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Abstract

Emergency medical services (EMS), also known as ambulance services or paramedic
services, are emergency services which treat illnesses and injuries that require
an urgent medical response, providing out-of-hospital treatment and transport to
definitive care. An example of the EMS can be seen when an incident or an injury
occurs, which starts from the call for help and ends when the ambulance arrives
at the hospital. But EMS are not only a ride to the hospital, because behind
that, there is a complex system involving multiple people and agencies. A com-
prehensive EMS system is ready every day for every kind of emergency. It’s easy
to understand that improving these services is very important for the community.

In this thesis we address the problem of the optimization of ambulance supply-
ing for the ULSS of Veneto Region through a mixed integer linear programming
model and we solved it using an optimization software. We analyse the state of
the art, we describe the model and all the important parameters; then we com-
pare the current results obtained with an alternative simple formula, with those
obtained integrating the formula in the model itself. Finally, we use a different
approach based on the number of accesses in the emergency rooms. Tests, carried
out focusing basically on the ULSS 8 “Berica”, show how an optimisation model
can help reducing the number of ambulances under specific assumptions.
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Chapter 1

Introduction

Emergency medical services (EMS), also known as ambulance services, are emer-
gency services which treat illnesses and injuries that require an urgent medical
response, providing out-of-hospital treatment and transport to definitive care [33].
These services are part of each community and play a very important role for the
safety and care of people in the event of an accident or illness. They have the
goal of intervening quickly and taking care of people in order to reduce mortality,
disability, and suffering.

Hence EMS are a complex system, which do not include only healthcare and
medical activities, but include also prevention and public education. A summary
of the main components of EMS can be found in [1]:

• agencies and organizations (both private and public),

• communications and transportation networks,

• trauma systems, hospitals, trauma centers, and specialty care centers,

• rehabilitation facilities,

• highly trained professionals,

• volunteer and career prehospital personnel,

• physicians, nurses, and therapists,

• administrators and government officials,

• an informed public that knows what to do in a medical emergency.

These concepts are briefly summarized in the Figure 1.1 presented as a cycle.
For these reasons improving an aspect of the EMS could mean improving the

quality of life of a community. In this work the main goal is roughly to find the

1
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Figure 1.1: A representation of the components of the EMS [1].

minimum number of ambulances needed to provide an adequate service in a given
region, but depending on country, area within country, or clinical need, emergency
medical services may be provided by one or more different types of organization.

In this work we will focus basically in the Italy EMS and in particular in
Veneto. EMS in Italy currently consist primarily of a combination of volunteer
organizations providing ambulance service, supplemented by physicians and nurses
who perform all Advanced Life Support (ALS) procedures. They are under Public
Health Authorities control in each Italian region and the ambulance subsystem is
provided by a variety of different sources [34].

The requirements and the constraints that define the problem we will address
can be summarised more formally in the following way. As already stated, the
problem is the minimisation of the number of ambulances needed in a given region
and after careful analysis of the environment we had to study, we deduced that
the main requirements are:

1. the solution must satisfied the greatest number of requests to reduce the
probability of death,

2. the requests must be satisfied as fast as possible,

3. in any case the maximum response time is eight minutes for urban areas and
twenty minutes for extra-urban areas; this response time is defined in the
Press release relating to the DPR, March 27, 1992 [17],

4. the ambulances locations are fixed and they are the hospitals,
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5. each ambulance must end its ride in the hospital prepared as a base of arrival.

Later on, we will discuss in depth these requirements and their mathematical
formulation in the model, focusing also in the legislative part that regulates the
system of health services in Italy and Veneto, analyzing in our case which laws
and constraints must be respected.

In the next chapters we are going to present all the work done during these
months, which includes mathematical formulations, implementation and testing
phases. In particular, this report is structured as follows:

• in Chapter 2 we will present the main models developed in the literature for
this problem and some variants, showing the pros and cons of each one,

• in Chapter 3 we will describe the Veneto healthcare system in detail and the
differences with the literature and then we will present the model developed
specifying also the choice of the parameters,

• in Chapter 4 we will show how we apply the model with a detailed example;
then we will see a case of applicability, starting with the state of the art, and
then using the model with different approaches,

• in Chapter 5 we report all the conclusions of our work and the possible future
directions.

All the source code developed to build and solve the model is available at

https://github.com/AndreaB2604/MasterThesis1

1For more information to compile and run the code, see the README.md.

https://github.com/AndreaB2604/MasterThesis
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Chapter 2

Related Works

The problem, as described in the introduction, can have a considerable impact for
what concern the security of people, but also for the budget of a Region or State,
and it has been studied for over 50 years. For these reasons, one may think that
the literature produced is almost complete: the models developed are stable and
there are a lot of examples of applicability based on those models.

The reality is a little bit different, because there are surely a lot of examples, but
the problem is changeable because it depends on various factors, especially when
we want to apply one model in real cases. A practical example is the difference
among countries: one for all the laws, that affect the constraints, the development
and the resolution of a model. Another aspect to consider is the growth not only
in computer technology, but also in modeling and algorithmic sophistication and
in the performance of mathematical programming solvers: in this sense something
that twenty years ago was not even tested because impossible to compute, today
it could be solved in few seconds.

This latter aspect is crucial because, as we will see, the problem can be formu-
lated with a Mixed Integer Linear Programming Model. The growth in computer
technology led to a different approach when dealing with such problems and this
can be seen reading the literature concerning a problem studied over decades, as
the problem we are presenting. The first papers are focused mostly in the model
formulation and little space is given to the implementation and testing phase, since
finding the optimal solution was impossible even with small instances.

However, it is possible to identify some useful works in order to start approach-
ing the problem and in this chapter we are going to present these works starting
from the very beginning.

5
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2.1 The evolution of the models

As already said the main goal is, in a non rigorous way, to minimise the number of
ambulances maintaining an adequate level of service. This minimisation problem
can be seen similarly as a maximisation problem with this formulation: maximise
the level of service with a given number of ambulances; this clarification is needed
because in the literature these two variants are both present, what changes is the
focus of the objective function.

In the last years, three classes of models have been developed to solve the
problem:

Deterministic (or static) models: they are used at the planning stage and ig-
nore stochasticity and the availability of ambulances.

Probabilistic models: they consider the fact that ambulances operate as servers
in a queuing system and cannot always answer a call.

Dynamic models: they were recently developed in order to relocate ambulances
during the day to provide a better service.

In the next sections we will see the main models of all the three classes, focusing
mostly on the deterministic models.

For the first class we will refer to [5, 28], where the authors formulate the first
two models related to the problem and they were the basis from which literature
developed. Then the next contribution comes from [26], where the authors devel-
oped a model to deal with multiple vehicles. Other notable improvements come
from Daskin and Stern [7] and Hogan and ReVelle [12], where they introduced the
concept of backup coverage.

For the second class, one of the first probabilistic models is the Maximum
Expected Covering Location Problem formulation (MEXCLP) due to Daskin [6],
where a probability of an ambulance to be unavailable was introduced. Another
probabilistic model was proposed by ReVelle and Hogan in [25] in two variants and
finally we will see the model developed by Ball and Lin in [2] called Rel-P.

For the third class we will see briefly the formulation of one model: the Dy-
namic Double Standard Model (DDSM) by Gendreau et al. [11]. In the literature
other recent models were developed, for instance the Dynamic Available Coverage
Location model (DACL) by Rajagopalan et al. [18], but sophisticated elements
were used and, for most of them, the formulation is non linear; moreover the
mathematical meaning of those elements is an advanced topic and it is beyond the
scope of this work.
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2.2 Deterministic models

Before starting the analysis of the literature mentioned in Section 2.1, we have to
provide the main elements and the notation that will be used. The natural way
to model the ambulance location problems is to consider a graph G = (V ∪W,E)
where the set of nodes of the graph is divided in two subset: the set of demand
points, denoted with V , and the set of the potential ambulance location sites, which
are commonly called service points (e.g., hospitals), denoted with W . Finally, the
set of edges is E ⊆ V ×W . Note that, in general, V ∩W 6= ∅.

Another important element is the (shortest) travel time from vertex i ∈ V to
vertex j ∈ W , commonly denoted as tij. Now we can give the following definition:

Definition 2.2.1 (Covered point). A demand point i ∈ V is said to be covered
by a site j ∈ W if

tij ≤ ri

where ri is a preset coverage standard related to node i. We can define the set of
location sites covering demand point i as

Wi = {j ∈ W : tij ≤ ri}

The first deterministic model, formulated in [28], was called Location Set Cov-
ering Model (LSCM), which is based on the Set Covering Problem (SCP). Given a
m× n matrix A with elements aij ∈ {0, 1} and a vector c ∈ Rn, the Set Covering
Model is defined:

min cTx

s.t. Ax ≥ 1

0 ≤ x ≤ 1 integer

where 0 and 1 represent a vector with all components equal to 0 and 1 respectively.
An interpretation of the set covering model is the following. There are m objects
1, . . . ,m related to the rows of A and n subset of objects. Each subset is defined
as

Ij =
{
i ∈ {1, . . . ,m} : aij = 1

}
namely it contains (cover) the objects related to the row i with aij = 1, and it has
a given cost cj. The SCP required to choose a family of subsets Ij with minimum
cost, in order to cover all the m objects at least once [9]. This is a well known
NP-Complete problem [36].
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Now we can present the LSCM. In this model the goal is to minimize the
number of ambulances needed to provide a coverage of all demand points. In the
original paper they set ri = r, ∀ i ∈ V . Let

xj =

{
1 if an ambulance is located in the vertex j,
0 otherwise

Then

min
∑
j∈W

xj (2.2.1)

s.t.
∑
j∈Wi

xj ≥ 1 ∀ i ∈ V (2.2.2)

xj ∈ {0, 1} ∀ j ∈ W (2.2.3)

The formulation reflects the set covering model where c = 1 and defining A = [aij]
then aij = 1 if tij ≤ r, 0 otherwise. The inequality (2.2.2) requires that there must
be at least one ambulance which covers each demand point i.

This model is very simple and one may notice immediately that when an am-
bulance is dispatched in a demand point, other demand points related to that site
can no longer be covered. Furthermore, with the constraint (2.2.3), the maximum
number of ambulance for each site can be one and the situation would not change
if the constraint was xj ∈ N, ∀ j ∈ W , because it can be proved quite easily that
if an optimal solution has xj ≥ 2 for some j, then also xj = 1 is a feasible solution
and it has a lower cost in the objective function, which proves that the initial
solution with xj ≥ 2 was not optimal. Another assumption of the model is that up
to |W | ambulances are available, because if all the demand points are covered by
only one site and each site covers at most one demand point, the solution requires
exactly |V | = |W | ambulances. Anyway, this model provides a lower bound to the
number of ambulances needed to ensure full coverage.

As already said, an alternative approach is to maximise the level of service,
namely the demand successfully served, with a limited number of ambulances. The
first model to solve this problem was formulated in [5] and it is called Maximal
Covering Location Problem (MCLP). Let xj as defined in the LSCM and

di = the demand of the node i ∈ V

p = maximum number of ambulances available

yi =

{
1 if the vertex i is covered by at least one ambulance
0 otherwise
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Then

max
∑
i∈V

diyi (2.2.4)

s.t.
∑
j∈Wi

xj ≥ yi ∀ i ∈ V (2.2.5)

∑
j∈W

xj = p (2.2.6)

xj ∈ {0, 1} ∀ j ∈ W (2.2.7)

yi ∈ {0, 1} ∀ i ∈ V (2.2.8)

The constraints are basically the same as before with the difference of (2.2.5),
where the right hand side indicates that if a node i is covered by one ambulance
than there must be at least one ambulance located in a site j that covers i. The
relation (2.2.6) is the constraint related to the number of ambulances that can be
dispatched. The goal of this model is to use in the best way the limited resources
available.

From a practical point of view the MCLP has been used to plan the reorgan-
isation of the EMS in Austin, Texas, as described in [8]. The model was applied
with a minor change, adding weights which multiply the objective function. In
the paper they stated that the benefits of the EMS plan have been: the average
response time had been reduced despite an increase in calls for service and from
a financial point of view: $3.4 million saved in construction costs and $1.2 million
in operating cost in 1984.

The MCLP model has been extended to deal with multiple vehicles. In the
context of EMS, not only ambulances are used because there are also nontrans-
porting EMS vehicles, which are vehicles that responds to emergencies, but are
not designed to transport a patient [35]. In Italy there are three types of standard
emergency vehicles in force in almost all regions [32]:

• Basic Life Support (BLS) vehicles: they can be summarised as ambulances
owned by associations, social cooperatives or voluntary bodies, with only
technical rescue personnel on board, certified and qualified for emergency
services, with specific training course, and with “basic” health equipment on
board;

• Intermediate Life Support (ILS) vehicles: ambulances that normally include
a nurse trained and authorized to apply specific and advanced intervention;
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• Advanced Life Support (ALS) vehicles: the crew has one or two rescuers, one
of whom is a driver, a nurse and a doctor, often anesthesiologist-resuscitator,
from the emergency room or directly from the operations center.

For these reasons Shilling et al. in [26] extended the MCLP, formulating the
Tandem Equipment Allocation Model (TEAM) to manage several vehicle types.
Let’s suppose for example, we have two types of vehicles to dispatch: type A and
B. In this case let pA and pB the number of available vehicles of type A and B; rA
and rB the coverage standard for vehicles of type A and B. Let

WA,i = {j ∈ W : tij ≤ rA}

WB,i = {j ∈ W : tij ≤ rB}

xA,j =

{
1 if a vehicle of type A is located at node j
0 otherwise

with xB,i similarly for vehicles of type B. Let

yi =

{
1 if the vertex i is covered by two types of vehicle
0 otherwise

Then the TEAM model follows:

max
∑
i∈V

diyi (2.2.9)

s.t.
∑

j∈WA,i

xA,j ≥ yi ∀ i ∈ V (2.2.10)

∑
j∈WB,i

xB,j ≥ yi ∀ i ∈ V (2.2.11)

∑
j∈W

xA,j = pA (2.2.12)

∑
j∈W

xB,j = pB (2.2.13)

xA,j ≤ xB,j ∀ j ∈ W (2.2.14)

xA,j, xB,j ∈ {0, 1} ∀ j ∈ W (2.2.15)

yi ∈ {0, 1} ∀ i ∈ V (2.2.16)
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This formulation has the same constraints of the MCLP, except for the (2.2.14),
which imposes a hierarchy between the two types of vehicles. It has been added in
case there was the need, but it can be removed if not. Furthermore, we considered
only two types of vehicles, but the model can be easily generalised with n types of
vehicles.

As already noted, the previous models do not address the problem of multiple
coverages, namely every time an ambulance is dispatched there could be demand
points the coverage of which is no longer ensured. Hence few models were designed
to satisfy this requirement. Hogan and Revelle presented two models in [12] called
BACOP1 and BACOP2. For the first one, let’s define

ui =

{
1 if the demand node i is covered twice
0 otherwise

Then the BACOP1 is

max
∑
i∈V

diui (2.2.17)

s.t.
∑
j∈Wi

xj ≥ 1 + ui ∀ i ∈ V (2.2.18)

∑
j∈W

xj = p (2.2.19)

xj ∈ {0, 1} ∀ j ∈ W (2.2.20)

ui ∈ {0, 1} ∀ i ∈ V (2.2.21)

We can note that this formulation is identical to the MCLP with a small difference
in the constraint (2.2.18) where if ui = 1 than we want the number of sites that
cover the node i to be greater than or equal to two.

In the BACOP2, the idea behind MCLP and the BACOP1 are combined and
the objective function becomes multiobjective in the levels of coverage. Let yi as
in MCLP and ui as in BACOP1, then the model is:

max w
∑
i∈V

diyi + (1− w)
∑
i∈V

diui (2.2.22)

s.t.
∑
j∈Wi

xj ≥ yi + ui ∀ i ∈ V (2.2.23)

ui ≤ yi ∀ i ∈ V (2.2.24)
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j∈W

xj = p (2.2.25)

xj ∈ {0, 1} ∀ j ∈ W (2.2.26)

yi ∈ {0, 1} ∀ i ∈ V (2.2.27)

ui ∈ {0, 1} ∀ i ∈ V (2.2.28)

where w is a weight chosen in [0, 1]. In the objective function we want to maximise
both the first coverage and the backup coverage with a weight as trade-off; then the
constraints (2.2.23) and (2.2.24) work in tandem to determine which nodes receive
backup coverage. The first constraint determines the number of facilities within
the coverage standard of a node. If the total is one or more, yi = 1. If the total
is only one, ui = 0. If the total is two, ui also takes the value of one. The second
constraint ensures that backup coverage can only be provided if first coverage is
already in place. Finally, this model can be extended to deal with greater levels of
coverage simply adding |V | variables for each level and the appropriate constraints.

The last deterministic model we want to analyse, which addresses the problem
of backup coverage, was formulated by Daskin and Stern in [7] and is called Hierar-
chical Objective Set Covering (HOSC) model. It was proposed some years before
the BACOP models, but we present it after them because they are not related
and there are some similarities between HOSC and the model we developed. They
started from the LSCM and they modify it to incorporate two objectives:

• minimize the number of ambulances that are required to cover each of the
demand points in a preset coverage standard;

• given the minimum number of ambulances, maximise the sum over all de-
mand points of the number of ambulances in addition to the one required by
the point above, that can respond to calls in demand point i.

This last objective has been introduced to maximize the amount of multiple cov-
erage in the system. Let

si =
the number of additional EMS unit capable of responding
to a call in zone i in the preset coverage standard r

w = some positive weight
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Then the HOSC model is:

min w
∑
j∈W

xj −
∑
i∈V

si (2.2.29)

s.t.
∑
j∈Wi

xj ≥ 1 + si ∀ i ∈ V (2.2.30)

xj ∈ {0, 1} ∀ j ∈ W (2.2.31)

si ∈ N ∀ i ∈ V (2.2.32)

(2.2.33)

In the objective function they want to minimize the number of ambulances needed
to provide a full coverage, but also minimize the opposite of the number of addi-
tional ambulances able to respond in all the demands points, which is equivalent
to maximize the opposite quantity, everything balanced by an appropriate weight
which depends from the nature of the problem.

Note that the objective function weights equally all ambulances that can re-
spond to a call in zone i. From a practical point of view, one might like to use a
decreasing set of weights for additional ambulances.

2.3 Probabilistic models

Probabilistic models start from the intuition that any given ambulance may be
busy when it is called. This uncertainty can be integrating within the mathematical
formulation or using a queueing framework [4]. One of the first probabilistic model
has been presented by Daskin in [6] and it is called Maximum Expected Covering
Location Problem (MEXCLP). In this model the unavailability of an ambulance
was developed assuming that each vehicle has a probability of being busy, called
busy fraction and denoted as q ∈ [0, 1], and each ambulance is independent, with
the probabilistic meaning, from the others. So, if the node i ∈ V is covered by
k ambulances, then the probability that k ambulances are busy at the same time
is qk. Let Hi,k be a random variable equal to the demand of node i, given that k
ambulances cover that node; hence

Hi,k =

{
0 with probability qk

di with probability (1− qk)
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The expected covered demand is

E[Hi,k] = 0 · qk + di(1− qk)

= di(1− qk)

and the marginal contribution of the k-th ambulance in the expected coverage is

E[Hi,k]− E[Hi,k−1] = di(1− qk)− di(1− qk−1)

= di(1− qk − 1 + qk−1)

= di(1− q)qk−1

Now let

xj = the number of ambulances located at node j

yik =

{
1 if the demand node i is covered by at least k ambulances
0 otherwise

Then the MEXCLP is

max
∑
i∈V

p∑
k=1

di(1− q)qk−1yik (2.3.1)

s.t.
∑
j∈Wi

xj ≥
p∑

k=1

yik ∀ i ∈ V (2.3.2)

∑
j∈W

xj ≤ p (2.3.3)

xj ∈ N ∀ j ∈ W (2.3.4)

yik ≥ 0 ∀ i ∈ V, k ∈ {1, . . . , p} (2.3.5)

where in the objective function we want to maximize the total coverage weighted
with the probability that the ambulances are busy and the inequality (2.3.2) states
that the sum of ambulances in servers j, which cover i, must be greater than the
number of ambulances that cover i.

Of course, one the crucial parameters of this model is the busy fraction. This
parameter has to be estimated time by time according to the nature of the problem:
for example, it could be the total estimated duration of calls for all demand points
divided by the total number of ambulances. The validity of the model derives
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from the fact that the (2.3.1) is concave in k, which means that if yik = 1 than
yih = 1, ∀h ≤ k, otherwise one should add that constraint explicitly.

The next important probabilistic model comes in two variants. Developed by
ReVelle and Hogan in [25], it is called Maximum Availability Location Problem
(MALP). This model seeks to position p ambulances in such a way that the max-
imum demand has a server available within the preset coverage standard r with a
reliability level α. The two versions of MALP both have this same problem state-
ment. They differ, however, in the manner in which the busy fraction of the servers
is calculated. MALP I assumes all servers has the same probability of being busy,
while the second version relaxed this assumption. We discuss only about MALP I
since the MALP II is a generalisation that can be easily derived from the first one.
Let xj as defined in LSCM and yik as in MEXCLP, namely

xj =

{
1 if an ambulance is located in the vertex j,
0 otherwise

yik =

{
1 if the demand node i is covered by at least k ambulances
0 otherwise

q = the busy fraction

Hence the probability of the ambulance in node j of being busy is qxj . Note that if
xj = 0, which means that an ambulance is not present, then qxj = 1, which means
that such ambulance is always busy with probability 1. Then the probability that
all servers j, which cover node i, are busy is

Pr[all servers j, which cover node i, are busy] = q
∑

j∈Wi
xj

and the complementary is the probability that at least one server, which cover i,
is not busy

Pr[at least one server, which covers i, is not busy] = 1− q
∑

j∈Wi
xj

In the model we want the last quantity to be greater than a reliability level α,
namely

1− q
∑

j∈Wi
xj ≥ α

Recalling that q ∈ [0, 1] and xj is binary, we can linearize on xj obtaining

q
∑

j∈Wi
xj ≤ 1− α∑

j∈Wi

xj ≥
⌈
logq(1− α)

⌉
=

⌈
log(1− α)

log q

⌉
=: b ∀ i ∈ V
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Now we can use this bound in the model, that can be written as

max
∑
i∈V

diyib (2.3.6)

s.t.
∑
j∈Wi

xj ≥
b∑

k=1

yik ∀ i ∈ V (2.3.7)

yi,k ≤ yi,k−1 ∀ i ∈ V, k ∈ {2, . . . , b} (2.3.8)∑
j∈W

xj = p (2.3.9)

xj ∈ {0, 1} ∀ j ∈ W (2.3.10)

yik ∈ {0, 1} ∀ i ∈ V, k ∈ {1, . . . , p} (2.3.11)

Note that in this case the objective function is no longer concave in k, so we have
to add (2.3.8) explicitly.

For completeness let’s see also the constraint when the busy fraction is different
for all ambulances. The probability of an ambulance of being busy is qxjj , then the
probability that all servers j, which cover node i, are busy is

Pr[all servers j, which cover node i, are busy is] =
∏
j∈Wi

q
xj
j

and we want

1−
∏
j∈Wi

q
xj
j ≥ α ⇐⇒

∏
j∈Wi

q
xj
j ≤ 1− α ⇐⇒

∑
j∈Wi

log q
xj
j ≤ log(1− α) ⇐⇒

∑
j∈Wi

(log qj)xj ≤ log(1− α)

which is the constraint to add to the model.
The last probabilistic model was formulated in [2] as an extension of the LSCM

and it is called Rel-P. The idea behind this model is similar to the MALP, but
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instead of computing server busy probabilities, they computed the probability that
a given demand point will not find an available server. They defined a cost cjk
as the cost of locating k ambulances at node j and a quantity pj, which is the
maximum number of ambulances located at node j; then let

xjk =

{
1 if k ambulances are located in the vertex j,
0 otherwise

The model is

min
∑
j∈W

pj∑
k=1

cjkxjk (2.3.12)

s.t.
pj∑
k=1

xjk ≤ 1 ∀ j ∈ W (2.3.13)

∑
j∈Wi

pj∑
k=1

ajkxjk ≥ bi ∀ i ∈ V (2.3.14)

xjk ∈ {0, 1} ∀ j ∈ V, k ∈ {1, . . . , pj} (2.3.15)

The constraint (2.3.14) is linear in the number of vehicles required to achieve a
given reliability level. The constant ajk and bi have to be computed to ensure
that given the number of ambulances covering demand point i, the probability of
being unable to answer a call does not exceed a certain value. The mathematical
definition of these two parameters is explained in the original paper, so we refer
to that for more details. In short: ajk is proportional to the logarithm of the
probability that the number of calls in a given area is greater than k, while bi is
proportional to the logarithm of the reliability level.

All the probabilistic models we discussed about have an element in common:
the probability of being busy must be estimated a priori and then used as a fixed
input parameter; but in the literature there are also models based on spatially
distributed queuing theory or simulation. Larson’s hypercube model represents
the most notable milestone for approaches using a queuing framework. The hy-
percube model and its various extensions have been found particularly useful in
determining performance of EMS systems, but the tools used are advanced and
their explanation is beyond the scope of this work. More details can be found in
[14, 15, 37].
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2.4 Dynamic Models

In both deterministic and probabilistic models, a long term perspective was taken
and the demand in these models was naturally assumed to be the same for all
periods, therefore static. However, in a real context, demand is not static, but
fluctuates throughout the week, day of week, and even hour by hour within a
given day. Dynamic redeployment models can aid managers make daily or even
hourly plans to better respond to predictable demand fluctuations by time and
space, but inevitably the ambulance relocation problem is more difficult to tackle
since the model can become nonlinear and since it has to be solved more frequently.

Repede and Bernardo in [24], extended MEXCLP for multiple time intervals
to capture the temporal variations in demand and unit busy probabilities, hence,
called their model TIMEXCLP. Their application of TIMEXCLP to Louisville,
Kentucky resulted in an increase of coverage while the average response time de-
creased by 36%. One of the most comprehensive dynamic relocation models was
developed by Gendreau et al. [11]. The objective of their Dynamic Double Stan-
dard Model at time t (DDSMt) is to maximize backup coverage within a radius r1,
while minimizing relocation costs. In addition to the standard coverage and site
capacity constraints, the model takes into account a number of practical consider-
ations inherent to the dynamic nature of the problem:

• double covering constraints,

• constraints on the number of ambulances at each site,

• constraints avoiding to move the same ambulances repeatedly,

• constraints avoiding round trips,

• constraints avoiding long trips.

Moreover, they consider two types of covering constraints. The absolute cover-
ing constraints require that all the demands be satisfied by an ambulance within
r2 minutes, and the relative covering constraints state that a proportion α of the
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total demand is also within r1 minutes of an ambulance, with r2 > r1. Let

Wi,1 = {j ∈ W : tij ≤ r1}

Wi,2 = {j ∈ W : tij ≤ r2}

M t
j,l =

cost of repositioning, at time t, ambulance l
from its current site to site j ∈ W

xjl =

{
1 if ambulance l is moved to site j
0 otherwise

yik =

{
1 if node i covered at least k times
0 otherwise

Then the redeployment model at time t is

max
∑
i∈V

diyi,2 −
∑
j∈W

p∑
l=1

M t
jlxjl (2.4.1)

s.t.
∑
j∈Wi,2

p∑
l=1

xjl ≥ 1 ∀ i ∈ V (2.4.2)

∑
i∈V

diyi,1 ≥ α
∑
i∈V

di (2.4.3)

∑
j∈Wi,1

p∑
l=1

xjl ≥ yi,1 + yi,2 ∀ i ∈ V (2.4.4)

yi,2 ≤ yi,1 ∀ i ∈ V (2.4.5)∑
j∈W

xjl = 1 ∀ l ∈ {1, . . . , p} (2.4.6)

p∑
l=1

xjl ≤ pj ∀ j ∈ W (2.4.7)

xjl ∈ {0, 1} ∀ j ∈ W, l ∈ {1, . . . , p} (2.4.8)

yik ∈ {0, 1} ∀ i ∈ V k ∈ {1, 2} (2.4.9)

In the model, relation (2.4.2) ensures the single coverage requirement, (2.4.3) im-
poses that a proportion α of all demand is covered, (2.4.4) ensures that the number
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of ambulances located within r1 must be at least one if yi,1 = 1 or at least two
if yi,2 = 1, (2.4.5) states that a demand point cannot be covered twice if it is
not covered at least once, (2.4.6) specifies that each available ambulance must be
assigned to a potential location site and (2.4.7) assigns an upper bound to the
number of ambulances that each site can host. This last constraint can be deleted
if arbitrary ambulances are allowed in each site.

To solve DDSMt, Gendreau, Laporte and Semet have developed a fast tabu
search heuristic implemented on parallel processors. This algorithm runs non-
stop and continuously computes the best possible redeployment plans associated
with the current positions of ambulances, in response to each potential anticipated
ambulance request.



Chapter 3

Ambulance deployment as a Flow
problem

In the previous chapter we have seen the state of the art for addressing the problem,
but as already said, when there is the need to solve the problem of the ambulance
minimisation in a Region or a State, the requirements change and this affects the
formulation of the model. In the next sections we are going to explain exhaustively
the requirements, the emergency medical services in Veneto, the reasons why we
formulated a different model instead of applying one in the literature and also the
reasons behind some assumptions.

3.1 The health system in Veneto

In this section, the aim is to provide an overview of the Veneto health system,
touching on the main points that concern the problem we want to address.

The National Health System in Italy, called “Sistema Sanitario Nazionale”
(SSN), is born in the 1978 with the Law n. 833 of 1978 [31]. Over the years the
national health system has undergone numerous changes from an organizational
point of view. Without going into detail and reporting only the main events, until
1992, the Local Health Units (USL) were designed as operational structures of the
municipalities, individuals or associates, or of the Mountain Communities. The
territory therefore coincided with the municipal one, while in the big cities with
the areas of urban decentralization.

However, due to the ever increasing costs, in 1992 it was decided to radically
change the organizational structure of the system. Legislative Decree n. 502 of
30 December 1992 [29] and the following amendments and additions made by
Legislative Decree of 17 December 1993, n. 517 [30], reorganized the SSN operating
on the nature of the USL, on the powers and responsibilities of the Regions. From

21



22 CHAPTER 3. AMBULANCE DEPLOYMENT AS A FLOW PROBLEM

this moment a process of aggregation and consolidation began; those Legislative
Decrees establish that the Local Health Authorities (ASL in Italian), born from
the old ASL, must coincide with the territory of the Provinces as a result of
their conversion into Companies and therefore with recognition of public legal
personality and instrumental bodies of the Region. The merger started in 1992
leads to a significant decrease in the number of local health authorities within the
national territory with the aim of optimizing the management and containing the
costs of healthcare expenditure.

This type of trend, after developing over the years, underwent a new acceler-
ation at the regional level in 2015 with the implementation of a series of reforms
that involved also the Veneto Region. Towards the end of June 2015, a draft
law was delivered to the regional council, then converted into Regional Law n. 19
of 25 October 2016 [21]. In this law, a new governance system for the regional
health system and a broader reorganization of the territory was imposed. The
most important new features were:

• the merger of the previous ULSS companies (“Unità Locale Socio Sanitaria”);
the new organisation includes nine ULSS company,

• the formation of a new regional instrumental body called “Azienda Zero” in
which the planning, administration and management of regional functions
are concentrated.

The establishment of Azienda Zero has the aim to bring together and concen-
trate in the hands of a single entity the functions of the health planning, as well as
the organization and governance of the Regional Health System, attributing to it
the operations of technical-administrative management on the regional territory.
The centralization of the ULSS aims to allow the Region to save money and speed
up procedures, thus allowing companies to be free to deal with the organization of
services for citizens in the best possible way [16]. Hence, Azienda Zero is in charge
for the management of the financial flows of regional health. In particular, it is
in charge of the investments evaluation in the health sector and their monitoring
and of the supply of ambulances in the public environment for the whole Region.

For what concern the new organisation, the nine ULSS are:

• Azienda ULSS 1 “Dolomiti”,

• Azienda ULSS 2 “Marca Trevigiana”.

• Azienda ULSS 3 “Serenissima”,

• Azienda ULSS 4 “Veneto Orientale”,

• Azienda ULSS 5 “Polesana”,
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Figure 3.1: The Region of Veneto divided in the nine ULSS

• Azienda ULSS 6 “Euganea”,

• Azienda ULSS 7 “Pedemontana”,

• Azienda ULSS 8 “Berica”,

• Azienda ULSS 9 “Scaligera”.

A graphical representation of this division is shown in Figure 3.1.
As already mentioned in the introduction, emergency medical services are un-

der Public Health Authorities control in each Italian Region and the ambulance
subsystem is provided by a variety of different sources. The method of delivery
can vary considerably from one location to another. In some locations, responsi-
bility for the provision of EMS has been undertaken by the local hospital, while
in others, services may be provided by a range of volunteer organizations, such
as the Italian Red Cross (Croce Rossa Italiana), ANPAS (National Association
for Public Assistance), other associations commonly known as “Cross” (Croce),
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usually followed by a colour (White Cross, Green Cross, Yellow Cross...), or by
private companies [34].

In particular in Veneto, for ULSS 1 and 2, the service is characterized by the
management of the urgent emergency service which involves the predominant use of
vehicles owned by the ULSS with the support of volunteers. The service of ULSS 5,
6, 7 and 9 is managed by private entities, while for ULSS 3, 4 and 8, the service
is carried out mainly with vehicles owned by the ULSS. In any case, this simple
division between public and private is not so marked; particular conditions affect
every ULSS: for example, in ULSS 5, an additional support of private entities is
present especially in the summer due to a significant difference in requests dictated
by seasonality.

Due to this organisation, we decided to consider and study each ULSS in-
dependently. Now recalling the main requirements of the problem, provided in
Chapter 1, we cannot use any of the models whose primary goal is to maximise
the level of service. Moreover, we decided to exclude also the LSCM for the reasons
already explained in Section 2.2 and also the Rel-P because the focus is the min-
imisation of the costs, furthermore the parameters of the model were complex to
estimate with the data available. The HOSC model, instead, is unable to provide
the location of the additional vehicles and, similar to the LSCM, its primary goal
is the coverage, so the model has no dependency on the amount of requests.

We want to conclude this section by also reporting other constraints that we
encountered in the study of the problem, in the specific case of Veneto, from DGR
n. 1515 of 29 October 2015 [19], but in the linear programming model we developed
are not relevant:

• the institution must have at least two ambulances with minimum character-
istics required for the accredited activity. Voluntary associations can have
only one ambulance if they are based in a mountain municipality or in an
island area with a population of less than 1500 inhabitants,

• ambulances must have a maximum age of 7 years from the first registration
and a maximum number of 400000 kilometers,

• the emergency vehicles must be at most 12 years old from the first registra-
tion;

• the institution must have at least one reserve vehicle for every three vehicles
in active service for companies up to nine vehicles in service,

• institutions with two vehicles may maintain only one vehicle in active service.
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3.2 The model

In the previous sections we motivated the reasons why the models developed in the
literature were not suitable in out context, so we decided to formulate a new model
that could satisfy our requirements. The idea behind our model is that considering
a specified range of time and a given region with demand points and service points
there is a flow of requests from the demand points which ends in the service
points and based on this incoming flow there must be an appropriate number of
ambulances to satisfy that demand. This kind of problem can be described using
directed graphs called, in literature, flow network.

A flow network is a directed graph G = (V,A), in which a capacity kij ≥ 0
is associated to every directed edge (i, j) and eventually a cost cij : A → R+.
There are also two vertices s and t, called respectively source and sink. The most
common optimisation problem on flow networks aims to send the maximum flow
from s to t. A more general problem aims to find a flow of minimum cost from s
to t. This latter is defined from the following linear programming model:

min
∑

(i,j)∈A

cijxij (3.2.1)

s.t.
∑

(h,j)∈δ+(h)

xhj =
∑

(i,h)∈δ−(h)

xih ∀h ∈ V \ {s, t} (3.2.2)

0 ≤ xij ≤ kij ∀ (i, j) ∈ A (3.2.3)

where δ+(h) = {(h, j) ∈ A : j ∈ V } and δ−(h) = {(i, h) ∈ A : i ∈ V }. Hence in
(3.2.2) we want that from each node the outgoing flow (the left hand side) must
be equal to the incoming flow (the right hand side).

Now the requirements seen in Section 3.1 can be modeled using the tools just
presented with some changes. We do not need the concept of capacity of a directed
edge, but we need the capacity of a hospital, which is the maximum number of
ambulances that a hospital can host and these points are also the sink; then we
have a demand of a node, which quantity has to be defined appropriately, and
these nodes are the sources.

Now we can present the model; first of all we decided to denote by tij the
Euclidean distance, often denoted by d(i, j), in order not to confuse it with the
demand of a node di; this choice will be explained in Section 4.1. Hence, keeping
a notation similar to that used in the literature, let

ri = preset coverage standard of node i ∈ V

di = demand of node i ∈ V
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xij = fraction of demand of i ∈ V served by j ∈ W

yj = number of ambulances of j ∈ W

kj = capacity of hospital j

Wi = {j ∈ W : tij ≤ ri}

Vj = {i ∈ V : tij ≤ ri}

w = a positive weight

First of all we can note that xij, w ∈ R and yj, kj ∈ N. Then the model is:

min
∑
j∈W

yj + w
∑
i∈V

∑
j∈W

tijxij (3.2.4)

s.t.
∑
j∈Wi

xij ≥ di ∀ i ∈ V (3.2.5)

∑
i∈Vj

xij ≤ yj ∀ j ∈ W (3.2.6)

xij ≥ 0 ∀ (i, j) ∈ E (3.2.7)

yj ∈ {0, . . . , kj} ∀ j ∈ W (3.2.8)

where constraint (3.2.5) states that the fraction of demand served by hospitals
around a node i, must be greater than the demand of such node and constraint
(3.2.6) states that the demand served by a hospital j cannot exceed the number of
ambulances present in j. Another important consideration is that in the objective
function (3.2.4) there is an additional term with respect to the sum of the ambu-
lances: we want to minimize also the sum of the fraction of demand multiplied by
the distance and everything weighted with w, because in this way the model will
be inclined to serve a point through its nearest hospital, which results in a faster
response time of an ambulance. This concept is explained in depth in Section 4.1.
Finally, we added a capacity to every hospital on the maximum number of am-
bulances it can host; in practice this constraint is usually useless because in most
occasions there is no limit to the ambulances that a hospital can host.

A graphical representation of the concepts explained can be found in Figure 3.2.
On the left there are three demand points in blue, linked to one hospital in yellow;
the idea is that the hospital has to satisfy the fraction of demand of all this points,
so the number of ambulances must be greater than the sum of all requests, which
is the constraint (3.2.6) in the model. At the same time we can have multiple
hospitals that can serve a demand point, figure on the right, and in this case we
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(a) The number of ambulances must be
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(b) The total demand of a node must be
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Figure 3.2: Graphical representation of the incoming and outgoing flow through
demand and service points

want that the fraction of demand served by all hospitals must be greater than the
demand of the node, which is the constraint (3.2.5).

This model has also several interesting properties:

Theorem 3.2.1. In the optimal solution, if tij > ri then xij = 0, ∀(i, j) ∈ V ×W .

Proof. Suppose by contradiction that there exists (i, j) such that tij > ri and
xij > 0 and let z∗ the optimal value of the objective function of the model under
this assumption. Then tij > ri implies that i /∈ Wj and j /∈ Vi, which means that
for any value of xij ≥ 0, the two constraints (3.2.5) and (3.2.6) hold; now we can
consider the same objective function forcing xij = 0 and let ẑ the value of this
quantity, namely:

ẑ =
∑
l∈W

yl + w
∑
k∈V

∑
l∈W

d(k, l)xkl

=
∑
l∈W

yl + w
∑
k∈V

∑
l∈W

(k,l) 6=(i,j)

d(k, l)xkl + wd(i, j)xij︸ ︷︷ ︸
=0

=
∑
l∈W

yl + w
∑
k∈V

∑
l∈W

(k,l)6=(i,j)

d(k, l)xkl < z∗
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which is impossible, because we assumed z∗ the optimum. Note that the last
inequality comes from the fact that since w > 0, d(i, j) > 0 then wd(i, j)xij > 0
in z∗.

This lemma means that we can formulate the model equivalently writing (3.2.5)
and (3.2.6) respectively as ∑

j∈W

xij ≥ di ∀ i ∈ V

∑
i∈V

xij ≤ yj ∀ j ∈ W

and imposing the constraint

xij = 0 ∀ (i, j) ∈ V ×W, if tij > ri

This latter can be useful when you want to implement the model in practice.

Theorem 3.2.2. The minimum number of ambulances deployed in the server
points is always greater than the sum of the demand of the entire system.

Proof. Let y the minimum number of ambulances deployed and d the total demand
of the system, i.e.,

y =
∑
j∈W

yj d =
∑
i∈V

di

By Theorem 3.2.1 and recalling (3.2.5), (3.2.6) and (3.2.7), we have that∑
j∈W

xij =
∑
j∈Wi

xij ≥ di ∀ i ∈ V (3.2.9)

∑
i∈V

xij =
∑
i∈Vj

xij ≤ yj ∀ j ∈ W (3.2.10)

Now we can sum (3.2.9) over i ∈ V and sum (3.2.10) over j ∈ W obtaining

d =
∑
i∈V

di ≤
∑
i∈V

∑
j∈W

xij ≤
∑
j∈W

yj = y

which concludes the proof. Moreover, since we require yj to be integer, we can
improve the bound:

y ≥

⌈∑
i∈V

∑
j∈W

xij

⌉
≥

⌈∑
i∈V

di

⌉

Theorem 3.2.2 tells us that the total demand of the system is a lower bound of
the number of ambulances we have to dispatch in the system.



Chapter 4

Implementation and results

In this chapter we are going to describe the data acquisition, the implementation
choices and the results obtained. All the experiments were executed on a personal
computer, the exact solver we used is IBM ILOG CPLEX version 12.10 [13] and
for the data manipulation and generation we used Python 3.7 [10].

4.1 Implementation choices

In Chapter 3 we described the model without specifying in detail the parameters
used in the implementation. Now suppose to apply the model in a given region
and all the points inside are demands points: to implement such situation we
decided to divide that region in squares of a given dimension and then consider
the coordinates of the center of the square as a demand point i ∈ V producing
a grid of points. Of course, this approach does not consider the conformation of
a real environment, for example the geographical conformation or the presence of
impediments. In the same way we can define the service points as points whose
coordinates are the center of a square of the grid. In this way the sets of demand
and service points are defined. Figure 4.1 show an example of a 10×10 grid where
demand points are represented in blue and service points in yellow.

As anticipated, another assumption is that the response time of an ambulance
is the distance between the service point, where the rescue vehicle starts, and the
demand point expressed in minutes. This because we assumed the average velocity
of an ambulance to be 60 km/h and the path between a service and a demand point
to be a straight line. Hence, considering two points i ∈ V and j ∈ W , the time to
reach the point i from j is the Euclidean distance, namely:

tij = d(i, j) =
√

(xi − xj)2 + (yi − yj)2

where xi is the x coordinate of point i and the other quantities follow. Note that
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Figure 4.1: Example of a region divided in a 10× 10 grid of demand points in
blue; the yellow points represent the hospitals

tij is no longer a unit of time but one of distance; this abuse of notation is lawful
provided that the preset coverage standards are also consistent. Similarly to the
previous case, this is a strong assumption because the path between two points in
the real life is not a straight line in general, and the average speed of an ambulance
changes from area to area, but it can be easily modified based on the situation.

In Chapter 1 we stated that the maximum response time is eight minutes
for urban areas and twenty minutes for extra-urban areas. First of all, using
the grid approximation of a region, it is difficult identifying an urban area from
an extra-urban; moreover, like in other countries, this standard is not currently
being always met since there is a great disparity in geography and healthcare
efficiency, depending on which region is being analyzed [34]. Hence in Veneto, the
Deliberation of the Regional Council n. 128 of March 8, 2019 [20] decreed that the
maximum response time must be 18 minutes for each area and, since the velocity
of an ambulance we assumed to be 60 km/h = 1 km/min, then in the model the
preset coverage standard is ri = r = 18 km, ∀ i ∈ V .

Another important consideration regarding the model is that there is not any
law that regulate the maximum number of ambulances that a hospital can host,
which leads us to edit the constraint (3.2.8) in the following:

yj ∈ N ∀ j ∈ W
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The next important parameter we have to describe is w: as said previously
adding that additional term in the objective function weighted with a positive
weight, the model will be inclined to serve a point through its nearest hospital,
which results in a faster response time of an ambulance. Note that this consider-
ation is not necessary because in this sense there is no legal constraint to satisfy
but let’s have a look at both situations.

Let’s consider the case w = 0: in this case a hospital can serve all the points
within a radius equal to r, hence in the optimal solution a demand point covered
by more than one hospital may not be served by the closest. The solution of the
model is correct and it respects all the laws, but it’s not difficult to understand
that if a demand point is served by a hospital which is not the nearest, then the
respond time is greater and in the healthcare sector, the shorter the response time,
the higher the probability of a patient to survive. This observation is expressed by
one of the requirements in Chapter 1. For this reason, we decided to add a term
which depends on the mutual distances between service and demand points. This
term must be multiplied by an appropriate weight since the focus of the model
must be to minimise the number of ambulances.

In our case, as we will see, the order of magnitude of yj is about 100 ∼ 101, the
order of magnitude of tij is 101 ∼ 102 and for xij it is 10−3 ∼ 10−2 so we decided to
let w = 10−1 making the order of magnitude of the number of ambulances slightly
higher than the other. In this way the model will choose to reduce as much as
possible the number of ambulances and secondly to serve each point with the
nearest hospital. In the implementation phase we decided to divide the objective
function by w in order to avoid problems of numerical representation. The results
do not change, they are only scaled by a factor w−1.

In Figure 4.2 we can see an example of this argument, where we used the
grid seen previously, we set r = 7 and we generate random number to simulate a
demand for each point. In particular Figure 4.2a shows the plot of the optimal
solution with w = 0 and we can see for example that the demand point in (4.5, 1.5)
is served by the hospital in (4.5, 8.5), which is 7 unit distant, even if the hospital in
(3.5, 1.5) is only 1 unit distant; the same argument can be applied for the demand
point in (3.5, 8.5). On the other hand, Figure 4.2b, where w > 0 we can see that
the model is inclined to serve a point through its nearest hospital. In practice
this turns into a faster response time and hopefully a greater chance of saving the
patient.

Note that if w = 0 the Theorem 3.2.1 does not hold anymore, because there
can be a xij > 0 such that tij > r and the value of the objective function stays
the same. In particular all the constraints continue to be valid for any value of
xij, which is conceptually wrong. If one would like to implement the model with
w = 0, then the alternative formulation seen in Section 3.2 is useful.
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(a) w = 0: in this case a hospital can serve
a point which is much more distance with

respect to another hospital

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

(b) w = 10−1: the model is inclined to
serve a point through its nearest hospital

Figure 4.2: Example for the two different values of w with r = 7

Other important considerations that come out from Figure 4.2a and 4.2b are the
following: in the second figure there are demand points which are partially served
by a hospital and partially by another one; this situation raises a question related
to the hospital from which an ambulance must be deployed in case of a request.
This argument will be discussed later because it seldom occurs and can be solved
using unrelated approaches. The second consideration involves the first figure,
because there is a hospital, the blue circle, which does not host any ambulance.
This means that such structure is useless in our context and this is allowed in
the optimal solution and is not formally regulated by any law. However, in the
health sector, there are other costs and even much greater than those involving the
procurement of ambulances, for example hospital maintenance, that have led us
to modify again the constraint (3.2.8) such that yj ∈ N∗; in this way each hospital
hosts at least one ambulance.

Thanks to this last modification we can also improve the bound given in the
Theorem (3.2.2).

Lemma 4.1.1. If yj ∈ N∗, ∀ j ∈ W then

y =
∑
j∈W

yj ≥ max
{
|W |,

⌈∑
i∈V

di

⌉}
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Proof. From Theorem 3.2.2 we know that

y =
∑
j∈W

yj ≥

⌈∑
i∈V

di

⌉

Now by hypothesis yj ∈ N∗, ∀ j ∈ W we have that yj ≥ 1∀ j ∈ W , hence

y =
∑
j∈W

yj ≥
∑
j∈W

1 = |W |

and the thesis follows.

4.2 Data acquisition and manipulation

In the previous section we explained how we set some parameters showing some
cases of applicability and assuming that we have all the data necessary to solve
the model. In this section we want to explain how those data were generated and
what regions we have considered.

4.2.1 Defining the sets of demand and service points

As already explained, in Italy each region manages the health services indepen-
dently through the local healthcare companies. In Veneto they are called ULSS
and are nine. Hence, we decided to take the ULSS independently and at the first
approach we focused on two of them:

• Azienda ULSS 6 “Euganea”,

• Azienda ULSS 8 “Berica”.

Recall that, from a given region, we want to create the grid of squares of a
given size. To accomplish this goal, we first fixed the dimension of the square
edge to 1 km, then we decided to consider an image representing the region and,
using OpenCV [3], interpolate the image extracting the pixels of interest and, from
them, derive the demand points. To make this procedure uniform, the starting
image has to be in black and white with the interesting region in black. This avoid
problems of segmentation and the black and white image can be easily obtained
with common programs for image processing.

In Figure 4.3 we can see the process of segmentation in details for ULSS 6
“Euganea”: Figure 4.3a shows the starting black and white image and Figure 4.3b
shows the interpolated image. Note that for the edges we decided to insert a point
if at least a half of the pixels in that square are black.
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(a) The starting black and white image:
this image has been created using

GIMP [27]

(b) The resulting grid: each square is
represented by the coordinates of its

center in the model

Figure 4.3: The black-and-white and the interpolated image of ULSS 6

Figure 4.4: The coverage of the hospitals in ULSS 6 with r = 18 km
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Figure 4.5: An example of the input instance

For what concern the service points, there is no source from which it is possible
to obtain the hospital coordinates automatically; for this reason, it was necessary
to manually specify the coordinates within the image. Another element which must
be manually specified is the number of pixels corresponding to one kilometer, to
interpolate the image with squares of 1 km2. All this information is related to a
particular image, therefore it was decided to create a starting instance where the
list of parameters was inserted specified as a textual document. A first example
of the starting instance is shown in the Figure 4.5 where:

• IMG_SRC is the path of the black and white image,

• IMG_PX_PER_KM is the number of pixels corresponding to one kilome-
ters,

• NUMBER_HOSPITALS is the number of the service points within the re-
gion,

• MAX_DISTANCE is the preset coverage standard, whose value has been
already discussed,

• HOSPITALS_COORD_SECTION is a keyword to notify that in the next
NUMBER_HOSPITALS rows the coordinates of the service points are spec-
ified; we added an incremental index at the beginning of each row for control
purpose.

From this data another important information can be derived: we said that
the preset coverage standard in our case is r = 18 km, but the distribution of
the hospitals in a region does not assure that all the service points are covered
within that r. In fact, we can easily answer this question drawing a circle with
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radius r and check if all the points are covered. Figure 4.4 shows in blue the points
where the hospitals are located and for each of them a circle shows what points are
covered from that hospital. It is easy to see that few demand points in the center
left of the figure are not covered so we can immediately conclude that the problem
is impossible with such r. This means that with our assumptions there is no way
of solving the problem with the constraint derived from Deliberation [20]. The
problem could be overcome by increasing r to the minimum number of kilometers
such that all points are covered, in the case of ULSS 6 it is r = 20 km, but this
violets such law because all demand points will have that r. This led us to modify
the definition of ri in this way: if for a point there exist at least a hospital within
r = 18 km or less, than its preset coverage standard remains the same; otherwise
we set the standard to the distance from the nearest hospital. In mathematical
terms:

ri = max
{

18,min{d(i, j) : j ∈ W}
}

4.2.2 Extracting the demand of ambulances

As one can notice, in the previous sections we basically specified every element
of the model but the demand of each node, which we recall is denoted with di.
Since this parameter is the more complex to specify, we started with a pre-existing
formula, which has been used as the reference value in the past. This formula
has been proposed in [22] by AGENAS (the Italian National Agency for Regional
Healthcare Services), which is a non-economic public body funded in 1993 and
subject to oversight by the Ministry of Health. Its tasks are identified by the
Standing Conference on the Relations between the State, the Regions and the
Autonomous Provinces, and it also carries out the tasks laid down by the existing
legislation [23].

Three factors were considered essential when the problem was studied in [22]
and they were the following:

• the use of a homogeneous and rational criterion established at regional level
by the Department of Health to ensure coverage of the territory with medical
means, around which the network of basic ambulances is then placed,

• the standard requirement thus defined for each territory governed by the
Operations Centers, must be reasoned and rationalized by the Heads of the
Operations Centers, formalized by the Coordination and approved by the
Department of Health,

• information sharing with the institutions that govern the territory is neces-
sary, in order to avoid parochial pushes that unbalance the system (that’s
why the proposal must be technically defensible and homogeneous).
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The formula proposed is the following:

Number of ALS vehicles =
1

2

(
PLL

60000
+
PLM

40000
+

LA

350 km2 +
MA

300 km2

)
(4.2.1)

where:

PLL = Population living in lowland

PLM = Population living in mountain

LA = Lowland area (in km2)

MA = Mountain area (in km2)

Two elements from Equation (4.2.1) catch the attention from our point of view: the
first one is the lowland and mountain areas because at the beginning of Section 4.1
we explained that the approximation derived from the grid construction we used,
do not consider the geographical conformation, which means that we are not able to
distinguish between lowland and mountain and this holds also for the population
living in mountainous areas. This fact led us to simplify the formula setting
PLM = 0 and MS = 0. The updated formula follows:

Number of ALS vehicles =
1

2

(
PLL

60000
+

LS

350 km2

)
(4.2.2)

The second important elements of (4.2.1) is the population itself, which we
have never considered until now, so the formula can’t be used if we don’t have
the population distribution inside the region. Hence, we decided to develop a
population generator since this parameter can be useful for testing purposes and
also for various considerations.

For this purpose, we considered bivariate normal distributions to generate our
population and we decided to consider a restricted number of cities for convenience.
In practice we considered the top-nmost populated cities of an ULSS, we extracted
the coordinates of those cities in the black and white image and finally we generated
as much points as the total population in the ULSS, using n bivariate normal
distribution with means the coordinates of each city and the probability of being
called proportional to its own population.

Let’s see an example to clarify using ULSS 6 as instance: we firstly extract the
top-n most populated cities, in our case the top-15 cities, which are shown in the
first two columns of Table 4.1; then we associated to each city its own coordinates
in the black and white image, which we recall it’s shown in Figure 4.3a. This
data is reported in the third column of the table. The next step is to generate the
population using this information: hence we iterated for 935000 times, which is
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City Population
Coord. in the Coord. in the

BW image (px) interpolated image

Padova 213696 (429, 381) (39, 34)
Albignasego 26562 (411, 301) (37, 27)
Selvazzano Dentro 23502 (330, 367) (30, 33)
Vigonza 23462 (502, 424) (45, 38)
Abano Terme 20455 (337, 321) (30, 29)
Cittadella 20333 (324, 682) (29, 62)
Piove di Sacco 20265 (544, 255) (49, 23)
Monselice 17482 (305, 182) (27, 16)
Rubano 16747 (334, 407) (30, 37)
Cadoneghe 16460 (458, 427) (41, 38)
Este 16367 (221, 172) (20, 15)
Campodarsego 15025 (438, 491) (39, 44)
Ponte San Niccolò 13663 (460, 348) (41, 31)
Vigodarzere 13288 (419, 443) (38, 40)
San Martino di Lupari 13208 (396, 682) (36, 62)

Top-15 total population 470515

Total Population 935000

Table 4.1: The top-15 most populated cities of ULSS 6

the total population of ULSS 6, generating time by time one of the coordinates of
the top-15 cities with a probability distribution proportional to the population of
that city with respect to the other 14 cities. For example, Padova has a population
of 213696, which is the 45% of the top-15 cities, hence the multivariate normal
distribution with mean (429, 381) has the 45% of probability of generate a point.
Finally we fixed the covariance matrix of each bivariate normal distribution; we
set it empirically after multiple tests:

Σ =

[
Kx 0

0 Ky

]
where

Kx = length of the region in kilometers

Ky = height of the region in kilometers
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To accomplish this goal, we have to add some additional information to the instance
file in input; these information are the population of an ULSS, the dimension of
the surface considered, in our case we have squares of 1 km of edge and we have
to specify the population density of the cities, which we encoded in a CSV file.

This process is only an approximation of the population living in a certain area,
as one can guess, but it has the advantage that it is scalable, because one can
change the distribution at will or consider different cities to make the distribution
more realistic or, even better, we can add as much cities as we want to improve
the simulation. An example of the random generation for ULSS 6 is shown in
Figure 4.6, where on the left we can see the horizontal plane and on the right
the perspective. From these figures we can see that in the plot a single bivariate
normal distribution is represented; this because there is a great imbalance between
the population of Padova and that of all the other cities; moreover, some of those
cities are located near Padova.

4.2.3 Solving the model for ULSS 6

Now that we have the population living in a service point and we set the area of a
square, we can solve the model using the results of Equation (4.2.2) as the demand
of each point. The interpretation of the output solution related to the xij variables
will be the fraction of ambulances needed to serve i according to (4.2.2).

Before looking briefly at the solutions, we can do some preliminary considera-
tions. First of all, we have that in ULSS 6 there aren’t mountainous areas, hence
the results from (4.2.1) and (4.2.2) are the same. Secondly, Lemma 4.1.1 gives us
a lower bound of the total number of ambulances, hence, considering a population
of 935000, a total area of 2125 km2 and applying the AGENAS formula, we have
that the minimum number of ambulances needed is 10.83, hence from the lemma
the minimum number of ambulances is 11.

Since the population generation is a random process we should report a multi-
tude of results but from time to time the value of the y variables stayed the same,
while the xij vary and in particular we noted that also the points served by two
hospital can change. Nevertheless, we report explicitly only the y variables.

In Table 4.2 we can see the solution in terms of number of ambulances for each
hospital. In Figure 4.7 we can see the complete solution of the model where each
edge, in shades of blue, represents a xij variable and its color represents the value
according to the colorbar on the right. As expected, the number of ambulances of
y3 is much greater than the others because there is the center of the city of Padova;
moreover, there are some points that are shared between two hospitals, but they
are few, as already stated.
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(a) The horizontal plane of ULSS 6: we can
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Figure 4.6: The random population distribution of ULSS 6

Hospital Ambulances
Coord. in the

interpolated image

y1 1 (29, 62)
y2 1 (42, 52)
y3 5 (38, 33)
y4 1 (51, 24)
y5 1 (5, 16)
y6 1 (28, 15)
y7 1 (37, 15)

Total 11

Table 4.2: The minimum number of ambulances for ULSS 6
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Figure 4.7: The plot of the solution for ULSS 6: the color of an edge corresponds
to the value of the respective xij variable according to the colorbar on the right

4.3 A case study: ULSS 8 “Berica”

In Sections 4.1 and 4.2 we explained the tools used to solve the model showing time
by time examples and analyzing the results having applied a formula developed in-
dependently from the optimisation model. In this section the goal is to test another
approach and compare the results with the ones obtained using Equations 4.2.1
and 4.2.2. The ULSS considered is ULSS 8 “Berica”, as already mentioned, it is
one of the public agencies of Veneto and for this reason, the territory and the
management is under the control of Azienda Zero.

4.3.1 The solutions using AGENAS formula

Following the same path as in the previous sections, let’s have a look at the solution
derived from the known formula. First of all, we can have a look to the number
of ambulances provided by Equation 4.2.2 without applying the model; this data
is reported in Table 4.3. Two things to notice: the first one is that in this case
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Hospital PLL PLM LA MA
Number of Ceiling
ALS vehicles value

Arzignano 97775 2797 195 13 1.15 2
Vicenza 267681 0 469 0 2.90 3
Noventa Vicentina 34805 0 147 0 0.50 1
Lonigo 48045 0 237 0 0.74 1
Valdagno 12080 36247 24 155 0.85 1

Total 460386 39044 1071 169 6.14 8

Table 4.3: The requirement of ALS vehicles according to 4.2.1

we have nonzero values for the mountainous area and the population living there,
a piece of information that will be lost in the model; the second one is that the
formula returns generally a floating point, but when we have to make it integer
we don’t have any information that the rounding function returns the best value
because, if the floor function can be applied, we do not have any assurance that
number is sufficient to satisfy the demand, so we are forced to use the ceiling
function (column 7 of the table).

Let’s see now the results obtained with the tools developed. From the previous
table we can see that the total number of vehicles is 6.14, so Lemma 4.1.1 tells
us that the lower bound of the number of ambulances is 7. In Figure 4.8 we can
see the grid of demand points and the hospitals. We can notice that with a preset
coverage standard r = 18 km, not all the demand points are covered, in particular
few points in the upper right area are not covered, in fact the minimum preset
coverage standard should be r = 21 km. For the population, we considered the 10
most populated cities, specified in the Table 4.4 and an example of the random
generation of the population can be seen in Figure 4.9. In 4.9a, 4.9b and 4.9c
we decided to report the orthogonal projections because, unlike ULSS 6 example,
here the contribution of the other cities, which are not the most populated, is not
negligible and we can see a distribution which we cannot approximate basically
with a single bivariate normal distribution.

The solution of the model applying the Equation 4.2.2 are shown in Table 4.5
and Figure 4.10. Anyway, a comparison between the two solutions found with
and without the model is quite difficult, because in Table 4.3 there is the non
negligible contribution coming from the population and the area of the mountain.
However if from these data, we sum the population living in lowland and mountain
and the relative areas and then we apply Equation 4.2.2, the number of ambulance
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Figure 4.8: The coverage of the hospitals in ULSS 8 with r = 18 km

resulting is exactly the same, hence with the model seven ambulances are sufficient
with respect to the eight of the standalone formula.

4.3.2 The solution using another approach

So far we have relied to an equation for the demand of the points and we know the
principle which led to that formulation, but the details of how this formula was
derived are not known, hence we don’t know what specific situations and assump-
tions were made; moreover it comes from a study proposed in 2011, therefore in
light of all this, the formula may be obsolete or inappropriate for the situation we
are considering. These reasons brought us to take another path with other data
and in particular the idea is focused in the emergency calls.

From the database of Azienda Zero, we extracted the accesses made with am-
bulances to emergency rooms for each month from each city of ULSS 8 in 2018;
these data are shown in Table 4.7 on page 54. These are not the data relative
to the number of ambulance interventions; hence we know only how many people
were brought to emergency rooms and the city where they live. This means that if
an ambulance was called but it returned empty because the patient did not need
to be transported to the hospital, that call was not added to the data. Note that
we don’t know the hospital where the patients were brought; for some cities the
data of the accesses of some months were not available, moreover the database
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City Population
Coord. in the

interpolated image

Vicenza 112443 (31, 33)
Valdagno 26425 (11, 43)
Arzignano 26176 (15, 30)
Montecchio Maggiore 24004 (21, 28)
Lonigo 16722 (19, 14)
Dueville 13922 (32, 41)
Chiampo 12938 (11, 31)
Altavilla Vicentina 11976 (24, 27)
Cornedo Vicentino 11968 (14, 40)
Torri di Quartesolo 11831 (38, 30)

Top-10 total population 268405

Total Population of ULSS 8 50000

Table 4.4: The top-10 most populated cities of ULSS 8

Hospital Variable Ambulances
Coord. in the

interpolated image

Valdagno y1 1 (13, 43)
Arzignano y2 1 (15, 30)
Vicenza y3 3 (31, 33)
Lonigo y4 1 (19, 14)
Noventa Vicentina y5 1 (31, 4)

Total 7

Table 4.5: The minimum number of ambulances of ULSS 8 applying (4.2.2)
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Figure 4.9: The random population distribution of ULSS 8
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Figure 4.10: The plot of the solution for ULSS 8 applying (4.2.2)
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underlined unreported accesses in emergency rooms, where the city was not spec-
ified, which are shown in the penultimate row of the table under the voice “other
sources”.

For the above reasons we decided to use as number of calls the sum of the
maximum number of accesses from each city and then, since one assumption of
our model is that the average travel time of an ambulance is one hour, divide
this number for 24 × 30 = 720 that are the hours per month. This result is the
hourly average of the maximum number of accesses in the emergency rooms and
from now we consider that number the total number of requests from the demand
points and the results are summarised in Table 4.8 on page 56. Now that we have
the accesses, we could have drawn the boundaries for each city and distributed
the requests, but it would have required an excessive effort. Hence, we decided
to distribute uniformly the total requests proportional to the population of each
node, namely the larger the population of a node, the more calls are made; so the
demand of node i become:

di =
Pi
Ptot
· d (4.3.1)

where:

Pi = population of node i ∈ V

Ptot =
∑
i∈V

Pi = total population within the region

d =
∑
i∈V

di = total demand of the region

In the case of ULSS 8, Ptot = 500000 and d = 4.249. We know also, from
Lemma 4.1.1, that this latter is the lower bound of the number of ambulances
needed.

The solution of the model follows and it is shown in Table 4.6 and Figure 4.11.
We tested this variant with a multitude of instances randomly generated, but as
in the previous cases the number of ambulances did not change. Thus, considering
all the situations seen until now, we can state empirically that the model is stable
to little variations of the requests of the points. Comparing these results with the
ones obtained before, we can note that the number of ambulances is decreased
of one unit in the hospital of Vicenza. Another aspect that is visible from the
Figure 4.10 and 4.11, is the points covered by each hospital since they stay the
same apart from few points equally distant from the respective hospitals.

These results are quite impressive because in the beginning of the section, we
started with a number of ambulance of eight applying the standalone AGENAS
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formula; then developing an optimisation model and using the same formula con-
textualizing it in the model, we were able to find a better solution and finally, with
an independent argument based of the requests of the points we obtained an even
better solution. Certainly, these results must be validated before applying them in
a real context, because the assumptions made to simplify the writing of the model
are strong. Unfortunately, we do not have detailed data to test the model in a real
context and this can become a starting point for future studies. Finally, it must
be said that the numbers obtained would not be definitive due to other constraints
present in [19], as explained in Section 3.1.

4.3.3 A closer look: the choice of the weight and the points
served by multiple hospitals

In the last part of this chapter we want to talk about two relevant topics that were
not studied in depth:

• the choice of w,

• the demand points served by multiple hospitals in the optimal solution.

The first topic is quite crucial in the model and in Section 4.1 it was set to a
fixed value and never edit. The considerations we are going to see holds for all
the instances we have seen so far. Recalling what we have said: the weight w
was inserted in the objective function to balance the contribution of the number
of ambulances and the one from the multiplication between the x variables and
the distances with hospitals. In this way the model will choose to minimize the
number of ambulances as first target and secondly serve each point with the nearest
hospital.

After solving some instances, we can see that in the objective function there is
a gap, which order of magnitude is 102, between the y variables and the wd(i, j)xij
terms. This gap can be reduced to 101, namely set w = 1 and all the solutions
will not change minimally, and for this reason, we do not report the graphs, but
despite the potential choice, we decided to keep a greater gap if larger instances
were considered.

A different situation comes if we change w in both direction, because if we
increase its value, the model is not incline to minimise the number of ambulance
at all, it minimises the second term and the number of ambulances becomes of the
order of hundreds or more.

On the other hand, if we decrease the value the model will try to minimise
the overall ambulance as much as possible. About that it is interesting to see
the solution of ULSS 8 instance fixing w = 10−2 or smaller, because the mini-
mum number of ambulances needed to serve all points is five, applying the average
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Hospital Variable Ambulances
Coord. in the

interpolated image

Valdagno y1 1 (13, 43)
Arzignano y2 1 (15, 30)
Vicenza y3 2 (31, 33)
Lonigo y4 1 (19, 14)
Noventa Vicentina y5 1 (31, 4)

Total 6

Table 4.6: The minimum number of ambulances of ULSS 8 applying (4.3.1)
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Figure 4.11: The plot of the solution for ULSS 8 applying (4.3.1)
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Figure 4.12: The plot of the solution for ULSS 8 applying (4.3.1) for small w

maximum number of accesses, one for each hospital, and the graph can be shown
in Figure 4.12. This reflects the concepts explained in Section 4.1 and this solu-
tion, despite being better, violates the requirements of “satisfy the requests as fast
as possible”. Note also that the solution in Table 4.5, returned using AGENAS
formula cannot be improved for Lemma 4.1.1. The main concept behind this ret-
rospective is that, based on the instances and the requirements, one will choose a
different value of w.

The second important topic concerns the demand points that are served by
multiple hospitals in the optimal solution. This case is present in all the three
optimal solutions seen in Sections 4.2 and 4.3. Conceptually it is correct and this
is perfectly allowed by the requirements. The problem comes if one of these points
generate a request, because we did not define any policy related to the hospital
from which an ambulance must be deployed. In this context many different choices
can be made: for example, a choice can be to pick up randomly a hospital defining
a probability distribution, another one can be to send an ambulance from the
hospital that hosts the larger number of vehicles and so forth and so on.
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Now the question is which choice could be the best: even in this case one option
can be better than another based on the requirements of the problem. In our case
we have to recall that the main goals are the minimisation of the ambulances and
the rapidity of response. A reasonable approach derived directly from the model
is to send an ambulance according to a probability which is proportional to the
value of the xij variables serving that point. Another choice in line with this
policy is to send an ambulance from the nearer hospital and if the distance is the
same, send from the hospital which host the highest number of vehicles. However,
these options can fail because it is true that the response is the quickest, but we
have to account that other requests can be generated. Hence the option we want
to propose and analyse is the following: send the ambulance from the hospital
that serves those points that have the lowest probability to generate a number of
requests greater than the number of ambulances hosted by such hospital.

More formally, starting from an optimal solution returned by the model, sup-
pose the point k ∈ V to be served by more than one hospital; let’s define the new
quantities:

Ri = the number of requests generated from point i ∈ V

Hi = the set of hospitals that serve i ∈ V

Cj = the set of demand points i ∈ V served only by hospital j

Sj =
∑
i∈Cj

Ri

Hence |Hk| ≥ 2, Ri and Sj are two random variables and clearly Sj is the sum of
all requests generated by the points served only by hospital j. Then the choice of
the hospital is:

k = arg min
j∈Hi

{
Pr
[
Sj < yj

]}
= arg min

j∈Hi

{
Pr

[∑
i∈Cj

Ri < yj

]}
Now this equation can be expanded defining the distribution functions and trying
to derive the probability of the sum of random variables, but the definition of the
probability functions is outside the scope of this work and we are not claiming
that one the particular options we presented to address the problem is the best;
with this insight we just want to discuss about an aspect coming from the output
of the model and some tools to analyse it.
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City
Number of accesses per month to hospitals

Total
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Agugliaro 2 2 8 4 4 3 3 4 5 3 3 4 45
Albettone 9 4 8 5 5 8 5 5 7 11 9 9 85
Alonte 13 12 7 14 8 9 1 6 1 4 8 10 93
Altavilla Vicentina 32 28 32 25 47 49 40 27 36 38 31 33 418
Altissimo 8 7 6 6 7 5 5 8 12 3 6 7 80
Arcugnano 20 24 21 17 34 29 23 23 22 18 20 28 279
Arzignano 127 114 109 102 102 108 111 106 110 115 100 99 1303
Asigliano Veneto 2 1 1 10 1 3 3 - 2 1 4 - 28
Barbarano Vicentino 26 15 19 20 - - - - - - - - 80
Bolzano Vicentino 11 13 13 17 23 15 18 18 16 23 22 18 207
Brendola 21 33 20 28 19 36 29 30 30 27 38 38 349
Bressanvido 7 7 5 3 14 8 7 7 4 5 8 4 79
Brogliano 18 12 17 23 34 18 25 14 11 29 21 16 238
Caldogno 35 21 41 28 40 43 40 29 26 44 28 32 407
Camisano Vicentino 22 18 23 30 43 33 38 31 28 28 36 27 357
Campiglia Dei Berici 7 10 4 2 11 4 7 6 10 6 6 8 81
Castegnero 10 8 6 6 7 7 8 11 7 8 16 5 99
Castelgomberto 30 30 32 38 24 27 27 37 24 31 25 29 354
Chiampo 56 53 43 44 51 48 46 52 52 43 61 34 583
Cornedo Vicentino 72 67 73 60 58 72 80 55 76 81 60 73 827
Costabissara 25 17 17 22 13 20 13 12 19 15 24 15 212
Creazzo 37 45 35 32 43 35 50 41 41 35 39 43 476

Continued on next page
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City

Number of accesses per month to hospitals
Total

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Crespadoro 3 5 3 7 6 3 6 4 5 3 3 3 51
Dueville 48 38 46 28 61 46 48 45 44 52 49 49 554
Gambellara 21 13 21 22 15 12 17 20 20 16 15 12 204
Gambugliano 1 5 7 1 3 3 5 5 7 2 4 7 50
Grisignano Di Zocco 12 17 15 10 15 22 14 19 15 15 12 16 182
Grumolo Delle Abbadesse 10 5 12 8 9 11 16 16 15 7 16 13 138
Isola Vicentina 27 31 26 37 33 32 42 36 29 31 24 38 386
Longare 26 18 14 15 26 24 22 23 16 25 28 18 255
Lonigo 109 76 107 110 101 82 90 103 103 114 80 101 1176
Montebello Vicentino 28 28 25 23 29 25 34 28 34 35 23 27 339
Montecchio Maggiore 109 96 101 106 102 109 102 89 113 114 116 114 1271
Montegalda 13 6 11 10 13 18 12 21 10 11 4 16 145
Montegaldella 5 10 2 3 2 6 1 4 3 2 - 7 45
Monteviale 12 4 9 5 6 6 11 9 6 8 8 8 92
Monticello Conte Otto 25 29 19 30 31 19 33 24 24 40 34 34 342
Montorso Vicentino 14 9 3 13 7 13 10 8 8 13 12 6 116
Mossano 15 6 13 4 - - - - - - - - 38
Nanto 10 13 10 9 7 8 11 5 5 12 3 13 106
Nogarole Vicentino 3 - 1 3 4 8 8 5 2 2 3 3 42
Noventa Vicentina 46 28 46 25 39 42 43 38 44 39 30 42 462
Orgiano 22 15 13 8 8 9 15 14 19 16 16 14 169
Pojana Maggiore 21 18 22 17 25 21 25 28 20 16 21 25 259

Continued on next page
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City
Number of accesses per month to hospitals

Total
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Pozzoleone 12 1 5 3 3 10 5 6 7 9 3 3 67
Quinto Vicentino 22 15 18 8 21 19 16 4 19 16 17 14 189
Recoaro Terme 52 42 51 58 53 53 47 45 43 48 45 44 581
San Pietro Mussolino 3 3 7 4 4 6 2 2 5 2 5 8 51
Sandrigo 28 22 18 35 34 20 29 24 21 27 31 38 327
Sarego 55 39 34 40 39 37 32 36 34 50 27 31 454
Sossano 32 30 20 16 22 18 24 21 30 23 24 34 294
Sovizzo 19 16 18 14 25 19 28 22 13 19 14 27 234
Torri Di Quartesolo 38 44 31 39 36 31 38 44 45 42 45 44 477
Trissino 46 41 36 46 28 44 37 39 34 54 40 37 482
Val Liona 14 10 21 7 12 4 7 7 9 12 4 13 120
Valdagno 267 152 212 231 211 210 196 187 186 218 191 200 2461
Vicenza 568 458 494 405 530 522 532 525 515 573 510 553 6185
Villaga 6 6 6 5 3 5 6 4 7 8 8 7 71
Zermeghedo 9 5 4 5 1 7 4 4 5 6 8 3 61
Zovencedo 6 - - 1 5 3 3 3 1 3 3 2 30

Other Sources 171 150 175 189 234 253 248 252 260 228 201 216 2577

Total 2518 2045 2216 2136 2391 2360 2398 2291 2315 2479 2242 2372 27645

Table 4.7: Accesses made with ambulances to emergency rooms for each month from each city of ULSS 8 in 2018
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City
Max. monthly Avg. hourly

accesses accesses

Agugliaro 8 0.011
Albettone 11 0.015
Alonte 14 0.019
Altavilla Vicentina 49 0.068
Altissimo 12 0.017
Arcugnano 34 0.047
Arzignano 127 0.176
Asigliano Veneto 10 0.014
Barbarano Vicentino 26 0.036
Bolzano Vicentino 23 0.032
Brendola 38 0.053
Bressanvido 14 0.019
Brogliano 34 0.047
Caldogno 44 0.061
Camisano Vicentino 43 0.060
Campiglia Dei Berici 11 0.015
Castegnero 16 0.022
Castelgomberto 38 0.053
Chiampo 61 0.085
Cornedo Vicentino 81 0.113
Costabissara 25 0.035
Creazzo 50 0.069
Crespadoro 7 0.010
Dueville 61 0.085
Gambellara 22 0.031
Gambugliano 7 0.010
Grisignano Di Zocco 22 0.031
Grumolo Delle Abbadesse 16 0.022
Isola Vicentina 42 0.058
Longare 28 0.039
Lonigo 114 0.158
Montebello Vicentino 35 0.049
Montecchio Maggiore 116 0.161
Montegalda 21 0.029

Continued on next page
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City
Max. monthly Avg. hourly

accesses accesses

Montegaldella 10 0.014
Monteviale 12 0.017
Monticello Conte Otto 40 0.056
Montorso Vicentino 14 0.019
Mossano 15 0.021
Nanto 13 0.018
Nogarole Vicentino 8 0.011
Noventa Vicentina 46 0.064
Orgiano 22 0.031
Pojana Maggiore 28 0.039
Pozzoleone 12 0.017
Quinto Vicentino 22 0.031
Recoaro Terme 58 0.081
San Pietro Mussolino 8 0.011
Sandrigo 38 0.053
Sarego 55 0.076
Sossano 34 0.047
Sovizzo 28 0.039
Torri Di Quartesolo 45 0.063
Trissino 54 0.075
Val Liona 21 0.029
Valdagno 267 0.371
Vicenza 573 0.796
Villaga 8 0.011
Zermeghedo 9 0.013
Zovencedo 6 0.008

Other Sources 353 0.490

Total 3059 4.249

Table 4.8: Maximum accesses per month and relative average hourly accesses for
ULSS 8



Chapter 5

Conclusion and future works

In this thesis we introduced, to the best of our knowledge, a new model to solve
the problem of the minimisation of the number of ambulances in a given region,
maintaining a certain level of service. Moreover, from this model we derived im-
portant results that provide a lower bound of the number of vehicles to deploy in
a given region, which can be used as a first estimate.

Later we applied our model to a real instance, ULSS 8. We first showed the
number of ambulances required if an independent formula is used, then we used
that formula within our model to extract the demand of the points, and finally we
used real data, concerning the accesses in the emergency rooms. The results show
that, in this situation, the overall number of ambulances can be reduced by two
units. Unfortunately we were not able to test the results in a real environment for
lack of significant data, mainly because in the development phase, we introduced
some assumptions to simplify the writing of the model and a validation of the
results is needed to verify if the simplifications made are consistent. A positive note
is that some assumptions can be easily modified without changing the structure
of the model.

In this aspect, in the future some improvements can be implemented: first
of all testing the results on real environments with different sizes, but also we
would like to obtain the data of the actual requests from each hospital (this aspect
can be used to improve the demand parameter of the model). Also, the average
speed and the time it takes for a vehicle to fulfill a call can improve the preset
coverage standard. In this direction there are more sophisticated improvements
that can be implemented: for example, map the travel of a vehicle in the road
network adding different travel times for each stretch. This would remove the
assumption of reaching the demand points in a straight line. For what concerns the
distribution of the requests, an improvement can follow from the recognition of the
cities in a given region using the boundaries which can lead to a better population
distribution and consequently of the demand distribution. As we explained, in
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the Italian EMS there are different types of vehicles used whereas in the model
we considered only the ambulances. Considering different type of vehicles with,
for example, different types of requests and coverage standards, can be another
integration to the model.

To conclude we want to point out that we have not spoken about the running
time of the optimisation software, even though we model the problem using a mixed
integer linear programming model. This is because the number and the order of
magnitude of the integer variables of our instances is low and the optimisation
software solves such instances in tens of a seconds, and it only takes a few seconds
for more complex instances specially built.
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