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Summary

The goal of this thesis is the implementation of the Feasibility Pump (FP), a

MIP heuristic originally written for CPLEX, through open-source software like

QSopt and Coin-Or. This aim has been reached implementing two libraries of

functions (one for each solver) that capture all CPLEX routines called by FP

and perform the same operations using the function of Coin-Or or QSopt. In

this way all functionalities of FP are preserved and the interfaces obtained can

be applied to any program written for CPLEX with the possibility to run it also

with Coin-Or and QSopt, without the need to rewrite the code.

The FP and the correspondent interfaces have been tested on a good number

of MIPs problems and so it has been possible to evaluate potentialities of FP

through the three solvers and to establish the performance of each software.

The interface for QSopt has been written in C, while that for Coin-Or has

been written in C++.
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Sommario

Lo scopo di questa tesi è l’implementazione della Feasibility Pump (FP),

un euristico MIP originariamente scritto per CPLEX, attraverso software open-

source quali QSopt e Coin-Or. Questo obiettivo è stato raggiunto implementando

due librerie di funzioni (una per ciascun solver) che catturano tutte le routine di

CPLEX chiamate dalla FP ed eseguono le stesse operazioni utilizzando le funzioni

di Coin-Or e QSopt. In questo modo tutte le funzionalità della FP sono state

mantenute e le interfacce realizzate possono essere applicate anche ad altri pro-

grammi scritti per CPLEX, con la possibilità di eseguirli con Coin-Or e QSopt,

senza la necessità di riscrivere il codice.

La FP e le due interfacce sono state testate su un certo numero di problemi

di tipo MIP; è stato cos̀ı possibile valutare le potenzialità della FP attraverso i

tre solvers ed anche le prestazioni di ciascun software.

L’interfaccia per QSopt è stata scritta in C, mentre quella per Coin-Or in

C++.
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Introduction

This thesis describes the implementation of an LP-based heuristic for mixed

integer programming (Feasibility Pump), through open-source software.

Feasibility Pump (FP) is a heuristic algorithm, proposed by M. Fischetti, A.

Lodi and F. Glover [25], whose target is to provide a feasible solution to NP-hard

0-1 MIP problems. Since NP-hard problems can be extremely hard in practice,

in some important cases state-of-the-art MIP solvers may spend a very large

computational effort before discovering their first solution. Therefore, a heuristic

method like the FP to find a feasible solution for hard MIPs is highly important.

Original FP is written to be linked to the commercial software ILOG-CPLEX

8.1 [26]. The main target of this thesis is the implementation of this algorithm

through open-source software like Coin-Or [27] and QSopt [28]: using these it

is possible to evaluate the feasible solutions found, the time to find them by

applying the FP, and then to compare the results.

Remarkably, this target has been reached without the need to rewrite the

entire code of FP, but implementing a program (one for each solver) that captures

all calls to CPLEX’s routines (from FP) and performs the same operations by

using the functions of each software. In this way we have obtained a general

interface applicable to other programs written for CPLEX, to be linked with

Coin-Or and QSopt.

For this thesis the following solvers have been used:

• ILOG-CPLEX 8.1, obtained through a departmental license

• QSopt, free software downloaded from the web

• Coin-Or, free software downloaded from the web

and the platform Cygwin [29], that is a free Linux-like environment for Windows.
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xii INTRODUCTION

Chapter-by-chapter:

• Chapter 1 Feasibility Pump: the article written by Fischetti, Lodi and

Glover with the description of the Feasibility Pump [25].

• Chapter 2 ILOG-CPLEX: description of the commercial solver taken

from [26].

• Chapter 3 QSopt: brief description of the free software taken from [28].

• Chapter 4 Coin-Or: complete description of the open-source software

taken from [27].

• Chapter 5 Feasibility Pump implemented with QSopt and Coin-

Or: development of the interfaces from CPLEX to QSopt and from CPLEX

to Coin. Subsequently, a detailed description of the implementation for each

routine called by FP.

• Chapter 6 Computational results: a set of tests to compare the per-

formance of FP through the new interfaces to different solvers.

• Chapter 7 Conclusions: final considerations about the work.

In appendix:

• A - Source code: “from ILOG-CPLEX to QSopt”

• B - Source code: “from ILOG-CPLEX to Coin-Or”



Chapter 1

The Feasibility Pump

1.1 Introduction

This chapter is taken by the paper [25] and it introduces the Feasibility Pump

(FP), an algorithm developed by M. Fischetti, F. Glover and A. Lodi. The focus

is the problem of finding a feasible solution of a generic MIP problem of the form

(MIP ) min cT x (1.1)

Ax ≥ b (1.2)

xj integer ∀j ∈ I (1.3)

where A is an m × n matrix. This NP-hard problem can be extremely hard

in practice—in some important practical cases, state-of-the-art MIP solvers may

spend a very large computational effort before discovering their first solution.

Therefore, heuristic methods to find a feasible solution for hard MIPs are highly

important in practice. This is particularly true in recent years where success-

ful local-search approaches for general MIPs such as local branching [9] and

RINS/guided dives [7] are used that can only be applied if an initial feasible solu-

tion is known. Heuristic approaches to general MIP problems have been proposed

by several authors, including [2, 3, 4, 7, 9, 10, 11, 12, 13, 14, 18, 17, 20, 21, 24].

In this chapter a new approach to compute heuristic MIP solutions is shown

and it is called Feasibility Pump. The chapter is organized as follows. In the

remaining part of this section the FP method is described in more detail, and

then its implementation for 0-1 MIPs. Computational results are presented in

Section 1.2, where a comparison is reported, taken from [1], between the FP

performance and that of the commercial software ILOG-Cplex 8.1 on a set of 83
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2 CHAPTER 1. THE FEASIBILITY PUMP

hard 0-1 MIPs. The possibility of reducing the computing time involved in the

various LP solutions is addressed in Section 1.3, where the use of approximate LP

solutions is investigated. In the same section it is also addressed the possibility

of using the FP scheme to produce a sequence of feasible solutions of better and

better quality.

Let P := {x : Ax ≥ b} denote the polyhedron associated with the LP relax-

ation of the given MIP. With a little abuse of notation, we say that a point x

is integer if xj is integer for all j ∈ I (no matter the value of the other compo-

nents). Analogously, the rounding x̃ of a given x is obtained by setting x̃j := [xj]

if j ∈ I and x̃j := xj otherwise, where [·] represents scalar rounding to the nearest

integer.

We will consider the L1-norm distance between a generic point x ∈ P and a

given integer point x̃, defined as

∆(x, x̃) =
∑

j∈I

|xj − x̃j|

Notice that the continuous variables xj (j 6∈ I), if any, do not contribute to this

function. Assuming without loss of generality that the MIP constraints include

the variable bounds lj ≤ xj ≤ uj for all j ∈ I, we can write

∆(x, x̃) :=
∑

j∈I:exj=lj

(xj − lj) +
∑

j∈I:exj=uj

(uj − xj) +
∑

j∈I:lj<exj<uj

(x+
j + x−j )

where the additional variables x+
j and x−j require the introduction into the MIP

model of the additional constraints:

xj = x̃j + x+
j − x−j , x+

j ≥ 0, x−j ≥ 0, ∀j ∈ I : lj < x̃j < uj (1.4)

Given an integer point x̃, the closest point x∗ ∈ P can therefore be determined

by solving the LP

min{∆(x, x̃) : Ax ≥ b} (1.5)

If ∆(x∗, x̃) = 0, then x∗j (= x̃j) is integer for all j ∈ I, so x∗ (but not necessarily

x̃) is a feasible MIP solution. Conversely, given a point x∗ ∈ P , the integer point

x̃ closest to x∗ is easily determined by rounding x∗. These observations suggest

the following Feasibility Pump (FP) heuristic to find a feasible MIP solution, in

which a pair of points (x∗, x̃) with x∗ ∈ P and x̃ integer is iteratively updated

with the aim of reducing as much as possible their distance ∆(x∗, x̃).
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We start from any x∗ ∈ P , and initialize a typically infeasible integer point x̃

as the rounding of x∗. At each FP iteration, called a pumping cycle, we fix x̃ and

find through linear programming the point x∗ ∈ P which is as close as possible to

x̃. If ∆(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and we are done. Otherwise,

we replace x̃ by the rounding of x∗ so as to further reduce ∆(x∗, x̃), and repeat.

(This basic scheme will be slightly elaborated, as we indicate subsequently, so as

to overcome possible stalling and cycling issues.)

From a geometric point of view, the FP generates two (hopefully convergent)

trajectories of points x∗ and x̃ that satisfy feasibility in a complementary but

partial way—one satisfies the linear constraints, the other the integer require-

ment. An important feature of the method is related to the infeasibility measure

used to guide x̃ towards feasibility: instead of taking a weighted combination

of the degree of violation of the single linear constraints, as customary in MIP

heuristics, we use the distance ∆(x∗, x̃) of x̃ from polyhedron P , as computed at

each pumping cycle1. This distance can be interpreted as a sort of “difference

of pressure” between the two complementary types of infeasibility of x∗ and x̃,

that we try to reduce by “pumping” the integrality of x̃ into x∗—hence the name

of the method. FP can be interpreted as a strategy for producing a sequence of

roundings that leads to a feasible MIP point.

The FP can also be viewed as modified local branching strategy [9]. Indeed, at

each pumping cycle we have an incumbent (infeasible) solution x̃ satisfying the

integer requirement, and we face the problem of finding a feasible solution (if any

exists) within a small-distance neighborhood, i.e., changing only a small subset

of its variables. In the local branching context, this subproblem would have been

modeled by the MIP

min{cT x : Ax ≥ b, xj integer ∀j ∈ I, ∆(x, x̃) ≤ k}

for a suitable value of parameter k, and solved through an enumerative MIP

method. In the FP context, instead, the same subproblem is modeled in a relaxed

way through the LP (1.5), where the “small distance” requirement is translated

in terms of the objective function. (Notice that (1.5) can be viewed as a relaxed

model for the problem: “Change a minimum number of variables so as to convert

the current x̃ into a feasible MIP solution x∗”.) The working hypothesis here is

that the objective function ∆(x, x̃) will discourage the optimal solution x∗ of the

1A similar infeasibility measure for nonlinear problems was recently investigated in [6].
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relaxation from being “too far” from the incumbent x̃, hence we expect a large

number of the integer-constrained variables in x̃ will retain their (integer) values

also in the optimal x∗.

In the remainder of this chapter we will focus on the important case where

all integer-constrained variables are binary, i.e., we assume constraints Ax ≥ b

include the variable bounds 0 ≤ xj ≤ 1 for all j ∈ I. As a consequence, no

additional variables x+
j and x−j are required in the definition of the distance

function (1.4), which attains the simpler form

∆(x, x̃) :=
∑

j∈I:exj=0

xj +
∑

j∈I:exj=1

(1− xj) (1.6)

An outline of the FP algorithm for 0-1 MIPs is reported in Figure 1.1. The

algorithm receives on input two parameters: the time limit TL and the number

T of variables to be flipped (i.e., changed with respect to their current 0-1 value)

at each iteration—the use of this latter parameter will be clarified later on. At

The Feasibility Pump (basic version):

1. initialize nIT := 0 and x∗ := argmin{cT x : Ax ≥ b};
2. if x∗ is integer, return(x∗);

3. let x̃ := [x∗] (= rounding of x∗);

4. while (time < TL) do

5. let nIT := nIT + 1 and compute x∗ := argmin{∆(x, x̃) : Ax ≥ b};
6. if x∗ is integer, return(x∗);

7. if ∃ j ∈ I : [x∗j ] 6= x̃j then

8. x̃ := [x∗]

else

9. flip the TT = rand(T/2,3T/2) entries x̃j (j ∈ I)

with highest |x∗j − x̃j|
10. endif

11. enddo

Figure 1.1: The basic FP implementation for 0-1 MIPs

step 1, x∗ is initialized as a minimum-cost solution of the LP relaxation, a choice

intended to increase the chance of finding a small-cost feasible solution. At each

pumping cycle, at step 5 we redefine x∗ as a point in P with minimum distance
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from the current integer point x̃. We then check whether the new x∗ ∈ P is

integer. If this is not the case, the current integer point x̃ is replaced at step

8 by [x∗], so as to reduce even further the current distance ∆(x∗, x̃). In order

to avoid stalling issues, in case x̃ = [x∗] (with respect to the integer-constrained

components) we flip, at step 9, a random number TT ∈ {1
2
T, · · · , 3

2
T} of integer-

constrained entries of x̃, chosen so as to minimize the increase in the total distance

∆(x∗, x̃).

The procedure terminates as soon as a feasible integer solution x∗ is found, or

when the time-limit TL has been exceeded. In this latter case, the FP heuristic has

to report a failure–which is not surprising, as finding a feasible 0-1 MIP solution

is an NP-hard problem in general.

A main problem with the basic FP implementation described above is the

possibility of cycling : after a certain number of iterations, the method may en-

ter a loop where a same sequence of points x∗ and x̃ is visited again and again.

In order to overcome this drawback, the following straightforward perturbation

mechanism is implemented. As soon as a cycle is heuristically detected by com-

paring the solutions found in the last 3 iterations, and in any case after R (say)

iterations, steps 7-10 are skipped and a random perturbation move is applied.

To be more specific, for each j ∈ I a uniformly random value ρj ∈ [−0.3, 0.7] is

generated and, in case |x∗j − x̃j|+ max{ρj, 0} > 0.5, x̃j is flipped.

1.2 Computational experiments

In this section we report computational results taken from the article [1],

comparing the performance of the FP method with that of the commercial software

ILOG-Cplex 8.1. The testbed is made by 44 0-1 MIP instances collected in

MIPLIB 2003 [1] and described in Table 1.1, plus an additional set of 39 hard 0-1

MIPs described in Table 1.2. The two tables report the instance names and the

corresponding number of variables (n), of 0-1 variables (|I|) and of constraints

(m).

The results of the initial FP implementation described above are reported

in Tables 1.3 and 1.4, with a comparison with the state-of–the-art MIP solver

ILOG-Cplex 8.1. The focus of this experiment was to measure the capability of

the compared methods to converge to an initial feasible solution, hence both FP

and ILOG-Cplex were stopped as soon as the first feasible solution was found.
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Name n |I| m Name n |I| m

10teams 2025 1800 230 mod011 10958 96 4480

A1C1S1 3648 192 3312 modglob 422 98 291

aflow30a 842 421 479 momentum1 5174 2349 42680

aflow40b 2728 1364 1442 net12 14115 1603 14021

air04 8904 8904 823 nsrand ipx 6621 6620 735

air05 7195 7195 426 nw04 87482 87482 36

cap6000 6000 6000 2176 opt1217 769 768 64

dano3mip 13873 552 3202 p2756 2756 2756 755

danoint 521 56 664 pk1 86 55 45

ds 67732 67732 656 pp08a 240 64 136

fast0507 63009 63009 507 pp08aCUTS 240 64 246

fiber 1298 1254 363 protfold 1835 1835 2112

fixnet6 878 378 478 qiu 840 48 1192

glass4 322 302 396 rd-rplusc-21 622 457 125899

harp2 2993 2993 112 set1ch 712 240 492

liu 1156 1089 2178 seymour 1372 1372 4944

markshare1 62 50 6 sp97ar 14101 14101 1761

markshare2 74 60 7 swath 6805 6724 884

mas74 151 150 13 t1717 73885 73885 551

mas76 151 150 12 tr12-30 1080 360 750

misc07 260 259 212 van 12481 192 27331

mkc 5325 5323 3411 vpm2 378 168 234

Table 1.1: The 44 0-1 MIP instances collected in MIPLIB 2003 [1]

Name n |I| m source Name n |I| m source

biella1 7328 6110 1203 [9] blp-ar98 16021 15806 1128 [18]

NSR8K 38356 32040 6284 [9] blp-ic97 9845 9753 923 [18]

dc1c 10039 8380 1649 [8] blp-ic98 13640 13550 717 [18]

dc1l 37297 35638 1653 [8] blp-ir98 6097 6031 486 [18]

dolom1 11612 9720 1803 [8] CMS750 4 11697 7196 16381 [15]

siena1 13741 11775 2220 [8] berlin 5 8 0 1083 794 1532 [15]

trento1 7687 6415 1265 [8] railway 8 1 0 1796 1177 2527 [15]

rail507 63019 63009 509 [9] usAbbrv.8.25 70 2312 1681 3291 [15]

rail2536c 15293 15284 2539 [9] manpower1 10565 10564 25199 [22]

rail2586c 13226 13215 2589 [9] manpower2 10009 10008 23881 [22]

rail4284c 21714 21705 4284 [9] manpower3 10009 10008 23915 [22]

rail4872c 24656 24645 4875 [9] manpower3a 10009 10008 23865 [22]

A2C1S1 3648 192 3312 [9] manpower4 10009 10008 23914 [22]

B1C1S1 3872 288 3904 [9] manpower4a 10009 10008 23866 [22]

B2C1S1 3872 288 3904 [9] ljb2 771 681 1482 [7]

sp97ic 12497 12497 1033 [9] ljb7 4163 3920 8133 [7]

sp98ar 15085 15085 1435 [9] ljb9 4721 4460 9231 [7]

sp98ic 10894 10894 825 [9] ljb10 5496 5196 10742 [7]

bg512142 792 240 1307 [19] ljb12 4913 4633 9596 [7]

dg012142 2080 640 6310 [19]

Table 1.2: The additional set of 39 0-1 MIP instances

Computing times are expressed in CPU seconds, and refer to a Pentium M 1.6

Ghz notebook with 512 MByte of main memory. Parameters T and TL were
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set to 20 and 1,800 CPU seconds, respectively, while the perturbation-frequency

parameter R was set to 100.

In the FP implementation, the ILOG-Cplex function CPXoptimize is preferred

to solve each LP (thus leaving to ILOG-Cplex the choice of the actual LP algo-

rithm to invoke) with the default parameter setting.

As to ILOG-Cplex, after extensive experiments and contacts with ILOG-Cplex

staff [23] the authors found that, as far as the time and quality of the root node

solution is concerned, the best results are obtained (perhaps surprisingly) when

the MIP preprocessing/presolve is not invoked, and the default “balance optimal-

ity and integer feasibility” strategy for the exploration of the search tree is used.

Indeed, the number of root-node failures for ILOG-Cplex was 19 with the setting

used in the experiments. By contrast, when the preprocessing/presolve was ac-

tivated ILOG-Cplex could not find any feasible solution at the root node in 25

cases (with the default “balance optimality and integer feasibility” strategy) or

in 41 cases (with the “emphasize integrality” strategy). In case the preprocess-

ing/presolve is deactivated but the “emphasize integrality” strategy was used,

instead, no solution was found at the root node in 33 cases.

Tables 1.3 and 1.4 report the results for the instances in Tables 1.1 and 1.2,

respectively. For each instance and for each algorithm (FP and ILOG-Cplex) the

value of the first feasible solution found (“value” for FP, and “root value/first

value” for ILOG-Cplex) and the corresponding computing time are reported. In

case of failure, “N/A” is reported. Moreover, for FP you find the number of iter-

ations performed by the algorithm (“nIT”), while, for ILOG-Cplex you find the

number of branch-and-bound nodes (“nodes”) needed to initialize the incumbent

solution.

The first order of business here was to evaluate the percentage of success in

finding a feasible MIP solution without resorting to branching. In this respect,

the FP performance is very satisfactory: whereas ILOG-Cplex could not find any

feasible solution at the root node in 19 cases (and in 10 cases even allowing for

1,800 seconds of branching), FP was unsuccessful only 3 times.

Also interesting is the comparison of the quality of the FP solution with that

found by the root-node ILOG-Cplex heuristics: the latter delivered a strictly-

better solution in 33 cases, whereas the solution found by FP was strictly better

in 46 cases. The computing times to get to the first feasible solution appear

comparable: excluding the instances for which both methods required less than 1

second, ILOG-Cplex was faster in 26 cases, and FP was faster in 31 cases. Finally,
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feasibility pump ILOG-CPLEX 8.1

name value nIT time root value first value nodes time

10teams 992.00 53 7.5 N/A 924.00 14 5.2

A1C1S1 18,377.24 5 3.8 N/A 14,264.61 120 8.6

aflow30a 4,545.00 18 0.1 N/A 1,574.00 40 1.4

aflow40b 6,859.00 7 0.5 1,786.00 0 1.8

air04 58,278.00 4 12.5 57,640.00 0 6.2

air05 29,937.00 2 3.4 29,590.00 0 2.0

cap6000 -2,354,320.00 2 0.6 -2,445,344.00 0 0.6

dano3mip 756.62 4 77.7 768.37 0 161.2

danoint 77.00 3 0.2 73.00 0 1.7

ds N/A 81 1,800.0 5,418.56 0 81.6

fast0507 181.00 4 34.0 209.00 0 33.1

fiber 1,911,617.79 2 0.0 570,936.07 0 0.0

fixnet6 9,131.00 4 0.0 12,163.00 0 0.0

glass4 4,650,037,150.00 23 0.1 N/A 3,500,034,900.00 162 0.3

harp2 -43,856,974.00 654 4.5 -73,296,664.00 0 0.1

liu 6,262.00 0 0.0 6,262.00 0 0.0

markshare1 1,064.00 11 0.0 710.00 0 0.0

markshare2 1,738.00 7 0.0 1,735.00 0 0.0

mas74 52,429,700.59 1 0.0 19,197.47 0 0.0

mas76 194,527,859.06 1 0.0 44,877.42 0 0.0

misc07 4,515.00 123 0.5 3,060.00 0 0.0

mkc -164.56 2 0.3 -195.97 0 0.5

mod011 -49,370,141.17 0 1.0 -42,902,314.08 0 1.9

modglob 35,147,088.88 0 0.0 20,786,787.02 0 0.0

momentum1 455,740.91 520 1478.4 N/A N/A 75 1,800.0

net12 337.00 346 55.4 N/A 214.00 480 1,593.7

nsrand ipx 340,800.00 3 0.7 699,200.00 0 0.3

nw04 19,882.00 1 2.9 17,306.00 0 5.1

opt1217 -12.00 0 0.0 -14.00 0 0.0

p2756 N/A 163435 1,800.0 3,485.00 0 0.1

pk1 57.00 1 0.0 89.00 0 0.0

pp08a 11,150.00 2 0.0 14,800.00 0 0.0

pp08aCUTS 10,940.00 2 0.0 13,540.00 0 0.0

protfold -10.00 367 493.8 N/A N/A 637 1,800.0

qiu 389.36 3 0.3 1,691.14 0 0.1

rd-rplusc-21 N/A 900 1,800.0 N/A N/A 372 1,800.0

set1ch 76,951.50 2 0.0 109,759.00 0 0.0

seymour 452.00 9 3.4 469.00 0 5.1

sp97ar 1,398,705,728.00 6 4.3 734,171,023.04 0 2.6

swath 18,416.00 109 4.7 N/A 826.66 1609 38.6

t1717 826,848.00 42 644.9 N/A N/A 1397 1,800.0

tr12-30 277,218.00 9 0.1 N/A 143,586.00 200 2.1

van 8.21 4 245.0 6.59 0 100.3

vpm2 19.25 3 0.0 15.25 0 0.0

Table 1.3: Convergence to a first feasible solution
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feasibility pump ILOG-CPLEX 8.1

name value nIT time root value first value nodes time

biella1 3,537,959.54 5 7.9 3,682,135.10 0 8.4

NSR8K 5,111,376,832.18 5 1,751.4 4,923,673,379.32 0 1,478.6

dc1c 27,348,312.19 4 19.3 33,458,468.26 0 15.3

dc1l 8,256,022.49 5 94.4 752,840,672.81 0 67.6

dolom1 298,684,615.17 7 32.1 584,923,856.01 0 29.2

siena1 104,004,996.99 5 91.8 591,385,634.57 0 66.4

trento1 356,179,003.01 2 17.8 621,044,078.07 0 18.1

rail507 178.00 2 41.1 205.00 0 32.9

rail2536c 715.00 4 26.7 771.00 0 27.1

rail2586c 1,007.00 5 81.6 1,072.00 0 68.6

rail4284c 1,124.00 3 1095.8 1,218.00 0 273.1

rail4872c 1,614.00 5 311.9 1,737.00 0 305.6

A2C1S1 19,879.93 5 3.7 20,865.33 0 0.0

B1C1S1 38,530.65 7 5.2 69,933.52 0 0.1

B2C1S1 48,279.95 6 4.5 70,625.52 0 0.1

sp97ic 1,280,793,707.52 3 2.7 515,786,416.96 0 1.7

sp98ar 988,402,511.36 4 4.4 599,527,422.56 0 2.4

sp98ic 959,924,716.00 3 2.1 550,157,878.72 0 1.5

blp-ar98 25,094.03 161 23.6 N/A 9,473.66 50 37.2

blp-ic97 7,874.87 4 0.7 6,408.43 0 0.4

blp-ic98 14,848.96 6 1.4 9,080.53 0 0.6

blp-ir98 5,388.84 3 0.3 2,927.29 0 1.2

CMS750 4 606.00 131 18.9 803.00 0 13.9

berlin 5 8 0 79.00 10 0.1 89.00 0 0.4

railway 8 1 0 440.00 13 0.3 478.00 0 0.4

usAbbrv.8.25 70 164.00 34 0.8 N/A 130.00 6036 46.8

bg512142 120,738,665.00 0 0.1 120,670,203.50 0 0.3

dg012142 153,406,945.50 0 0.8 153,392,273.00 0 1.7

manpower1 8.00 66 38.5 N/A N/A 34 1,800.0

manpower2 7.00 148 157.9 N/A N/A 10 1,800.0

manpower3 6.00 49 56.9 N/A N/A 10 1,800.0

manpower3a 6.00 73 67.4 N/A N/A 10 1,800.0

manpower4 7.00 192 107.7 N/A N/A 17 1,800.0

manpower4a 7.00 53 85.1 N/A N/A 16 1,800.0

ljb2 7.24 0 0.0 1.63 0 0.4

ljb7 8.61 0 0.5 0.81 0 3.9

ljb9 9.48 0 0.8 9.48 0 6.2

ljb10 7.31 0 1.0 7.31 0 6.9

ljb12 6.20 0 0.7 3.21 0 6.4

Table 1.4: Convergence to a first feasible solution (cont.d)
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column nIT (FP iterations) shows that the number of LPs solved by FP for finding

its first feasible solution is typically very small, which confirms the effectiveness

of the distance function used at step 5 in driving x∗ towards integrality.

Quite surprisingly, sometimes FP requires just a few iterations but takes much

more time than expected. E.g., for problem rail4284c in Table 1.4 the root

node of ILOG-Cplex took only 273.1 seconds—including the application of the

internal heuristics. FP found a feasible solution after just 3 iterations but the

overall computing time was 1095.8 seconds—about 4 times larger. This can be

partly explained by observing that FP requires the initial solution of two LPs

with different objective functions: the initialization LP at step 1 (which uses the

original objective function), and the LP at the first execution of step 5 (using the

distance-related objective function). Hence we take for granted that no effective

parametrization between these two LPs can be obtained. However, a better

integration of FP with the LP solver is likely to produce improved results in

several cases.

As already stated, in the experiments any problem-dependent fine tuning of

the LP parameters were deliberately avoided, and for both FP and ILOG-Cplex

their default values were used. However, some knowledge of the type of instance

to be solved can improve both the FP and ILOG-Cplex performance consider-

ably, especially for highly degenerate cases. For instance, the choice of the LP

algorithm used for re-optimization at step 5 may have a strong impact on the

overall FP computing times. E.g., if you force the use of the dual simplex, the

overall computing time for rail4284c decreases from 1095.8 to just 311.1 sec-

onds. This is of course true also for ILOG-Cplex. E.g., for manpower instances

Bixby [5] suggested an ad-hoc tuning consisting of (a) avoiding the generation of

cuts (set mip cut all -1), and (b) activating a specific dual-simplex pricing

algorithm (set simp dg 2). This choice considerably reduces the time spent

by the LP solver at each branching node, and allows ILOG-Cplex to find a first

feasible solution (of value 6.0) for instances manpower1, manpower2, manpower3,

manpower3a, manpower4 and manpower4a after 111, 150, 107, 156, 202 and 197

branching nodes, and after 28.4, 115.4, 99.7, 70.7, 100.2, and 84.7 CPU seconds,

respectively.

A pathological case for FP is instance p2756, which can instead be solved very

easily by ILOG-Cplex. This is due to the particular structure of this problem,

which involves a large number of big-M coefficients. More specifically, several

constraints in this model are of the type αT
i y ≤ βi + Mizi, where Mi is a very
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large positive value, y is a binary vector, and zi is a binary variable whose value

1 is used to actually deactivate the constraint. Feasible solutions of this model

can obtained quite easily by setting zi = 1 so as to deactivate these constraints.

However, this choice turns out to be very expensive in terms of the LP objective

function, where variables zi are associated with large costs. Therefore, the LP

solutions (y∗, z∗) tend to associate very small values to all variables z∗i , namely

z∗i = max{0, (αT
i y∗ − βi)/Mi}, which are then systematically rounded down by

our scheme. As a consequence, FP is actually looking for a feasible y that fulfills

all the constraints αT
i x ≤ βi—an almost impossible task.

1.3 FP variants

The basic FP scheme will next be elaborated in the attempt of improving

(a) the required computing time, and/or (b) the quality of the heuristic solution

delivered by the method.

1.3.1 Reducing the computing time

In the article are evaluated the following two simple FP variants:

1. FP1: At step 1, the LP relaxation of the original MIP (i.e., the one with the

original objective function cT x) is solved approximately through a primal-

dual method (e.g., the ILOG-Cplex barrier algorithm), and as soon as a

prefixed primal-dual gap γ is reached the execution is stopped and no

crossover is performed. The almost-optimal dual variables are then used as

Lagrangian multipliers to compute a mathematically-correct lower bound

on the optimal LP value. Moreover, at step 5 each LP relaxation is solved

approximately via the primal simplex method with a limit of SIL simplex

pivots (if this limit is reached within the simplex phase 1, the approximate

LP solution x∗ is not guaranteed to be primal feasible, hence we skip step

6).

2. FP2: The same as FP1, but at step 1 the first x̃ is obtained by just rounding

a random initial solution x∗ ∈ [0, 1]n (no LP solution is required).
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1.3.2 Improving the solution quality

As stated, the FP method is designed to provide a feasible solution to hard

MIPs—no particular attention is paid to the quality of this solution. In fact,

the original MIP objective function is only used for the initialization of x̃ in

step 1—while it is completely ignored in variant FP2 above. On the other hand,

FP proved quite fast in practice, and one may think of simple modifications to

provide a sequence of feasible solutions of better and better quality.2 The authors

have therefore investigated a natural extension of our method, based on the idea

of adding the upper-bound constraint cT x ≤ UB to the LPs solved at step 5,

where UB is updated dynamically each time a new feasible solution is found. To

be more specific, right after step 1 we initialize z∗LP = cT x∗ (= LP relaxation

value) and UB = +∞. Each time a new feasible solution x∗ of value zH = cT x∗

is found at step 5, we update UB = αz∗LP +(1−α)zH for α ∈ (0, 1), and continue

the while-do loop. Furthermore, in the test at step 4 the condition nIT-nIT0 <

IL is added, where nIT0 gives the value of nIT when the first feasible solution

is found (nIT0=0 if none is available), and the input parameter IL gives the

maximum number of additional FP iterations allowed after the initialization of

the incumbent solution.

The above scheme can also be applied to variant FP1, where the LP at step

1 is solved approximately. As to FP2, where no bound is computed, z∗LP is left

undefined and the upper bound UB is heuristically reduced after each solution

updating as UB = zH − β|zH | (assuming zH 6= 0).

A final comment is in order. Due to the additional constraint cT x ≤ UB,

it is often the case that the integer components of x̃ computed at step 8 define

a feasible point for the original system Ax ≥ b, but not for the current one.

In order to improve the chances of updating the incumbent solution, right after

step 8, a simple post-processing of x̃ is applied, consisting in solving the LP

min{cT x : Ax ≥ b, xj = x̃j ∀j ∈ I} and comparing the corresponding solution

(if any exists) with the incumbent one.

2A possible way to improve the quality of the first solution found by FP is of course to
exploit local-search methods based on enumeration of a suitable solution neighborhood of the
first feasible solution found, such as the recently-proposed local branching [9], RINS or guided
dives [7] schemes.
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1.3.3 Computational results

Table 1.5 reports the results of the feasibility pump variants FP1 and FP2. For

this experiment, 26 instances out of the 83 in our testbed were selected, chosen

as those for which (a) both FP and ILOG-Cplex were able to find a solution

within the time limit of 1,800 CPU seconds, and (b) the computing time required

by either ILOG-Cplex or FP was at least 10 CPU seconds. Also the manpower

instances were included, and ran ILOG-Cplex with the ad-hoc tuning described

in the previous section.

For this reduced testbed, you find an evaluation of the capability of FP1 and

FP2 to converge quickly to an initial solution (even if worse than that produced by

FP) and to improve it in a given amount of additional iterations. The underlying

idea is that, for problems in which the LP solution is very time consuming, it

may be better to solve the LPs approximately, while trying to improve the first

(possibly poor) solutions at a later time.

For the experiments reported in Table 1.5 the parameters were set as follows:

α = 0.50, β = 0.25, γ = 0.20, SIL = 1, 000, and IL = 250.

In the table, the ILOG-Cplex columns are taken from the previous experi-

ments. For both FP1 and FP2 there are the time and value of the first solution

found, and the time and value of the best solution found after IL=250 additional

FP iterations. Moreover, for FP1 the extra computing time spent for computing

the initial lower bound through the (approximate use of) ILOG-Cplex barrier

method (“LB time”) is reported.

According to the table, FP2 is able to deliver its first feasible solution within

an extremely short computing time—often 1-2 orders of magnitude shorter than

ILOG-Cplex and FP. E.g., FP2 took only 1.5 seconds for NSR8K, whereas ILOG-Cplex

and FP required 1,478.6 and 1,751.4 seconds, respectively. In three cases however

the method did not find any solution within the 1,800-second time limit. The

quality of the first solution is of course poor (remember that the MIP objective

function is completely disregarded until the first feasible solution is found), but it

improves considerably during subsequent iterations. At the end of its execution,

FP2 was faster than ILOG-Cplex in 12 out of the 26 cases, and returned a better

(or equal) solution in 11 cases.

FP1 performs somewhat better than this. Its first solution is much better

than that of FP2 and strictly better than the ILOG-Cplex solution in 4 cases; the

corresponding computing time (increased by the LB time) is shorter than that of
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ILOG-Cplex in 22 out of the 26 cases. After 250 more FP iterations, the quality

of the FP1 solution is equal to that of ILOG-Cplex in 6 cases, strictly better

in 12 cases, and worse in 8 cases; the corresponding computing time compares

favorably with that of ILOG-Cplex in 12 cases.
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Chapter 2

ILOG-Cplex

2.1 ILOG-Cplex

ILOG-CPLEX [26] is a tool for solving linear optimization problems, com-

monly referred to as Linear Programming (LP) problems, of the form:

Maximize (or Minimize) c1x1 + c2x2 + ... + cnxn

subject to a11x1 + a12x2 + ... + a1nxn ∼ b1

a21x1 + a22x2 + ... + a2nxn ∼ b2

...

am1x1 + am2x2 + ... + amnxn ∼ bm

with these bounds l1 ≤ x1 ≤ u1

...

ln ≤ xn ≤ un

where ∼ can be ≤, ≥ or =, and the upper bounds ui and lower bounds li may

be positive infinity, negative infinity, or any real number.

The optimal solution that CPLEX computes and returns is:

Variables x1, x2, ... , xn

CPLEX also can solve several extensions to LP:

• Network Flow problems, a special case of LP that CPLEX can solve much

17



18 CHAPTER 2. ILOG-CPLEX

faster by exploiting the problem structure.

• Quadratic Programming (QP) problems, where the LP objective function

is expanded to include quadratic terms.

• Mixed Integer Programming (MIP) problems, where any or all of the LP

or QP variables are further restricted to take integer values in the optimal

solution (and where MIP itself is extended to include constructs like Special

Ordered Sets (SOS) and semi-continuous variables).

2.2 ILOG CPLEX Technologies

CPLEX comes in three forms to meet a wide range of users’ needs:

• The CPLEX Interactive Optimizer is an executable program that can read

a problem interactively or from files in certain standard formats, solve the

problem, and deliver the solution interactively or into text files. The pro-

gram consists of the file cplex.exe on Windows platforms or cplex on UNIX

platforms.

• Concert Technology is a set of C++ and Java class libraries offering an API

that includes modeling facilities to allow the programmer to embed CPLEX

optimizers in C++ or Java applications. The Concert Technology libraries

make use of the Callable Library

• The CPLEX Callable Library is a C library that allows the programmer

to embed CPLEX optimizers in applications written in C, Visual Basic,

FORTRAN, or any other language that can call C functions.The library is

provided in files cplex81.lib and cplex81.dll on Windows platforms, and in

libcplex.a, libcplex81.so, and libcplex81.sl on UNIX platforms.

2.3 CPLEX Algorithms

ILOG CPLEX algorithms can be accessed from the CPLEX Component Li-

braries as well as the CPLEX Interactive Optimizer, an easy-to-use interactive

program. CPLEX provides all the basic features and utilities for using these

solvers: sophisticated problem preprocessing, file reading and writing utilities,
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reporting, messaging control, interactive revision capability, efficient restart from

an advanced basis, sensitivity analysis and an infeasibility finder.

2.3.1 CPLEX Simplex Optimizers

CPLEX Simplex Optimizers provide the power to solve quadratic programs

and linear programs with millions of constraints and continuous variables, at

record-breaking speed.

ILOG-CPLEX Simplex Optimizers are fast, robust implementations of the

dual simplex and primal simplex methods for linear and quadratic programming.

CPLEX Simplex Optimizers also provide lightning-fast implementation of the

network simplex method. Specially suited for pure network problems, the network

simplex method can even solve problems that have side constraints.

All ILOG-CPLEX algorithms are tightly integrated with cutting-edge pre-

solve algorithms. These algorithms reduce problem size and provide significant

reductions in solve times, without requiring any special user intervention. Each

optimizer has numerous options that enable performance to be tuned for specific

problems.

Simplex algorithm features

• Multiple crash basis options

• Primal and dual steepest-edge algorithms

• IIS finder for detecting problem infeasibilities

• Sophisticated degeneracy resolution

• Efficient restarts from existing bases or solutions

• Integrated and automatic problem-reduction algorithms with preprocessing

and postprocessing

Network simplex algorithm features

• Natural node/arc network representation

• Automatic network extraction

• Multiple pricing algorithms

• Efficient restarts from advanced network bases



20 CHAPTER 2. ILOG-CPLEX

2.3.2 CPLEX Barrier Optimizers

CPLEX Barrier Optimizer provides an alternative to the simplex method for

solving linear and quadratic programs. It also offers a fast, robust method for

solving quadratically constrained programs. Based on a primal-dual, predictor-

corrector method, CPLEX Barrier Optimizer provides unsurpassed performance

for large-scale linear programs.

All ILOG-CPLEX algorithms are tightly integrated with cutting-edge pre-

solve algorithms. These algorithms reduce problem size and provide significant

reductions in solve times, without requiring special user intervention. Numerous

options enable each optimizer’s performance to be tuned for specific problems.

CPLEX Barrier Optimizer includes the fast, robust ILOG-CPLEX crossover

algorithm. Nonbasic solutions created by the ILOG-CPLEX barrier algorithm

are converted into basic solutions. Typically provided by the simplex method,

these basic solutions are used for fast restarts and sensitivity analysis.

Features of ILOG-CPLEX barrier algorithm

• Fast crossover to basic solutions

• Integrated and automatic problem-reduction algorithms with preprocessing

and postprocessing

• Facilities for handling dense columns

• Multiple ordering algorithms

• State-of-the-art Cholesky factorization algorithms, tuned for specific plat-

forms

• Tight integration with other CPLEX optimizers

• Solutions available without use of crossover algorithm

• Available in Parallel CPLEX on specific platforms

• Available for solving MIP subproblems

• Primal and dual crossover algorithms
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2.3.3 CPLEX Mixed Integer Optimizer

ILOG-CPLEX Mixed Integer Optimizer employs a branch-and-bound tech-

nique that takes advantage of innovative, cutting-edge strategies. It provides fast,

robust solutions to the most difficult mixed integer programs.

CPLEX incorporates and expands on the latest results of worldwide research

in mixed integer programming. Default settings and parameter selections work

well for many problems. Users may also customize the branching process, or

select specialized techniques that take advantage of structures in their specific

problems.

CPLEX Mixed Integer Optimizer solves mixed-integer linear programs (MILP);

mixed-integer quadratic programs (MIQP); and mixed-integer quadratically con-

strained programs (MIQCP). Implementation includes the CPLEX presolve al-

gorithm and sophisticated cutting-plane strategies such as Gomory, clique and

cover, flow cover, GUB cover and implied bound.

Users have full control of ILOG-CPLEX Mixed Integer Optimizer. Customize

node and variable selection strategies. Control the frequency and type of CPLEX

heuristics applied to find integer feasible solutions. Users can also tell CPLEX

whether it is more important to find an optimal solution or quickly determine

a good feasible solution – CPLEX Mixed Integer Optimizer will automatically

adjust its strategy to user needs.

Features of the Mixed Integer Algorithm

• Multiple types of cutting planes

– Gomory fractional

– Flow covers

– GUB covers

– Implied bound

– Mixed integer rounding

– Flow paths

– Disjunctive

– Cliques

– Covers
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• User choices for emphasizing optimality or feasibility

• Special ordered sets (SOS)

• Heuristics

• Integrated and automatic mixed-integer problem reduction algorithms with

preprocessing and postprocessing

• Breadth-first, best-first or depth-first search

• User-defined branching priorities and directions

• User-determined node selection algorithms

• User-determined variable selection options

• Multiple LP algorithm options for nodes and initial relaxation

• Cut-off and shortcut techniques

• Customized branching strategies

• User-defined memory controls, allowing disk storage to be efficiently used

as secondary memory

• Probing

• Available in Parallel CPLEX
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QSopt

3.1 QSopt

The QSopt software [28] was developed by David Applegate, William Cook,

Sanjeeb Dash, and Monika Mevenkamp.

The main purpose of QSopt is to provide a callable function library for use

within applications such as the traveling salesman problem or mixed-integer-

programming. It can also be used as a stand-alone code to solve large-scale linear

programming problems. The QSopt function library has been implemented in the

C programming language and is available on Windows and various LINUX/UNIX

platforms. An alpha version of the QSopt library has been converted to Java as

well. QSopt has been extensively used by a team of researchers in their work

on the traveling salesman problem; their Concorde code has successfully solved

many TSP instances, the largest having 15,112 cities. The QSopt library, can be

used at no cost for research or education purposes.

3.2 Problems format

QSopt supports two ASCII formats for specifying LP and MIP problems. The

formats are based on two industry standards, the MPS format and the LP format.

Both formats provide convenient mechanisms to define an LP or MIP problem,

that is:

• its objective and whether it should be minimized or maximized,

• the constraints with their expressions, senses, and right-hand-sides,

23
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• the problem’s variables, and their bounds,

• which variables are integer variables, and

• the problem’s name.

The QSopt parser expects that all problems that it reads have at least one con-

straint and at least one variable. The objective function that it reads may be

empty, that is, it may contain no terms; in such a case, the optimization routines

attempt only to find a feasible solution when solving the problem.

3.3 Default variable bounds

The LP and MPS input formats do not require that all variable upper and

lower bounds be given explicitly. The QSopt parser assumes by default that

variables are greater than or equal to zero and have no upper bound. Integer

variables are assumed to be binary, that is, they have a lower bound of 0 and an

upper bound of 1. The bounds sections in LP and MPS files are used to define

different variable bounds. When defining variable bounds keep the following rules

in mind.

1. A variable’s upper bound must be greater than or equal to its lower bound.

2. Negative infinity may not be used as an upper bound and positive infinity

may not be used as lower bound.

3. If a variable’s upper bound is defined either as a nonnegative number or as

positive infinity, then its lower bound defaults to zero. Thus defining a zero

upper bound without defining a lower bound fixes a variable to zero.

4. If a variable’s upper bound is defined as negative number its lower bound

defaults to negative infinity.

5. If a variable’s lower bound is defined either as a negative number or as

negative infinity, then its upper bound defaults to zero.

6. If a variable’s lower bound is defined either as zero or as a positive number,

then its upper bound is assumed to be positive infinity.
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3.4 Callable Library

QSopt’s callable function library provides a set of functions for creating, ma-

nipulating, and solving LP problems. The library is written in the (ANSI) C

programming language, and it is distributed as a header file qsopt.h and as an

archive file qsopt.a on UNIX/LINUX systems, and as a dynamic link library QS-

lib.dll on Windows systems. Thread-safe versions of the library are available for

use in re-entrant programming applications.
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Chapter 4

Coin-Or

4.1 Description

The Computational Infrastructure for Operations Research (COIN-OR, or

simply COIN) [27] project is an initiative to spur the development of open-source

software for the operations research community. Coin is open source because

when people can read, redistribute, and modify the source code, software evolves.

People improve it, people adapt it, people fix bugs. The results of open-source

development have been remarkable. Community-owned and -developed software

written under open-source licenses have produced high-quality, high-performance,

secure code – code on which much of the Internet is run.

The goal of project is to create for mathematical software what the open

literature is for mathematical theory. To build an open-source community for

operations research software in order to speed deployment of models, algorithms,

and cutting-edge research, as well as provide a forum for peer review of software

similar to that provided by archival journals for theoretical research.

This is a lofty goal, but it’s a worthwhile one. Only the community of users

and contributors can define what is needed to make it a reality.

The following is a list of projects currently being hosted by COIN-OR:

• ALPS: the abstract library for parallel search

• BCP: a parallel branch-cut-price framework

• CBC: Coin Branch and Cut, a branch and cut code

• CGL: a cut generation library

27
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• CLP: COIN L P, a native simplex solver

• DFO: a package for solving general nonlinear optimization problems when

derivatives are unavailable

• IPOPT: an interior point algorithm for general large-scale nonlinear opti-

mization

• Multifario: a continuation method for computing implicitly defined mani-

folds

• NLPAPI: a subroutine interface for defining and solving nonlinear program-

ming problems

• OSI: an open solver interface layer

• OTS: an open framework for tabu search

• SBB: Simple Branch and Bound, a branch and cut code

• SMI: Stochastic Modeling Interface, for optimization under uncertainty

• SYMPHONY: a callable library for solving mixed-integer linear programs

• VOL: the Volume Algorithm

4.2 Projects hosted by Coin-Or

4.2.1 ALPS

ALPS is a framework for implementing parallel graph search algorithms. It

generalizes many of the notions present in BCP, allowing the implementation of

a wider range of algorithms with a simplified interface.

ALPS implements the search handling methods required for implementing

large-scale, data-intensive parallel search algorithms, such as those used for solv-

ing discrete optimization problems.

It is the base layer of a planned hierarchy that will include a library for solving

mixed-integer linear programs. However, ALPS is still considered an experimen-

tal code.
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4.2.2 BCP

BCP is a parallel framework for implementing branch, cut, and price algo-

rithms for solving mixed integer programs (MIPs). BCP provides the user with

an object-oriented framework that can be used to develop an efficient problem

class specific MIP solver without all the implementational effort involved with

implementing a branch and bound framework from scratch.

Because BCP is an open-source framework, users have the flexibility to cus-

tomize any aspect of their BCP algorithm. BCP is appropriate for researchers

who would like to experiment with different MIP formulations, new cut and/or

variable generation techniques, branching strategies, etc., as well as power users

who would like to solve intractable problems in a parallel environment.

BCP processes the Branch-and-Bound search tree nodes in parallel by em-

ploying a master/slave model.

BCP uses the OSI, which enables the use of any LP solver that OSI is inter-

faced with. The main features of BCP are generalized branching objects, strong

branching, reduced cost fixing, use of cut and variable pools, handling locally

valid cuts, etc.

BCP has been used for problems of type multiple knapsack with color con-

straints(mkc), max-cut, and some proprietary projects. An alternative to BCP is

SYMPHONY that is a very similar open-source, parallel branch, cut, and price

framework implemented in C. It has a more simplified interface and may be a

better option for some users.

4.2.3 CBC

It is a branch and cut code designed to work with any OSI capable solver and

in particular Clp. It used to be called Sbb (Simple Branch and Bound) but due

to people confusing it with GAMS Sbb solver it has been renamed to Cbc.

CBC is not very fast out of the box, but is very flexible so it can be very

effective with correct use of cut generators and heuristics. For instance, cut

generators can be switched off, on every so often or only at root node (which is

probably best default). It is written using the Osi interface so it can use any code

which is supported.
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CBC is designed to be less heavyweight than BCP or Symphony. It is very easy to

add new cut generators and heuristics and branching methods such as lot-sizing

variables.

4.2.4 CGL

CGL is a Cut Generator Library which will include the standard cuts from the

literature and provide a starting point for more advanced and problem specific

cuts. The cut generator currently in Cgl are:

• simple rounding cut generator

• knapsack cover cut generator

• generalized odd hole cut generator Gomory cut generator

• lift-and-project cuts using “norm 1”

• probing cuts

• flow cover cut generator

4.2.5 CLP

The COIN-OR LP code is designed to be a high quality Simplex code pro-

vided under the terms of the Common Public License. CLP is written in C++,

and is primarily intended to be used as a callable library (though a rudimentary

stand-alone executable exists). The first release was version .90. The current

release is version .99.9.

CLP includes primal and dual Simplex solvers. Both dual and primal algo-

rithms can use matrix storage methods provided by the user (0-1 and network

matrices are already supported in addition to the default sparse matrix). The

dual algorithm has Dantzig and Steepest edge row pivot choices; new ones may

be provided by the user. The same is true for the column pivot choice of the

primal algorithm. The primal can also use a non linear cost which should work
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for piecewise linear convex functions. CLP also includes a barrier method for

solving LPs.

CLP has been tested on many problems of up to 1.5 million constraints and

has shown itself as reliable as OSL. It is also being tested in the context of SBB

(”Simple Branch and Bound”, which is used to solve integer programs), but more

testing is needed before it can get to version 1.0. CLP uses sparse matrix tech-

niques designed for very large problems. The design criteria were for it not to be

too slow. Some speed has been sacrificed to make the code less opaque OSL (not

difficult!).

The CLP barrier method solves convex QPs as well as LPs. In general, a bar-

rier method requires implementation of the algorithm, as well as a fast Cholesky

factorization. CLP provides the algorithm, and is expected to have a reason-

able factorization implementation by the release of CLP version 1.0. However,

the sparse factorization requires a good ordering algorithm, which the user is

expected to provide (perhaps a better factorization code as well).

Then Cholesky factorizations codes are supported by CLP’s barrier method be-

causet he Cholesky interface is flexible enough so that a variety of Cholesky

ordering and factorization codes can be used. Interfaces are provided to each of

the following:

• Anshul Gupta’s WSSMP parallel enabled ordering and factorization code

• Sivan Toledo’s TAUCS parallel enabled factorization code (the package in-

cludes third party ordering codes)

• University of Florida’s Approximate Minimum Degree (AMD) ordering

code (the CLP native factorization code is used with this ordering code)

• CLP native code: very weak ordering but competitive nonparallel factor-

ization

• Fast dense factorization

For quadratic programming can be used the interior point algorithm that is much

more elegant and normally much faster than the quadratic simplex code. Caution

is suggested with the presolve as not all bugs have been found and squashed when

a quadratic objective is used. One may wish to switch off the crossover to a basic

feasible solution as the simplex code can be slow. The sequential linear code is
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useful as a “crash” to the simplex code; its convergence is poor but, say, 100

iterations could set up the problem well for the simplex code.

4.2.6 DFO

DFO is a Fortran package for solving general nonlinear optimization problems

that have the following characteristics:

• they are relatively small scale (less than 100 variables),

• their objective function is relatively expensive to compute and derivatives

of such functions are not available and

• cannot be estimated efficiently

There also may be some noise in the function evaluation procedures. Such opti-

mization problems arise, for example, in engineering design, where the objective

function evaluation is a simulation package treated as a black box.

4.2.7 IPOPT

IPOPT (Interior Point OPTimizer) implements an interior point algorithm

for nonlinear, nonconvex, constrained optimization problems. The IPOPT distri-

bution also contains components that allow the optimization of systems described

by differential-algebraic equations (optimal control). The solver itself is imple-

mented in Fortran 77, while some of the additional components are written in C.

IPOPT can be used as a general purpose nonlinear programming (NLP) solver

for AMPL and CUTE using the interfaces provided with the IPOPT package, or

it can be invoked from Fortran application. While the source code for IPOPT

itself is released as open source under the Common Public License (CPL), compi-

lation requires third party components (such as BLAS, LAPACK, some routines

from the Harwell Subroutine Library, and possibly others) which you have to ob-

tain separately. The included INSTALL file gives detailed instructions on how to

obtain and compile these components. (These components are covered by license
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agreements different from CPL and may not be free for commercial use.)

IPOPT implements a interior point method for nonlinear programming. Search

directions (coming from a linearization of the optimality conditions) can be com-

puted in a full-space version by solving a large symmetric linear system. Al-

ternatively, search directions can be obtained using a coordinate decomposition

approach, which allows one to tailor the linear algebra to specific problem char-

acteristics. The implementation of the dynamic optimization component is an

example for the latter where the discretized equations, obtained from orthogonal

collocation, are solved by an elemental decomposition. IPOPT can employ sec-

ond derivative information, if available, or otherwise approximate it by means of

a quasi-Newton approach (BFGS and SR1).

Global convergence of the method is ensured by a line search procedure, where

one can choose from among several merit functions and a novel filter method.

4.2.8 Multifario

Multifario is a subroutine library which implements a continuation method

for computing implicitly defined manifolds, and other manifolds that arise in dy-

namical systems. An implicitly defined manifold is a set of points which satisfy

F (u) = 0, for some smooth F : IRn → IRn−k. This set of points consists of

pieces of k-dimensional manifolds which meet at (k-1)-dimensional manifolds of

singular points. Multifario takes as input a set of initial points on the manifold,

and computes the manifold of points connected to the initial points.

To use Multifario two “solvers” are provided, one for algebraic systems, and

one for two point boundary value problems. The user creates a data structure

called a “ImplicitMF”, by calling a routine and passing either subroutines or

strings containing expressions. Then the user calls a routine to compute the

manifold. The result is either a data structure in memory (an Atlas), which the

user can interrogate, or files on disk containing a set of polyhedra which cover

the manifold, and optionally the centers of the polyhedra. These files can be

used to render the manifold as a tiff or a Postscript file, using utilities that are

included. They can also be converted to a couple of other file formats (DX, VBM,

POV-Ray).

While the source code for Multifario itself is released as open source under the
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Common Public License (CPL), compilation requires third party components

(such as LAPACK).

Multifario uses an algorithm that computes well spaced points on the mani-

fold. At each point the tangent space (k-vectors), a radius and a polyhedron are

stored. As points are added the polyhedron is trimmed so that the polyhedron

form an approximate polyhedral tiling of the manifold. At each step a point on

the boundary of this tiling is chosen, projected onto the manifold, the tangent

space and rsius are calculated, and the polyhedra are updated.

4.2.9 NLPAPI

NLPAPI is a subroutine library with routines for building nonlinear program-

ming problems. The general form is an objective with a set of simple bounds,

equality and inequality constraints. It is built around the ”Group Partially Sep-

arable” structure that LANCELOT defines, but constraints and objective may

also be defined as functions of the problem variables. To use NLPAPI, the user

creates a ”NLProblem”, which is a pointer to a data structure. Then the objec-

tive and constraints are added with various calls. Once the problem is defined

our interface to LANCELOT may be used to create a NLLancelot data structure,

and pass it and the problem to a routine which either minimizes or maximizes

the objective subject to the constraints.

4.2.10 OSI

The Open Solver Interface (OSI) is a uniform API (Application Program

Interface) for calling math programming solvers. Programs written to the OSI

standard may be linked to any solver with an OSI interface and should produce

correct results. The OSI has been significantly extended compared to its first

incarnation. Currently, the OSI supports linear programming solvers (soon to be

redesigned to support non-LP solvers) and has rudimentary support for integer

programming. Among others the following operations are supported:

• creating the LP formulation;
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• directly modifying the formulation by adding rows/columns;

• modifying the formulation by adding cutting planes provided by CGL;

• solving the formulation (and resolving after modifications);

• extracting solution information;

• invoking the underlying solver’s branch-and-bound component.

Programs in the CGL module are written to call the solver through the OSI. The

following solvers currently work with OSI:

• CLP

• CPLEX

• dylp

• GLPK

• OSL

• SOPLEX

• VOL

• XPRESS-MP

4.2.11 OTS

Tabu Search is a meta-strategy for guiding known heuristics past the traps of

local optimality. Popularized by Glover in the early 90s, Tabu Search has been

applied to integer programming problems involving scheduling, routing, traveling

salesman and related problems.

OTS is a framework for Tabu Search written in Java , which enables researchers

to quickly develop Tabu Search methodologies.
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4.2.12 SBB

SBB stands for Simple Branch and Bound. When COIN LP was being written,

the Osi interface demanded an integer solver. With Strong Branching it was 460

lines of code, without 300 lines. All future development will be on Cbc (Coin

Branch and Cut) which is just a renamed version of Sbb.

4.2.13 SMI

SMI stands for Stochastic Modeling Interface. It is an interface for problems in

which uncertainty and optimization appear together. There are many modeling

and algorithmic approaches that could belong here, like: recourse programming,

chance constrained programming, stochastic control and dynamic programming,

robust optimization, etc, etc. SMI is intended to be like OSI in the sense that an

SmiXX object is an implementation derived from a base class that takes care of a

number of commonly encountered programming issues, like handling probability

distributions, managing problem generation, interacting with solvers to obtain

solution information, etc.

The current release implements a multiperiod scenario stochastic program-

ming object called SmiScnModel. It supports an SMPS file reader method, a

direct “genScenario” method, a method to generate a deterministic equivalent,

and several methods to get solution data by scenario. This is a fully native COIN

implementation.

Today there is no actively developed, generally available commercial platform

to support optimization under uncertainty. It is important to have a reliable

framework available for applications development. Furthermore, there is a mul-

titude of academic and local efforts that might benefit by being based on or

compared to a reliable implementation.

For future releases are planned two main categories:

• Linkage to modeling languages. Plan to release SISP (Simple Interface for

Stochastic Programming) which allows a modeling language to use a stoch

file.

• Linkage to solvers. Provide a native implementation of the model con-

struction that allows a Benders decomposition solver node-by-node access
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problem data.

4.2.14 SYMPHONY

SYMPHONY is a callable library for solving mixed-integer linear programs

(MILPs) that can be customized through a wide variety of user callback functions

and control parameters.

About BCP and SYMPHONY, BCP is a C++ framework based roughly on an

ancestor of SYMPHONY, so they take substantially the same approach and have

similar functionality. Currently, SYMPHONY is easier to use “out of the box”

and is a better choice for beginners. It is also more efficient for performing

pure branch and cut (without column generation). BCP has improved on SYM-

PHONY is some areas, such as support for branch and price. SYMPHONY’s

support for branch and price is limited. BCP is missing some features that SYM-

PHONY has, such as an implementation of global cut pools. SYMPHONY and

BCP may be combined into a third-generation framework currently under devel-

opment.

4.2.15 VOL

The Volume Algorithm(VOL) is a subgradient method that produces primal

as well as dual solutions. The primal solution comes from estimating the volumes

below the faces of the dual problem. This is an approximate method so the pri-

mal vector might have small infeasiblities that are negligible in many practical

settings. The original subgradient algorithm produces only dual solutions.

VOL it has been tested with a variety of combinatorial problems like: Crew

scheduling, Fleet assignment, Facility location, Steiner trees, Max-Cut, Quadratic

knapsack.

Then, with VOL can be solved linear program: one can get good and fast ap-

proximate solutions for combinatorial linear programs. These are LP’s where

all variables are between 0 and 1. And for integer programs VOL gives bounds

based on a relaxation of the IP. It also gives primal (fractional) solutions. With
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this information one can run a heuristic to produce an integer solution, or one

can imbed VOL in a branch and bound code. About “branch and cut” there is

an implementation of a cutting plane algorithm for the Max-cut problem, that

combines BCP and Vol. No use of the simplex method is required.

At the end VOL has been very useful for accelerating column generation proce-

dures, in particular for Crew Scheduling. The dual solutions given by VOL seem

to provide faster convergence than if one uses dual solutions given by the Simplex

method.



Chapter 5

Feasibility Pump implemented

with QSopt and Coin-Or

5.1 Introduction

In this chapter we will describe how the Feasibility Pump has been imple-

mented with the solvers QSopt and Coin-Or. Instead of re-write the program

developed by Fischetti, Lodi and Glover, we have chosen to leave that code in-

tact and to create a library of functions, one for each solver, written in C for

QSopt and in C++ for Coin, that captures all the calls to CPLEX routines (from

the Feasibility Pump) and performs the same operations using the functions of

each software. In this way this partial (because only routines called by FP are

implemented) interfaces between CPLEX and Qsopt and between CPLEX and

Coin, can be used by other programs written for CPLEX, and if someone wants

to run them also with these solvers, it is not necessary to re-write the entire code

but only to link the interfaces with the other solver libraries.

Each interface is composed of two files:

• an interface file, with the definition of parameters, the definition of new

data types and the declaration of the functions implemented

• a file “ifc imp” with the implementation of all the functions.

39
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5.1.1 From CPLEX to QSopt

Since all the solver routines deal with so called “problem objects”, it has been

necessary to define a correspondence between CPXLPptr objects and QSprob

objects. To do this, in “interface.h”, after #include “c:/cygwin/qsopt/qsopt.h”

there are the type definitions:

• typedef int * CPXENVptr; — to define CPXENVptr as a pointer to integer

• typedef QSprob CPXLPptr; — to define CPXLPptr as QSprob

The reason for which CPXENVptr has been defined as a pointer to integer

is very simple. The first routine that must be called for any application is

CPXopenCPLEX() and this initializes a CPLEX environment when accessing

a license for CPLEX and works only if the computer is licensed for Callable

Library use. Since if an error occurs (including licensing problems), the value

NULL is returned, otherwise the pointer to the CPLEX environment is returned.

Now, if CPXENVptr has been defined as a pointer to integer, it is sufficient to

return that pointer to any integer to create a virtual environment.

At the end, after the declaration of parameters used by CPLEX (and taken

from the file “cplex.h” of CPLEX), there is the list of all the functions imple-

mented (using QSopt’s routines) into “ifc imp.c”.

Into the original code the only changing to bring is the substitution of the path

to include the CPLEX interface (“cplex.h”) with that to include “interface.h”.

5.1.2 From CPLEX to Coin-Or

To capture and to perform all routines called by Feasibility Pump with Coin-

Or solver we have chosen to use the package OSI that is a uniform API (Ap-

plication Program Interface) for calling math model programming solvers, and

programs written to the OSI standard may be linked to any solver with an OSI

interface and should produce correct results.

As to QSopt, also with Coin it has been necessary to define a correspon-

dence between problem objects. So, in the file “interface.h”, after the declaration

of references requested (to OsiClpSolverInterface.hpp, CoinPackedVector.hpp,

CoinDistance.hpp and CoinPackedMatrix.hpp), as for QSopt a CPXENVptr ob-

ject has been defined as a pointer to integer while a pointer to CPXLPptr has
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been defined as a pointer to an OsiSolverInterface object. Then, after the de-

finition of the structure move and ogg (used by FP), there is the list of some

parameters of CPLEX and the CPLEX functions called by FP and implemented

with Coin-Or.

The Feasibility Pump code has been modified to :

• change the path to include the CPLEX interface (“cplex.h”) with that to

include “interface.h”;

• add the instructions #ifndef LOCBRA H and #define LOCBRA H ;

• change the name of variable new to new1 to compile correctly the code;

• change the definition of the internal function compare (in “LocBra sub1.c”)

from int compare( ogg *b1, ogg *b2) to int compare (const void *a, const

void *b); C++ indeed does not allow implicit conversion from a pointer to

void to a pointer of another type, so to compile the code we have redefined

compare as written above, and we have inserted the explicit conversions:

– ogg *b1 = (ogg*)a;

– ogg *b2 = (ogg*)b.

5.1.3 The files “ifc imp.c” and “ifc impc.cpp”

In the following sections there is the description of the libraries of functions

to interface the FP written for CPLEX with QSopt and Coin-Or. The routines

called by the FP have been grouped in eight classes, depending on their role and

utility:

• optimization and result routines

• problem modification routines

• problem querying routines

• file reading and writing routines

• parameter settings and query routines

• utility routines
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For each function of each group there is a brief comment to explain its role and

its features and then, for QSopt and Coin-Or, there is the description of its

implementation indicating, possible unsolved issues.

For some routines of ILOG-CPLEX, indeed, the implementation has been

very simple because we have found analogous functions in Coin-Or and QSopt,

but for other routines we had to write a lot of lines of code to perform the same

operations.

5.2 Optimization and result routines

CPXcreateprob — create a problem object

Synopsis

CPXLPptr CPXcreateprob (CPXENVptr env, int *status p, char *probname);

Description CPXcreateprob() defines an LP problem name. The argument

env is the pointer to the CPLEX environment as returned by CPXopenCPLEX(),

status p a pointer to integer used to return an error code, and probname a char-

acter string that specifies the name of the problem being created.

QSopt A new pointer to a QSprob problem object is declared and after call-

ing function QScreate prob() the new problem probname is created. The routine

returns the pointer to the QSopt problem object.

Coin A new object OsiSolverInterface *temp is created and then the rou-

tine returns the pointer temp.



5.2. OPTIMIZATION AND RESULT ROUTINES 43

CPXcloneprob — clone a problem

Synopsis

CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status p);

Description The routine is used to create a new problem object and to copy

all the problem data from an existing problem objective to it. Solution and start-

ing information are not copied.

QSopt After having obtained nomefile and tipofile (global variables declared in

“interface.h” indicating, respectively, name and extension of input file), the func-

tion QSread prob() is called to read the problem from input file distinguishing

these cases (copia is a CPXLPptr or QSprob() object):

• if tipofile == NULL:

– if nomefile ending with “.LP” or “.lp” copia = QSread prob(nomefile,

“LP”);

– else if with “.mps” or “.MPS” copia = QSread prob(nomefile, “MPS”);

• else if tipofile is defined and equal to “LP” or “MPS” it is simply used

QSread prob() with correspondent extension.

The routine returns the pointer to copia or NULL if the extension is not recog-

nized.

Coin The function clone() is called and the routine returns the pointer to

cloned problem.

CPXprimopt — primal simplex method

Synopsis

int CPXprimopt (CPXENVptr env, CPXLPptr lpx);
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Description The routine may be used to find a solution of a problem ob-

ject using the primal simplex method. The routine returns zero unless an error

occurred during the optimization; note that a zero return value does not neces-

sarily mean that a solution exists.

QSopt The primal simplex method is invoked with the function QSopt primal()

and the routine returns zero.

Coin At first the variable presolve (global and initialized in “LocBra fred.c”)

is analyzed: if presolve is equal to 1 OsiDoPresolveInResolve parameter is acti-

vated using the function setHintParam(). Then the function resolve() is invoked

to perform the primal simplex method. The routine returns zero.

CPXgetobjval – return the solution objective value

Synopsis

int CPXgetobjval (CPXENVptr env, CPXLPptr lpx, double *objval p);

Description The routine is used to obtain the solution objective value (obj-

val p) and it returns a zero on success, a nonzero if no solution exists.

QSopt The function QSget objval() is called to obtain the solution objective

value and then the routine returns zero.

Coin The function getObjValue() is called to obtain the solution objective

value and then the routine returns zero.
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CPXgetx — access the solution values for a range of variables

Synopsis

int CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);

Description The routine is used to access the solution values for a range

of problem variables of a linear or quadratic program. The beginning and end

of the range must be specified and the routine returns a zero on success, and a

nonzero if an error occurs.

QSopt After to have obtained the number of columns is invoked the func-

tion QSget x array() that copy the solution vector into an array. Then the array

x is initialized into a for cycle between begin and end with the values of the

primal variables. The routine returns zero.

Coin Into a for cycle between begin and end the array x is initialized call-

ing the function getColSolution() to obtain the solution value of each variable.

Then the routine returns zero.

CPXgetdj — access the reduced costs for a range of the variables

Synopsis

int CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end);

Description The routine is used to access the reduced costs for a range of

the variables of a linear program. The beginning and end of the range must be

specified and the routine returns a zero on success, and a nonzero if an error

occurs.

QSopt After to have obtained the number of columns is invoked the func-

tion QSget rc array() that copy the reduced costs into an array. Then the array

dj is initialized into a for cycle between begin and end with the reduced costs.
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The routine returns zero.

Coin Into a for cycle between begin and end the array dj is initialized calling

the function getReducedCost() to obtain the reduced cost of each variable. Then

the routine returns zero.

CPXgetpi — access the dual values for a range of the constraints

Synopsis

int CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end);

Description The routine is used to access the dual values for a range of the

constraints of a linear program. The beginning and end of the range must be

specified and the routine returns a zero on success, and a nonzero if an error

occurs.

QSopt After to have obtained the number of columns is invoked the func-

tion QSget pi array() that copy the values of the dual variables into an array.

Then the array pi is initialized into a for cycle between begin and end with the

dual values. The routine returns zero.

Coin Into a for cycle between begin and end the array dj is initialized calling

the function getRowPrice() to obtain the dual value of each variable. Then the

routine returns zero.

CPXgetphase1cnt — access the number of iterations

Synopsis

int CPXgetphase1cnt (CPXENVptr env, CPXLPptr lpx);
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Description The routine is used to access the number of Phase I iterations

to solve a problem using the primal or dual simplex method. If a solution exists,

CPXgetphase1cnt() returns the Phase I iteration count. If no solution exists the

routine returns the value 0.

QSopt The function QSget param() is called to return the parameter

QS PRICE PDANTZIG. It is not the exact solution but with QSopt is impossi-

ble to determine the number of iterations.

Coin The function getIterationCount() is called to return the number of iter-

ations to solve the problem.

CPXgetstat — access the solution status

Synopsis

int CPXgetstat (CPXENVptr env, CPXLPptr lpx);

Description The routine is used to access the solution status of the prob-

lem optimization and it returns one of parameters defined on each “interface.h”.

QSopt The function QSget status() is called to obtain the solution status for

QSopt problem and then the correspondent parameter in CPLEX is returned.

Coin The functions isProvenOptimal(), isIterationLimitReached(),

isProvenPrimalInfeasible(), isProvenDualInfeasible(),

isPrimalObjectiveLimitReached(), isDualObjectiveLimitReached() and

isAbandoned() are called to determine and to return at least one of possible so-

lution status. If not is returned -1.
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CPXmipopt — branch-and-bound method

Synopsis

int CPXmipopt (CPXENVptr env, CPXLPptr lpx);

Description The routine may be used, at any time after a mixed integer

program has been created, to find a solution to that problem using branch-and-

bound method. CPXmipopt() returns a 0 unless it encounters an error. Nonzero

values are error codes indicating which type of failure occurred.

QSopt In QSopt this routine can be realized using QSopt strongbranch() to

implement the strong-branching rule used by Applegate, Bixby, Chvtal and Cook.

The idea is to use strong LP information to determine a choice of branching vari-

able that is likely to increase the LP bound for each of the two children created by

the branching operation. To do this, after the initialization of necessary variables,

a for cycle between 0 and “(number of columns)-1” is implemented to determine

candidates for branching variable using strong-branching: now, obtained the cur-

rent solution of the LP, the fractional part (t) for each variable is controlled and if

t ≥ 0.1 and t ≤ 0.9 a candidate is found. Then the function QSopt strongbranch()

is called with correct parameters and at the end the routine returns zero.

Coin At first the variable presolve (global and initialized in “LocBra fred.c”)

is analyzed: if presolve is equal to 1 OsiDoPresolveInResolve parameter is acti-

vated using the function setHintParam(). Then the function branchAndBound()

is invoked to perform the branch-and-bound method. The routine returns zero.

CPXgetmipx — access a range of mixed integer solution values

Synopsis

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);

Description The routine is used to access a range of mixed integer solution
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values. The beginning and end of the range must be specified and the routine

returns a zero on success, and a nonzero if an error occurs.

QSopt The function is called to obtain the solution of the LP problem and

then the array x is set with the correct values. The routine returns zero. After

to have obtained the number of columns is invoked the function QSget x array()

that copy the solution values into an array. Then the array x is initialized into

a for cycle between begin and end with the solution values. The routine returns

zero.

Coin Into a for cycle between begin and end the array x is initialized call-

ing the function getColSolution() to obtain the solution values. Then the routine

returns zero.

CPXgetmipobjval — access the mixed integer solution objective value

Synopsis

int CPXgetmipobjval (CPXENVptr env, CPXLPptr lp, double *objval p);

Description The routine is used to access the mixed integer solution objective

value and it returns a zero on success, and a nonzero if an error occurs.

QSopt The function QSget objval() is called to obtain the current objective

function value and then the routine returns zero.

Coin The function getObjValue() is called to obtain the solution objective

value and then the routine returns zero.
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CPXgetbestobjval — access the best objective function value

Synopsis

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval p);

Description The routine is used to access the objective function value of

the best remaining node in the branch-and-bound tree and it returns a zero on

success; a nonzero if an error occurs.

QSopt The same implementation of CPXgetmipobjval(): obviously this is not

a perfect solution because the mixed integer solution objective value is not equal

to the objective function value of the best remaining node for all cases, but it is

impossible to find it with QSopt.

Coin As for QSopt and for the same reason, but calling the function getO-

bjValue().

CPXlpopt — find a solution

Synopsis

int CPXlpopt ( CPXENVptr env, CPXLPptr lpx);

Description The routine may be used to find a solution to the problem us-

ing one of CPLEX’s linear optimizers. The routine returns zero unless an error

occurred during the optimization. Note that a zero return value does not neces-

sarily mean that a solution exists.

QSopt The function QSget basis() is called to obtain a copy of the current

basis; if a basis is returned, the primal simplex method is invoked with the func-

tion QSopt primal(), else the dual method with QSopt dual(). Then the routine

returns zero.
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Coin At first the variable presolve global and initialized in “LocBra fred.c”) is

analyzed: if presolve is equal to 1 OsiDoPresolveInResolve parameter is activated

using the function setHintParam(). Then if primal infeasibility has been proven,

the dual simplex method is invoked (as for CPXdualopt()), else the primal (as

for CPXprimopt()). The routine returns zero.

CPXdualopt — find a solution

Synopsis

int CPXdualopt ( CPXENVptr env, CPXLPptr lpx);

Description The routine may be used to find a solution to the problem using

the dual simplex optimizer. The routine returns zero unless an error occurred

during the optimization. Note that a zero return value does not necessarily mean

that a solution exists.

QSopt The dual simplex method is invoked with the function QSopt dual()

and the routine returns zero.

Coin At first the variable presolve (global and initialized in “LocBra fred.c”)

is analyzed: if presolve is equal to 1 OsiDoPresolveInResolve parameter is acti-

vated using the function setHintParam(). Then the function resolve() is invoked

to perform the dual simplex method. The routine returns zero.
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5.3 Problem modification routines

CPXchgsense — change the sense of a set of constraints

Synopsis

int CPXchgsense (CPXENVptr env, CPXLPptr lp, int cnt, int *indices, char

*sense);

Description The routine is used to change the sense of a set of constraints of

a problem object. When changing the sense of a row to ranged, CPXchgsense()

sets the corresponding range value to 0. The routine returns a zero on success,

and a nonzero if an error occurs.

QSopt The routine is implemented with a for cycle between 0 and cnt-1 (num-

ber of constraints) and at each iteration, ith entry of sense is read and through

the function QSchange sense() the sense of each constraint is updated. Then the

routine returns zero.

Coin Into a for cycle between 0 and cnt-1, the routine getRightHandSide()

is called to obtain the right-hand-side coefficient of the current constraint and

then setRowType() to update the sense of the row. The routine returns zero.

CPXchgobj — change the objective coefficients of a set of variables

Synopsis

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double

*values);

Description The routine is used to change the objective coefficients of a set

of variables in a problem object and it returns a zero on success, and a nonzero

if an error occurs.
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QSopt Into a cycle for i from 0 to cnt-1 the function QSchange objcoef()

is called at each iteration to update the objective coefficient of the variable in-

dices[i] with the value values[i]. At the end the routine returns zero.

Coin Into a cycle for i from 0 to cnt-1 the function setObjCoeff() is called at

each iteration to update the objective coefficient of the variable indices[i] with

the value values[i]. At the end the routine returns zero.

CPXchgrhs — change the right-hand side coefficients of a set of con-

straints

Synopsis

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double

*values);

Description The routine is used to change the right-hand side coefficients

of a set of constraints in the problem object and it returns a zero on success, and

a nonzero if an error occurs.

QSopt Into a cycle for i from 0 to cnt-1 the function QSchange rhscoef()

is called at each iteration to update the right-hand-side coefficient of the variable

indices[i] with the value values[i]. At the end the routine returns zero.

Coin Into a cycle for i from 0 to cnt-1 the function setRowType() is called

at each iteration to update only the right-hand-side coefficient of the variable

indices[i] with the value values[i]. At the end the routine returns zero.
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CPXchgprobtype — change the current problem

Synopsis

int CPXchgprobtype (CPXENVptr env, CPXLPptr lpx, int type);

Description The routine is used to change the current problem to a related

problem. There are six problem types that can be used: LP, MILP, FIXEDMIL,

QP, MIQP and FIXEDMIQP problems.

QSopt The routine returns simply zero because with QSopt is impossible to

change the problem.

Coin The routine returns simply zero because with Coin is impossible to

change the problem.

CPXdelsetrows — delete a set of rows

Synopsis

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat);

Description The routine deletes a set of rows but it does not require the

rows to be in a contiguous range. After the deletion occurs, the remaining rows

are indexed consecutively starting at 0, and in the same order as before the dele-

tion. The routine returns a zero on success, and a nonzero if an error occurs.

QSopt At first, the function QSget rowcount() is called to obtain the num-

ber of rows (nrows) of the problem and an array (delrows) of size “number of

rows + 1” is created. Then into a cycle for i from 0 to nrows-1, ith entry of

delrows is initialized to i if delstat[i] is equal to 1. At the end of cycle if there are

rows to be deleted the function QSdelete rows() is invoked using array delstat.

The routine returns zero.
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Coin At first, the function getNumRows() is called to obtain the number of

rows (nrows) of the problem and an array (delrows) of size “number of rows +

1” is created. Then into a cycle for i from 0 to nrows-1, ith entry of delrows is

initialized to i if delstat[i] is equal to 1. At the end of cycle if there are rows to

be deleted the function deleteRows() is invoked using array delstat. The routine

returns zero.

CPXchgbds — change the upper or lower bounds

Synopsis

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu,

double *bd);

Description The routine is used to change the upper or lower bounds on

a set of variables of a problem. Several bounds can be changed at once, with

each bound specified by the index of the variable with which it is associated.

The value of a variable can be fixed at one value by setting the upper and lower

bounds to the same value and the routine returns a zero on success, and a nonzero

if an error occurs.

QSopt Into a cycle, for i between 0 and cnt-1 and using the function

QSchange bound():

• if lu[i] ==’U’ upper bound is changed to bd[i] ;

• if lu[i] ==’L’ lower bound is changed to bd[i] ;

• if lu[i] ==’B’ upper and lower bounds are both changed to bd[i] ;

The routine returns zero.

Coin At first, with the functions getColLower() and getColUpper() current

upper and lower bounds are stored into two variables. Then into a cycle, for i

between 0 and cnt-1 and using the function setColBounds():
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• if lu[i]==’U’ upper bound is changed to bd[i] ;

• if lu[i]==’L’ lower bound is changed to bd[i] ;

• if lu[i]==’B’ upper and lower bounds are both changed to bd[i] ;

The routine returns zero.

CPXaddcols — add columns

Synopsis

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double

*obj, int *cmatbeg, int *cmatind, double *cmatval, double *lb, double *ub, char

**colname);

Description The routine adds columns to a problem object. CPXaddcols()

is very similar to the routine CPXaddrows(). The primary difference is that

CPXaddcols() cannot add coefficients in rows that do not already exist (that

is, in rows with index greater than the number returned by CPXgetnumrows());

whereas CPXaddrows() can add coefficients in columns with index greater than

the value returned by CPXgetnumcols(), by the use of the ccnt argument. Thus,

CPXaddcols() has no variable rcnt and no array rowname. The routine returns

a zero on success, and a nonzero if an error occurs.

QSopt After to have created the integer array cmatcnt of nzcnt elements,

into a cycle for k from 0 to ccnt-1, each entry is initialized:

• if k < ccnt− 1 then cmatcnt[k] = (int)(cmatbeg[k + 1]− cmatbeg[k]);

• else cmatcnt[k] = (int)(ccnt− cmatbeg[k]);

Now cmatcnt (that is an array of length ncols where the kth entry specifies

the number of non-zeros in the kth column), is defined and calling the function

QSadd cols() the new columns are added to the problem. Then the routine re-

turns zero.
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Coin This routine is quite complex and following operations are performed

into a cycle with t from 0 to cnt-1 (objcoeff, inf and sup are double variables

whereas inizio, fine and len are integer variables):

• if obj == NULL then objcoeff is set to 0, else to obj[t];

• inizio is set to cmatbeg[t];

• if t == (ccnt−1) then fine = (nzcnt−1), else fine = (cmatbeg[t+1]−1);

• so len = fine− inizio + 1;

• now, array index (of integer) and val (of double) are created and initialized

in this way (with q from 0 to len-1 ):

– index[q] = cmatind[inizio + q];

– val[q] = cmatval[inizio + q];

• an object CoinPackedVector is created with the constructor

CoinPackedV ectorcol(len, index, val);

• if lb == NULL:

– then inf = 0;

– else if lb[t] <= −CPX INFBOUND then inf = −(∗lpx).getInfinity(),

else inf = lb[t];

• if ub[t] >= CPX INFBOUND or ub == NULL then

sup = (∗lp).getInfinity() else sup = ub[t];

• the new column is added: (∗lpx).addCol(col, inf, sup, objcoeff) and the

cycle is closed;

Then the routine returns zero.
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CPXaddrows — add rows

Synopsis

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int nzcnt,

double *rhs, char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **col-

name, char **rowname);

Description The routine adds constraints to a specified problem object and

it returns a zero on success, and a nonzero if an error occurs.

QSopt The routine is implemented in this way:

• if ccnt > 0 then begin a cycle (for t from 0 to ccnt-1 ) where

if colname !=NULL:

– then a new column is added calling the instruction

QSnew col(lpx, 0, 0, 0, colname[t]);

– else calling QSnew col(lpx, 0, 0, 0, ””);

• with another cycle (for k from 0 to rcnt-1 ):

– if k < rcnt− 1 then rmatcnt[k] = (int)(rmatbeg[k + 1]− rmatbeg[k]);

– else rmatcnt[k] = (int)(rcnt− rmatbeg[k]);

• now the function QSadd rows() is called using the new parameter rmatcnt.

The routine returns zero.

Coin The routine is implemented in this way:

• if ccnt > 0 then:

– current number of rows (nrows) is obtained and a new array (zeric, of

nrows elements) is defined;

– a new object (col) is created with the constructor

CoinPackedV ectorcol = newCoinPackedV ector(nrows, zeric);

– into a for cycle (with t from 0 to ccnt-1 ) is called the function

(∗lpx).addCol(col, 0, (∗lpx).getInfinity(), 0);



5.4. PROBLEM QUERY ROUTINES 59

• current number of columns is obtained and integer variables inizio, fine and

len are declared;

• into a for cycle (with t from 0 to rcnt-1 )

– inizio = rmatbeg[t];

– if t == (rcnt− 1) then fine = (nzcnt− 1) else

fine = (rmatbeg[t + 1]− 1);

– len = fine− inizio + 1;

– arrays index (of integer) and val (of double) are defined; integer vari-

able c is initialized to 0;

– into a for cycle (with q from 0 to len-1 ) if rmatval[inizio + q]! = 0

then

∗ index[c] = rmatind[inizio + q];

∗ val[c] = rmatval[inizio + q];

∗ c + +;

– CoinPackedV ectorrow(c, index, val);

– now the function addRow() is called using as parameter the object

row;

The routine returns zero.

5.4 Problem query routines

CPXgetprobname — access problem name

Synopsis

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char *buf str, int buf-

space, int *surplus p);

Description The routine CPXgetprobname() is used to access the name of

the problem set via the call to CPXcreateprob().
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QSopt The routine is implemented simply calling QSget probname() and it

returns zero.

Coin It is a fake routine because Clp does not assign a name to the prob-

lem and so the routine returns simply zero.

CPXgetnumrows — retrieve number of rows

Synopsis

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpx);

Description The routine CPXgetnumrows() is used to access the number of

rows in the constraint matrix, not including the objective function or the bounds

constraints on the variables.

Qsopt The routine is implemented simply calling QSget rowcount() and it

returns the number of rows.

Coin The routine is implemented simply calling getNumRows() and it returns

the number of rows.

CPXgetnumcols — retrieve number of columns

Synopsis

int CPXgetnumcols (CPXENVptr env, CPXLPptr lp);

Description The routine CPXgetnumcols() is used to access the number of

rows in the constraint matrix, or equivalently, the number of variables in the

CPLEX problem object.
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QSopt The routine is implemented simply calling QSget colcount() and it re-

turns the number of rows.

Coin The routine is implemented simply calling getNumCols() and it returns

the number of rows.

CPXgetobjsen — access the objective function sense

Synopsis

int CPXgetobjsen (CPXENVptr env, CPXLPptr lpx);

Description The routine is used to access whether the objective function sense

of a problem object is maximization or minimization. The value 1 is returned for

minimization, -1 for maximization and 0 if the problem object or environment

does not exist.

QSopt The routine returns simply 1 because the solver cannot able to verify

the objective sense of the problem. Indeed the sense can be set as a parameter

by users but then it is valid for all subsequent problems.

Coin The routine is implemented simply calling getObjSense() and it returns

the objective function sense.

CPXgetctype — access the types of a range of variables

Synopsis

int CPXgetctype( CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int

end);

Description The routine is used to access the types for a range of variables
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in a problem object and these are passed through xctype. Begin and end of the

range must be specified and a zero is returned on success, a nonzero if an error

occurs.

QSopt In QSopt there is not a similar routine to obtain the same result.

So, each variable between begin and end is analyzed in this way. At first, QS-

get intflags() is used to determine the integer variables in the problem (informa-

tion stored in an array of integer where the jth entry is 1 or 0 if the jth variable

is integer or not). Then, with a for cycle between begin and end, are performed

these operations:

• if the jth variable is continuous the (j-begin)th entry of xctype is set to ’C’ ;

• else if the variable is integer, his bounds are controlled with the functions

QSget bound() and:

– if upper bound is equals to 1 and lower to 0 the variable is binary and

so (j-begin)th entry of xctype is set to ’B’ ;

– else (j-begin)th entry of xctype is set to ’I’ ;

Coin For each variable between begin and end is called the routine isContinu-

ous() to determine if that is continuous or not: if true the current entry of xctype

is set to ’C’ ; else if the variable is integer, as for QSopt, using getColLower() and

getColUpper() his bounds are controlled and then the entry of xctype is set to ’B’

or ’I’ (in the same cases as for QSopt).

CPXgetobj — access a range of objective function coefficients

Synopsis

int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end);

Description The routine is used to access a range of objective function coeffi-

cients of a problem object. The beginning and end of the range must be specified

and the routine returns a zero on success, and a nonzero if an error occurs.
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QSopt The function QSget obj() returns the coefficients of the objective func-

tion as an array of length, at least, the number of columns of the problem. Then

obj is set with the coefficients (taken between begin and end) from former array.

Coin In the same way as for QSopt, the coefficients of the objective func-

tion are obtained by getObjCoefficients() and only those from begin and end are

stored into obj.

CPXgetub — access a range of upper bounds on the variables

Synopsis

int CPXgetub (CPXCENVptr env, CPXCLPptr lpx, double *ub, int begin, int

end);

Description The routine is used to access a range of upper bounds on the

variables of a problem object. The beginning and end of the range must be spec-

ified and the routine returns a zero on success, and a nonzero if an error occurs.

QSopt Into a for cycle between begin and end, using the function QSget bound(),

is obtained the upper bound of each variable (upper).

If upper < QS MAXDOUBLE (value for infinity used by QSopt):

• if upper > CPX INFBOUND (value for infinity used by CPLEX) the cor-

respondent entry of ub is set to CPX INFBOUND ;

• else the entry of ub is set to upper ;

If upper ≥ QS MAXDOUBLE the current element of ub is set to CPX INFBOUND.

Finally the routine returns zero.

Coin Into a for cycle between begin and end, using the function getColUp-

per(), is obtained the upper bound of each variable (upper).

If upper ! = (*lpx).getInfinity()(value for infinity used by Clp):
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• if upper > CPX INFBOUND (value for infinity used by CPLEX) the cor-

respondent entry of ub is set to CPX INFBOUND ;

• else the entry of ub is set to upper ;

If upper ≥ (*lpx).getInfinity() the current element of ub is set to CPX INFBOUND.

Finally the routine returns zero.

CPXgetsense — access the sense

Synopsis

int CPXgetsense (CPXCENVptr env, CPXCLPptr lpx, char *sense, int begin,

int end);

Description The routine is used to access the sense for a range of constraints

in a problem object. The beginning and end of the range must be specified and

routine returns a zero on success, and a nonzero if an error occurs. Possible chars

are:

• ’L’ ≤ constraint;

• ’E’ = constraint;

• ’G’ ≥ constraint;

• ’R’ for ranged constraints; (not used by FP)

QSopt After to have created and initialized few variables and pointers,

QSget rowcount() and QSget rows() are called to obtain, respectively, the num-

ber of rows and a complete description of the constraints of the problem. Now,

since QSget rows() returns an array of length equal to “number of rows” where

the ith entry specifies the sense of the ith constraint, into a for cycle between

begin and end it is simple to set the array sense with the correct symbols. The

routine returns zero.

Coin Into a for cycle between begin and end the function getRowSense() is
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called to obtain the sense of each row and the array sense is initialized. The

routine returns zero.

CPXgetrhs — access the right-hand side coefficients

Synopsis

int CPXgetrhs ( CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int

end);

Description The routine is used to access the right-hand side coefficients for

a range of constraints in a problem object. The beginning and end of the range

must be specified and the routine returns a zero on success, and a nonzero if an

error occurs.

QSopt After to have obtained the number of rows, the function QSget rhs()

returns the right-hand-side values of the constraints. Then into a for cycle be-

tween begin and end it is simple to set the array rhs with the values. The routine

returns zero.

Coin Into a for cycle between begin and end the function getRightHandSide()

is called to obtain the right-hand side coefficient of each row and the array rhs is

initialized. The routine returns zero.

CPXgetcolname — access a range of column names

Synopsis

int CPXgetcolname ( CPXENVptr env, CPXLPptr lpx, char **name, char *name-

store, int storespace, int *surplus p, int begin, int end);

Description The routine is used to access a range of column names or, equiv-
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alently, the variable names of a problem object. The beginning and end of the

range, along with the length of the array in which the column names are to be

returned, must be specified. The routine returns a zero on success, and a nonzero

if an error occurs.

QSopt After to have obtained the number of columns is called the function

QSget colnames() that returns an array of strings (colnames) specifying the

names of the columns (variables). Then storespace is stored in tmp (integer

variable) and into a for cycle between begin and end :

• the length of each column-name is controlled;

• each entry of namestore is initialized with the correspondent string from

colnames ;

• tmp is updated subtracting the length of current column-name.

At the end, surplus p is initialized to tmp and if it is negative the routine returns

CPXERR NEGATIVE SURPLUS, else zero.

Coin The routine returns simply zero because Coin does not allow this op-

eration.

CPXgetrows — access a range of rows

Synopsis

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int *rmatbeg, int

*rmatind, double *rmatval, int rmatspace, int *surplus, int begin, int end);

Description The routine is used to access a range of rows of the constraint

matrix, not including the objective function or the bounds constraints on the

variables of a problem object. The beginning and end of the range, along with

the length of the arrays in which the nonzero entries of these rows are to be re-

turned, must be specified. The routine returns a zero on success, and a nonzero

if an error occurs.
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QSopt The function QSget rowcount() is called to obtain number of rows and

then QSget rows() to define rmatbeg, rmatind, rmatval and nzcnt. The routine

returns zero.

Coin First it is necessary to create the new object CoinPackedMatrix matrice

with the instruction const CoinPackedMatrix *matrice = (*lp).getMatrixByRow();

and to initialize a temporary integer variable (tmp) to rmatspace. Then into for

cycle from begin to end, to obtain the size of the current row is called the function

getVectorSize(); then if this size is superior to zero:

• getVectorStarts() is called to obtain the beginning of ith row

• rmatbeg[i-begin] = nz;

• into a new for cycle between zero and the size of the current row, surplus

is decremented of 1 at each step and if tmp > 0:

– rmatval[nz] = ((*matrice).getElements())[start+len];

– rmatind[nz] = (int)((*matrice).getIndices())[start+len];

– nz++; tmp−−;

At the end nzcnt is set to nz and the routine returns zero.

5.5 File reading and writing routines

CPXreadcopyprob — read a problem object from a file

Synopsis

int CPXreadcopyprob (CPXENVptr env, CPXLPptr prob, char *filename str,

char *filetype str);

Description The routine CPXreadcopyprob() reads an MPS, LP or SAV file

into an existing CPLEX problem object. The type of the file may be specified

with the filetype argument. When the filetype argument is NULL, the end of the
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file name is checked for one of the strings “.lp”, “.LP”, “.mps” or “.MPS”.

QSopt After to have read name and extension of the source file, verifying

all possible cases, with QSread prob() the problem is read and then routine re-

turns zero on success or 1 if an error occurs.

Coin This solver accept only MPS and so the routine is implemented sim-

ply calling readMps(); then the routine returns zero.

CPXwriteprob — write problem data

Synopsis

int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *file-

type);

Description The routine CPXwriteprob() is used to write the current problem

object to a file in MPS or LP format. Filetype define extension and format of the

new file; if filetype is NULL the type is inferred from the filename. The routine

returns a zero on success, and a nonzero if an error occurs.

QSopt After to have read name and extension, calling the routine QSwrite prob()

the new file is created with the problem data.

Coin The solver can write only in MPS format with the routine writeMps();

it returns zero.
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5.6 Parameter setting and query routines

CPXsetintparam — set an integer parameter

Synopsis

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue);

Description The routine sets the value of a CPLEX parameter of type int

and it returns a zero on success, and a nonzero if an error occurs.

QSopt The only parameter fixed is CPX PARAM ITLIM using the function

QSset param(). Other parameters are not fixed because similar parameters are

not present in QSopt. The routine returns zero.

Coin The only parameters fixed are CPX PARAM PREIND and

CPX PARAM ITLIM using the function setHintParam(). Other parameters are

not fixed because similar parameters are not present in Coin. The routine returns

zero.

CPXsetdblparam — set a double parameter

Synopsis

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue);

Description The routine sets the value of a CPLEX parameter of type double

and it returns a zero on success, and a nonzero if an error occurs.

QSopt The routine returns simply zero because because similar parameters

are not present in QSopt.

Coin As for QSopt and for the same reason.
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5.7 Utility routines

CPXopenCPLEX — initializes a CPLEX environment

Synopsis

CPXENVptr CPXopenCPLEX (int *status p);

Description The routine CPXopenCPLEX() initializes a CPLEX environ-

ment when accessing a license for CPLEX and it works only if the computer is

licensed for Callable Library use. Since if an error occurs (including licensing

problems), the value NULL is returned and the reason for the error is returned

in the variable *status p, else it returns the pointer to the CPLEX environment.

QSopt In “ifc imp.c” is defined an integer with value 1 and the routine returns

a pointer to this integer (because CPXENVptr has been defined as a pointer to

integer in “interface.h”).

Coin In “ifc imp.cpp” is defined an integer with value 1 and the routine returns

a pointer to this integer (because CPXENVptr has been defined as a pointer to

integer in “interface.h”).

CPXflushstdchannels — flushes the output

Synopsis

int CPXflushstdchannels (CPXENVptr env);

Description This routine flushes the output buffers of the four standard chan-

nels cpxresults, cpxwarning, cpxerror, and cpxlog. It returns a zero on success,

and a nonzero if an error occurs.

QSopt The routine returns simply zero because QSopt does not allow this
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operation.

Coin As for QSopt and for the same reason.

CPXgetcallbackinfo — access information

Synopsis

int CPXgetcallbackinfo ( CPXENVptr env, void *cbdata, int wherefrom, int which-

info, void *result p);

Description The routine is used to access information about the current op-

timization process and it is the only routine that can access optimization status

information from within a user-written callback function. It is also the only

Callable Library routine that may be called from within a user-written callback

function, and indeed, may only be called from the callback function. The routine

returns a zero on success, and a nonzero if an error occurs.

QSopt The routine retrieve simply objective function value and returns zero.

Coin As for QSopt.

CPXcloseCPLEX — close CPLEX environment

Synopsis

int CPXcloseCPLEX (CPXENVptr *env p);

Description The routine closes CPLEX environment, release the license and

it returns a zero on success, a nonzero if an error occurs.

QSopt The routine returns simply zero.
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Coin The routine returns simply zero.



Chapter 6

Computational results

6.1 Performance

This chapter is dedicated to the comparison of the performance of Feasibility

Pump through the solvers: ILOG-CPLEX 8.1, Coin-Or (updated in September

2004) and QSopt 1.0 . The results reported on the following two tables concern

to problems of set “MIPLIB 2003” and to some instances provided by Fischetti

and Lodi [7, 8, 9, 15, 18, 19, 22, 1] . The tests have been obtained with the same

FP configuration file (param.txt) and command line, for all the problems and for

each solver.

In detail, in the command line parameters have been set to:

• totalTime (total time limit) = 5000

• T (size of the set to update) = 20

• maxIter (max number of internal iterations) = 100000

• TT (tabu tenure) = 0

• wh (0 no heuristic, 1 RINS, 2 DIST) = 0

• SAT (0 NO, 1 YES, 2 STOP at first feasible solution) = 2.

In this way the focus of the tests has been to measure the capability of the solvers

(using the FP) to converge to an initial feasible solution, stopping the solvers as

soon as the first feasible solution was found.

73
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As to file “param.txt”, we have tested the solvers with presolve activated:

with this parameter set to 1, the preprocessing/presolve is activated for ILOG-

CPLEX and Coin-Or, but not for QSopt that does not allow this process to

reduce problems size and therefore total run time.

Then into the files “LocBra.h” and “LocBra.hpp”, we have enabled the line

#defineOPT. This function allows all iterations the solvers needs to perform the

simplex algorithm, without imposing a time limit or an iteration limit. This

method attempts to obtain, at each FP iteration, the optimal solution of the LP

relaxation. This setting is very sensible to the capabilities of the solver used. In-

deed, if a stall situation occurs but the solver does not notice it, the FP algorithm

enter an infinite loop.

The two tables report, for each problem and for each solver, the value of

the first feasible solution found (“value”), the number of iterations performed

(“nIT”) and the corresponding computing time (“time”) in seconds. In case of

failure, “N/A” is reported if a solution has not been found and “S/F” in case of

segmentation fault (core dumped) error. Computing times are expressed in CPU

seconds and refer to a Pentium III 933 MHz with 256 MByte of RAM memory.

All the problems have been converted in MPS format because Coin-Or does

not recognized LP format; to convert the instances we have used ILOG-CPLEX

Interactive Optimizer.

6.2 Comments on results

Own order of business has been to evaluate the percentage of success in finding

a feasible MIP solution without resorting to branching. In this respect, the FP

performance is very satisfactory with all the solvers we used. Indeed, on 81

problems tested, with ILOG-CPLEX a first feasible solution has not been found

in only 3 instances, with Coin in 10, and with QSopt in 11 problems. In detail,

ILOG-CPLEX has reached the time limit in 3 cases, while Coin-Or and QSopt,

respectively 9 and 4 times. For other problems for which Feasibility Pump has

not found a feasible solution, the execution is terminated with a segmentation

fault error (core dumped) in just one case for Coin-Or, and 7 cases for QSopt.

Also interesting is the comparison of the quality of the FP solution found

with the solvers: for 25 problems, the best solution has been found by ILOG-

CPLEX solver, while QSopt and Coin-Or ranked first for, respectively, 19 and

17 instances (for remaining problems the solvers found the same solution values).
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ILOG-CPLEX Coin-Or QSopt
Name value nIT time value nIT time value nIT time
10teams 992.00 53 22.6 1060.00 113 88.5 988.00 120 99.5
A1C1S1 18377.24 5 16.3 18015.92 3 19.3 16815.62 5 55.7
aflow30a 4398.00 16 0.4 4033.00 6 2.3 4254.00 7 1.1
aflow40b 6859.00 7 1.6 7137.00 12 8.8 4893.00 5 10.3
air04 58950.00 6 239.4 67533.00 16 1047.9 59199.00 2 46.7
air05 29937.00 2 33.1 31744.00 12 210.4 34167.00 6 66.3
cap6000 -2354320.00 2 1.7 -2354320.00 2 4.5 -2354320.00 2 1.1
dano3mip 2882022.00 2 256.7 1000.00 9 2875.7 756.62 1 2755.4
danoint 77 3 0.7 77 2 3.1 77 3 3.0
ds N/A 18 5000.0 N/A 15 5000.0 N/A 22 5000.0
fast0507 181.00 4 117.8 183.00 3 483.8 188.00 3 370.4
fiber 1911617.79 2 0.1 1324277.64 2 0.9 1759273.96 2 0.1
fixnet6 9131.00 4 0.1 9194.00 2 0.9 10839.00 4 0.3
glass4 5600050250.00 124 1.4 12700177300.00 3 0.9 N/A S/F ?
harp2 -43856974.00 654 15.8 -45846186.00 2765 1169.4 N/A S/F ?
liu 6262.00 0 0.3 6450.00 0 0.5 5930.00 0 0.3
markshare1 1114.00 9 0.1 852.00 1 0.1 268.00 0 0.0
markshare2 1738.00 8 0.1 1507.00 1 0.4 585.00 0 0.1
mas74 52429700.59 1 0.1 18003.39 1 0.3 38123.74 2 0.1
mas76 194527859.06 1 0.0 47541.14 1 0.4 62310.32 1 0.1
misc07 3700.00 29 0.6 4415.00 41 11.7 4130.00 102 5.1
mkc -164.56 2 1.0 -85.85 2 2.0 -234.69 2 53.7
modglob 35147088.88 0 0.0 35147088.88 0 0.2 35147088.88 0 0.1
momentum1 462127.33 502 3316.7 N/A 226 5000.0 N/A 39 5000.0
net12 337.00 346 170.5 N/A S/F ? N/A S/F ?
nsrand ipx 340800.00 3 2.2 412000.00 2 6.2 313760.00 3 2.9
nw04 19882.00 1 7.8 19882.00 1 97.6 19812.00 1 50.4
opt1217 -12 0 0.1 -14 0 0.3 -14 0 0.1
p2756 N/A 79552 5000.0 N/A 9299 5000.0 N/A S/F ?
pk1 57.00 0 0.1 86.00 0 0.1 35.00 0 0.1
pp08a 11150.00 2 0.1 10420.00 3 1.3 12970.00 3 0.1
pp08aCUTS 10940.00 2 0.1 10700.00 2 0.7 11600.00 3 0.1
protfold -10.00 367 2341.6 N/A 125 5000.0 N/A 77 5000.0
qiu 389.36 3 1.1 386.53 3 2.8 422.93 3 2.9
rd-rplusc-21 N/A 378 5000.0 N/A 4 5000.0 N/A 16 5000.0
set1ch 76951.50 2 0.2 107554.50 2 1.0 87450.75 2 0.2
seymour 452.00 9 13.4 457.00 8 17.9 462.00 10 41.2
sp97ar 1398705728.00 6 13.6 1397935023.68 4 88.2 1175257518.72 4 23.2
swath 19221.42 49 7.8 45119.00 556 529.0 N/A S/F ?
t1717 826848.00 42 2523.9 N/A 6 5000.0 N/A S/F ?
tr12-30 277218.00 9 0.5 263011.00 9 3.9 250302.00 9 1.1
van 8.21 4 693.7 8.91 2 1071.6 7.11 3 1204.3
vpm2 19.25 3 0.1 22.5 3 1.3 22.00 2 0.1

Table 6.1: Performance of Feasibility Pump applied to ILOG-CPLEX, Coin-Or and
QSopt.

These numbers are quite comparable, also taking into account that ILOG-CPLEX

is a commercial product while QSopt and Coin-Or are open-source software.

A different scenario concerns computing times. Looking at the tables, it is

very simple to observe that for almost the entire set of problems, the Feasibility

Pump implemented with ILOG-CPLEX finds a feasible solution earlier than those

implemented with QSopt and Coin-Or. Between those with Qsopt and Coin-Or,

instead, it is not too simple to establish which is the fastest one. Excluding the
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ILOG-CPLEX COIN-OR QSopt
Name value nIT time value nIT time value nIT time
biella1 3537959.54 5 28.2 3536921.85 6 178.4 3436393.28 6 1435.3
dc1c 27348312.19 4 60.2 26305768.12 5 526.6 6104043.29 4 4448.7
dc1l 8256022.49 5 335.9 N/A 0 5000.0 N/A S/F ?
dolom1 298684615.17 7 94.0 1040541381.20 4 874.7 N/A 4 1501.3
siena1 104004996.99 5 281.5 N/A 2 5000.0 252696707.35 5 4938.8
trento1 356179003.01 2 57.2 177331065.02 3 929.3 256667686.02 3 199.8
rail507 178.00 2 175.8 187.00 3 523.1 178.00 3 461.8
rail2536c 715.00 4 85.4 730.00 3 618.7 719.00 3 241.9
rail2586c 1007.00 5 289.4 1002.00 5 709.0 1023.00 5 814.9
rail4284c 1124.00 3 4343.7 N/A 0 5000.0 1137.00 3 2998.5
rail4872 1614.00 5 993.1 N/A 2 5000.0 1628.00 4 2728.8
A2C1S1 19879.93 5 17.2 15222.13 4 17.5 17897.46 5 49.2
B1C1S1 38530.65 7 23.2 46705.76 5 24.0 40908.09 6 53.0
B2C1S1 48279.95 6 18.8 56377.22 6 27.5 35118.52 5 63.2
sp97ic 1280793707.52 3 8.6 1134148364.64 2 34.5 907630990.40 2 15.1
sp98ar 988402511.36 4 13.7 1056785441.12 5 129.6 10020402074.40 9 43.2
sp96ic 959924716.00 3 7.0 1094092452.80 2 21.5 885483915.04 4 17.9
blp-ar98 25094.03 161 72.7 24014.3 204 925.2 N/A S/F ?
blp-ic97 7874.87 4 2.4 7911.40 22 46.9 7072.96 13 10.2
blp-ic98 14848.96 6 4.8 13614.59 8 37.8 17399.89 19 77.7
blp-ir98 6208.74 4 1.4 6580.38 3 6.8 9476.30 9 4.3
CMS750 4 606.00 131 67.9 555.00 140 483.0 679.00 182 2384.4
berlin 5 8 0 79.00 10 0.5 77.00 13 6.4 77.00 15 1.7
railway 8 1 0 440.00 13 1.0 435.00 17 10.1 450.00 27 5.3
usAbbrv.8.25 70 164.00 34 2.6 158.00 31 20.9 159.00 34 9.0
bg512142 120738665.00 0 0.5 120738665.00 0 1.1 120738665.00 0 1.7
dg012142 153406945.50 0 3.6 153406945.50 0 4.9 153409621.50 0 20.0
manpower1 8.00 66 106.2 11.00 125 629.8 9.00 51 2113.2
manpower2 7.00 148 507.5 6.00 33 608.8 N/A 79 5000.0
manpower3 6.00 49 156.6 7.00 26 492.1 6.00 36 1860.2
manpower3a 6.00 73 236.8 10.00 157 2579.6 7.00 55 3242.9
manpower4 7.00 192 322.4 7.00 28 375.8 8.00 46 2800.9
manpower4a 7.00 53 237.4 10.00 127 2568.5 7.00 42 2622.3
ljb2 7.24 0 0.2 7.24 0 0.5 7.24 0 0.3
ljb7 8.61 0 2.0 8.61 0 4.0 8.61 0 12.1
ljb9 9.48 0 2.6 9.48 0 5.7 9.48 0 16.7
ljb10 7.31 0 3.6 7.31 0 9.8 7.31 0 23.8
ljb12 6.20 0 2.6 6.20 0 6.1 6.20 0 16.7

Table 6.2: Performance of Feasibility Pump applied to ILOG-CPLEX, Coin-Or and
QSopt.

instances for which the solvers required less than 5 seconds, the Feasibility Pump

implemented with Coin-Or was faster than that with QSopt in 28 cases, while

in 19 cases the FP with QSopt was faster than that with Coin-Or. Excluding

ILOG-CPLEX, using the FP the faster solver seems to be Coin-Or, but it is

necessary to notice that for the problems solved in less than 5 seconds, the FP

with QSopt was faster than that with Coin-Or.

Indeed, the tables 6.3 and 6.4 report the ratio of the average times per iteration

of the FP with CPLEX is normalized to 1.0 for all instances (the higher the ratio,

the slower the FP implementation with respect to the one based on CPLEX).

The average ratio of FP with Coin-Or is 8.45, while for QSopt is 8.13: hence, on
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ILOG-CPLEX Coin-Or QSopt
Name value ratio value ratio value ratio
10teams 992.00 (1.0) 1060.00 1.8 988.00 1.9
A1C1S1 18377.24 (1.0) 18015.92 2.0 16815.62 3.4
aflow30a 4398.00 (1.0) 4033.00 15.3 4254.00 6.3
aflow40b 6859.00 (1.0) 7137.00 3.2 4893.00 9.0
air04 58950.00 (1.0) 67533.00 1.6 59199.00 0.6
air05 29937.00 (1.0) 31744.00 1.1 34167.00 0.7
cap6000 -2354320.00 (1.0) -2354320.00 2.6 -2354320.00 0.6
dano3mip 2882022.00 (1.0) 1000.00 21.8 756.62 21.5
danoint 77 (1.0) 77 6.6 77 4.3
ds N/A (1.0) N/A 1.2 N/A 0.8
fast0507 181.00 (1.0) 183.00 5.5 188.00 4.2
fiber 1911617.79 (1.0) 1324277.64 9.0 1759273.96 1.0
fixnet6 9131.00 (1.0) 9194.00 18.0 10839.00 3.0
glass4 5600050250.00 (1.0) 12700177300.00 26.6 N/A ?
harp2 -43856974.00 (1.0) -45846186.00 17.5 N/A ?
liu 6262.00 (1.0) 6450.00 1.6 5930.00 1.0
markshare1 1114.00 (1.0) 852.00 9.0 268.00 0.0
markshare2 1738.00 (1.0) 1507.00 32.0 585.00 0.0
mas74 52429700.59 (1.0) 18003.39 3.0 38123.74 0.5
mas76 194527859.06 (1.0) 47541.14 4.0 62310.32 1.0
misc07 3700.00 (1.0) 4415.00 13.8 4130.00 2.4
mkc -164.56 (1.0) -85.85 2.0 -234.69 53.7
modglob 35147088.88 (1.0) 35147088.88 2.0 35147088.88 1.0
momentum1 462127.33 (1.0) N/A 3.3 N/A 19.4
nsrand ipx 340800.00 (1.0) 412000.00 4.2 313760.00 1.3
nw04 19882.00 (1.0) 19882.00 12.5 19812.00 6.5
opt1217 -12 (1.0) -14 3.0 -14 1.0
p2756 N/A (1.0) N/A 8.6 N/A ?
pk1 57.00 (1.0) 86.00 1.0 35.00 1.0
pp08a 11150.00 (1.0) 10420.00 13.0 12970.00 1.0
pp08aCUTS 10940.00 (1.0) 10700.00 7.0 11600.00 0.7
protfold -10.00 (1.0) N/A 6.3 N/A 10.2
qiu 389.36 (1.0) 386.53 2.5 422.93 2.6
rd-rplusc-21 N/A (1.0) N/A 94.5 N/A 23.6
set1ch 76951.50 (1.0) 107554.50 5.0 87450.75 1.0
seymour 452.00 (1.0) 457.00 1.5 462.00 2.8
sp97ar 1398705728.00 (1.0) 1397935023.68 9.7 1175257518.72 2.6
swath 19221.42 (1.0) 45119.00 6.0 N/A ?
t1717 826848.00 (1.0) N/A 13.9 N/A ?
tr12-30 277218.00 (1.0) 263011.00 7.8 250302.00 2.2
van 8.21 (1.0) 8.91 3.1 7.11 2.3
vpm2 19.25 (1.0) 22.5 13.0 22.00 6.0

Table 6.3: Performance of Feasibility Pump applied to ILOG-CPLEX, Coin-Or and
QSopt.

average, an iteration of 1 second of the FP with CPLEX requires 8.45 seconds

with Coin-Or and 8.13 with QSopt.

About problems for which FP did found any feasible solution with all the

solvers used, it is necessary to make considerations, especially for p2756.

As written in [25], p2756 is a pathological instance for FP, which can instead

be solved very easily by ILOG-CPLEX. This is due to the particular structure of

this problem, which involves a large number of big-M coefficients.
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ILOG-CPLEX COIN-OR QSopt
Name value ratio value ratio value ratio
biella1 3537959.54 (1.0) 3536921.85 5.3 3436393.28 42.4
dc1c 27348312.19 (1.0) 26305768.12 7.0 6104043.29 73.9
dolom1 298684615.17 (1.0) 1040541381.20 16.3 N/A 27.9
siena1 104004996.99 (1.0) N/A 44.4 252696707.35 17.6
trento1 356179003.01 (1.0) 177331065.02 10.8 256667686.02 2.3
rail507 178.00 (1.0) 187.00 2.0 178.00 1.8
rail2536c 715.00 (1.0) 730.00 9.7 719.00 3.8
rail2586c 1007.00 (1.0) 1002.00 2.5 1023.00 2.8
rail4284c 1124.00 (1.0) N/A ? 1137.00 0.7
rail4872 1614.00 (1.0) N/A 12.6 1628.00 3.4
A2C1S1 19879.93 (1.0) 15222.13 1.3 17897.46 2.9
B1C1S1 38530.65 (1.0) 46705.76 1.5 40908.09 2.7
B2C1S1 48279.95 (1.0) 56377.22 1.5 35118.52 4.0
sp97ic 1280793707.52 (1.0) 1134148364.64 6.0 907630990.40 2.6
sp98ar 988402511.36 (1.0) 1056785441.12 7.6 10020402074.40 1.4
sp96ic 959924716.00 (1.0) 1094092452.80 4.6 885483915.04 1.9
blp-ar98 25094.03 (1.0) 24014.3 10.0 N/A ?
blp-ic97 7874.87 (1.0) 7911.40 3.6 7072.96 1.3
blp-ic98 14848.96 (1.0) 13614.59 5.9 17399.89 5.1
blp-ir98 6208.74 (1.0) 6580.38 6.5 9476.30 1.4
CMS750 4 606.00 (1.0) 555.00 6.7 679.00 25.3
berlin 5 8 0 79.00 (1.0) 77.00 9.8 77.00 2.3
railway 8 1 0 440.00 (1.0) 435.00 7.7 450.00 2.6
usAbbrv.8.25 70 164.00 (1.0) 158.00 8.8 159.00 3.5
bg512142 120738665.00 (1.0) 120738665.00 2.2 120738665.00 3.4
dg012142 153406945.50 (1.0) 153406945.50 1.4 153409621.50 5.6
manpower1 8.00 (1.0) 11.00 5.9 9.00 19.8
manpower2 7.00 (1.0) 6.00 5.4 N/A 18.5
manpower3 6.00 (1.0) 7.00 5.9 6.00 16.2
manpower3a 6.00 (1.0) 10.00 5.1 7.00 18.2
manpower4 7.00 (1.0) 7.00 8.0 8.00 36.3
manpower4a 7.00 (1.0) 10.00 4.5 7.00 13.9
ljb2 7.24 (1.0) 7.24 2.5 7.24 1.5
ljb7 8.61 (1.0) 8.61 2.0 8.61 6.0
ljb9 9.48 (1.0) 9.48 2.2 9.48 6.4
ljb10 7.31 (1.0) 7.31 2.7 7.31 6.6
ljb12 6.20 (1.0) 6.20 2.3 6.20 6.4

Table 6.4: Performance of Feasibility Pump applied to ILOG-CPLEX, Coin-Or and
QSopt.

About ds and rd-rplusc-21, instead, the Feasibility Pump did not find a so-

lution with all the solvers used, probably because these are instances particularly

complex and the time limit of 5000 seconds is not sufficient on our hardware. The

same considerations can be done about the problems that Coin-Or and QSopt

cannot solve and for which the time limit has been reached before finding a so-

lution.

In the end, especially for QSopt, but also for Coin-Or in one case, there are

problems for which the execution terminates without finding a solution and before

to reach time limit: with these instances a segmentation fault (core dumped)

occurs, because the programs tries to access memory locations that have not been
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allocated by the program. The segmentation fault, is not likely to be caused by

bug of our code, because only for few problems this kind of error occurs, while

the routine implemented into the files “ifc imp” are (almost all) called for each

instance. On the other hand, both Coin-Or and QSopt are less sophisticated than

ILOG-CPLEX, hence the presence of a bug is possible.
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Chapter 7

Conclusion

The results obtained by the Feasibility Pump through the two open-source

software have been very satisfactory: for all solvers FP has been able to find a

first feasible solution in the large majority of instances (only with QSopt the FP

encountered some problems). Obviously the best performance have been obtained

with CPLEX, the commercial solver that is, in absolute, one of the most efficient.

Between Coin-Or and QSopt, we would suggest the use of Coin-Or, because it

has been able to find a solution for more instances respect to QSopt. Examining

carefully the entire set of results, FP obtained excellent results with all the solvers.

Looking to the problems for which the computing time is lower than 5 seconds,

the FP performance with QSopt is very similar to that with CPLEX. So, after

CPLEX that is at the first place, the FP with Coin-Or and QSopt have their

merits and faults. The FP with Coin-Or can find a solution on more instances

than that with Qsopt, but the FP with Qsopt is, perhaps, faster on “simple”

problems.

As to the libraries of functions, it must be stressed that the interfaces are not

complete, because only routines called by FP have been implemented. Neverthe-

less, the current libraries can be applied on a large number of programs because

the routines implemented may be sufficient in many cases.

Finally, the libraries we have developed could be very useful because they can

be applied to all the software and programs based and written for CPLEX which

does not need a too powerful solver. In this case, without rewriting any line of

code, one can immediately use one of this free software.
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Appendix A

Source code: “from
ILOG-CPLEX to QSopt”

A.1 interface.h

#include "c:/cygwin/qsopt/qsopt.h"

typedef int * CPXENVptr;

typedef QSprob CPXLPptr;

#define CPXoptimize CPXlpopt

#define CPX_ALG_NONE -1

#define CPX_ALG_AUTOMATIC 0

#define CPX_ALG_PRIMAL 1

#define CPX_ALG_DUAL 2

#define CPX_ALG_NET 3

#define CPX_ALG_BARRIER 4

#define CPX_ALG_SIFTING 5

#define CPX_ALG_CONCURRENT 6

#define CPX_ALG_BAROPT 7

#define CPX_ALG_PIVOTIN 8

#define CPX_ALG_PIVOTOUT 9

#define CPX_ALG_PIVOT 10

#define CPX_ALG_ANY BIGINT

#define CPX_MAX -1

#define CPX_MIN 1

#define CPXPROB_LP 0

#define CPXPROB_MILP 1

#define CPXPROB_FIXEDMILP 3

#define CPXPROB_QP 5

#define CPXPROB_MIQP 7

#define CPXPROB_FIXEDMIQP 8

#define CPX_INFBOUND 1.0E+20

#define CPXERR_NEGATIVE_SURPLUS 1207

#define CPX_AT_LOWER 0

#define CPX_BASIC 1

#define CPX_AT_UPPER 2

83
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#define CPX_FREE_SUPER 3

//per wherefrom

#define CPX_CALLBACK_PRIMAL 1

#define CPX_CALLBACK_DUAL 2

#define CPX_CALLBACK_NETWORK 3

#define CPX_CALLBACK_PRIMAL_CROSSOVER 4

#define CPX_CALLBACK_DUAL_CROSSOVER 5

#define CPX_CALLBACK_BARRIER 6

#define CPX_CALLBACK_PRESOLVE 7

#define CPX_CALLBACK_QPBARRIER 8

#define CPX_CALLBACK_QPSIMPLEX 9

#define CPX_CALLBACK_MIP 101

#define CPX_CALLBACK_MIP_BRANCH 102

#define CPX_CALLBACK_MIP_NODE 103

#define CPX_CALLBACK_MIP_HEURISTIC 104

#define CPX_CALLBACK_MIP_SOLVE 105

#define CPX_CALLBACK_MIP_CUT 106

#define CPX_CALLBACK_MIP_PROBE 107

#define CPX_CALLBACK_MIP_FRACCUT 108

#define CPX_CALLBACK_MIP_DISJCUT 109

#define CPX_CALLBACK_MIP_FLOWMIR 110

#define CPX_CALLBACK_MIP_INCUMBENT 111

#define CPX_CALLBACK_MIP_DELETENODE 112

#define CPX_CALLBACK_INFO_BEST_INTEGER 101

/* MIP Parameter numbers */

#define CPX_PARAM_BRDIR 2001

#define CPX_PARAM_BTTOL 2002

#define CPX_PARAM_CLIQUES 2003

#define CPX_PARAM_COEREDIND 2004

#define CPX_PARAM_COVERS 2005

#define CPX_PARAM_CUTLO 2006

#define CPX_PARAM_CUTUP 2007

#define CPX_PARAM_EPAGAP 2008

#define CPX_PARAM_EPGAP 2009

#define CPX_PARAM_EPINT 2010

#define CPX_PARAM_HEURISTIC 2011

#define CPX_PARAM_MIPDISPLAY 2012

#define CPX_PARAM_MIPINTERVAL 2013

#define CPX_PARAM_MIPTHREADS 2014

#define CPX_PARAM_INTSOLLIM 2015

#define CPX_PARAM_NODEFILEIND 2016

#define CPX_PARAM_NODELIM 2017

#define CPX_PARAM_NODESEL 2018

#define CPX_PARAM_OBJDIF 2019

#define CPX_PARAM_MIPORDIND 2020

#define CPX_PARAM_RELOBJDIF 2022

#define CPX_PARAM_STARTALG 2025

#define CPX_PARAM_SUBALG 2026

#define CPX_PARAM_TRELIM 2027

#define CPX_PARAM_VARSEL 2028

#define CPX_PARAM_BNDSTRENIND 2029

#define CPX_PARAM_HEURFREQ 2031

#define CPX_PARAM_MIPORDTYPE 2032

#define CPX_PARAM_CUTSFACTOR 2033

#define CPX_PARAM_RELAXPREIND 2034

#define CPX_PARAM_MIPSTART 2035

#define CPX_PARAM_PRESLVND 2037

#define CPX_PARAM_BBINTERVAL 2039

#define CPX_PARAM_FLOWCOVERS 2040

#define CPX_PARAM_IMPLBD 2041

#define CPX_PARAM_PROBE 2042
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#define CPX_PARAM_GUBCOVERS 2044

#define CPX_PARAM_STRONGCANDLIM 2045

#define CPX_PARAM_STRONGITLIM 2046

#define CPX_PARAM_STRONGTHREADLIM 2047

#define CPX_PARAM_FRACCAND 2048

#define CPX_PARAM_FRACCUTS 2049

#define CPX_PARAM_FRACPASS 2050

#define CPX_PARAM_FLOWPATHS 2051

#define CPX_PARAM_MIRCUTS 2052

#define CPX_PARAM_DISJCUTS 2053

#define CPX_PARAM_AGGCUTLIM 2054

#define CPX_PARAM_MIPCBREDLP 2055

#define CPX_PARAM_CUTPASS 2056

#define CPX_PARAM_MIPEMPHASIS 2058

#define CPX_PARAM_SYMMETRY 2059

#define CPX_PARAM_DIVETYPE 2060

/* CPLEX Parameter numbers */

#define CPX_PARAM_ADVIND 1001

#define CPX_PARAM_AGGFILL 1002

#define CPX_PARAM_AGGIND 1003

#define CPX_PARAM_BASINTERVAL 1004

#define CPX_PARAM_CFILEMUL 1005

#define CPX_PARAM_CLOCKTYPE 1006

#define CPX_PARAM_CRAIND 1007

#define CPX_PARAM_DEPIND 1008

#define CPX_PARAM_DPRIIND 1009

#define CPX_PARAM_PRICELIM 1010

#define CPX_PARAM_EPMRK 1013

#define CPX_PARAM_EPOPT 1014

#define CPX_PARAM_EPPER 1015

#define CPX_PARAM_EPRHS 1016

#define CPX_PARAM_FASTMIP 1017

#define CPX_PARAM_IISIND 1018

#define CPX_PARAM_SIMDISPLAY 1019

#define CPX_PARAM_ITLIM 1020

#define CPX_PARAM_ROWREADLIM 1021

#define CPX_PARAM_NETFIND 1022

#define CPX_PARAM_COLREADLIM 1023

#define CPX_PARAM_NZREADLIM 1024

#define CPX_PARAM_OBJLLIM 1025

#define CPX_PARAM_OBJULIM 1026

#define CPX_PARAM_PERIND 1027

#define CPX_PARAM_PERLIM 1028

#define CPX_PARAM_PPRIIND 1029

#define CPX_PARAM_PREIND 1030

#define CPX_PARAM_REINV 1031

#define CPX_PARAM_REVERSEIND 1032

#define CPX_PARAM_RFILEMUL 1033

#define CPX_PARAM_SCAIND 1034

#define CPX_PARAM_SCRIND 1035

#define CPX_PARAM_SIMTHREADS 1036

#define CPX_PARAM_SINGLIM 1037

#define CPX_PARAM_SINGTOL 1038

#define CPX_PARAM_TILIM 1039

#define CPX_PARAM_XXXIND 1041

#define CPX_PARAM_PREDUAL 1044

#define CPX_PARAM_ROWGROWTH 1046

#define CPX_PARAM_COLGROWTH 1047

#define CPX_PARAM_NZGROWTH 1048

#define CPX_PARAM_EPOPT_H 1049

#define CPX_PARAM_EPRHS_H 1050

#define CPX_PARAM_PREPASS 1052

#define CPX_PARAM_DATACHECK 1056
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#define CPX_PARAM_REDUCE 1057

#define CPX_PARAM_PRELINEAR 1058

#define CPX_PARAM_LPMETHOD 1062

#define CPX_PARAM_QPMETHOD 1063

#define CPX_PARAM_WORKDIR 1064

#define CPX_PARAM_WORKMEM 1065

#define CPX_PARAM_PRECOMPRESS 1066

#define CPX_PARAM_THREADS 1067

#define CPX_PARAM_SIFTDISPLAY 1076

#define CPX_PARAM_SIFTALG 1077

#define CPX_PARAM_SIFTITLIM 1078

/* Values returned for ’stat’ by solution () */

#define CPX_STAT_OPTIMAL 1

#define CPX_STAT_UNBOUNDED 2

#define CPX_STAT_INFEASIBLE 3

#define CPX_STAT_INForUNBD 4

#define CPX_STAT_OPTIMAL_INFEAS 5

#define CPX_STAT_NUM_BEST 6

#define CPX_STAT_ABORT_IT_LIM 10

#define CPX_STAT_ABORT_TIME_LIM 11

#define CPX_STAT_ABORT_OBJ_LIM 12

#define CPX_STAT_ABORT_USER 13

/* Solution type return values from CPXsolninfo() */

#define CPX_NO_SOLN 0

#define CPX_BASIC_SOLN 1

#define CPX_NONBASIC_SOLN 2

/* Values of presolve ’stats’ for columns and rows */

#define CPX_PRECOL_LOW -1

#define CPX_PRECOL_UP -2

#define CPX_PRECOL_FIX -3

#define CPX_PRECOL_AGG -4

#define CPX_PRECOL_OTHER -5

#define CPX_PREROW_RED -1

#define CPX_PREROW_AGG -2

#define CPX_PREROW_OTHER -3

/* MIP Problem status codes */

#define CPXMIP_OPTIMAL 101

#define CPXMIP_OPTIMAL_TOL 102

#define CPXMIP_INFEASIBLE 103

#define CPXMIP_SOL_LIM 104

#define CPXMIP_NODE_LIM_FEAS 105

#define CPXMIP_NODE_LIM_INFEAS 106

#define CPXMIP_TIME_LIM_FEAS 107

#define CPXMIP_TIME_LIM_INFEAS 108

#define CPXMIP_FAIL_FEAS 109

#define CPXMIP_FAIL_INFEAS 110

#define CPXMIP_MEM_LIM_FEAS 111

#define CPXMIP_MEM_LIM_INFEAS 112

#define CPXMIP_ABORT_FEAS 113

#define CPXMIP_ABORT_INFEAS 114

#define CPXMIP_OPTIMAL_INFEAS 115

#define CPXMIP_FAIL_FEAS_NO_TREE 116

#define CPXMIP_FAIL_INFEAS_NO_TREE 117

#define CPXMIP_UNBOUNDED 118

#define CPXMIP_INForUNBD 119

char *nomefile;

char *tipofile;



A.2. IFC IMP.C 87

CPXENVptr CPXopenCPLEX (int *status_p);

int CPXcloseCPLEX (CPXENVptr *env_p);

CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname);

int CPXreadcopyprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype_str);

int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype);

CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status_p);

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpx);

int CPXgetnumcols (CPXENVptr env, CPXLPptr lpx);

int CPXgetobjsen (CPXENVptr env, CPXLPptr lpx);

int CPXgetctype (CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int end);

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char *buf_str, int bufspace, int *surplus_p);

int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end);

int CPXgetub (CPXENVptr env, CPXLPptr lpx, double *ub, int begin, int end);

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end);

int CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end);

int CPXprimopt ( CPXENVptr env, CPXLPptr lpx);

int CPXgetobjval ( CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);

int CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end);

int CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end);

int CPXgetphase1cnt ( CPXENVptr env, CPXLPptr lpx);

int CPXgetstat (CPXENVptr env, CPXLPptr lpx);

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense);

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXmipopt( CPXENVptr env, CPXLPptr lpx);

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end );

int CPXgetmipobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXchgprobtype ( CPXENVptr env, CPXLPptr lpx, int type);

int CPXflushstdchannels (CPXENVptr env);

int CPXgetcolname (CPXENVptr env, CPXLPptr lpx, char **name, char *namestore,

int storespace, int *surplus_p, int begin, int end);

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat);

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu, double *bd);

int CPXgetrows (CPXENVptr env, CPXLPptr lp, int *nzcnt, int *rmatbeg, int *rmatind,

double *rmatval, int rmatspace, int *surplus, int begin, int end);

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double *obj, int *cmatbeg,

int *cmatind, double *cmatval, double *lb, double *ub, char **colname);

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int nzcnt, double *rhs, char *sense,

int *rmatbeg, int *rmatind, double *rmatval, char **colname, char **rowname);

int CPXgetcallbackinfo ( CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p);

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue);

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue);

int CPXcloseCPLEX (CPXENVptr *env_p);

int CPXdualopt( CPXENVptr env, CPXLPptr lp);

int CPXlpopt ( CPXENVptr env, CPXLPptr lplocale);

A.2 ifc imp.c

#include "LocBra.h"

CPXENVptr CPXopenCPLEX (int *status_p)

{

int valore = 1;

int *falso;

falso = &valore;
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return falso;

}

CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname)

{

QSprob *temp;

temp = QScreate_prob(probname, 1);

return temp;

}

int CPXgetprobname (CPXENVptr env, CPXLPptr lp, char *buf_str, int bufspace, int *surplus_p)

{

char *nome = QSget_probname(lp);

char *tmp = buf_str;

while (*nome != ’\0’)

{

*tmp = *nome;

tmp++;

nome++;

}

*tmp = ’\0’;

return 0;

}

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpx)

{

return QSget_rowcount(lpx);

}

int CPXgetnumcols (CPXENVptr env, CPXLPptr lpx)

{

return QSget_colcount(lpx);

}

int CPXreadcopyprob (CPXENVptr env, CPXLPptr prob, char *filename_str, char *filetype_str)

{

nomefile = filename_str;

tipofile = filetype_str;

char *ext = filetype_str;

char *nome = filename_str;

int s;

int size = strlen(filename_str);

char *tmp = filename_str;

if (filetype_str == NULL)

{

tmp = (tmp + size) - 3;

s = Controllo(tmp,".lp",".LP");

if (s == 1)

{

lp = QSread_prob(filename_str,"LP");

return 0;

}

if (s == 0)

{

tmp = (filename_str + size) - 4;

s = Controllo(tmp,".mps",".MPS");

if (s == 1)

{

lp = QSread_prob(filename_str, "MPS");

return 0;

}

}

return 1;
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}

else

{

int l = strlen(ext);

if (l == 2)

{

if( Controllo(ext,"lp","LP") )

{

lp = QSread_prob(filename_str,"LP");

return 0;

}

else

{

return 1;

}

}

if (l == 3)

{

if( Controllo(ext,"mps","MPS") )

{

lp = QSread_prob(filename_str, "MPS");

return 0;

}

else

{

return 1;

}

}

}

return 1;

}

int Controllo ( char *tmp, char *t, char *T)

{

int s = 0;

if ( (strcmp(tmp,t) == 0) || (strcmp(tmp,T)== 0) ) s=1;

return s;

}

CPXLPptr CPXcloneprob ( CPXENVptr env, CPXLPptr lploc, int *status_p)

{

CPXLPptr copia;

char *ext = tipofile;

char *nome = nomefile;

int s;

int size = strlen(nomefile);

char *tmp = nomefile;

if (tipofile == NULL)

{

tmp = (tmp + size) - 3;

s = Controllo(tmp,".lp",".LP");

if (s == 1)

{

copia = QSread_prob(nomefile, "LP");

return copia;

}

if (s == 0)

{

tmp = (nomefile + size) - 4;

s = Controllo(tmp,".mps",".MPS");

if (s == 1)

{

copia = QSread_prob(nomefile, "MPS");
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return copia;

}

}

return NULL;

}

else

{

int l = strlen(ext);

if (l == 2)

{

if( Controllo(ext,"lp","LP") )

{

copia = QSread_prob(nomefile, "LP");

return copia;

}

else

{

return NULL;

}

}

if (l == 3)

{

if( Controllo(ext,"mps","MPS") )

{

copia = QSread_prob(nomefile, "MPS");

return NULL;

}

else

{

return NULL;

}

}

}

return NULL;

}

int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype)

{

if (filetype == NULL)

{

char *punto = strrchr( filename, ’.’ );

punto++;

if ( (strcmp( punto, "lp") == 0) || (strcmp( punto, "LP") == 0) )

return QSwrite_prob(lpx, filename, "LP");

if ( (strcmp( punto, "mps") == 0) || (strcmp( punto, "MPS") == 0) )

return QSwrite_prob(lpx, filename, "MPS");

return 1;

}

if ( (strcmp( filetype, "lp") == 0) || (strcmp( filetype, "LP") == 0) )

return QSwrite_prob(lpx, filename, "LP");

else

{

if ( (strcmp( filetype, "mps") == 0) || (strcmp( filetype, "MPS") == 0) )

return QSwrite_prob(lpx, filename, "MPS");

else return 1;

}

}

int CPXgetobjsen (CPXENVptr env, CPXLPptr lp)

{

return 1;

}

int CPXgetctype( CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int end)

{
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int i;

int *intflags;

int ncols;

ncols = QSget_colcount (lpx);

intflags = (int *) malloc (ncols * sizeof (int));

int rval = QSget_intflags (lpx, intflags);

for( i = begin ; i < (end + 1); i++ )

{

int t = intflags[i];

if ( t != 1 )

{

*xctype = ’C’;

xctype++;

}

else

{

if ( t == 1 )

{

int stat;

double ub,lb;

stat = QSget_bound (lpx, i, ’U’, &ub);

stat = QSget_bound (lpx, i, ’L’, &lb);

if (( lb == 0) && (ub == 1) )

{

*xctype = ’B’;

xctype++;

}

else

{

*xctype = ’I’;

xctype++;

}

}

}

}

return 0;

}

int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end)

{

int rval, ncols;

double *o;

ncols = QSget_colcount (lpx);

o = (double *) malloc (ncols * sizeof (double));

rval = QSget_obj (lpx, o);

int i;

for( i = begin ; i < (end+ 1) ; i++ )

{

obj[i-begin] = o[i];

}

return 0;

}

int CPXgetub (CPXENVptr env, CPXLPptr lpx, double *ub, int begin, int end)

{

int i;

for( i = begin ; i < (end + 1) ; i++ )

{

int rval;

double upper,lower;

rval = QSget_bound (lpx, i, ’U’, &upper);

if (upper < QS_MAXDOUBLE)
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{

if (upper > CPX_INFBOUND ) *ub = CPX_INFBOUND;

else *ub = upper;

ub++;

}

else

{

*ub = CPX_INFBOUND;

ub++;

}

}

return 0;

}

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end)

{

int type;

double *rowval = NULL, *rhs = NULL;

int *rowcnt = NULL, *rowbeg = NULL, *rowind = NULL;

char *sen = NULL, **names = NULL;

int nrows, i, j, rval;

nrows = QSget_rowcount (lpx);

rval = QSget_rows (lpx, &rowcnt, &rowbeg, &rowind, &rowval, &rhs, &sen, &names);

for (i = begin ; i< (end + 1); i++)

{

type = sen[i];

if (type == ’E’)

{

*sense = ’E’;

sense++;

}

if (type == ’G’)

{

*sense = ’G’;

sense++;

}

if (type == ’L’)

{

*sense = ’L’;

sense++;

}

}

return 0;

}

int CPXgetrhs ( CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end)

{

int rval, nrows;

double *r;

nrows = QSget_rowcount (lpx);

r = (double *) malloc (nrows * sizeof (double));

rval = QSget_rhs (lpx, r);

int i;

for (i = begin ; i < (end + 1) ; i++)

{

*rhs = r[i];

rhs++;

}

return 0;

}
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int CPXprimopt ( CPXENVptr env, CPXLPptr lpx)

{

int r;

int status;

r = QSopt_primal(lpx,&status);

return 0;

}

int CPXgetobjval ( CPXENVptr env, CPXLPptr lpx, double *objval_p)

{

double soluzione;

int r = QSget_objval(lpx, &soluzione);

*objval_p = soluzione;

return 0;

}

int CPXgetx ( CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end)

{

int i;

int rval, ncols;

double *xx;

ncols = QSget_colcount (lpx);

xx = (double *) malloc (ncols * sizeof (double));

rval = QSget_x_array (lpx, xx);

for (i = begin; i < (end+1) ; i++)

{

x[i-begin] = xx[i];

}

return 0;

}

int CPXgetdj ( CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end)

{

int rval, ncols;

double *rc;

ncols = QSget_colcount (lpx);

rc = (double *) malloc (ncols * sizeof (double));

rval = QSget_rc_array (lpx, rc);

int i;

for (i = begin ; i < (end + 1) ; i++)

{

*dj = rc[i];

dj++;

}

return 0;

}

int CPXgetpi ( CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end)

{

int rval, nrows;

double *pix;

nrows = QSget_rowcount (lpx);

pix = (double *) malloc (nrows * sizeof (double));

rval = QSget_pi_array (lpx, pix);

int i;

for (i = begin ; i < (end + 1) ; i++)

{

*pi = pix[i];



94 APPENDIX A. SOURCE CODE: “FROM ILOG-CPLEX TO QSOPT”

pi++;

}

return 0;

}

int CPXgetphase1cnt ( CPXENVptr env, CPXLPptr lpx)

{

int iter;

int rval;

rval = QSget_param (lpx, QS_PRICE_PDANTZIG, &iter); //???

return iter;

}

int CPXgetstat (CPXENVptr env, CPXLPptr lpx) {

int res;

int rval, status;

rval = QSget_status (lpx, &status);

switch(status)

{

case QS_LP_OPTIMAL:

res = CPX_STAT_OPTIMAL;

break;

case QS_LP_INFEASIBLE:

res = CPX_STAT_INFEASIBLE;

break;

case QS_LP_UNSOLVED:

res = CPX_STAT_INFEASIBLE;

break;

case QS_LP_UNBOUNDED:

res = CPX_STAT_INForUNBD;

break;

default:

res = QS_LP_ABORTED;

break;

}

return res;

}

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense)

{

int i;

int stat;

for (i = 0 ; i < cnt ; i++ )

{

char tipo = sense[i];

switch(tipo)

{

case ’L’:

stat = QSchange_sense (lpx, indices[i], ’L’);

break;

case ’G’:

stat = QSchange_sense (lpx, indices[i],’G’);

break;

case ’E’:

stat = QSchange_sense (lpx, indices[i],’E’);

break;

default:

break;

}

}

return 0;

}

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)
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{

int t;

int stat;

for( t = 0 ; t < cnt ; t++ )

{

stat = QSchange_objcoef (lpx, indices[t], values[t]);

}

return 0;

}

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)

{

int i, rval;

for ( i = 0 ; i < cnt ; i++ )

rval = QSchange_rhscoef (lpx, indices[i], values[i] );

return 0;

}

int CPXmipopt( CPXENVptr env, CPXLPptr lpx)

{

int rval, i, ncols, ncand, branch = -1;

int *candidatelist = (int *) NULL;

double *xlist, *down_vals, *up_vals;

double bestval;

ncols = QSget_colcount (lpx);

double *x;

x = (double *) malloc (ncols * sizeof (double));

rval = QSget_x_array (lpx, x);

candidatelist = (int *) malloc (ncols * (sizeof(int)));

xlist = (double *) malloc (ncols * (sizeof(double)));

ncand = 0;

for (i = 0; i < ncols; i++) {

double t = x[i] - floor (x[i]); /* t is the fractional part of x[i] */

if (t >= 0.1 && t <= 0.9) { /* x[i] is at least 0.1 from integer */

candidatelist[ncand] = i;

xlist[ncand++] = x[i];

}

}

if (ncand == 0) {

free (candidatelist);

free (xlist);

return -1;

}

down_vals = (double *) malloc (ncand * sizeof(double));

up_vals = (double *) malloc (ncand * sizeof(double));

double soluzione;

int r = QSget_objval(lpx, &soluzione);

rval = QSopt_strongbranch (lpx, ncand, candidatelist, xlist, down_vals, up_vals, 50, soluzione);

free (candidatelist);

free (xlist);

free (down_vals);

free (up_vals);

return 0;

}
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int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end )

{

int i;

int rval, ncols;

double *xx;

ncols = QSget_colcount (lpx);

xx = (double *) malloc (ncols * sizeof (double));

rval = QSget_x_array (lpx, xx);

for (i = begin; i < (end+1) ; i++)

{

x[i-begin] = xx[i];

}

return 0;

}

int CPXgetmipobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)

{

double soluz;

int r = QSget_objval(lpx, &soluz);

*objval_p = soluz;

return 0;

}

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)

{

double soluz;

int r = QSget_objval(lpx, &soluz);

*objval_p = soluz;

return 0;

}

int CPXchgprobtype ( CPXENVptr env, CPXLPptr lpx, int type)

{

return 0;

}

int CPXflushstdchannels (CPXENVptr env)

{

return 0;

}

int CPXgetcolname ( CPXENVptr env, CPXLPptr lpx, char **name, char

*namestore, int storespace, int *surplus_p, int begin, int end)

{

int i;

int tmp = storespace;

int rval, ncols, j;

char **colnames;

ncols = QSget_colcount (lpx);

colnames = (char **) malloc (ncols * sizeof (char *));

rval = QSget_colnames (lpx, colnames);

for ( i = begin ; i < (end+1) ; i++)

{

char *nametmp = colnames[i];

int size = ( strlen( nametmp ) ) + 1;

tmp = tmp - size;

if (tmp >= 0)

{

*name = namestore;

name++;
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int t;

for( t = 0 ; t < size ; t++ ){

*namestore = *nametmp;

namestore++;

nametmp++;

}

}

}

*surplus_p = tmp;

if (tmp < 0) return CPXERR_NEGATIVE_SURPLUS;

return 0;

}

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat)

{

int nrows = QSget_rowcount(lpx);

int delrows[nrows];

int i,stat;

int nrs = 0;

for( i = 0 ; i < nrows ; i++ )

{

if (delstat[i] == 1)

{

delrows[nrs] = i;

nrs++;

}

}

if (nrs > 0)

{

stat = QSdelete_rows(lp, nrs, delrows);

}

return 0;

}

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu, double *bd)

{

int i;

int indice, rval;

for ( i = 0 ; i < cnt ; i++ )

{

indice = indices[i];

switch(lu[i])

{

case ’U’:

rval = QSchange_bound(lpx,indice,’U’,bd[i]);

break;

case ’L’:

rval = QSchange_bound(lpx,indice,’L’,bd[i]);

break;

case ’B’:

rval = QSchange_bound(lpx,indice,’L’,bd[i]);

rval = QSchange_bound(lpx,indice,’U’,bd[i]);

break;

default:

break;

}

}

return 0;

}

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int

*rmatbeg, int *rmatind, double *rmatval, int rmatspace, int

*surplus, int begin, int end)

{
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double *rowval = NULL, *rhs = NULL;

int *rowcnt = NULL, *rowbeg = NULL, *rowind = NULL;

char *sense = NULL, **names = NULL;

int nrows, rval;

nrows = QSget_rowcount (lpx);

rval = QSget_rows (lpx, &rowcnt, &rowbeg, &rowind, &rowval, &rhs, &sense, &names);

rmatbeg = rowbeg;

rmatind = rowind;

rmatval = rowval;

nzcnt = rowcnt;

return 0;

}

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt,

double *obj, int *cmatbeg, int *cmatind, double *cmatval, double

*lb, double *ub, char **colname)

{

int rval,k;

const char **names = colname;

int *cmatcnt;

cmatcnt = (int *) malloc (nzcnt * sizeof (int));

k = 0;

for (k = 0; k < ccnt; k++)

{

if (k < ccnt-1) cmatcnt[k] = (int) (cmatbeg[k+1] - cmatbeg[k]);

else cmatcnt[k] = (int) (ccnt - cmatbeg[k]);

}

rval = QSadd_cols (lpx, ccnt, cmatcnt, cmatbeg, cmatind, cmatval, obj, lb, ub, names);

return 0;

}

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int

nzcnt, double *rhs, char *sense, int *rmatbeg, int *rmatind, double

*rmatval, char **colname, char **rowname)

{

int t;

if ( ccnt > 0)

{

int r;

for ( t = 0 ; t < ccnt ; t++ )

{

if (colname != NULL) r = QSnew_col(lpx,0,0,0,colname[t]);

else r = QSnew_col(lpx,0,0,0,"");

}

}

int rval,k;

const char **names = colname;

int *rmatcnt;

rmatcnt = (int *) malloc (nzcnt * sizeof (int));

k = 0;

for (k = 0; k < rcnt; k++)

{

if (k < rcnt-1) rmatcnt[k] = (int) (rmatbeg[k+1] - rmatbeg[k]);

else rmatcnt[k] = (int) (rcnt - rmatbeg[k]);

}

rval = QSadd_rows(lpx, rcnt, rmatcnt, rmatbeg, rmatind, rmatval, rhs, sense, names);

return 0;

}
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int CPXgetcallbackinfo ( CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p)

{

cbdata = lp;

double r;

int rv = QSget_objval(lp,&r);

result_p = &r;

return 0;

}

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue)

{

switch(whichparam)

{

case CPX_PARAM_MIPINTERVAL:

//????

break;

case CPX_PARAM_PREIND:

//?????????

case CPX_PARAM_SCRIND:

//??????????????

break;

case CPX_PARAM_ITLIM:

QSset_param(lp, QS_PARAM_SIMPLEX_MAX_ITERATIONS, newvalue);

QSset_param(lp2, QS_PARAM_SIMPLEX_MAX_ITERATIONS, newvalue);

QSset_param(lp3, QS_PARAM_SIMPLEX_MAX_ITERATIONS, newvalue);

QSset_param(lpf, QS_PARAM_SIMPLEX_MAX_ITERATIONS, newvalue);

break;

case CPX_PARAM_INTSOLLIM:

//?????

break;

case CPX_PARAM_MIPSTART:

//?????

break;

default:

break;

}

return 0;

}

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue)

{

switch(whichparam)

{

case CPX_PARAM_EPAGAP:

//?????????

break;

case CPX_PARAM_EPGAP:

//????????

break;

case CPX_PARAM_CUTUP:

//?????

break;

case CPX_PARAM_TILIM:

//??????????

break;

default:

break;

}

return 0;

}

int CPXcloseCPLEX (CPXENVptr *env_p)

{
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return 0;

}

int CPXlpopt ( CPXENVptr env, CPXLPptr lpx)

{

int r;

int status;

QSbas B;

B = QSget_basis (lpx);

if (B != NULL)

{

r = QSopt_primal(lpx,&status);

}

else

r = QSopt_dual(lpx,&status);

return 0;

}

int CPXdualopt ( CPXENVptr env, CPXLPptr lpx)

{

int r;

int status;

r = QSopt_dual(lpx,&status);

return 0;

}



Appendix B

Source code: “from
ILOG-CPLEX to Coin-Or”

B.1 interface.h

#include "c:/cygwin/COIN/include/OsiClpSolverInterface.hpp"

#include "c:/cygwin/COIN/include/CoinPackedVector.hpp"

#include "c:/cygwin/COIN/include/CoinDistance.hpp"

#include "c:/cygwin/COIN/include/CoinPackedMatrix.hpp"

typedef int * CPXENVptr;

typedef OsiSolverInterface * CPXLPptr;

typedef struct ogg {

double s;

int i;

}ogg;

typedef struct move {

int BIG;

int SMALL;

int hash;

double val;

double lb;

}move;

#define CPXoptimize CPXlpopt

#define CPX_ALG_NONE -1

#define CPX_ALG_AUTOMATIC 0

#define CPX_ALG_PRIMAL 1

#define CPX_ALG_DUAL 2

#define CPX_ALG_NET 3

#define CPX_ALG_BARRIER 4

#define CPX_ALG_SIFTING 5

#define CPX_ALG_CONCURRENT 6

#define CPX_ALG_BAROPT 7

#define CPX_ALG_PIVOTIN 8

#define CPX_ALG_PIVOTOUT 9

#define CPX_ALG_PIVOT 10

#define CPX_ALG_ANY BIGINT

101
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#define CPX_MAX -1

#define CPX_MIN 1

#define CPXPROB_LP 0

#define CPXPROB_MILP 1

#define CPXPROB_FIXEDMILP 3

#define CPXPROB_QP 5

#define CPXPROB_MIQP 7

#define CPXPROB_FIXEDMIQP 8

#define CPX_INFBOUND 1.0E+20

#define CPXERR_NEGATIVE_SURPLUS 1207

#define CPX_AT_LOWER 0

#define CPX_BASIC 1

#define CPX_AT_UPPER 2

#define CPX_FREE_SUPER 3

//per wherefrom

#define CPX_CALLBACK_PRIMAL 1

#define CPX_CALLBACK_DUAL 2

#define CPX_CALLBACK_NETWORK 3

#define CPX_CALLBACK_PRIMAL_CROSSOVER 4

#define CPX_CALLBACK_DUAL_CROSSOVER 5

#define CPX_CALLBACK_BARRIER 6

#define CPX_CALLBACK_PRESOLVE 7

#define CPX_CALLBACK_QPBARRIER 8

#define CPX_CALLBACK_QPSIMPLEX 9

#define CPX_CALLBACK_MIP 101

#define CPX_CALLBACK_MIP_BRANCH 102

#define CPX_CALLBACK_MIP_NODE 103

#define CPX_CALLBACK_MIP_HEURISTIC 104

#define CPX_CALLBACK_MIP_SOLVE 105

#define CPX_CALLBACK_MIP_CUT 106

#define CPX_CALLBACK_MIP_PROBE 107

#define CPX_CALLBACK_MIP_FRACCUT 108

#define CPX_CALLBACK_MIP_DISJCUT 109

#define CPX_CALLBACK_MIP_FLOWMIR 110

#define CPX_CALLBACK_MIP_INCUMBENT 111

#define CPX_CALLBACK_MIP_DELETENODE 112

#define CPX_CALLBACK_INFO_BEST_INTEGER 101

/* MIP Parameter numbers */

#define CPX_PARAM_BRDIR 2001

#define CPX_PARAM_BTTOL 2002

#define CPX_PARAM_CLIQUES 2003

#define CPX_PARAM_COEREDIND 2004

#define CPX_PARAM_COVERS 2005

#define CPX_PARAM_CUTLO 2006

#define CPX_PARAM_CUTUP 2007

#define CPX_PARAM_EPAGAP 2008

#define CPX_PARAM_EPGAP 2009

#define CPX_PARAM_EPINT 2010

#define CPX_PARAM_HEURISTIC 2011

#define CPX_PARAM_MIPDISPLAY 2012

#define CPX_PARAM_MIPINTERVAL 2013

#define CPX_PARAM_MIPTHREADS 2014

#define CPX_PARAM_INTSOLLIM 2015

#define CPX_PARAM_NODEFILEIND 2016

#define CPX_PARAM_NODELIM 2017

#define CPX_PARAM_NODESEL 2018

#define CPX_PARAM_OBJDIF 2019
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#define CPX_PARAM_MIPORDIND 2020

#define CPX_PARAM_RELOBJDIF 2022

#define CPX_PARAM_STARTALG 2025

#define CPX_PARAM_SUBALG 2026

#define CPX_PARAM_TRELIM 2027

#define CPX_PARAM_VARSEL 2028

#define CPX_PARAM_BNDSTRENIND 2029

#define CPX_PARAM_HEURFREQ 2031

#define CPX_PARAM_MIPORDTYPE 2032

#define CPX_PARAM_CUTSFACTOR 2033

#define CPX_PARAM_RELAXPREIND 2034

#define CPX_PARAM_MIPSTART 2035

#define CPX_PARAM_PRESLVND 2037

#define CPX_PARAM_BBINTERVAL 2039

#define CPX_PARAM_FLOWCOVERS 2040

#define CPX_PARAM_IMPLBD 2041

#define CPX_PARAM_PROBE 2042

#define CPX_PARAM_GUBCOVERS 2044

#define CPX_PARAM_STRONGCANDLIM 2045

#define CPX_PARAM_STRONGITLIM 2046

#define CPX_PARAM_STRONGTHREADLIM 2047

#define CPX_PARAM_FRACCAND 2048

#define CPX_PARAM_FRACCUTS 2049

#define CPX_PARAM_FRACPASS 2050

#define CPX_PARAM_FLOWPATHS 2051

#define CPX_PARAM_MIRCUTS 2052

#define CPX_PARAM_DISJCUTS 2053

#define CPX_PARAM_AGGCUTLIM 2054

#define CPX_PARAM_MIPCBREDLP 2055

#define CPX_PARAM_CUTPASS 2056

#define CPX_PARAM_MIPEMPHASIS 2058

#define CPX_PARAM_SYMMETRY 2059

#define CPX_PARAM_DIVETYPE 2060

/* CPLEX Parameter numbers */

#define CPX_PARAM_ADVIND 1001

#define CPX_PARAM_AGGFILL 1002

#define CPX_PARAM_AGGIND 1003

#define CPX_PARAM_BASINTERVAL 1004

#define CPX_PARAM_CFILEMUL 1005

#define CPX_PARAM_CLOCKTYPE 1006

#define CPX_PARAM_CRAIND 1007

#define CPX_PARAM_DEPIND 1008

#define CPX_PARAM_DPRIIND 1009

#define CPX_PARAM_PRICELIM 1010

#define CPX_PARAM_EPMRK 1013

#define CPX_PARAM_EPOPT 1014

#define CPX_PARAM_EPPER 1015

#define CPX_PARAM_EPRHS 1016

#define CPX_PARAM_FASTMIP 1017

#define CPX_PARAM_IISIND 1018

#define CPX_PARAM_SIMDISPLAY 1019

#define CPX_PARAM_ITLIM 1020

#define CPX_PARAM_ROWREADLIM 1021

#define CPX_PARAM_NETFIND 1022

#define CPX_PARAM_COLREADLIM 1023

#define CPX_PARAM_NZREADLIM 1024

#define CPX_PARAM_OBJLLIM 1025

#define CPX_PARAM_OBJULIM 1026

#define CPX_PARAM_PERIND 1027

#define CPX_PARAM_PERLIM 1028

#define CPX_PARAM_PPRIIND 1029

#define CPX_PARAM_PREIND 1030

#define CPX_PARAM_REINV 1031
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#define CPX_PARAM_REVERSEIND 1032

#define CPX_PARAM_RFILEMUL 1033

#define CPX_PARAM_SCAIND 1034

#define CPX_PARAM_SCRIND 1035

#define CPX_PARAM_SIMTHREADS 1036

#define CPX_PARAM_SINGLIM 1037

#define CPX_PARAM_SINGTOL 1038

#define CPX_PARAM_TILIM 1039

#define CPX_PARAM_XXXIND 1041

#define CPX_PARAM_PREDUAL 1044

#define CPX_PARAM_ROWGROWTH 1046

#define CPX_PARAM_COLGROWTH 1047

#define CPX_PARAM_NZGROWTH 1048

#define CPX_PARAM_EPOPT_H 1049

#define CPX_PARAM_EPRHS_H 1050

#define CPX_PARAM_PREPASS 1052

#define CPX_PARAM_DATACHECK 1056

#define CPX_PARAM_REDUCE 1057

#define CPX_PARAM_PRELINEAR 1058

#define CPX_PARAM_LPMETHOD 1062

#define CPX_PARAM_QPMETHOD 1063

#define CPX_PARAM_WORKDIR 1064

#define CPX_PARAM_WORKMEM 1065

#define CPX_PARAM_PRECOMPRESS 1066

#define CPX_PARAM_THREADS 1067

#define CPX_PARAM_SIFTDISPLAY 1076

#define CPX_PARAM_SIFTALG 1077

#define CPX_PARAM_SIFTITLIM 1078

/* Values returned for ’stat’ by solution () */

#define CPX_STAT_OPTIMAL 1

#define CPX_STAT_UNBOUNDED 2

#define CPX_STAT_INFEASIBLE 3

#define CPX_STAT_INForUNBD 4

#define CPX_STAT_OPTIMAL_INFEAS 5

#define CPX_STAT_NUM_BEST 6

#define CPX_STAT_ABORT_IT_LIM 10

#define CPX_STAT_ABORT_TIME_LIM 11

#define CPX_STAT_ABORT_OBJ_LIM 12

#define CPX_STAT_ABORT_USER 13

/* Solution type return values from CPXsolninfo() */

#define CPX_NO_SOLN 0

#define CPX_BASIC_SOLN 1

#define CPX_NONBASIC_SOLN 2

/* Values of presolve ’stats’ for columns and rows */

#define CPX_PRECOL_LOW -1

#define CPX_PRECOL_UP -2

#define CPX_PRECOL_FIX -3

#define CPX_PRECOL_AGG -4

#define CPX_PRECOL_OTHER -5

#define CPX_PREROW_RED -1

#define CPX_PREROW_AGG -2

#define CPX_PREROW_OTHER -3

/* MIP Problem status codes */

#define CPXMIP_OPTIMAL 101

#define CPXMIP_OPTIMAL_TOL 102

#define CPXMIP_INFEASIBLE 103

#define CPXMIP_SOL_LIM 104

#define CPXMIP_NODE_LIM_FEAS 105

#define CPXMIP_NODE_LIM_INFEAS 106
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#define CPXMIP_TIME_LIM_FEAS 107

#define CPXMIP_TIME_LIM_INFEAS 108

#define CPXMIP_FAIL_FEAS 109

#define CPXMIP_FAIL_INFEAS 110

#define CPXMIP_MEM_LIM_FEAS 111

#define CPXMIP_MEM_LIM_INFEAS 112

#define CPXMIP_ABORT_FEAS 113

#define CPXMIP_ABORT_INFEAS 114

#define CPXMIP_OPTIMAL_INFEAS 115

#define CPXMIP_FAIL_FEAS_NO_TREE 116

#define CPXMIP_FAIL_INFEAS_NO_TREE 117

#define CPXMIP_UNBOUNDED 118

#define CPXMIP_INForUNBD 119

CPXENVptr CPXopenCPLEX (int *status_p);

int CPXcloseCPLEX (CPXENVptr *env_p);

CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname);

int CPXreadcopyprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype_str);

CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status_p);

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue);

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue);

int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype);

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpx);

int CPXgetnumcols (CPXENVptr env, CPXLPptr lpx);

int CPXgetobjsen (CPXENVptr env, CPXLPptr lpx);

int CPXgetctype (CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int end);

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char *buf_str, int bufspace, int *surplus_p);

int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end);

int CPXgetphase1cnt ( CPXENVptr env, CPXLPptr lpx);

int CPXgetstat (CPXENVptr env, CPXLPptr lpx);

int CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);

int CPXgetobjval ( CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetub (CPXENVptr env, CPXLPptr lpx, double *ub, int begin, int end);

int CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end);

int CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end);

int CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end);

int CPXgetcolname (CPXENVptr env, CPXLPptr lpx, char **name, char *namestore,

int storespace, int *surplus_p, int begin, int end);

int CPXgetmipobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXflushstdchannels (CPXENVptr env);

int CPXgetcallbackinfo ( CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p);

int CPXgetrows (CPXENVptr env, CPXLPptr lp, int *nzcnt, int *rmatbeg, int *rmatind, double *rmatval,

int rmatspace, int *surplus, int begin, int end);

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end);

int CPXprimopt ( CPXENVptr env, CPXLPptr lpx);

int CPXdualopt( CPXENVptr env, CPXLPptr lpx);

int CPXlpopt ( CPXENVptr env, CPXLPptr lpx);

int CPXmipopt( CPXENVptr env, CPXLPptr lpx);

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense);

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat);

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double *obj, int *cmatbeg,

int *cmatind, double *cmatval, double *lb, double *ub, char **colname);

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu, double *bd);

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end );

int CPXchgprobtype ( CPXENVptr env, CPXLPptr lpx, int type);

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int nzcnt, double *rhs,

char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **colname, char **rowname);
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B.2 ifc imp.cpp

#include "interface.h"

#include <string> using namespace std;

CPXENVptr env;

CPXLPptr lp;

CPXLPptr lp2;

CPXLPptr lp3;

CPXLPptr lpf;

int ncols, nrows; /* ncols, nrows: ORIGINAL size of the problem */

int nBcols; /* number of binary variables */

int nIcols; /* number of integer variables */

int nCcols; /* number of continuous variables */

int MinMax; /* 1/-1 MINimization/MAXimization problem */

int Inf;

int debug;

int dmax;

int dBest, dFirst;

int iBest, iFirst;

int dv;

int kSize;

int original;

int lastCardS;

int nNewCols;

int feas;

int nSlackBest;

int emphasis;

int presolve;

int heurFreq;

int prec;

int mipInt;

int nIntervals;

int video;

double ts, tss, time4Best, timeSlot, time4First, TL, addTime;

double Eps;

double dInf;

double overallBestValue;

double slack;

int maxNode, N1, IMP, EMERGENZA, R, TT, itLim, WRITE;

int nIter, firstTabu, nodes, SAT, nH, STALLED, changed, maxIter, addIter;

double delta, pdgap;

double bestBound, firstValue;

double tt;

double soglia, Hdistance;

double divv;

move *old, *cur, *new1;

char *ctype;

int *RINS;

int *slot;

int *tabu;

CPXENVptr CPXopenCPLEX (int *status_p)

{

*status_p = 1;

int r = 1;

return &r;

}
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CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname)

{

OsiSolverInterface *temp = new OsiClpSolverInterface;

return temp;

}

int CPXreadcopyprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype_str)

{

(*lpx).readMps(filename_str);

return 0;

}

CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status_p)

{

OsiSolverInterface *temp = (*lpx).clone();

return temp;

}

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpx)

{

return (*lpx).getNumRows();

}

int CPXgetnumcols (CPXENVptr env, CPXLPptr lpx)

{

return (*lpx).getNumCols();

}

int CPXgetobjsen (CPXENVptr env, CPXLPptr lpx)

{

return (int)(*lpx).getObjSense();

}

int CPXgetctype (CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int end)

{

int i;

for( i = begin ; i < (end + 1); i++ )

{

if ( (*lpx).isContinuous(i ))

{

*xctype = ’C’;

xctype++;

}

else

{

if (( ((*lpx).getColLower())[i] == 0) && (((*lpx).getColUpper())[i] == 1 ) )

{

*xctype = ’B’;

xctype++;

}

else

{

*xctype = ’I’;

xctype++;

}

}

}

return 0;

}

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char *buf_str, int bufspace, int *surplus_p)

{

return 0;

}
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int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end)

{

for(int i = begin ; i < (end+ 1) ; i++ )

{

obj[i-begin] = ((*lpx).getObjCoefficients())[i];

}

return 0;

}

int CPXprimopt ( CPXENVptr env, CPXLPptr lpx)

{

if (presolve == 1) (*lpx).setHintParam(OsiDoPresolveInResolve, 1);

else (*lpx).setHintParam(OsiDoPresolveInResolve, 0);

(*lpx).setHintParam(OsiDoDualInResolve, 0);

(*lpx).resolve();

return 0;

}

int CPXgetphase1cnt ( CPXENVptr env, CPXLPptr lpx)

{

return (*lpx).getIterationCount();

}

int CPXgetstat (CPXENVptr env, CPXLPptr lpx)

{

if ( (*lpx).isProvenOptimal() ) return CPX_STAT_OPTIMAL;

if ( (*lpx).isIterationLimitReached() ) return CPX_STAT_ABORT_IT_LIM;

if ( (*lpx).isProvenPrimalInfeasible() || (*lpx).isProvenDualInfeasible() )

return CPX_STAT_INForUNBD ;

if ( (*lpx).isPrimalObjectiveLimitReached() || (*lpx).isDualObjectiveLimitReached() )

return CPX_STAT_ABORT_OBJ_LIM;

if ( (*lpx).isAbandoned() ) return CPX_STAT_UNBOUNDED;

return -1;

}

int CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end)

{

for ( int i = begin ; i < (end+1) ; i++ )

{

x[i-begin] = ((*lpx).getColSolution())[i];

}

return 0;

}

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)

{

for(int t = 0 ; t < cnt ; t++ )

{

(*lpx).setObjCoeff( indices[t], values[t] );

}

return 0;

}

int CPXgetobjval ( CPXENVptr env, CPXLPptr lpx, double *objval_p)

{

*objval_p = (*lpx).getObjValue();

return 0;

}

int CPXgetub (CPXENVptr env, CPXLPptr lpx, double *ub, int begin, int end)

{

for(int i = begin ; i < (end + 1) ; i++ )
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{

double bound = ((*lpx).getColUpper())[i];

if( bound != (*lpx).getInfinity() )

{

if ( bound > CPX_INFBOUND ) *ub = CPX_INFBOUND;

else *ub = bound;

ub++;

}

else

{

*ub = CPX_INFBOUND;

ub++;

}

}

return 0;

}

int CPXchgprobtype ( CPXENVptr env, CPXLPptr lpx, int type)

{

return 0;

}

int CPXcloseCPLEX (CPXENVptr *env_p)

{

return 0;

}

int CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end)

{

for (int i = begin ; i < (end + 1) ; i++)

{

rhs[i-begin] = ((*lpx).getRightHandSide())[i];

}

return 0;

}

int CPXgetdj ( CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end)

{

int i;

for (i = begin ; i < (end + 1) ; i++)

{

*dj = ((*lpx).getReducedCost())[i];

dj++;

}

return 0;

}

int CPXgetpi ( CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end)

{

int i;

for (i = begin ; i < (end + 1) ; i++)

{

*pi = ((*lpx).getRowPrice())[i];

pi++;

}

return 0;

}

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense)

{

for ( int i = 0 ; i < cnt ; i++ )

{

int y = indices[i];

double oldrhs = ((*lpx).getRightHandSide())[y];

if ( ((*lpx).getRowSense())[i] == ’R’ )
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{

double oldrange = ((*lpx).getRowRange())[y];

(*lpx).setRowType( y , sense[i] , oldrhs , oldrange );

}

else

{

(*lpx).setRowType( y , sense[i] , oldrhs , -1);

}

}

return 0;

}

int CPXgetcolname ( CPXENVptr env, CPXLPptr lpx, char **name, char

*namestore, int storespace, int *surplus_p, int begin, int end)

{

return 0;

}

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)

{

int i,k;

for ( i = 0 ; i < cnt ; i++ )

{

k = indices[i];

(*lpx).setRowType(k, ((*lpx).getRowSense())[k], *values, ((*lpx).getRowRange())[k] );

}

return 0;

}

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end)

{

int i;

char s;

for (i = begin; i< (end+1); i++)

{

s = ((*lpx).getRowSense())[i];

if ( s != ’N’)

{

*sense = s;

sense++;

}

}

return 0;

}

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat)

{

int nrows = (*lpx).getNumRows();

int delrows[nrows];

int t = 0;

for ( int i = 0; i < nrows; i++)

{

if (delstat[i] == 1)

{

delrows[t] = i;

t++;

}

}

(*lpx).deleteRows(t, delrows);

return 0;

}

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int

nzcnt, double *rhs, char *sense, int *rmatbeg, int *rmatind, double
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*rmatval, char **colname, char **rowname)

{

if ( ccnt > 0)

{

int nrows = (*lpx).getNumRows();

double zeric[nrows];

CoinPackedVector col = new CoinPackedVector(nrows, zeric);

for ( int t = 0 ; t < ccnt ; t++ )

{

(*lpx).addCol(col, 0, (*lpx).getInfinity(), 0);

}

}

int inizio;

int fine;

int len;

int ncols = (*lpx).getNumCols();

for ( int t = 0 ; t < rcnt ; t++)

{

inizio = rmatbeg[t];

if (t == (rcnt-1)) fine = (nzcnt-1);

else fine = (rmatbeg[t+1]-1);

len = fine - inizio + 1;

int index[len];

double val[len];

int c = 0;

for( int q = 0 ; q < len ; q++ )

{

if(rmatval[inizio + q] != 0)

{

index[c] = rmatind[inizio + q];

val[c] = rmatval[inizio + q];

c++;

}

}

CoinPackedVector row(c, index, val);

if (sense != NULL)

{

char tipo = sense[t];

switch(tipo)

{

case ’L’:

if (rhs != NULL) (*lpx).addRow(row, ’L’ , rhs[t], rhs[t]);

else (*lpx).addRow(row, 0, 0);

break;

case ’G’:

if (rhs != NULL) (*lpx).addRow(row, ’G’, rhs[t], rhs[t]);

else (*lpx).addRow(row, 0, 0);

break;

case ’R’:

if (rhs != NULL) (*lpx).addRow(row, ’R’, rhs[t], rhs[t]);

else (*lpx).addRow(row, 0, 0);

break;

case ’E’:

if (rhs != NULL) (*lpx).addRow(row,’E’, rhs[t], rhs[t]);

else (*lpx).addRow(row, 0, 0);

break;

default:

(*lpx).addRow(row, 0, 0);

break;

}

}

}

return 0;

}
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int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu, double *bd)

{

int indice;

for ( int i = 0 ; i < cnt ; i++ )

{

indice = indices[i];

double oldlb = ((*lpx).getColLower())[indice];

double oldub = oldub = ((*lpx).getColUpper())[indice];

switch(lu[i])

{

case ’U’:

(*lpx).setColBounds(indice, oldlb, bd[i]);

break;

case ’L’:

(*lpx).setColBounds(indice, bd[i], oldub);

break;

case ’B’:

(*lpx).setColBounds(indice, bd[i],bd[i]);

break;

default:

break;

}

}

return 0;

}

int CPXmipopt( CPXENVptr env, CPXLPptr lpx)

{

if (presolve == 1) (*lpx).setHintParam(OsiDoPresolveInResolve, 1);

else (*lpx).setHintParam(OsiDoPresolveInResolve, 0);

(*lpx).branchAndBound();

return 0;

}

int CPXgetmipobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)

{

*objval_p = (*lpx).getObjValue();

return 0;

}

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end )

{

int i;

for ( i = begin ; i < (end+1) ; i++ )

{

x[i-begin] = ((*lpx).getColSolution())[i];

}

return 0;

}

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)

{

*objval_p = (*lpx).getObjValue();

return 0;

}

int CPXflushstdchannels (CPXENVptr env)

{

return 0;

}

int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype)

{
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(*lpx).writeMps(filename,"mps",(*lpx).getObjSense());

return 0;

}

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt,

double *obj, int *cmatbeg, int *cmatind, double *cmatval, double

*lb, double *ub, char **colname)

{

int inizio;

int fine;

int len;

double inf;

double sup;

for ( int t = 0 ; t < ccnt ; t++ )

{

double objcoeff;

if (obj == NULL) objcoeff = 0;

else objcoeff = obj[t];

inizio = cmatbeg[t];

if (t == (ccnt-1)) fine = (nzcnt-1);

else fine = (cmatbeg[t+1]-1);

len = fine - inizio + 1;

int nrows = (*lpx).getNumRows();

int index[len];

double val[len];

for( int q = 0 ; q < len ; q++ )

{

index[q] = cmatind[inizio + q];

val[q] = cmatval[inizio + q];

}

CoinPackedVector col(len, index, val);

if (lb == NULL)

{

inf = 0;

}

else if (lb[t] <= -CPX_INFBOUND )

{

inf = -(*lpx).getInfinity();

}

else

{

inf = lb[t];

}

if ( (ub[t] >= CPX_INFBOUND) || (ub == NULL) )

{

sup = (*lpx).getInfinity();

}

else

{

sup = ub[t];

}

(*lpx).addCol(col, inf, sup, objcoeff);

}

return 0;

}

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue)

{

switch (whichparam)

{

case CPX_PARAM_PREIND:

(*lp).setHintParam(OsiDoPresolveInResolve, newvalue);
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(*lp2).setHintParam(OsiDoPresolveInResolve, newvalue);

(*lp3).setHintParam(OsiDoPresolveInResolve, newvalue);

(*lpf).setHintParam(OsiDoPresolveInResolve, newvalue);

break;

case CPX_PARAM_ITLIM :

(*lp).setIntParam(OsiMaxNumIteration, newvalue);

(*lp2).setIntParam(OsiMaxNumIteration, newvalue);

(*lp3).setIntParam(OsiMaxNumIteration, newvalue);

(*lpf).setIntParam(OsiMaxNumIteration, newvalue);

break;

default:

break;

}

return 0;

}

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue)

{

return 0;

}

int CPXgetcallbackinfo ( CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p)

{

cbdata = lp;

double r;

r = (*lp).getObjValue();

result_p = &r;

return 0;

}

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int

*rmatbeg, int *rmatind, double *rmatval, int rmatspace, int

*surplus, int begin, int end)

{

int nz = 0;

int tmp = rmatspace;

int len;

const CoinPackedMatrix *matrice = (*lpx).getMatrixByRow();

for( int i = begin ; i < (end + 1 ) ; i++ )

{

len = (*matrice).getVectorSize(i);

if (len >0)

{

int start = ((*matrice).getVectorStarts())[i];

rmatbeg[i-begin] = nz;

for ( int t = 0 ; t < len ; t++ )

{

if ( tmp > 0 )

{

rmatval[nz] = ((*matrice).getElements())[start+len];

rmatind[nz] = (int)((*matrice).getIndices())[start+len];

nz++;

tmp--;

}

*surplus--;

}

}

}

*nzcnt = nz;

return 0;

}

int CPXlpopt ( CPXENVptr env, CPXLPptr lpx)

{

if (presolve == 1) (*lpx).setHintParam(OsiDoPresolveInResolve, 1);
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else (*lpx).setHintParam(OsiDoPresolveInResolve, 0);

if (!(*lpx).isProvenPrimalInfeasible())

{

(*lpx).setHintParam(OsiDoDualInResolve, 0);

(*lpx).resolve();

}

else

{

(*lpx).setHintParam(OsiDoDualInResolve, 1);

(*lpx).resolve();

}

return 0;

}

int CPXdualopt ( CPXENVptr env, CPXLPptr lpx)

{

if (presolve == 1) (*lpx).setHintParam(OsiDoPresolveInResolve, 1);

else (*lpx).setHintParam(OsiDoPresolveInResolve, 0);

(*lpx).setHintParam(OsiDoDualInResolve, 1);

(*lpx).resolve();

return 0;

}
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[18] M. Lübbecke. Personal communication, 2002.

[19] A.J. Miller. Personal communication, 2003.

[20] M. Nediak and J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed

Integer Programming. Research Report RRR 53-2001, RUTCOR, Rutgers

University, October 2001.

[21] J. Patel and J.W. Chinneck. Active-Constraint Variable Ordering for Faster

Feasibility of Mixed Integer Linear Programs. Technical Report Carleton

University, Ottawa, Ontario, Canada, November 2003.

[22] E. Rothberg. Personal communication, 2002.

[23] E. Rothberg. Personal communication, 2003.

[24] K. Spielberg, M. Guignard. Sequential (Quasi) Hot Start Method for BB

(0,1) Mixed Integer Programming. Wharton School Research Report, 2002.

[25] M. Fischetti, A. Lodi and F. Glover. The Feasibility Pump. May 8, 2004.

[26] CPLEX: ILOG CPLEX 8.1 User’s Manual and Reference Manual. ILOG,

S.A., 2003 (http://www.ilog.com)



BIBLIOGRAPHY 119

[27] Coin-or: Embedded documentation (Doxygen) in source code

(http://sagan.ie.lehigh.edu/coin/)

[28] QSopt: QSopt 1.0, QSopt Reference Manual 1.0, October 27, 2003

(http://www.isye.gatech.edu/∼wcook/qsopt/index.html)

[29] Cygwin: http://www.cygwin.com/


