD-SA-R (L1 + HT).

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-R L2 + HT CIFAR-10 0 0.55778 0.81745 0.13598 0.21820
SGD-SA-R L2 + HT CIFAR-10 1 0.72207 0.99553 0.16398 0.23690
SGD-SA-R L2 + HT CIFAR-10 2 0.50061 0.71451 0.16414 0.23400
SGD-SA-R L2 + HT CIFAR-10 3 0.50824 0.78080 0.15916 0.23680
SGD-SA-R L2 + HT CIFAR-10 4 0.45050 0.75474 0.13764 0.22590
SGD-SA-R L2 + HT CIFAR-10 5 0.58785 0.73461 0.20562 0.25410
SGD-SA-R L2 + HT CIFAR-10 6 0.44872 0.72946 0.14986 0.21980
SGD-SA-R L2 + HT CIFAR-10 7 0.81878 1.04329 0.17196 0.24740
SGD-SA-R L2 + HT CIFAR-10 8 0.43324 0.67556 0.15144 0.22340
SGD-SA-R L2 + HT CIFAR-10 9 0.43303 0.65344 0.15046 0.22030

Table A.10.: Test results for SGD-SA-R (L2 + HT).

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-R L1 + SC CIFAR-10 0 0.49496 0.71253 0.17600 0.23710
SGD-SA-R L1 + SC CIFAR-10 1 0.36588 0.66436 0.12690 0.21260
SGD-SA-R L1 + SC CIFAR-10 2 0.50895 0.75211 0.15668 0.23100
SGD-SA-R L1 + SC CIFAR-10 3 0.53934 0.78606 0.15986 0.22570
SGD-SA-R L1 + SC CIFAR-10 4 0.34744 0.64540 0.12308 0.21080
SGD-SA-R L1 + SC CIFAR-10 5 0.39337 0.67014 0.13794 0.22140
SGD-SA-R L1 + SC CIFAR-10 6 0.49937 0.69686 0.17648 0.23050
SGD-SA-R L1 + SC CIFAR-10 7 0.48885 0.76743 0.15336 0.23320
SGD-SA-R L1 + SC CIFAR-10 8 0.71261 1.03721 0.15982 0.23490
SGD-SA-R L1 + SC CIFAR-10 9 0.38583 0.66007 0.13526 0.21970

Table A.11.: Test results for SGD-SA-R (L1 + SC).
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-R L2 + SC CIFAR-10 0 0.49899 0.73370 0.16228 0.23570
SGD-SA-R L2 + SC CIFAR-10 1 0.53139 0.69626 0.18802 0.24050
SGD-SA-R L2 + SC CIFAR-10 2 0.42572 0.67770 0.15048 0.22670
SGD-SA-R L2 + SC CIFAR-10 3 0.44130 0.68821 0.15102 0.22540
SGD-SA-R L2 + SC CIFAR-10 4 0.48910 0.68292 0.17168 0.22820
SGD-SA-R L2 + SC CIFAR-10 5 0.38360 0.63154 0.13530 0.21000
SGD-SA-R L2 + SC CIFAR-10 6 0.34579 0.69087 0.12314 0.22200
SGD-SA-R L2 + SC CIFAR-10 7 0.37397 0.66535 0.13186 0.21620
SGD-SA-R L2 + SC CIFAR-10 8 0.41603 0.67738 0.14470 0.21920
SGD-SA-R L2 + SC CIFAR-10 9 0.45847 0.73598 0.16290 0.24380

Table A.12.: Test results for SGD-SA-R (L2 + SC).
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-LR L1 MNIST 0 0.01785 0.03263 0.00595 0.01080
SGD-SA-LR L1 MNIST 1 0.02085 0.03492 0.00723 0.01080
SGD-SA-LR L1 MNIST 2 0.01866 0.03538 0.00640 0.01140
SGD-SA-LR L1 MNIST 3 0.01696 0.03337 0.00568 0.01080
SGD-SA-LR L1 MNIST 4 0.03208 0.04286 0.01000 0.01490
SGD-SA-LR L1 MNIST 5 0.01633 0.03185 0.00565 0.01070
SGD-SA-LR L1 MNIST 6 0.02158 0.03557 0.00723 0.01120
SGD-SA-LR L1 MNIST 7 0.01658 0.03485 0.00572 0.01120
SGD-SA-LR L1 MNIST 8 0.04285 0.04934 0.01425 0.01560
SGD-SA-LR L1 MNIST 9 0.02296 0.03838 0.00743 0.01090
SGD-SA-LR L1 F-MNIST 0 0.01855 0.03312 0.00602 0.01030
SGD-SA-LR L1 F-MNIST 1 0.02111 0.03480 0.00705 0.01210
SGD-SA-LR L1 F-MNIST 2 0.01999 0.03647 0.00702 0.01230
SGD-SA-LR L1 F-MNIST 3 0.02281 0.04161 0.00765 0.01290
SGD-SA-LR L1 F-MNIST 4 0.01721 0.03828 0.00620 0.01170
SGD-SA-LR L1 F-MNIST 5 0.03665 0.04656 0.01217 0.01500
SGD-SA-LR L1 F-MNIST 6 0.01688 0.03198 0.00575 0.01090
SGD-SA-LR L1 F-MNIST 7 0.01720 0.03191 0.00583 0.00980
SGD-SA-LR L1 F-MNIST 8 0.02093 0.03328 0.00702 0.01260
SGD-SA-LR L1 F-MNIST 9 0.02399 0.03941 0.00780 0.01260
SGD-SA-LR L1 CIFAR-10 0 0.34333 0.67880 0.11908 0.21310
SGD-SA-LR L1 CIFAR-10 1 0.44908 0.78377 0.15492 0.24460
SGD-SA-LR L1 CIFAR-10 2 0.43722 0.68655 0.15446 0.23110
SGD-SA-LR L1 CIFAR-10 3 0.36792 0.66829 0.13288 0.21730
SGD-SA-LR L1 CIFAR-10 4 0.46924 0.77440 0.16474 0.24470
SGD-SA-LR L1 CIFAR-10 5 0.36925 0.69033 0.13100 0.22190
SGD-SA-LR L1 CIFAR-10 6 0.36010 0.66057 0.12610 0.21990
SGD-SA-LR L1 CIFAR-10 7 0.36829 0.62262 0.12708 0.20260
SGD-SA-LR L1 CIFAR-10 8 0.42191 0.69579 0.14830 0.23280
SGD-SA-LR L1 CIFAR-10 9 0.58542 0.79490 0.15934 0.23630

Table A.13.: Test results for SGD-SA-LR (L1).
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-LR L2 MNIST 0 0.02438 0.03709 0.00803 0.01300
SGD-SA-LR L2 MNIST 1 0.02518 0.03700 0.00822 0.01150
SGD-SA-LR L2 MNIST 2 0.01684 0.03231 0.00555 0.01130
SGD-SA-LR L2 MNIST 3 0.02229 0.03870 0.00773 0.01290
SGD-SA-LR L2 MNIST 4 0.02950 0.04587 0.00948 0.01360
SGD-SA-LR L2 MNIST 5 0.02059 0.03518 0.00672 0.01250
SGD-SA-LR L2 MNIST 6 0.02094 0.03354 0.00712 0.01100
SGD-SA-LR L2 MNIST 7 0.03179 0.04043 0.01040 0.01350
SGD-SA-LR L2 MNIST 8 0.03192 0.04919 0.01063 0.01460
SGD-SA-LR L2 MNIST 9 0.02200 0.03219 0.00733 0.01100
SGD-SA-LR L2 F-MNIST 0 0.02375 0.03830 0.00783 0.01340
SGD-SA-LR L2 F-MNIST 1 0.01900 0.03358 0.00612 0.01040
SGD-SA-LR L2 F-MNIST 2 0.01542 0.03381 0.00532 0.01150
SGD-SA-LR L2 F-MNIST 3 0.02739 0.04049 0.00908 0.01280
SGD-SA-LR L2 F-MNIST 4 0.01907 0.03063 0.00647 0.00940
SGD-SA-LR L2 F-MNIST 5 0.02192 0.03606 0.00742 0.01220
SGD-SA-LR L2 F-MNIST 6 0.02161 0.03506 0.00727 0.01210
SGD-SA-LR L2 F-MNIST 7 0.02196 0.03723 0.00747 0.01170
SGD-SA-LR L2 F-MNIST 8 0.03884 0.04946 0.01312 0.01550
SGD-SA-LR L2 F-MNIST 9 0.02063 0.03719 0.00693 0.01120
SGD-SA-LR L2 CIFAR-10 0 0.36022 0.61970 0.12510 0.20570
SGD-SA-LR L2 CIFAR-10 1 0.33002 0.60507 0.11772 0.19720
SGD-SA-LR L2 CIFAR-10 2 0.44909 0.68209 0.15960 0.23020
SGD-SA-LR L2 CIFAR-10 3 0.39318 0.65197 0.12918 0.21400
SGD-SA-LR L2 CIFAR-10 4 0.43049 0.73036 0.15128 0.22440
SGD-SA-LR L2 CIFAR-10 5 0.36213 0.63549 0.12798 0.20850
SGD-SA-LR L2 CIFAR-10 6 0.35499 0.63996 0.12570 0.20720
SGD-SA-LR L2 CIFAR-10 7 0.49327 0.73394 0.17258 0.24580
SGD-SA-LR L2 CIFAR-10 8 0.39363 0.65421 0.13736 0.21020
SGD-SA-LR L2 CIFAR-10 9 0.59487 0.76560 0.21010 0.25680

Table A.14.: Test results for SGD-SA-LR (L2).
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A. Detailed tests results

Loss Error
Optimizer Note Dataset Seed Train Test Train Test

SGD-SA-DB MNIST 0 0.02983 0.04049 0.00972 0.01330
SGD-SA-DB MNIST 1 0.03483 0.04807 0.01150 0.01550
SGD-SA-DB MNIST 2 0.02876 0.04451 0.00943 0.01370
SGD-SA-DB MNIST 3 0.02302 0.03860 0.00755 0.01290
SGD-SA-DB MNIST 4 0.01597 0.03490 0.00507 0.01130
SGD-SA-DB MNIST 5 0.02791 0.03643 0.00922 0.01240
SGD-SA-DB MNIST 6 0.02428 0.03847 0.00797 0.01300
SGD-SA-DB MNIST 7 0.02374 0.04129 0.00772 0.01370
SGD-SA-DB MNIST 8 0.01938 0.03494 0.00643 0.01140
SGD-SA-DB MNIST 9 0.02343 0.03950 0.00760 0.01250
SGD-SA-DB F-MNIST 0 0.01746 0.03805 0.00565 0.01210
SGD-SA-DB F-MNIST 1 0.02640 0.03461 0.00863 0.01250
SGD-SA-DB F-MNIST 2 0.01930 0.03225 0.00660 0.00980
SGD-SA-DB F-MNIST 3 0.02158 0.03299 0.00695 0.01080
SGD-SA-DB F-MNIST 4 0.02491 0.04099 0.00808 0.01270
SGD-SA-DB F-MNIST 5 0.04005 0.04385 0.01327 0.01550
SGD-SA-DB F-MNIST 6 0.01827 0.03566 0.00635 0.01100
SGD-SA-DB F-MNIST 7 0.02526 0.03244 0.00848 0.01150
SGD-SA-DB F-MNIST 8 0.02346 0.03945 0.00805 0.01470
SGD-SA-DB F-MNIST 9 0.02668 0.03588 0.00905 0.01220
SGD-SA-DB CIFAR-10 0 1.02687 1.08191 0.37154 0.38670
SGD-SA-DB CIFAR-10 1 0.65107 0.83066 0.22156 0.27250
SGD-SA-DB CIFAR-10 2 0.60731 0.75149 0.21572 0.25890
SGD-SA-DB CIFAR-10 3 0.73597 0.95839 0.21262 0.26580
SGD-SA-DB CIFAR-10 4 0.81505 0.90085 0.28952 0.31960
SGD-SA-DB CIFAR-10 5 0.73467 0.85909 0.24164 0.28420
SGD-SA-DB CIFAR-10 6 0.93703 0.99167 0.27760 0.31410
SGD-SA-DB CIFAR-10 7 0.78952 0.91032 0.26704 0.29900
SGD-SA-DB CIFAR-10 8 0.75277 0.83871 0.22552 0.27630
SGD-SA-DB CIFAR-10 9 0.84167 0.97618 0.27802 0.31010

Table A.15.: Test results for SGD-SA-DB.
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Loss Error
Optimizer Note Dataset Seed Train Test Train Test

ADAM-VNS MNIST 0 0.01392 0.03716 0.00490 0.00970
ADAM-VNS MNIST 1 0.02457 0.03740 0.00825 0.01140
ADAM-VNS MNIST 2 0.01517 0.03298 0.00503 0.00930
ADAM-VNS MNIST 3 0.02319 0.03439 0.00772 0.01140
ADAM-VNS MNIST 4 0.01577 0.03279 0.00565 0.00860
ADAM-VNS MNIST 5 0.01806 0.02783 0.00572 0.00770
ADAM-VNS MNIST 6 0.01309 0.03753 0.00460 0.01010
ADAM-VNS MNIST 7 0.01819 0.03168 0.00615 0.00990
ADAM-VNS MNIST 8 0.01884 0.02915 0.00617 0.00910
ADAM-VNS MNIST 9 0.02057 0.04325 0.00732 0.01210
ADAM-VNS F-MNIST 0 0.01347 0.03510 0.00450 0.01030
ADAM-VNS F-MNIST 1 0.02732 0.04177 0.00885 0.01220
ADAM-VNS F-MNIST 2 0.01875 0.03407 0.00650 0.01030
ADAM-VNS F-MNIST 3 0.01784 0.03533 0.00602 0.01030
ADAM-VNS F-MNIST 4 0.01967 0.03220 0.00658 0.00870
ADAM-VNS F-MNIST 5 0.01789 0.03797 0.00617 0.01090
ADAM-VNS F-MNIST 6 0.01540 0.03532 0.00522 0.01050
ADAM-VNS F-MNIST 7 0.01436 0.03773 0.00460 0.01050
ADAM-VNS F-MNIST 8 0.01691 0.03373 0.00548 0.01000
ADAM-VNS F-MNIST 9 0.02920 0.04404 0.00933 0.01230
ADAM-VNS CIFAR-10 0 0.21276 0.60816 0.07562 0.17580
ADAM-VNS CIFAR-10 1 0.18565 0.62962 0.06750 0.17410
ADAM-VNS CIFAR-10 2 0.34968 0.59094 0.12316 0.19240
ADAM-VNS CIFAR-10 3 0.26366 0.57313 0.09414 0.17740
ADAM-VNS CIFAR-10 4 0.19459 0.57460 0.06896 0.17090
ADAM-VNS CIFAR-10 5 0.19635 0.62866 0.07036 0.17640
ADAM-VNS CIFAR-10 6 0.21558 0.62653 0.07738 0.17810
ADAM-VNS CIFAR-10 7 0.20596 0.61061 0.07406 0.18120
ADAM-VNS CIFAR-10 8 0.31912 0.60372 0.11374 0.19270
ADAM-VNS CIFAR-10 9 0.18794 0.60177 0.06636 0.16970

Table A.16.: Test results for ADAM-VNS.
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