UNIVERSITA DEGLI STUDI DI PADOVA
FACOLTA DI INGEGNERIA
DIPARTIMENTO DI ELETTRONICA ED INFORMATICA

TESI DI LAUREA

INTERFACING A MIP HEURISTIC BASED
ON ILOG CPLEX WITH DIFFERENT LP
SOLVERS

Relatore: Prof. Matteo Fischetti

Laureando: Davide Baracco

ANNO ACCADEMICO 2003-2004

i

Contents

Summary
Sommario
Introduction

1 The Feasibility Pump
1.1 Introduction
1.2 Computational experiments
1.3 FPwvariants.
1.3.1 Reducing the computing time
1.3.2 Improving the solution quality

1.3.3 Computational results

2 ILOG CPLEX
2.1 Imtroduction
2.2 1LOG CPLEX Technologies
2.3 CPLEX Algorithms
2.3.1 CPLEX Simplex Optimizers
2.3.2 CPLEX Barrier Optimizers
2.3.3 CPLEX Mixed Integer Optimizer

3 Xpress-MP by Dash Optimization
3.1 Xpress-MP overview oo Lo

4 GLPK by Andrew Makhorin
4.1 GLPKoverview
4.2 Problem (LP-MIP) formulation
4.3 API Routines

il

vil

ix

11
11
12
13

17
17
18
18
19
20
21

23
23

v

4.4 LPX: The Problem Object

5 The interfaces

5.1 Description of the interfaces
5.2 Step-by-step interfaces development
5.3 The functions oL
5.3.1 Creating problems
5.3.2 Optimizing problems
5.3.3 Accessing LP/MIP results
5.3.4 Problem modification
5.3.5 Accessing problem data
5.3.6 File reading/writing

5.3.7 Parameters setting and querying routines

5.3.8 General utilities

6 Test

6.1 Testbed
6.2 Test description
6.3 Computational Results

7 Conclusions

A Interface for GLPK (code)

A.1 interfaceh
A2 ifeimp.c

B Interface for Xpress (code)

B.1 interfaceh
B.2 ifcimp.co

Bibliography

CONTENTS

Summary

We have implemented two interfaces for a heuristic MIP solver (Feasibility
Pump) based on the commercial solver ILOG CPLEX. These interfaces, without
modifying the original code, capture all the calls to the CPLEX simplex solver and
redirect them to other solver such as Xpress or GLPK. All the FP functionalities
have been preserved. We tested the interfaces on several hard MIP instances.
Using the interface for Xpress there is only a loss of speed with respect to CPLEX,
while for GLPK some very hard instances cannot be solved with the default

tuning. However, also in this case the results are satisfactory.

vi

SUMMARY

Sommario

Abbiamo realizzato due interfacce per un algoritmo euristico (Feasibility Pump)
capace di risolvere problemi MIP (Mixed Integer Programming). Tale algoritmo
sfrutta la libreria di funzioni del software commerciale ILOG CPLEX. Le inter-
facce, senza modificare il codice originale, catturano le chiamate a CPLEX e le
reindirizzano ad altri solver come Dash Xpress o GLPK. I software che abbiamo
sviluppato hanno permesso di preservare tutte le funzionalitda della Feasibility
Pump. Essi sono stati testati su numerose istanze di problemi MIP anche pi-
uttosto difficili. La Feasibility Pump interfacciata a Xpress accusa un modesto
peggioramento delle prestazioni in termini di tempo richiesto per ogni iterazione;
I’algoritmo interfacciato a GLPK, oltre a manifestare un calo prestazionale piu
consistente, si é dimostrato anche incapace di risolvere molte istanze. Tuttavia i

risultati ottenuti si possono considerare soddisfacenti in entrambi i casi.

vil

viii SOMMARIO

Introduction

This thesis describes the implementation of two interfaces for a heuristic MIP
solver (Feasibility Pump).

Feasibility Pump (FP) is an algorithm, proposed recently by M. Fischetti,
A. Lodi and Fred Glover [1], whose target is to provide a feasible solution to
NP-hard MIP (Mixed Integer Programming) problems. Since NP-hard problems
can be extremely hard in practice, in some important cases, state-of-the-art MIP
solvers may spend a very large computational effort before discovering their first
solution. A complete comparison between ILOG CPLEX solver and FP can be
found in [1].

As FP needs a powerful LP solver, when the algorithm was originally proposed
the commercial software ILOG CPLEX was chosen. The main target of this thesis
is creating two interfaces which capture the calls to CPLEX and redirect them
to other solvers; namely: GLPK (an open-source software), and Xpress-MP by
Dash optimizations. This target has been reached without modifying the original
code, but creating a sort of emulator which converts all the CPLEX functions in
GLPK or Xpress functions. This interface can be applied to other CPLEX based
algorithms which uses the same functions.

We have compared the capabilities of the interfaced FP implementations through
extensive computational tests.

The thesis is organized as follows:

e In Chapter 1 we introduce the FP algorithm; a more complete description

and benchmark can be found in [1].

e Chapters 2, 3 and 4 give a brief description of the three main codes we used:
ILOG CPLEX, Xpress-MP, and GLPK. Information is taken from [3], [5],
[4]-

e Chapter 5 gives a description of the interfaces and a function-by-function

X

X INTRODUCTION

guide to understand the limits of the pieces of software.

e Chapter 6 reports a description of the testbed used, all the computational

results and comments upon them.
e In Chapter 7 there are final considerations about the work.
In appendix:
e A - Source code: interface for GLPK

e B - Source code: interface for Xpress-MP

Chapter 1

The Feasibility Pump

1.1 Introduction

We are introducing the Feasibility Pump, an algorithm developed by M. Fis-
chetti, F. Glover and A. Lodi [1].
This chapter is focused on the problem of finding a feasible solution of a generic
MIP problem of the form

(MIP) minc'z (1.1)
Az > b (1.2)
x; integer Vj el (1.3)

where A is an m x n matrix. This NP-hard problem can be extremely hard
in practice—in some important practical cases, state-of-the-art MIP solvers may
spend a very large computational effort before discovering their first solution.
Therefore, heuristic methods to find a feasible solution for hard MIPs are highly
important in practice. This is particularly true in recent years where success-
ful local-search approaches for general MIPs such as local branching [2] and
RINS/guided dives [12] are used that can only be applied if an initial feasible solu-
tion is known. Heuristic approaches to general MIP problems have been proposed
by several authors, including [7, 8, 9, 12, 2, 14, 15, 16, 17, 18, 22, 21, 24, 25, 28|.

In this chapter we show a new approach to compute heuristic MIP solutions,
that is called the Feasibility Pump. The chapter is organized as follows. In the
remaining part of this section the FP method is described in more detail, and then
an implementation for 0-1 MIPs is shown. Computational results are presented

in Section 1.2, where we have reported a comparison, taken from [1], between the

1

2 CHAPTER 1. THE FEASIBILITY PUMP

FP performance and that of the commercial software ILOG-CPLEX 8.1 on a set of
83 hard 0-1 MIPs. The possibility of reducing the computing time involved in
the various LP solutions is reported in Section 1.3, where the use of approximate
LP solutions is investigated. In the same section we have also reported from [1] a
way to produce a sequence of feasible solutions of better and better quality using
the FP scheme.

Let P := {x : Ax > b} denote the polyhedron associated with the LP relax-
ation of the given MIP. With a little abuse of notation, we say that a point x
is integer if z; is integer for all j € J (no matter the value of the other compo-
nents). Analogously, the rounding 7 of a given x is obtained by setting z; := [z;]
if 7 € J and 7; := x; otherwise, where [-] represents scalar rounding to the nearest
integer.

We will consider the Li-norm distance between a generic point x € P and a

given integer point z, defined as

Alw, @)= |y —
j€I
Notice that the continuous variables x; (j ¢ J), if any, do not contribute to this
function. Assuming without loss of generality that the MIP constraints include

the variable bounds I; < x; < u; for all j € J, we can write

Az, 7) := Z (x; —1;) + Z (uj — ;) + Z (z] + 7))
jEJZEj:lj jEj:Ej:u]' je:]:lj<$j<uj'
where the additional variables xj and x; require the introduction into the MIP
model of the additional constraints:

— T
Tj=x;+r; —X;,

l';rZO,SE;ZO, VjEJlj<5]<u] (14)
Given an integer point x, the closest point * € P can therefore be determined
by solving the LP

min{A(z,z) : Az > b} (1.5)

If A(z*,7) = 0, then z (= 7;) is integer for all j € J, so z* (but not necessarily
7) is a feasible MIP solution. Conversely, given a point z* € P, the integer point
T closest to z* is easily determined by rounding z*. These observations suggest
the following Feasibility Pump (FP) heuristic to find a feasible MIP solution, in
which a pair of points (z*,7) with * € P and 7 integer is iteratively updated

with the aim of reducing as much as possible their distance A(z*, 7).

1.1. INTRODUCTION 3

We start from any z* € P, and initialize a typically infeasible integer point =
as the rounding of z*. At each FP iteration, called a pumping cycle, we fix T and
find through linear programming the point z* € P which is as close as possible to
z. If A(z*,7) = 0, then z* is a MIP feasible solution, and we are done. Otherwise,
we replace T by the rounding of z* so as to further reduce A(z*,), and repeat.
(This basic scheme will be slightly elaborated, as we indicate subsequently, so as
to overcome possible stalling and cycling issues.)

From a geometric point of view, the FP generates two (hopefully convergent)
trajectories of points z* and = that satisfy feasibility in a complementary but
partial way—one satisfies the linear constraints, the other the integer require-
ment. An important feature of the method is related to the infeasibility measure
used to guide T towards feasibility: instead of taking a weighted combination
of the degree of violation of the single linear constraints, as customary in MIP
heuristics, we use the distance A(z*,7) of T from polyhedron P, as computed at
each pumping cycle!. This distance can be interpreted as a sort of “difference
of pressure” between the two complementary types of infeasibility of z* and z,
that we try to reduce by “pumping” the integrality of z into z*—hence the name
of the method. FP can be interpreted as a strategy for producing a sequence of
roundings that leads to a feasible MIP point.

The FP can also be viewed as modified local branching strategy [2]. Indeed, at
each pumping cycle we have an incumbent (infeasible) solution ¥ satisfying the
integer requirement, and we face the problem of finding a feasible solution (if any
exists) within a small-distance neighborhood, i.e., changing only a small subset
of its variables. In the local branching context, this subproblem would have been
modeled by the MIP

min{c’ 'z : Az > b, x; integer Vj € J, A(z,7) < k}

for a suitable value of parameter k, and solved through an enumerative MIP
method. In the FP context, instead, the same subproblem is modeled in a relaxed
way through the LP (1.5), where the “small distance” requirement is translated
in terms of the objective function. (Notice that (1.5) can be viewed as a relaxed
model for the problem: “Change a minimum number of variables so as to convert
the current = into a feasible MIP solution *”.) The working hypothesis here is

that the objective function A(xz,) will discourage the optimal solution z* of the

LA similar infeasibility measure for nonlinear problems was recently investigated in [11].

4 CHAPTER 1. THE FEASIBILITY PUMP

relaxation from being “too far” from the incumbent x, hence we expect a large
number of the integer-constrained variables in Z will retain their (integer) values
also in the optimal z*.

In the remainder of this chapter we will focus on the important case where
all integer-constrained variables are binary, i.e., we assume constraints Az > b
include the variable bounds 0 < z; < 1 for all j € J. As a consequence, no
additional variables x;r and x; are required in the definition of the distance

function (1.4), which attains the simpler form

Alr,@)= > z;+ » (1-u) (1.6)

jeJ:e;=0 jedle;=1

An outline of the FP algorithm for 0-1 MIPs is reported in Figure 1.1. The
algorithm receives on input two parameters: the time limit TL and the number
T of variables to be flipped (i.e., changed with respect to their current 0-1 value)

at each iteration—the use of this latter parameter will be clarified later on.

The Feasibility Pump (basic version):

1. initialize nIT := 0 and z* := argmin{c’z : Az > b};
2. if 2* is integer, return(z*);
3. let z:=[z*] (= rounding of xz*);
4. while (time < TL) do
5. let nIT := nIT +1 and compute z*:= argmin{A(z,7) : Az > b};
6. if z* is integer, return(z*);
7. if 3j€J:[z}] #7; then
8. T = [x¥]
else
9. flip the TT = rand(T/2,3T/2) entries z; (4 €
J) with highest |7} — T}
10. endif
11. enddo

Figure 1.1: The basic FP implementation for 0-1 MIPs

At step 1, x* is initialized as a minimum-cost solution of the LP relaxation,
a choice intended to increase the chance of finding a small-cost feasible solution.

At each pumping cycle, at step 5 we redefine x* as a point in P with minimum

1.2. COMPUTATIONAL EXPERIMENTS 5

distance from the current integer point . We then check whether the new z* € P
is integer. If this is not the case, the current integer point z is replaced at step
8 by [z*], so as to reduce even further the current distance A(z*, 7). In order
to avoid stalling issues, in case T = [z*] (with respect to the integer-constrained
components) we flip, at step 9, a random number TT € {%T, cee %T} of integer-
constrained entries of x, chosen so as to minimize the increase in the total distance
A(x*, 7).

The procedure terminates as soon as a feasible integer solution x* is found, or
when the time-limit TL has been exceeded. In this latter case, the FP heuristic has
to report a failure-which is not surprising, as finding a feasible 0-1 MIP solution
is an NP-hard problem in general.

A main problem with the basic FP implementation described above is the
possibility of cycling: after a certain number of iterations, the method may en-
ter a loop where a same sequence of points z* and z is visited again and again.
In order to overcome this drawback, the following straightforward perturbation
mechanism is implemented. As soon as a cycle is heuristically detected by com-
paring the solutions found in the last 3 iterations, and in any case after R (say)
iterations, steps 7-10 are skipped and a random perturbation move is applied.
To be more specific, for each j € J a uniformly random value p; € [—0.3,0.7] is

generated and, in case |z} — ;| + max{p;,0} > 0.5, 7; is flipped.

1.2 Computational experiments

In this section we report computational results taken from the article [1],
comparing the performance of the FP method with that of the commercial software
ILOG-CPLEX 8.1. The testbed is made by 44 0-1 MIP instances collected in
MIPLIB 2003 [6] and described in Table 1.1, plus an additional set of 39 hard 0-1
MIPs described in Table 1.2. The two tables report the instance names and the
corresponding number of variables (n), of 0-1 variables (]J|) and of constraints
(m).

The results of the initial FP implementation described above are reported
in Tables 1.3 and 1.4, with a comparison with the state-of-the-art MIP solver
ILOG-CPLEX 8.1. The focus of this experiment was to measure the capability of
the compared methods to converge to an initial feasible solution, hence both FP

and ILOG-CPLEX were stopped as soon as the first feasible solution was found.

6 CHAPTER 1. THE FEASIBILITY PUMP

Name n 9 m Name n 9] m
10teams 2025 1800 230 mod011 10958 96 4480
Al1C1S1 3648 192 3312 modglob 422 98 291
aflow30a 842 421 479 momentuml1| 5174 2349 42680
aflow40b 2728 1364 1442 net12 14115 1603 14021
air04 8904 8904 823 nsrand_ipx | 6621 6620 735
air05 7195 7195 426 nw04 87482 87482 36
cap6000 6000 6000 2176 opt1217 769 768 64
dano3mip 13873 552 3202 p2756 2756 2756 755
danoint 521 56 664 pkl 86 55 45
ds 67732 67732 656 pp08a 240 64 136
fast0507 63009 63009 507 pp08aCUTS| 240 64 246
fiber 1298 1254 363 protfold 1835 1835 2112
fixnet6 878 378 478 qiu 840 48 1192
glass4 322 302 396 rd-rplusc-21 | 622 457 125899
harp?2 2993 2993 112 set1ch 712 240 492
liu 1156 1089 2178 seymour 1372 1372 4944
marksharel 62 50 6 sp97ar 14101 14101 1761
markshare2 74 60 7 swath 6805 6724 884
mas74 151 150 13 t1717 73885 73885 551
mas76 151 150 12 tr12-30 1080 360 750
misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411 vpm2 378 168 234

Table 1.1: The 44 0-1 MIP instances collected in MIPLIB 2003 [6]

Computing times are expressed in CPU seconds, and refer to a Pentium M 1.6
Ghz notebook with 512 MByte of main memory. Parameters T and TL were
set to 20 and 1,800 CPU seconds, respectively, while the perturbation-frequency

parameter R was set to 100.

In the FP implementation, the ILOG-CPLEX function CPXoptimize is preferred
to solve each LP (thus leaving to ILOG-CPLEX the choice of the actual LP algo-

rithm to invoke) with the default parameter setting.

As to ILOG-CPLEX, after extensive experiments and contacts with ILOG-CPLEX
staff [27] the authors found that, as far as the time and quality of the root node
solution is concerned, the best results are obtained (perhaps surprisingly) when

the MIP preprocessing/presolve is not invoked, and the default “balance optimal-

1.2. COMPUTATIONAL EXPERIMENTS 7

Name n |9] m source Name n 9] m source
biellal 7328 6110 1203 2] blp-ar98 16021 15806 1128 [22]
NSR8K [38356 32040 6284 2] blp-ic97 9845 9753 923 [22]
dclc 10039 8380 1649 [13] blp-ic98 13640 13550 717 [22]
dcll 37297 35638 1653 [13] blp-ir98 6097 6031 486 [22]
doloml |[11612 9720 1803 [13] CMS750.4 11697 7196 16381 [19]
sienal 13741 11775 2220 [13] berlin_5_8_0 1083 794 1532 [19]
trentol 7687 6415 1265 [13] railway 8_1.0 1796 1177 2527 [19]
rail507 163019 63009 509 2] usAbbrv.8.25_70| 2312 1681 3291 [19]
rail2536¢ | 15293 15284 2539 2] manpowerl 10565 10564 25199 [26]
rail2586¢ | 13226 13215 2589 2] manpower2 10009 10008 23881 [26]
raild284c [21714 21705 4284 2] manpower3 10009 10008 23915 [26]
raild872c | 24656 24645 4875 2] manpower3a 10009 10008 23865 [26]
A2C1S1 | 3648 192 3312 [2] manpowerd |10009 10008 23914 [26]
B1C1S1 | 3872 288 3904 2] manpower4a 10009 10008 23866 [26]
B2C1S1 | 3872 288 3904 2] 1jb2 771 681 1482 [12]
sp97ic 12497 12497 1033 2] 1jb7 4163 3920 8133 [12]
sp98ar |15085 15085 1435 2] 1jb9 4721 4460 9231 [12]
sp98ic 10894 10894 825 2] 1jb10 5496 5196 10742 [12]
bgh12142| 792 240 1307 [23] 1jb12 4913 4633 9596 [12]
dg012142| 2080 640 6310 [23]

Table 1.2: The additional set of 39 0-1 MIP instances

ity and integer feasibility” strategy for the exploration of the search tree is used.
Indeed, the number of root-node failures for ILOG-CPLEX was 19 with the setting
used in the experiments. By contrast, when the preprocessing/presolve was ac-
tivated ILOG-CPLEX could not find any feasible solution at the root node in 25
cases (with the default “balance optimality and integer feasibility” strategy) or
in 41 cases (with the “emphasize integrality” strategy). In case the preprocess-
ing/presolve is deactivated but the “emphasize integrality” strategy was used,
instead, no solution was found at the root node in 33 cases.

Tables 1.3 and 1.4 report the results for the instances in Tables 1.1 and 1.2,
respectively. For each instance and for each algorithm (FP and ILOG-CPLEX) the
value of the first feasible solution found (“value” for FP, and “root value/first
value” for ILOG-CPLEX) and the corresponding computing time are reported. In
case of failure, “N/A” is reported. Moreover, for FP you find the number of iter-
ations performed by the algorithm (“nIT”), while, for ILOG-CPLEX you find the

8 CHAPTER 1. THE FEASIBILITY PUMP
feasibility pump ILOG-CPLEX 8.1
name value nIT time root value first value nodes time
10teams 992.00 53 7.5 N/A 924.00 14 5.2
A1C1S1 18,377.24 5 3.8 N/A 14,264.61 120 8.6
aflow30a 4,545.00 18 0.1 N/A 1,574.00 40 14
aflow40b 6,859.00 7 0.5 1,786.00 0 1.8
air04 58,278.00 4 125 57,640.00 0 6.2
air05 29,937.00 2 3.4 29,590.00 0 2.0
cap6000 -2,354,320.00 2 0.6 -2,445,344.00 0 0.6
dano3mip 756.62 4 777 768.37 0 161.2
danoint 77.00 3 0.2 73.00 0 1.7
ds N/A 81 1,800.0 5,418.56 0 81.6
fast0507 181.00 4 34.0 209.00 0 331
fiber 1,911,617.79 2 0.0 570,936.07 0 0.0
fixnet6 9,131.00 4 0.0 12,163.00 0 0.0
glassd 4,650,037,150.00 23 0.1 N/A 3,500,034,900.00 162 0.3
harp2 -43,856,974.00 654 4.5]-73,296,664.00 0 0.1
liu 6,262.00 0 0.0 6,262.00 0 0.0
marksharel 1,064.00 11 0.0 710.00 0 0.0
markshare2 1,738.00 7 0.0 1,735.00 0 0.0
mas74 52,429,700.59 0.0 19,197.47 0 0.0
mas76 194,527,859.06 1 0.0 44,877.42 0 0.0
misc07 4,515.00 123 0.5 3,060.00 0 0.0
mkc -164.56 2 0.3 -195.97 0 0.5
mod011 -49,370,141.17 1.0]-42,902,314.08 0 1.9
modglob 35,147,088.88 0 0.0] 20,786,787.02 0 0.0
momentuml 455,740.91 520 1478.4 N/A N/A 75 1,800.0
net12 337.00 346 554 N/A 214.00 480 1,593.7
nsrand _ipx 340,800.00 3 0.7 699,200.00 0 0.3
nw04 19,882.00 1 2.9 17,306.00 0 5.1
opt1217 -12.00 0 0.0 -14.00 0 0.0
p2756 N/A 163435 1,800.0 3,485.00 0 0.1
pkl 57.00 1 0.0 89.00 0 0.0
pp08a 11,150.00 2 0.0 14,800.00 0 0.0
pp08aCUTS 10,940.00 2 0.0 13,540.00 0 0.0
protfold -10.00 367 493.8 N/A N/A 637 1,800.0
qiu 389.36 3 0.3 1,691.14 0 0.1
rd-rplusc-21 N/A 900 1,800.0 N/A N/A 372 1,800.0
set1lch 76,951.50 2 0.0 109,759.00 0 0.0
seymour 452.00 9 3.4 469.00 0 5.1
sp97ar 1,398,705,728.00 6 4.3734,171,023.04 0 2.6
swath 18,416.00 109 4.7 N/A 826.66 1609 38.6
t1717 826,848.00 42 644.9 N/A N/A 1397 1,800.0
tr12-30 277,218.00 9 0.1 N/A 143,586.00 200 2.1
van 8.21 4 245.0 6.59 0 100.3
vpm2 19.25 3 0.0 15.25 0 0.0

Table 1.3: Convergence to a first feasible solution

feasibility pump

1.2. COMPUTATIONAL EXPERIMENTS

ILOG-CPLEX 8.1

name value nIT time root value first value nodes time
biellal 3,537,959.54 5 7.9 3,682,135.10 0 8.4
NSRSK 5,111,376,832.18 5 1,751.4|4,923,673,379.32 0 1,478.6
dclc 27,348,312.19 4 19.3| 33,458,468.26 0 15.3
dcll 8,256,022.49 5 94.4| 752,840,672.81 0 67.6
dolom1 298,684,615.17 7 32.1| 584,923,856.01 0 292
sienal 104,004,996.99 5 91.8| 591,385,634.57 0 66.4
trentol 356,179,003.01 2 17.8| 621,044,078.07 0 18.1
rail507 178.00 2 41.1 205.00 0 32.9
rail2536¢ 715.00 4 26.7 771.00 0 27.1
rail2586¢ 1,007.00 5 81.6 1,072.00 0 68.6
rail4284c 1,124.00 3 1095.8 1,218.00 0 2731
rail4872c 1,614.00 5 3119 1,737.00 0 305.6
A2C181 19,879.93 5 3.7 20,865.33 0 0.0
B1C1S1 38,530.65 7 5.2 69,933.52 0 0.1
B2C181 48,279.95 6 4.5 70,625.52 0 0.1
sp9Tic 1,280,793,707.52 3 2.7| 515,786,416.96 0 17
sp98ar 988,402,511.36 4 4.4 599,527,422.56 0 2.4
sp98ic 959,924,716.00 3 2.1| 550,157,878.72 0 1.5
blp-ar98 25,094.03 161 23.6 N/A 9,473.66 50 37.2
blp-ic97 7,874.87 4 0.7 6,408.43 0 0.4
blp-ic98 14,848.96 6 14 9,080.53 0 0.6
blp-ir98 5,388.84 3 0.3 2,927.29 0 1.2
CMS750.4 606.00 131 18.9 803.00 0 13.9
berlin_5_8_0 79.00 10 0.1 89.00 0 0.4
railway_8_1_0 440.00 13 0.3 478.00 0 0.4
usAbbrv.8.25_70 164.00 34 0.8 N/A 130.00 6036 46.8
bgh12142 120,738,665.00 0O 0.1 120,670,203.50 0 0.3
dg012142 153,406,945.50 0 0.8| 153,392,273.00 0 1.7
manpower1l 8.00 66 38.5 N/A N/A 34 1,800.0
manpower2 7.00 148 157.9 N/A N/A 10 1,800.0
manpower3 6.00 49 56.9 N/A N/A 10 1,800.0
manpower3a 6.00 73 674 N/A N/A 10 1,800.0
manpower4 7.00 192 107.7 N/A N/A 17 1,800.0
manpower4a 7.00 53 85.1 N/A N/A 16 1,800.0
1jb2 724 0 0.0 1.63 0 0.4
1jb7 8.61 0 0.5 0.81 0 3.9
1jb9 948 0 0.8 9.48 0 6.2
1jb10 731 0 1.0 7.31 0 6.9
1jb12 6.20 O 0.7 3.21 0 6.4

Table 1.4: Convergence to a first feasible solution (cont.d)

10 CHAPTER 1. THE FEASIBILITY PUMP

number of branch-and-bound nodes (“nodes”) needed to initialize the incumbent
solution.

The first order of business here was to evaluate the percentage of success in
finding a feasible MIP solution without resorting to branching. In this respect,
the FP performance is very satisfactory: whereas ILOG-CPLEX could not find any
feasible solution at the root node in 19 cases (and in 10 cases even allowing for
1,800 seconds of branching), FP was unsuccessful only 3 times.

Also interesting is the comparison of the quality of the FP solution with that
found by the root-node ILOG-CPLEX heuristics: the latter delivered a strictly-
better solution in 33 cases, whereas the solution found by FP was strictly better
in 46 cases. The computing times to get to the first feasible solution appear
comparable: excluding the instances for which both methods required less than 1
second, ILOG-CPLEX was faster in 26 cases, and FP was faster in 31 cases. Finally,
column nlIT (FP iterations) shows that the number of LPs solved by FP for finding
its first feasible solution is typically very small, which confirms the effectiveness
of the distance function used at step 5 in driving x* towards integrality.

Quite surprisingly, sometimes FP requires just a few iterations but takes much
more time than expected. E.g., for problem rail4284c in Table 1.4 the root
node of ILOG-CPLEX took only 273.1 seconds—including the application of the
internal heuristics. FP found a feasible solution after just 3 iterations but the
overall computing time was 1095.8 seconds—about 4 times larger. This can be
partly explained by observing that FP requires the initial solution of two LPs
with different objective functions: the initialization LP at step 1 (which uses the
original objective function), and the LP at the first execution of step 5 (using the
distance-related objective function). Hence we take for granted that no effective
parametrization between these two LPs can be obtained. However, a better
integration of FP with the LP solver is likely to produce improved results in
several cases.

As already stated, in the experiments any problem-dependent fine tuning of
the LP parameters were deliberately avoided, and for both FP and ILOG-CPLEX
their default values were used. However, some knowledge of the type of instance
to be solved can improve both the FP and ILOG-CPLEX performance consider-
ably, especially for highly degenerate cases. For instance, the choice of the LP
algorithm used for re-optimization at step 5 may have a strong impact on the
overall FP computing times. E.g., if you force the use of the dual simplex, the

overall computing time for rail4284c decreases from 1095.8 to just 311.1 sec-

1.3. FP VARIANTS 11

onds. This is of course true also for ILOG-CPLEX. E.g., for manpower instances
Bixby [10] suggested an ad-hoc tuning consisting of (a) avoiding the generation
of cuts (set mip cut all -1), and (b) activating a specific dual-simplex pric-
ing algorithm (set simp dg 2). This choice considerably reduces the time spent
by the LP solver at each branching node, and allows ILOG-CPLEX to find a first
feasible solution (of value 6.0) for instances manpowerl, manpower2, manpower3,
manpower3a, manpower4 and manpower4a after 111, 150, 107, 156, 202 and 197
branching nodes, and after 28.4, 115.4, 99.7, 70.7, 100.2, and 84.7 CPU seconds,
respectively.

A pathological case for FP is instance p2756, which can instead be solved very
easily by ILOG-CPLEX. This is due to the particular structure of this problem,
which involves a large number of big-M coefficients. More specifically, several
constraints in this model are of the type aly < 3; + M;z;, where M; is a very
large positive value, y is a binary vector, and z; is a binary variable whose value
1 is used to actually deactivate the constraint. Feasible solutions of this model
can obtained quite easily by setting z; = 1 so as to deactivate these constraints.
However, this choice turns out to be very expensive in terms of the LP objective
function, where variables z; are associated with large costs. Therefore, the LP
solutions (y*, z*) tend to associate very small values to all variables z;, namely

*

2 = max{0, (al'y* — 3;)/M;}, which are then systematically rounded down by
our scheme. As a consequence, FP is actually looking for a feasible y that fulfills

all the constraints alz < 3;—an almost impossible task.

1.3 FP variants

The basic FP scheme will next be elaborated in the attempt of improving
(a) the required computing time, and/or (b) the quality of the heuristic solution
delivered by the method.

1.3.1 Reducing the computing time

In the article are evaluated the following two simple FP variants:

1. FP1: At step 1, the LP relaxation of the original MIP (i.e., the one with the

T

original objective function ¢’ z) is solved approximately through a primal-

dual method (e.g., the ILOG-CPLEX barrier algorithm), and as soon as a

12 CHAPTER 1. THE FEASIBILITY PUMP

prefixed primal-dual gap v is reached the execution is stopped and no
crossover is performed. The almost-optimal dual variables are then used as
Lagrangian multipliers to compute a mathematically-correct lower bound
on the optimal LP value. Moreover, at step 5 each LP relaxation is solved
approximately via the primal simplex method with a limit of SIL simplex
pivots (if this limit is reached within the simplex phase 1, the approximate
LP solution x* is not guaranteed to be primal feasible, hence we skip step
6).

2. FP2: The same as FP1, but at step 1 the first Z is obtained by just rounding

a random initial solution z* € [0, 1]" (no LP solution is required).

1.3.2 Improving the solution quality

As stated, the FP method is designed to provide a feasible solution to hard
MIPs—no particular attention is paid to the quality of this solution. In fact,
the original MIP objective function is only used for the initialization of Z in
step 1—while it is completely ignored in variant FP2 above. On the other hand,
FP proved quite fast in practice, and one may think of simple modifications to
provide a sequence of feasible solutions of better and better quality.? The authors
have therefore investigated a natural extension of our method, based on the idea
of adding the upper-bound constraint ¢’z < UB to the LPs solved at step 5,
where U B is updated dynamically each time a new feasible solution is found. To
be more specific, right after step 1 we initialize 25, = ¢’z* (= LP relaxation
value) and UB = +o0. Each time a new feasible solution z* of value 2% = ¢Tz*
is found at step 5, we update UB = oz} p+(1—a)z¥ for a € (0, 1), and continue
the while-do loop. Furthermore, in the test at step 4 the condition nIT-nITO <
IL is added, where nITO gives the value of nIT when the first feasible solution
is found (nITO=0 if none is available), and the input parameter IL gives the
maximum number of additional FP iterations allowed after the initialization of
the incumbent solution.

The above scheme can also be applied to variant FP1, where the LP at step

1 is solved approximately. As to FP2, where no bound is computed, zjp is left

2A possible way to improve the quality of the first solution found by FP is of course to
exploit local-search methods based on enumeration of a suitable solution neighborhood of the
first feasible solution found, such as the recently-proposed local branching [2], RINS or guided

dives [12] schemes.

1.3. FP VARIANTS 13

undefined and the upper bound U B is heuristically reduced after each solution
updating as UB = 2% — 3|2H| (assuming 2 # 0).

A final comment is in order. Due to the additional constraint ¢fz < UB,
it is often the case that the integer components of T computed at step 8 define
a feasible point for the original system Az > b, but not for the current one.
In order to improve the chances of updating the incumbent solution, right after
step 8, a simple post-processing of = is applied, consisting in solving the LP
min{c’x : Az > b, z; = T; Vj € J} and comparing the corresponding solution

(if any exists) with the incumbent one.

1.3.3 Computational results

Table 1.5 reports the results of the feasibility pump variants FP1 and FP2. For
this experiment, 26 instances out of the 83 in our testbed were selected, chosen
as those for which (a) both FP and ILOG-CPLEX were able to find a solution
within the time limit of 1,800 CPU seconds, and (b) the computing time required
by either ILOG-CPLEX or FP was at least 10 CPU seconds. Also the manpower
instances were included, and ran ILOG-CPLEX with the ad-hoc tuning described
in the previous section.

For this reduced testbed, you find an evaluation of the capability of FP1 and
FP2 to converge quickly to an initial solution (even if worse than that produced by
FP) and to improve it in a given amount of additional iterations. The underlying
idea is that, for problems in which the LP solution is very time consuming, it
may be better to solve the LPs approximately, while trying to improve the first
(possibly poor) solutions at a later time.

For the experiments reported in Table 1.5 the parameters were set as follows:
a =0.50, 8 =0.25, vy = 0.20, SIL = 1,000, and IL = 250.

In the table, the ILOG-CPLEX columns are taken from the previous experi-
ments. For both FP1 and FP2 there are the time and value of the first solution
found, and the time and value of the best solution found after IL=250 additional
FP iterations. Moreover, for FP1 the extra computing time spent for computing
the initial lower bound through the (approximate use of) ILOG-CPLEX barrier
method (“LB time”) is reported.

According to the table, FP2 is able to deliver its first feasible solution within
an extremely short computing time—often 1-2 orders of magnitude shorter than
ILOG-CPLEX and FP. E.g., FP2 took only 1.5 seconds for NSR8K, whereas ILOG-CPLEX

14 CHAPTER 1. THE FEASIBILITY PUMP

and FP required 1,478.6 and 1,751.4 seconds, respectively. In three cases however
the method did not find any solution within the 1,800-second time limit. The
quality of the first solution is of course poor (remember that the MIP objective
function is completely disregarded until the first feasible solution is found), but it
improves considerably during subsequent iterations. At the end of its execution,
FP2 was faster than ILOG-CPLEX in 12 out of the 26 cases, and returned a better
(or equal) solution in 11 cases.

FP1 performs somewhat better than this. Its first solution is much better
than that of FP2 and strictly better than the ILOG-CPLEX solution in 4 cases; the
corresponding computing time (increased by the LB time) is shorter than that of
ILOG-CPLEX in 22 out of the 26 cases. After 250 more FP iterations, the quality
of the FP1 solution is equal to that of ILOG-CPLEX in 6 cases, strictly better
in 12 cases, and worse in 8 cases; the corresponding computing time compares
favorably with that of ILOG-CPLEX in 12 cases.

15

FP VARIANTS

1.3.

SuIun) 20Y-pe UR YIIM UNI SeM YTTID-H0TI ,) SIURLIRA dJ OM) JO 9OURULIONOJ :C'T O[qe
L q-p RE2! * L } Jod 6T 9lqel,

L¥T 009 09 T1¢ 006 1S L¥T 004 €9 ¥ 00L .78 009 epromodue
08T 009 76 € 0001 9'6% 1°S% 009 9'9¢ 69T 009 00T 4009 promoduew
9¢c 009 LVT 79 006 928 0°¢¢ 009 66 0GI 00°0T L0L 009 egromoduer
€9z 009 7LT S8 00°TT 708 L€T 004 s 1g 00°L 2166 009 gromoduew
L¥T 009 09 %¢ 008 9'Gg S0z 009 S'IT €¢ 008 7SGIT .00°9 gromoduew
%1 009 ¢y 1¢ 00°¢T 8°8¢ LCT 00°L €e €I 006 78 009 Tremodueta
¥ 00°08T Z0 8 0068 10 8% 00°96T 10 ¢ 00961 9% 00°0£T 0L7Gg 8" AIqqysn
1'¢e 00°¢vL 6T € 00000T 01 6'7¢ 00°87L 6 ¥ 000001 6'¢T 00°€08 7 0SLSIND
STIT L8'9L8'TC 2°90T 656 L8'9.8'TC 9T S'¥8 8I'65%'GT G¥9 ©9S 8T1'6S87'Ce TLE 99°€LY'6 g61e-d[q
L 6T 00°TT9T I'T ¢ 00CET'd LLT 1'801 00°G8¢€'€ 80 ¢ 00€IST 960 00°LELT ogL8VIret
TIeT 00FLT'T 80 ¢ 00¥%SS‘T 208 €€IT00°L90C G0 T 0071€S¥ 1°¢L% 00°8T¢'T RiztagiiR
7'86L 008301 €0 T 0091 1 87E€100°CeT‘T ¢0 T 00006 989 00°CLO‘T 298¢Gg[rel
1°0S%7 00°8T. €0 T 00616 SPT €68C 00°LTL €0 T 000£7C 1.8 00 TLL 29gggrel
668 00 L8T 8T T 00°LVC z'S 6’17 00°02% 80 T 0071820% 628 00°50% L0G[rex
6'8¢ T0TECII0°98 0°¢ ST TOFST'0LF 965178 7 LET 00°016°9FL'C9 0'€ ST TOFST'0LF'96C'T |[I'ST L0'8LO'TH0‘TT9 TojuaI}
G'0Fe 06°70C'9TT'OSV €T € 86'6L9°0L5°€S6 9°FF 6°09€ €8°FSSTTI'6ET 90 T 688167956888 [F'99 LGT€9°G8E 164 Teus1s
€0ET GI'8ESLL0°GST 80T ¥¢ L0°GOV'TS6'GLY VTl COTT IT°9G6'FS8'6FT €T 8¢ 00°108°C66'TEY |¢'6C T0'9S8°CT6'T8S Tuwojop
7'eLT PR'8EO86YTIT LT & TIT€I6°GE0°93T LTI TLIT I8'F60°G98°LC €0 0 6T°GLE'L60°LLE'TP|9L9 T18°CLY0V8'CSL 11op
L6 TO6ILTLOGC T0 ¢ 8T 0878677989 €'L8 T6'CESTELOT 80 ¥ 09FS0°LL6'G6T |€°GT 93'89%'8G¥ e oTopP
G'0ve 6£099°T99°8920C € G9°€90°08¢'89S°€ 7'81¢ |F'80T GG'8S9°106°642 ST ¢ TLTOS'GVI'IEH'S |9°8LVT ¢ 6LE'€LO'CT6'Y M8USN
T08L T SLTT 1679 65T CLTT) 0081 V/N 008‘T LTS V/N €001 629 ueA
LT LV'€T0°SH 8'GT TSE L¥'€T0'Sh €0 T°AT 12°TIS'T 1 6€ €LLLT'9Y 98¢ 99978 yjems
€92 00°L€€ 79 €9 00°Le€ 6°CV L9€T 00°LE€ 7911 6SCT 00°LEE L6681 00'71¢ F4REL
1°SZ 00°88T T ¢ 00602 4 2°€9 00°86T 90 T 000.LL09 1°¢¢ 00°60% 10503s%eF
T°¢PT €1°L6G°GST TV9 192 08°666'679°C 121 0081 V/N 008°T T€SS V/N TT9T LE'89L drugouep
8°€L6 00°L08°6S 81TV 665 00°86£°C9 €1 008'T V/N 0081 0T2S V/N 29 00°079°LS poIre
ouwII) dN[eA 3soq ouwII) T JU 9nyeA jsIy ouwII) gryfeuwiry onfea 3soq oI} JJU onyea 31sig QuIl} on[eA)sIy aureu

sd1 jo uonnjos ajewrrxordde 744

UOTIN[OS [RIYIUTI WOPURI ‘PUNO(OU :ZdJ

'8 XHTdD-OO0TL

16

CHAPTER 1.

THE FEASIBILITY PUMP

Chapter 2

ILOG CPLEX

2.1 Introduction

ILOG CPLEX is a tool for solving linear optimization problems, commonly

referred to as Linear Programming (LP) problems, of the form:
Maximize (or Minimize) ¢z + coxo + ... + cpp

subject to a1 + a9y + ... + a1p,T, ~ b1

a9171 + A22%o + ... + G2, Ty ~ by
Am1T1 + QmaXo + ... + QpnTn ~ b,

with these bounds L <z <

where ~ can be <, > or =, and the upper bounds u; and lower bounds [; may
be positive infinity, negative infinity, or any real number.

The optimal solution that CPLEX computes and returns is:
Variables x1, zo, ... , x,

CPLEX also can solve several extensions to LP:

e Network Flow problems, a special case of LP that CPLEX can solve much

17

18

CHAPTER 2. ILOG CPLEX

faster by exploiting the problem structure.

e Quadratic Programming (QP) problems, where the LP objective function

is expanded to include quadratic terms.

e Mixed Integer Programming (MIP) problems, where any or all of the LP

or QP variables are further restricted to take integer values in the optimal
solution (and where MIP itself is extended to include constructs like Special

Ordered Sets (SOS) and semi-continuous variables).

2.2 ILOG CPLEX Technologies

CPLEX comes in three forms to meet a wide range of users’ needs:

e The CPLEX Interactive Optimizer is an executable program that can read

a problem interactively or from files in certain standard formats, solve the
problem, and deliver the solution interactively or into text files. The pro-
gram consists of the file cplex.exe on Windows platforms or CPLEX on
UNIX platforms.

Concert Technology is a set of C++ and Java class libraries offering an API
that includes modeling facilities to allow the programmer to embed CPLEX
optimizers in C++ or Java applications. The Concert Technology libraries

make use of the Callable Library

The CPLEX Callable Library is a C library that allows the programmer
to embed CPLEX optimizers in applications written in C, Visual Basic,
FORTRAN, or any other language that can call C functions.The library is
provided in files cplex81.1ib and cplex81.dll on Windows platforms, and in
libeplex.a, libeplex81.so, and libeplex81.sl on UNIX platforms.

2.3 CPLEX Algorithms

ILOG CPLEX algorithms can be accessed from the CPLEX Component Li-
braries as well as the CPLEX Interactive Optimizer, an easy-to-use interactive

program. CPLEX provides all the basic features and utilities for using these

solvers: sophisticated problem preprocessing; file reading and writing utilities;

2.3. CPLEX ALGORITHMS 19

reporting; messaging control; interactive revision capability; efficient restart from

an advanced basis; sensitivity analysis; and an infeasibility finder.

2.3.1 CPLEX Simplex Optimizers

CPLEX Simplex Optimizers provide the power to solve quadratic programs

and linear programs with millions of constraints and continuous variables, at
record-breaking speed.
ILOG CPLEX Simplex Optimizers are fast, robust implementations of the dual
simplex and primal simplex methods for linear and quadratic programming.
CPLEX Simplex Optimizers also provide lightning-fast implementation of the
network simplex method. Specially suited for pure network problems, the net-
work simplex method can even solve problems that have side constraints.

All ILOG CPLEX algorithms are tightly integrated with cutting-edge pre-
solve algorithms. These algorithms reduce problem size and provide significant
reductions in solve times, without requiring any special user intervention. Each
optimizer has numerous options that enable performance to be tuned for specific
problems.

Simplex algorithm features

e Multiple crash basis options

Primal and dual steepest-edge algorithms

IIS finder for detecting problem infeasibilities

Sophisticated degeneracy resolution

Efficient restarts from existing bases or solutions

Integrated and automatic problem-reduction algorithms with preprocessing

and postprocessing
Network simplex algorithm features

e Natural node/arc network representation
e Automatic network extraction
e Multiple pricing algorithms

e Efficient restarts from advanced network bases

20 CHAPTER 2. ILOG CPLEX

2.3.2 CPLEX Barrier Optimizers

CPLEX Barrier Optimizer provides an alternative to the simplex method for
solving linear and quadratic programs. It also offers a fast, robust method for
solving quadratically constrained programs. Based on a primal-dual, predictor-
corrector method, CPLEX Barrier Optimizer provides unsurpassed performance
for large-scale linear programs.

All ILOG CPLEX algorithms are tightly integrated with cutting-edge presolve
algorithms. These algorithms reduce problem size and provide significant re-
ductions in solve times, without requiring special user intervention. Numerous
options enable each optimizer’s performance to be tuned for specific problems.
CPLEX Barrier Optimizer includes the fast, robust ILOG CPLEX crossover al-
gorithm. Nonbasic solutions created by the ILOG CPLEX barrier algorithm are
converted into basic solutions. Typically provided by the simplex method, these
basic solutions are used for fast restarts and sensitivity analysis.

Features of ILOG CPLEX barrier algorithm

e Fast crossover to basic solutions

e Integrated and automatic problem-reduction algorithms with preprocessing

and postprocessing
e Facilities for handling dense columns
e Multiple ordering algorithms

o State-of-the-art Cholesky factorization algorithms, tuned for specific plat-

forms
e Tight integration with other CPLEX optimizers
e Solutions available without use of crossover algorithm
e Available in Parallel CPLEX on specific platforms
e Available for solving MIP subproblems

e Primal and dual crossover algorithms

2.3. CPLEX ALGORITHMS 21

2.3.3 CPLEX Mixed Integer Optimizer

ILOG CPLEX Mixed Integer Optimizer employs a branch-and-bound tech-
nique that takes advantage of innovative, cutting-edge strategies. It provides fast,
robust solutions to the most difficult mixed integer programs.

CPLEX incorporates and expands on the latest results of worldwide research in
mixed integer programming. Default settings and parameter selections work well
for many problems. Users may also customize the branching process, or select
specialized techniques that take advantage of structures in their specific problems.

CPLEX Mixed Integer Optimizer solves mixed-integer linear programs (MILP);
mixed-integer quadratic programs (MIQP); and mixed-integer quadratically con-
strained programs (MIQCP). Implementation includes the CPLEX presolve al-
gorithm and sophisticated cutting-plane strategies such as Gomory, clique and
cover, flow cover, GUB cover and implied bound.

Users have full control of ILOG CPLEX Mixed Integer Optimizer. Customize
node and variable selection strategies. Control the frequency and type of CPLEX
heuristics applied to find integer feasible solutions. Users can also tell CPLEX
whether it is more important to find an optimal solution or quickly determine
a good feasible solution — CPLEX Mixed Integer Optimizer will automatically
adjust its strategy to user needs.

Features of the Mixed Integer Algorithm
e Multiple types of cutting planes

— Gomory fractional
Flow covers

GUB covers

— Implied bound

— Mixed integer rounding

Flow paths
— Disjunctive
— Cliques

— Covers

e User choices for emphasizing optimality or feasibility

22

CHAPTER 2. ILOG CPLEX

Special ordered sets (SOS)
Heuristics

Integrated and automatic mixed-integer problem reduction algorithms with

preprocessing and postprocessing

Breadth-first, best-first or depth-first search

User-defined branching priorities and directions
User-determined node selection algorithms

User-determined variable selection options

Multiple LP algorithm options for nodes and initial relaxation
Cut-off and shortcut techniques

Customized branching strategies

User-defined memory controls, allowing disk storage to be efficiently used

as secondary memory
Probing

Available in Parallel CPLEX

Chapter 3

Xpress-MP by Dash

Optimization

3.1 Xpress-MP overview

Dash develops and commercializes Xpress-MP [5], one of the best software
products for modeling and optimization. Xpress-MP has been applied in sectors
as diverse as manufacturing, processing, distribution, retailing, transport, finance

and investment. The guiding principles of the development of this software are:

e Capability to solve large, difficult problems

Speed of solution

Ease of use

Reliability

Ease of integration

Xpress-MP is a suite of optimization software, used to solve linear, integer,
quadratic and non-linear optimization problems. The main components of this

suite are next described.

The Xpress-Optimizer

The Xpress-Optimizer features three optimization algorithms which enable the

23

24 CHAPTER 3. XPRESS-MP BY DASH OPTIMIZATION

user to solve linear programming problems (LP), mixed integer programming
problems (MIP), quadratic programming problems (QP), mixed integer quadratic
programming problems (MIQP), non-linear programming problems (NLP), and
mixed interger non-linear programming problems (MINLP). These three algo-

rithms correspond to three different optimizers which are:

e the simplex optimizer, which includes primal and dual methods and solves
LP problems; it is also used within a branch-and-bound framework to solve
MIP and MIQP problems;

e The Newton barrier optimizer is an interior point method for solving LP
and QP problems.

e The MIP/MIQP optimizer uses a sophisticated branch-and-bound algo-
rithm to solve MIP and MIQP problems, and is particularly known for its
ability to find high quality solutions fast. MIP problems can have an ex-
ponential number of possible solutions, and the essential property of the
Xpress MIP optimizer is its ability to cut down the number of solutions
to a manageable size, and then to navigate through them so it can find
good ones quickly. Some of the more sophisticated techniques include vari-
ous classes of cutting planes, which are generated automatically during the
optimization to improve the quality of bounds and reduce the size of the
search (so the MIP algorithm is really called ”branch-cut”). The presolve
is particularly effective on MIP problems, as it is able to tighten the for-
mulation, which improves the quality of initial solutions and enables better

cutting planes to be generated.

Xpress-MP uses ultra-efficient sparse matrix handling allowing it to solve the
largest problems in record time. A presolve procedure reduces the size of the
problem before it is solved, sometimes by an order of magnitude. Xpress-MP is

also noted for its ability to solve numerically hard or unstable problems.

Xpress-Parallel
When it is important to solve MIP problems in the shortest possible time, or
to obtain solutions for the hardest MIP problems, Xpress-Parallel is the ideal

solution. Operating on multi-processor machines it enables the user to harness

3.1. XPRESS-MP OVERVIEW 25

parallel computing power to solve MIP problems in parallel.

Xpress-SLP

Xpress-SLP is able to solve non-linear (NLP) and mixed integer non-linear (MINLP)
problems. Xpress-SLP is the world’s first large-scale, globally supported MINLP
component and is able to solve a much wider range of optimization problems than
is possible with the LP, QP and MIP optimizers. Xpress-SLP has full modeling
support within Xpress-Mosel and Xpress-IVE, and the full range of embedding
and interfacing capabilities enjoyed by the LP/MIP/QP and MIQP optimizers
available within the Xpress-MP family.

Xpress-MP is also useful allowing the user to define their problem in different

ways through modeling interfaces;

Xpress-Mosel
Xpress-Mosel allows the users to formulate their problem, solve it using the
Xpress-Optimizer, and analyze the solution using a programming language specif-
ically designed for the purpose. Mosel programs are compiled, which makes them
fast and hides the intellectual property within them from end-users. They can
be run interactively or embedded within an application.Mosel includes extension
libraries, one of which provides direct control of the Xpress-Optimizer, through
optimization statements in the Mosel program. Moreover provides an ODBC
data driver which enables the user to interface directly to all common databases

and spreadsheets, and data can also be imported/exported directly from/to text
files.

Xpress-IVE
It is a visual development environment which makes the process od modeling
easier. It gives full support for arbitrary ranges, index sets, and sparse objects
means even the largest and most sophisticated problem can be expressed clearly

and concisely, and completely independently of a particular data instance.

26 CHAPTER 3. XPRESS-MP BY DASH OPTIMIZATION

Xpress-BCL
Xpress-BCL is an object-oriented library for building problems within an appli-
cation. It uses a step-by-step approach, with functions to add a variable, and
add a constraint, which the developer calls within their C/C++ or Java program,
gradually building up the complete problem. Once the complete problem is de-
fined, it is solved using the Xpress-Optimizer. Further BCL functions enable the

developer to access the solution directly within their application.

Libraries and console

Xpress-Optimizer, Xpress-BCL and Xpress-Mosel are available as libraries, en-
abling the developer to embed the algorithms of Xpress-MP within their appli-
cation. This functionality allows the developer to define a problem, solve it, and
examine the solution, all within their application code. Moreover the developer
can control and tune the optimization algorithms, manipulate the problem af-
ter it has been solved, building up optimization heuristics and techniques, and
handle multiple problems in different threads. At the lowest level, the developer
can declare callback functions to interact with the Xpress-Optimizer during the
MIP optimization process, to generate cutting planes and implement their own
branching strategies. The primary library interface for all products is C/C++.
This is also the library I used to implement my interface for the FP code. Various
other interfaces are also available, such as Java and VB.

The Xpress-Optimizer and Xpress-Mosel are also available in console form, that
is, stand alone executables controlled using simple text driven interfaces. They
have low overhead and development requirements, and offer a straightforward
means to get simple batch-driven applications up and running with the mini-
mum of effort.

Chapter 4

GLPK by Andrew Makhorin

4.1 GLPK overview

GLPK [4] stands for the GNU Linear Programming Kit. It is a set of routines
written in ANSI C and organized in the form of a callable library. This package
is intended for solving large-scale linear programming (LP), mixed integer linear
programming (MIP), and other related problems. The GLPK package includes

the following main components:

e implementation of the simplex method

implementation of the primal-dual interior point method

implementation of the branch-and-bound method

application program interface (API)
e GNU MathProg modeling language (a subset of AMPL)
e GLPSOL, a stand-alone LP/MIP solver.

It is currently developed and maintained by Andrew Makhorin, Department

for Applied Informatics, Moscow Aviation Institute, Moscow, Russia.

4.2 Problem (LP-MIP) formulation

The problem formulation of GLPK is slightly different from the one of other

software. For a LP problem we have:

27

28 CHAPTER 4. GLPK BY ANDREW MAKHORIN

minimize (or maximize)
Z = C1Tmi1 + CTmya + . + Colmin + Co (4.1)
subject to linear constraints:

T1 = 011Tmy1 + @12Tmy2 + - -+ Q1nTmtn

T = 21Tmy1 + A22Tmi2 + - ..+ A2 Tnin

(4.2)
Tm = Om1Tmt1 T Cm2Zmy2 + -0+ GpnTimn
and bounds of variables:

h <z <w

Iy <xy <
2 2= (4.3)

lm—l—n < Tm+n < Um-+n

where x1, o, ..., x,, are the auxiliary variables and z,, 1, T;m12, .- ., Tmi, are the
structural variables; Z is the objective function and ¢y, ¢o, . . ., ¢, are the objective

coefficients; you can also specify ¢j, the constant term of the objective function
and this is a peculiarity of this software;ai1, ais, . . ., Uy, are the constraints coef-
ficients; uy, ug, ..., Uiy and Uy, lo, . .., 1, are respectively the upper and lower
bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows of
the constraints matrix; analogously, structural variables are also called columns,
because they correspond to the columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and upper
bounds can be equal to each other. Thus, the following types of variables are
possible:

—o0 <z < +4oo Free variable

I, < 1z, < +o0o Variable with lower bound
—o00 < wp < Variable with upper bound
b < x, <uy Double-bounded variable

= zp, =uy Fixed variable

Note that the types of variables shown above are applicable to structural as well
as to auxiliary variables.
As we can think the problem is solved if the value of aux. and structural

variables we fond is such that:

4.3. API ROUTINES 29

a) satisfy to all the linear constraints
b) are within their bounds
c) provide a smallest (largest) value of the objective function.

As to the MIP problems (some variables are additionally required to be integer),
GLPK assumes that they have the same formulation as ordinary LP with the

addition of integer requirement.

4.3 API Routines

Some considerations are important to understand the implementations we
have done. Indeed the GLPK functions differ from CPLEX and Xpress in error

handling and in array indexing.

Error handling

If some GLPK API routine detects erroneous or incorrect data passed by the
application program, it sends appropriate diagnostic messages to the standard
output and then abnormally terminates the application program. In most practi-
cal cases this allows to simplify programming avoiding numerous checks of return
codes. Thus, in order to prevent crashing, the application program should check
all data, which are suspected to be incorrect, before calling GLPK API routines.
Should note that this kind of error handling is used only in cases of incorrect data
passed by the application program. If, for example, the application program call
some GLPK API routine to read data from an input file and these data are in-
correct, the GLPK API routine reports about error in the usual way by means
of return code. Unfortunately CPLEX does not work in the same way, almost all
the CPLEX functions return a code which equals to 0 if the routine is successful,
otherwise it is equals to the error number generated. For this reason you cannot

have a perfect simulation of the CPLEX behavior (as to errors).

Array indexing

Normally all GLPK routines start array indexing from 1, not from 0 as CPLEX

or Xpress. This means, for example, if some vector x of the length n is passed

30 CHAPTER 4. GLPK BY ANDREW MAKHORIN

as an array to some GLPK routine, the latter expects vector components to be

placed in locations z[1], z[2],...,z[n], and the location z[0] normally is not used.

4.4 LPX: The Problem Object

It is interesting to understand how GLPK organizes the structure of the prob-
lem objects. This is important if one wants to modify the GLPK package which
is a completely open-source software.

Each problem object consists of five logical segments, which are:

e problem segment
e basis segment

e interior point segment

MIP segment

control parameters and statistic segment.

Problem segment

The problem segment contains original LP/MIP data, which corresponds to
the problem formulation (4.1), (4.2) and (4.3). The most important elements are:

® TOWS

ordinal number (integer from 1 to m)

— symbolic name

— type (free, lower bound, upper bound, double bound, fixed)
— numerical values of lower and upper bounds

scale factor

e columns (the same as rows)
e objective function

e constraint matrix (it is stored in column-wise and row-wise sparse formats.

Once the problem object has been created, the application program can access

and modify any components in arbitrary order.

4.4. LPX: THE PROBLEM OBJECT 31

Basis segment

This segment keeps information related to a current basic solution. This

information includes:

e row and columns statuses: they define which rows and columns are basic
and which are non basic (independently on whether the corresponding basis

is valid or not;
e basic solution statuses (include primal and dual status);

e factorization of the current basis matrix: it is used by the simplex-based
solver and kept when the solver terminates the search; this feature allows

efficiently reoptimizing the problem after some modifications;

e basic solution components: they include primal and dual values of all aux-

iliary and structural variables for the most recently obtained basic solution.

Interior point segment

It contains interior point solution components, which include the solution
status, and primal and dual values of all auxiliary and structural variables.
MIP segment

It is used only for MIP problems. This segment includes:

e column kinds
e MIP solution status

e MIP solution components

Control parameters and statistic segment

This segment contains a fixed set of parameters, where each parameter has

the following three attributes:

e code

e type

e current value.

32

CHAPTER 4. GLPK BY ANDREW MAKHORIN

Chapter 5

The interfaces

5.1 Description of the interfaces

We combined a Feasibility Pump code, written for ILOG CPLEX 8.1, with
the solvers and the functionalities of GLPK and Xpress. We have done this
without modifying any line of the original code, by writing an interface which
captures the calls to CPLEX and redirects them to GLPK or Xpress. In other
words, we have implemented all the CPLEX functions used by the FP using the
functions of the others two software. Obviously some times it was not hard work
(especially for Xpress which has a style very similar to CPLEX), but in many
cases this required a complex mixing of the basic functions.

In many cases we obtained a perfect simulation of CPLEX, but this was not the
case for some functions because of the limits of the software used. However, in
our opinion the result is satisfactory because the FP code works and the perfor-
mances reflect the powerful of the solvers. We can say that the interfaces are
“transparent” in the sense that almost all the functions do their conversion with
a small overhead.

The interface is made by two files: interface.h, where the error codes, the func-
tions of CPLEX and the types of object are redefined; ifc_imp.c where all the
functions are implemented. The language used is C, the same as the FP code.
So we have used the C library of functions of Xpress and the C library of GLPK.
The only thing we changed in the FP code is in LocBra.h where we substituted
the inclusion of CPLEX interface cplex.h for interface.h. One can also rename
interface.h and put it in the installation directory of CPLEX. Another thing we

modified is the makefile, to compile also our files, but nothing else is changed.

33

34 CHAPTER 5. THE INTERFACES

5.2 Step-by-step interfaces development

After the thesis commission, the first thing we have done was finding and in-
stalling the programs. We downloaded GLPK from the GNU site (http://www.gnu.org).
The first version we used was 4.4, the final test and considerations refer to 4.7
version. This one solves some bugs we found, for example it can reed all the
mps (also the free standard) of our testbed. We installed GLPK in CYGWIN (a
Linux-like environment for Windows, see http://www.cygwin.com). This let us
use WindowsXP and a Linux platform at the same time; it was very useful in all
the comparative tests we have done to test each function. Indeed the CPLEX
version we used is for Win9X operative systems. Prof. Fischetti provided CPLEX
8.1 with a departmental license and Xpress-MP 2004b. This last software is a
Win9X release too. We used the gce compiler of Cygwin for GLPK based in-
terface and the MinGW compiler (see http://www.mingw.org) for Xpress. The
experimental FP code we used for tests was available at the beginning of August.
We had no problem during the installation of the software, in particular, in GLPK

package we found all the instructions to compile and install the software.

Once we had installed all the software, we studied all the manuals. We have
also studied the FP code to understand which functions it needs. Only when
we were sure that all the fundamental CPLEX functions used by FP were repro-

ducible with the other two software, we started the implementation.

At the beginning we thought of using a meta-language, but this way required
too much time and the results could be not satisfactory. So we decided to imple-
ment a new interface substituting the CPLEX one. In our opinion this method
allows the developer to create a more powerful software, which can be easily mod-

ified and improved.

We tested all functions by using simple instances and simple programs which
performed only the function under consideration. We compared the results of
the same problem using CPLEX first, and then the two interfaces.

5.3. THE FUNCTIONS 35

Once we implemented all the functions, we applied the interface to the FP code,
modifying Locbra.h and the makefile. At this point we began to test the modified
FP.

5.3 The functions

For each CPLEX function we took into consideration, we will next describe
what it does and which are the limits of the conversion. One can see that the
number of functions which the FP used is smaller than the number of functions we
implemented, but the interface is ready if one wants to activate some experimental
functions in the FP code. But it isn’t the only reason, indeed the interfaces are

the basis for a more general work. We have grouped the functions in this way:

—_

. Creating problems

2. Optimizing problems

3. Accessing LP/MIP results

4. Problem modifications

5. Accessing problem data

6. File reading/writing

7. Parameters setting and querying routines
8. General utilities

We did not give too much importance at the error code that has to be returned by
some functions if something goes wrong; we have done an interface for a specific
algorithm which uses CPLEX functions in the correct way and so there is no
reason why an error code could be generated in some functions. It is not so if
the interface is applied to a general algorithm written for CPLEX.

For each function we have written a brief description and we have described
only the parameters which have a different behavior in GLPK or Xpress with
respect to CPLEX. We do not want to write a manual of CPLEX, but a guide
to understand which are the limits (and the capabilities) of the interfaces. So,

after the description, we stressed, for each software, the point where one must

36 CHAPTER 5. THE INTERFACES

pay attention. For each function, we also wrote which solver functions it uses.
Especially for GLPK, each new version modifies some functions, so one can easily
find if and where they are used. All the information regarding the functions used
come from [3], [4] and [5].

5.3.1 Creating problems
CPXcreateprob

Creates a problem object.
Synopsis
CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname)

Description The routine creates a CPLEX problem object in the CPLEX en-
vironment. The problem created is an LP minimization problem with zero con-
straints, zero variables, and an empty constraint matrix.

*status_p is pointer to an integer used to return any error code produced and
*probname is a string with the name problem; if the routine is successful, *sta-

tus_p is 0.

GLPK: The interface creates a new LPX problem object; there will be no prob-
lems in creating the object (you don’t need any kind of license) and so *status_p
is always 0. The functions used are:

Ipx_create_prob

Ipx_set_prob_name

Xpress: The routine creates a new XPRSprob problem object and sets its name.
*status_p has the XPRScreateprob error returned code. The routine also creates
a callback function to capture all the messages generated. If one doesn’t do this,
no messages will be printed in Windows. The functions used are:
XPRSsetcbmessage

XPRSsetprobname

5.3. THE FUNCTIONS 37

CPXcloneprob

Clone a problem object.
Synopsis
CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpz, int *status_p);

Description This routine is used to create a new CPLEX problem object and
copy all the problem data from an existing problem object to it. Solution and
starting information is not copied.

*status_p is pointer to an integer used to return any error code produced; if the

routine is successful, *status_p is 0.

GLPK: GLPK doesn’t have a routine which is able to clone a problem. To
solve the problem the interface reeds, the number of time it need, the input file.
Of course this method isn’t correct because of the changes you have done in the
meantime are discarded. The function is very similar to CPXreadcopyprob. *sta-

tus_p is always 0. The functions used are the same of CPXreadcopyprob.

Xpress: Xpress has a specific function to clone a problem. New problem’s name
will be “cloned”. Because of a new problem object is created, even in this case
a callback function is defined. *status_p has the XPRScopyprob error returned
code. The functions used are:

XPRScreateprob

XPRScopyprob

XPRSsetcbmessage

5.3.2 Optimizing problems
CPXprimopt

Optimizes a problem using primal simplex.

Synopsis

38 CHAPTER 5. THE INTERFACES

int CPXprimopt(CPXENVptr env, CPXLPptr lpx);

Description The routine is used to find a solution to LPX problem using the
primal simplex method algorithm.

It returns zero unless an error occurred during the optimization.

GLPK: The interface uses lpz_simplex function, but disables the dual simplex.
In GLPK many parameters are specific of the LPX object so the interface sets
some of them before lunching the simplex algorithm; LPX_K_ITLIM which is the
total amount of iterations the simplex can do before terminating (you can change
it setting CPX_ PARAM_ITLIM), LPX K MSGLEV which modifies the output
message level (you can choose it by CPX_PARAM_SCRIND), LPX_K PRESOL
which decides if presolver has to be used (CPX_PARAM_PREIND in CPLEX).
LPX_ K ITCNT is set to 0 otherwise each time you use Ipz_simpler the counter
is incremented. The routine returns always 0. The functions used are:
Ipx_set_int_parm

Ipx_simplex

Xpress: First of all the routine sets some control parameters of the solver.
These are XPRS_.OUTPUTLOG (output messages), XPRS_MAXTIME (max
time allowed for each simplex call), XPRS_PRESOLVE (if you want the pre-
solver), XPRS_LPITERLIMIT (max number of iterations the simplex algorithm
can perform). They can be set respectively through the CPLEX parameters
CPX_PARAM_SCRIND, CPX_PARAM_TILIM, CPX_PARAM_PRFEIND,
CPX_PARAM_ITLIM. The interface checks if the object is a minimization prob-
lem or a maximization problem and at the end the primal simplex is performed.
The routine returns always 0. The functions used are:

XPRSsetintcontrol

XPRSgetdblattrib

XPRSminim, XPRSmazim

5.3. THE FUNCTIONS 39

CPXlpopt

Optimizes an LP problem letting CPLEX select the method.
Synopsis
int CPXlpopt (CPXENVptr env, CPXLPptr lpz);

Description The routine is used to find a solution to Ipz problem using the
dual simplex method unless a primal feasible basis is loaded and the advanced
indicator is on. In that case, it will use the primal simplex method.

The routine returns zero unless an error occurred during the optimization.

GLPK: We always consider the CPX_PARAM_LPMETHOD parameter set AU-
TOMATIC. The routine is the same as CPXprimopt, but in this case dual simplex
algorithm is allowed. The routine returns always 0. The functions used are:
Ipx_set_int_parm

Ipx_simplex

Xpress: The routine is the same as CPXprimopt but this time Xpress decides

which simplex algorithm to perform.

CPXbaropt

Optimizes a problem using barrier algorithm.
Synopsis
int CPXbaropt (CPXENVptr env, CPXLPptr lpzx);

Description The routine may be used to find a solution to a linear program,

using the barrier algorithm.

GLPK: The interface set some parameters: LPX K ITLIM, LPX K ITCNT and
LPX K MSGLEV (see CPXprimopt for the descriptions). Then the barrier al-

40 CHAPTER 5. THE INTERFACES

gorithm is applied to the the problem object. Note that the version of GLPK
we used has a very poor implementation of the barrier method. For example it
has no features against numerical instability. The routine returns always 0. The
functions used are:

Ipx_set_int_parm

Ipx_interior

Xpress: Not implemented.

CPXmipopt

Optimizes a MIP problem.
Synopsis
int CPXmipopt(CPXENVptr env, CPXLPptr lpx);

Description The routine may be used to find a solution to a mixed integer

program. It returns 0 unless it encounters an error.

GLPK: The interface uses the GLPK branch-and-bound solver. This solver
uses simple heuristics for branching and backtracking, and therefore it is not
perfect. Most probably this solver can be used for solving MIP problems with
one or two hundreds of integer variables. Hard or very large scale MIP prob-
lems cannot be solved by this routine. As in the previous solver the iteration
number can be limit and the counter has to be set to 0. One can change
the parameters LPX K TOLINT and LPX K TOLOBJ which correspond to
CPX_PARAM_EPAGAP and CPX_PARAM_EPGAP. The routine returns always
0. The functions used are:

Ipx_set_int_parm

Ipx_set_real_parm

Ipx_integer

Xpress: Even for this solver one can set XPRS_ OUTPUTLOG and

5.3. THE FUNCTIONS 41

XPRS_MAXTIME. Then the interface initializes the global search and starts it.
The routine returns the XPRSglobal returned code. The functions used are:
XPRSsetintcontrol

XPRSinitglobal

XPRSglobal

CPXdualopt

Optimizes a problem using dual simplex.
Synopsis
int CPXdualopt(CPXENVptr env, CPXLPptr lpz);

Description The routine may be used to find a solution to a LP problem using

dual simplex algorithm. It returns 0 unless it encounters an error.

GLPK: GLPK cannot force the use of dual simplex, so the routine is the same
as C'PXlpopt.

Xpress: The routine is the same as CPXprimopt but this time the dual simplex

algorithm is forced.

5.3.3 Accessing LP/MIP results
CPXgetstat

Accesses optimization status information.
Synopsis
int CPXgetstat (CPXENVptr env, CPXLPptr Ipx);

Description The routine is used to access the solution status of the problem

42 CHAPTER 5. THE INTERFACES

after an LP or mixed integer optimization. The routine returns the solution sta-

tus of the most recent optimization performed on the CPLEX problem object.

GLPK: We have implemented the routine for MIP and LP problem. CPLEX
distinguishes much more cases than GLPK, so we have unified some cases. The
interface takes in global variable the last solver used because GLPK uses different
functions for different solvers to retrieve the solution status. The functions used
are:

Ipx_get_status

Ipx_mip_status

Xpress: Xpress has different functions for different solvers if you want to know
the solution status. The interface checks an internal variable which takes the last
solver used (mipsolver or lpsolver) and than it calls the corresponding function.
Not all the CPLEX cases are present in Xpress, so we have unified some of them
but we think there will be no problems in future implementations. The function
used is:

XPRSgetintattrib

CPXgetobjval

Accesses LP solution objective value.
Synopsis
int CPXgetobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

Description The routine is used to return the LP solution objective value. The

routine returns a zero on success, and a nonzero if no solution exists.

GLPK: The routine returns always 0. The function used is:
Ipx_get_obj_val

Xpress: The interface assigns the XPRS_LPOBJVAL parameter value to *obj-

5.3. THE FUNCTIONS 43

val_p and returns 0. The function used is:

XPRSgetdblattrib

CPXgetx

Accesses optimal variable values.
Synopsis
int CPXgetx (CPXENVptr env, CPXLPptr lpz, double *z, int begin, int end);
Description The routine is used to access the solution values for a range of
problem variables of a linear problem. The routine returns a zero on success, and

a nonzero if an error occurs.

GLPK: The routine returns always 0. The function used is:
Ipx_get_col_prim

Xpress: The routine returns always 0.

CPXgetpi

Accesses constraint dual values.
Synopsis
int CPXgetpi (CPXENVptr env, CPXLPptr lpz, double *pi, int begin, int end);
Description The routine C'PXgetpi is used to access the dual values for a range
of the constraints of a linear program. The routine returns a zero on success, and

a nonzero if an error occurs.

GLPK: The routine returns always 0. The function used is:

44 CHAPTER 5. THE INTERFACES

Ipx_get_row_dual

Xpress: The interface uses one of the parameters of XPRSSgetsol. It returns
always 0. The functions used are:

XPRSgetintattrib

XPRSgetsol

CPXgetdj

Accesses variable reduced-costs.
Synopsis
int CPXgetdj (CPXENVptr env, CPXLPptr lpz, double *dj, int begin, int end);
Description The routine is used to access the reduced costs for a range of
the variables of a linear program. The routine returns a zero on success, and

a nonzero if an error occurs.

GLPK: The routine returns always 0. The function used is:
Ipx_get_col_dual

Xpress: The routine is the same as the previous one but it uses another pa-
rameter of XPRSSgetsol.

CPXgetbase

Accesses a basis.
Synopsis

int CPXgetbase (CPXENVptr env, CPXLPptr lpz, int *cstat, int *rstat);

5.3. THE FUNCTIONS 45

Description The routine is used to get the basis resident in a CPLEX prob-
lem object. Either of the arguments cstat or rstat may be NULL, if only one set
of statuses is needed. The routine returns a zero if a basis exists. It returns zero

if no solution exists or any other type of error occurs.

GLPK: There is a row/column status of GLPK basis which there isn’t in CPLEX:
LPX_NS (non basic fixed variable). The routine returns always 0. The functions
used are:

Ipx_get_num_cols, lpz_get_num_rows

Ipx_get_col_stat, Ipx_get_row_stat

Xpress: The Xpress function XPRSSgetbasis has the same syntax as the CPLEX
one. So we have simply redirected the call. Note that it returns the XPRSgetbasis

returned code. Obviously, the only function used is:

XPRSSgetbasis

CPXgetphaselcnt

Accesses number of Phase I simplex iterations.
Synopsis
int CPXgetphaselcnt (CPXENVptr env, CPXLPptr lpzx);

Description The routine is used to access the number of Phase I iterations
to solve a problem using the primal or dual simplex method. If a solution exists,
the routine returns the Phase I iteration count. If no solution exists, it returns

the value 0.

GLPK: It returns the value of LPX_K ITCNT. The function used is:

Ipx_get_int_parm

Xpress: It returns the value of XPRS SIMPLEXITER. The function used is:
XPRSgetintattrib

46 CHAPTER 5. THE INTERFACES

CPXgetmipobjval

Accesses the MIP solution objective value.
Synopsis
int CPXgetmipobjval (CPXENVptr env, CPXLPptr lpzx, double *objval_p);

Description The routine is used to access the mixed integer solution objec-

tive value. The routine returns a zero on success, and a nonzero if an error occurs.

GLPK: The routine returns always 0. The function used is:
Ipx_mip_obj_val

Xpress: *objval_p takes the value of XPRS_MIPOBJVAL. The routine returns
always 0. In this case the function used is:
XPRSgetdblattrib

CPXgetmipx

Accesses a range of MIP variable values.
Synopsis
int CPXgetmipz (CPXENVptr env, CPXLPptr lpz, double *z, int begin, int end);

Description The routine is used to access a range of mixed integer solution

values. The routine returns a zero on success, and a nonzero if an error occurs.

GLPK: The routine returns always 0. The function used is:

Ipx_map_col_val

5.3. THE FUNCTIONS 47

Xpress: The interface uses another parameter of the XPRSSgetsol. The rou-
tine returns always 0. The function used is:
XPRSgetsol

CPXgetbestobjval

Accesses objective value of best remaining node.
Synopsis
int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpz, double *objval_p);

Description The routine is used to access the objective function value of the
best remaining node in the branch-and-bound tree. The routine returns a zero

on success and a nonzero if an error occurs.

GLPK: This functionality isn’t implemented in GLPK and so the root value

is returned. All the nodes will be explored.

Xpress: The same as GLPK, so the interface returns XPRS_LPOBJVAL value.
The function used is:
XPRSgetdblattrib

5.3.4 Problem modification
CPXaddrows

Adds constraints.
Synopsis

int CPXaddrows (CPXENVptr env, CPXLPptr lpz, int cent, int rent, int nzent,

double *rhs, char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **col-

*

name, char **rowname);

48 CHAPTER 5. THE INTERFACES

Description The routine adds constraints to the CPLEX problem object Ipz.

The routine returns a zero on success, and a nonzero if an error occurs.

GLPK: As in CPLEX, also in this implementation are added new columns and
are set to the CPLEX default value. It always returns 0. The functions used are:
Ipx_add_cols, lpx_add_rows

Ipx_set_col_bnds, lpz_set_row_bnds

Ipx_set_col_name, Ipx_set_row_name

Ipx_set_mat_row

Xpress: XPRSSaddrows is very similar to CPXaddrows. The interface, at the
beginning, adds the necessary columns and sets them as the CPLEX default.
New rows have default names (colname and rowname are ignored).The functions
used are:

XPRSaddcols

XPRSaddrows

CPXdelsetrows

Deletes set of constraints.
Synopsis
int CPXdelsetrows (CPXENVptr env, CPXLPptr lpz, int *delstat);

Description The routine deletes a set of rows. After the deletion occurs, the
remaining rows are indexed consecutively starting at 0, and in the same order as
before the deletion. The routine returns a zero on success, and a nonzero if an

eIror occurs.

GLPK: It always returns 0. The functions used are:
Ipx_get_num_rows

Ipx_del_rows

5.3. THE FUNCTIONS 49

Xpress: It always returns 0. The function used is:
XPRSgetintattrib
XPRSdelrows

CPXaddcols
Adds variables.
Synopsis

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int cent, int nzent, double
*obj, int *ecmatbeg, int *cmatind, double *cmatval, double *1b, double *ub, char

**colname);

Description The routine adds columns to the specified CPLEX problem ob-

ject Ipx. It returns a zero on success, and a nonzero if an error occurs.

GLPK: In this function the most important thing is the difference in the value
of infinite of GLPK an CPLEX. This because of the bounds of the new variables
added. If one looks the code it is easy to understand how we solved this problem
after many tests. The routine always returns 0. The functions used are:
Ipx_add_cols

Ipx_set_col_name

Ipx_set_col_bnds

Ipx_set_obj_coef

Ipx_set_mat_col

Xpress: XPRSSaddcols is very similar to the CPLEX function, but new rows
have default names. The routine returns XPRSaddcols return code. The function

used is:
XPRSSaddcols

50 CHAPTER 5. THE INTERFACES

CPXchgbds

Changes bounds.
Synopsis

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu,
double *bd);

Description The routine is used to change the upper or lower bounds on a
set of variables of a problem. Several bounds can be changed at once, with each
bound specified by the index of the variable with which it is associated. The value
of a variable can be fixed at one value by setting the upper and lower bounds to
the same value. The routine returns a zero on success, and a nonzero if an error

occurs.

GLPK: We have done many tests to understand which is the mechanism of
CPLEX. For example if you have a fixed variable and you change the upper
bound, the variable becomes dual bounded and the lower bound is the old fixed
value. The code of this function is purposely redundant, so one can better un-
derstand all the cases. The routine always returns 0. The function used are:
Ipx_get_col_type

Ipx_set_col_bnds

Ipx_get_col_lb, Ipz_get_col_ub

Xpress: The routine simply redirects the call to XPRSchgbounds, these func-
tions have an identical syntax. Also the returned code is of the Xpress function.

The function used is:
XPRSchgbounds

CPXchgsense

Changes constraint sense.

Synopsis

5.3. THE FUNCTIONS 51

int CPXchgsense (CPXENVptr env, CPXLPptr Ipz, int cnt, int *indices, char

*sense);

Description The routine is used to change the sense of a set of constraints of a
CPLEX problem object. The routine returns a zero on success, and a nonzero if

all error occurs.

GLPK: It always returns 0. The function used is:

Ipx_set_row_bnds

Xpress: Also this function is a simply redirection, in this case to XPRSSchgrow-
type. Also the returned code is of the Xpress function. The function used is:
XPRSchgrowtype.

CPXchgobj

Changes coefficients in objective function.
Synopsis

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double

*values);

Description The routine is used to change the objective coefficients of a set
of variables in a CPLEX problem object. The routine returns a zero on success,

and a nonzero if an error occurs.

GLPK: It always returns 0. The function used is:
Ipx_set_obj_coef

Xpress: This is another redirection. The routine returns XPRSchgobj returned
code. The function used is:
XPRSchgobj

52 CHAPTER 5. THE INTERFACES

CPXchgrhs

Changes coefficients in right-hand side.
Synopsis

int CPXchgrhs (CPXENVptr env, CPXLPptr lpz, int cnt, int *indices, double

*values);

Description The routine is used to change the right-hand side coefficients of
a set of constraints in the CPLEX problem object. The routine returns a zero on

success, and a nonzero if an error occurs.

GLPK: In this function one can see the difference between the model formu-
lation of CPLEX and of GLPK. Indeed the GLPK constraints are formulated in
this way:

Tp = Ap1Tpi1 + Ap2Tpi2 + ...+ QpnTpin,

one can modify [, and u, with lpz_set_row_bnds; CPLEX is different, the formu-

lation is:

Ap1Tpi1 + Ap2Tpio + ..+ QppTpin S Ths,

and you can modify rhs, with the function we know. As a consequence, we have
to see the kind of constraint (LPX_UP, LPX_LO, LPX DB, LPX FX) before
changing one or two of its bounds. If the constraint is of dual-bounded type, we
fix its value to the new rhs one. The routine always returns 0. The functions it
uses are:

Ipx_get_row_type

Ipx_set_row_bnds

Xpress: The routine returns XPRSchgrhs return code. The function used is:

5.3. THE FUNCTIONS 53

XPRSchgrhs

CPXprobtype

Changes problem type.
Synopsis
int CPXchgprobtype (CPXENVptr env, CPXLPptr lpx, int type);

Description The routine is used to change the current problem to a related

problem type.

GLPK: Ounly LP (CPXPROB_LP) and MIP (CPXPROB_MILP) problems are
supported. It always returns 0. The function used is:

Ipx_set_class

Xpress: It isn’t necessary for Xpress, you can use MIP and LP functions in

a parallel way. So the interface doesn’t do anything.

5.3.5 Accessing problem data
CPXgetprobname

Accesses name of problem.
Synopsis

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char *buf_str, int buf-

space, int *surplus_p);
Description The routine is used to access the name of the problem.

GLPK: The functions bufspace and surplus_p are well implemented. The routine

o4 CHAPTER 5. THE INTERFACES

returns CPXERR_NEGATIVE_SURPLUS if name is larger than buffer. Other-
wise 0 is returned. The function used is:

Ipx_get_prob_name

Xpress: Also in this interface bufspace and surplus_p are well implemented.
There is a Xpress limitation, the characters allowed are 200.
CPXERR_NEGATIVE_SURPLUS will be returned if the space isn’t enough. The
function used is:

XPRSgetprobname

CPXgetcolname

Accesses variable (column) names.
Synopsis

int CPXgetcolname (CPXENVptr env, CPXLPptr lpx, char **name, char *name-

store, int storespace, int *surplus_p, int begin, int end);

Description The routine is used to access a range of column names or, equiva-

lently, the variable names of a CPLEX problem object.

GLPK: As in the previous one, also in this case the functions storespace and sur-
plus_p are well implemented and CPXERR_NEGATIVE_SURPLUS is returned
if storespace is too small. The function used is:

Ipx_get_col_name

Xpress: The interface doesn’t do anything.

CPXgetnumcols

Accesses number of columns in problem.

5.3. THE FUNCTIONS 55
Synopsis
int CPXgetnumcols (CPXENVptr env, CPXLPptr lpz);

Description The routine is used to access the number of columns in the con-
straint matrix, or equivalently, the number of variables in the CPLEX problem

object.

GLPK: No problems. The function used is:

Ipx_get_num_cols

Xpress: The number of columns in Xpress is an attrib (XPRS_-COLS) an so
the function used is:
XPRSgetintattrib

CPXgetnumrows
Accesses number of rows in problem.
Synopsis

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpz);

Description The routine is used to access the number of rows in the constraint

matrix, or equivalently, the number of constraints in the CPLEX problem object.

GLPK: No problems. The function used is:

Ipx_get_num_cols

Xpress: The number of columns in Xpress is an attrib (XPRS_ROWS) an so
the function used is:
XPRSgetintattrib

56 CHAPTER 5. THE INTERFACES

CPXgetobjsen

Accesses objective sense.
Synopsis
int CPXgetobjsen (CPXENVptr env, CPXLPptr lpz);

Description The routine is used to access whether the objective function sense

of a CPLEX problem object is maximization or minimization.

GLPK: No problems. The function used is:
Ipx_get_obj_dir

Xpress: Also the objective function sense is an attrib (XPRS_-OBJSENSE) and
so the function used is:

XPRSgetdblattrib

CPXgetobj

Accesses objective coefficient values sense.
Synopsis
int CPXgetobj (CPXENVptr env, CPXLPptr lpz, double *obj, int begin, int end);
Description The routine is used to access a range of objective function coef-
ficients of a CPLEX problem object. The routine returns a zero on success, and

a nonzero if an error occurs.

GLPK: It always returns 0. The functions used is:
Ipx_get_obj_coef

Xpress: The routine returns XPRSgetobj return code. The function used is:
XPRSgetoby

5.3. THE FUNCTIONS 57

CPXgetrhs

Accesses right-hand side values sense.
Synopsis
int CPXgetrhs (CPXENVptr env, CPXLPptr lpzx, double *rhs, int begin, int end);

Description The routine is used to access the right-hand side coefficients for
a range of constraints in a CPLEX problem object. The routine returns a zero

on success, and a nonzero if an error occurs.

GLPK: In this function we found the same problem of CPXchgrhs; also in this
case the interface controls the kind of constraint and then it returns the bound
required. Another problem is the definition of infinite, but it isn’t so important
because if rhs; is infinite the constraint is negligible. The functions used are:
Ipx_get_row_type

Ipx_get_row_ub, lpx_get_row_lb

Xpress: XPRSSgetrhs has the same syntax, the interface uses that function,
also for the returned code. So the function used is:
XPRSSqgetrhs

CPXgetsense

Accesses constraint senses.
Synopsis

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int
end);

58 CHAPTER 5. THE INTERFACES

Description The routine is used to access the sense for a range of constraints in
a CPLEX problem object. The routine returns a zero on success, and a nonzero

if an error occurs.

GLPK: Also dual-bounded constraints, with upper bound equals to lower bound,
are defined fixed constraints. The routine always returns 0. The functions used
are:

Ipx_get_row_type

Ipx_get_row_ub, lpx_get_row_lb

Xpress: The routine uses XPRSgetrowtype and returns its code. The func-
tion used is:
XPRSgetrowtype

CPXgetub

Accesses a range of upper bounds sense.
Synopsis
int CPXgetub (CPXENVptr env, CPXLPptr Ipz, double *ub, int begin, int end);

Description The routine is used to access a range of upper bounds on the
variables of a CPLEX problem object. The routine returns a zero on success,

and a nonzero if an error occurs.

GLPK: Note that if the upper bound is larger than the CPX_INFBOUND pa-
rameter, than the interface returns CPX_INFBOUND: we think that it is better
if one uses the interface with a generic program written for CPLEX. The routine
always returns 0. The functions used are:

Ipx_get_col_type

Ipx_get_col_ub

Xpress: The routine returns XPRSgetub return code. The function used is:

5.3. THE FUNCTIONS 59

XPRSgetub

CPXgetrows

Accesses a range of rows sense.
Synopsis

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int *rmatbeg, int

*rmatind, double *rmatval, int rmatspace, int *surplus, int begin, int end);

Description The routine is used to access a range of rows of the constraint
matrix, not including the objective function or the bounds constraints on the
variables of a CPLEX problem object.

GLPK: surplus is well implemented. The routine always returns 0. The func-
tions used are:
Ipx_get_num_cols

Ipx_get_mat_row

Xpress: The CPLEX function is very similar to XPRSgetrows but we have
done some changes to implement surplus.

The function used is:

XPRSgetrows

CPXgetctype

Accesses a priority order.
Synopsis

int CPXgetctype (CPXENVptr env, CPXLPptr lpz, char *zctype, int begin, int
end);

60 CHAPTER 5. THE INTERFACES

Description The routine is used to access the types for a range of variables
in a problem object. The routine returns a zero on success, and a nonzero if an

eITror occurs.

GLPK: The interface defines binary also the integer variables with lower bound
equals to 0 and upper bounds equals to 1. The routine always returns 0. The
functions used are:

Ipx_get_col_kind

Ipx_get_col_lb, Ipz_get_col_ub

Xpress: The routine creates the zctype vector and, as for GLPK, defines bi-
nary also the integer variables with lower bound equals to 0 and upper bounds
equals to 1. The routine always returns 0. The functions used are:
XPRSgetcoltype

XPRSgetub, XPRSgetlb

5.3.6 File reading/writing
CPXreadcopyprob

Reads and copies a problem in LP or MPS format.
Synopsis

int CPXreadcopyprob (CPXENVptr env, CPXLPptr prob, char *filename_str,
char *filetype_str);

Description The routine reads an MPS, LP or SAV file into an existing CPLEX
problem object. The type of the file may be specified with the filetype argument.
When the filetype argument is NULL, the end of the file name is checked for one
of the strings .Ip, .Ip.gz, .Ip.z, .mps, mps.gz, .mps.z, .sav, .sav.gz, or .sav.z. If
one of these strings is present, filetype is set accordingly. If filetype is NULL and
none of these strings is at the end of the file name, the routine automatically de-

tects the type of the file by examining the first few bytes of the file. The routine

5.3. THE FUNCTIONS 61

returns a zero on success, and a nonzero if an error occurs.

GLPK: GLPK recognizes only LP and MPS formats. If filetype argument is
NULL, the interface checks the filename for one of the strings .Ip, .LP, .mps,
.MPS. If none of these strings is present, the interface cannot detect the kind of
file. The interface accepts free mps format. The functions used are:
Ipx_read_cpxlp

Ipx_read_freemps

Xpress: Xpress recognizes only LP and MPS format; the routine returns XPRSread-
prob return code and recognizes the kind of problem. The function used is:
XPRSreadprob

CPXwriteprob

Writes a problem file in any format.
Synopsis

int CPXwriteprob (CPXENVptr env, CPXLPptr lpzx, char *filename, char *file-
type);

Description The routine is used to write the CPLEX problem object to a file
in a specified format. The routine returns a zero on success, and a nonzero if an

€ITor occurs.

GLPK: The interface recognizes only LP and MPS format (filetype). The func-
tions used are:
Ipx_write_cpxlp

Ipx_write_freemps

Xpress: Xpress writes only in LP or MPS format. The function used is:
XPRSwriteprob

62 CHAPTER 5. THE INTERFACES

5.3.7 Parameters setting and querying routines

CPXsetdblparam (CPXsetintparam)

Changes a parameter of type double (integer).
Synopsis

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue);
int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue);

DescriptionThe routine sets the value of a CPLEX parameter (whichparam)
of type double (integer). Only a few parameters are compatible with the CPLEX

one.

GLPK: The recognized parameters are:
CPX_PARAM_SCRIND,
CPX_PARAM_ITLIM,
CPX_PARAM_PRFEIND,
CPX_PARAM_EPAGAP,
CPX_PARAM_EPGAP.

Xpress: The recognized parameters are:
CPX_PARAM_PRFEIND,
CPX_PARAM_SCRIND,
CPX_PARAM_ITLIM,
CPX_PARAM_TILIM.

5.3.8 General utilities
CPXopenCPLEX

Initializes CPLEX environment.

Synopsis

5.3. THE FUNCTIONS 63

CPXENVptr CPXopenCPLEX (int *status_p);

Description The routine initializes a CPLEX environment when accessing a
license for CPLEX and works only if the computer is licensed for Callable Li-
brary use. The routine CPXopenCPLEX() must be the first CPLEX routine

called. The routine returns a pointer to a CPLEX environment.

GLPK: GLPK is free so the programs based on its library run even if one
doesn’t have the license. This is the always the first routine called so we used
it to initialize some parameters to CPLEX default values. This routine doesn’t
need any GLPK function.

Xpress: Xpress finds the license in a different way, so this function returns
a pointer even if the solver isn’t available. We used this routine to initialize some
parameters to CPLEX default values. status_p has the XPRSinit returned code.
The function used is:

XPRSinit

CPXcloseCPLEX

Closes CPLEX environment.
Synopsis
int CPXcloseCPLEX (CPXENVptr *env_p);

DescriptionThe routine closes the CPLEX environment. The routine returns a

zero on success, and a nonzero if an error occurs.
GLPK: It doesn’t do anything.

Xpress: The routine releases the Xpress license. The function used is:
XPRSfree

64 CHAPTER 5. THE INTERFACES

CP Xflushstdchannels

Causes CPLEX default channels to be flushed.
Synopsis
int CPXflushstdchannels (CPXENVptr env);
DescriptionThis routine flushes the output buffers of the four standard chan-
nels cpxresults, cprwarning, cpzrerror, and cpxlog. Use this routine where it is
important to see all of the output created by CPLEX either on the screen or in

a disk file without calling CPXflushchannel for each of the four channels.

GLPK: It doesn’t do anything.

Xpress: It doesn’t do anything.

Chapter 6

Test

6.1 Testbed

Our testbed is made by 44 0-1 MIP instances collected in MIPLIB 2003 [6]
and described in Table 6.1, plus an additional set of 38 hard 0-1 MIP, described
in Table 6.2, provided by Fischetti and Lodi. The two tables report the instance

names and the corresponding number of variables (n), of 0-1 variables (|J]) and

of constraints (m).

Table 6.1: The 44 0-1 MIP instances collected in MIPLIB 2003 .

Name n 7] m Name n 19 m
10teams 2025 1800 230 mod011 10958 96 4480
Al1C1S1 3648 192 3312 modglob 422 98 291
aflow30a 842 421 479 momentuml | 5174 2349 42680
aflow40b 2728 1364 1442 net12 14115 1603 14021
air04 8904 8904 823 nsrand_ipx 6621 6620 735
air05 7195 7195 426 nw04 87482 87482 36
cap6000 6000 6000 2176 opt1217 769 768 64
dano3mip | 13873 552 3202 p2756 2756 2756 755
danoint 521 56 664 pkl 86 55 45
ds 67732 67732 656 pp08a 240 64 136
fast0507 63009 63009 507 pp08aCUTS 240 64 246
fiber 1298 1254 363 protfold 1835 1835 2112
fixnet6 878 378 478 qiu 840 48 1192
glass4 322 302 396 rd-rplusc-21 622 457 125899
harp2 2993 2993 112 setlch 712 240 492
liu 1156 1089 2178 seymour 1372 1372 4944
marksharel 62 50 6 sp97ar 14101 14101 1761
markshare2 74 60 7 swath 6805 6724 884
mas74 151 150 13 t1717 73885 73885 551
mas76 151 150 12 tr12-30 1080 360 750
misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411 vpm2 378 168 234

65

66 CHAPTER 6. TEST

Name n |3 m Name n 19 m
biellal 7328 6110 1203 blp-ar98 16021 15806 1128
dg012142| 2080 640 6310 blp-ic97 9845 9753 923
dcle 10039 8380 1649 blp-ic98 12640 13550 717
dcll 37297 35638 1653 blp-ir98 6097 6031 486
dolom1 11612 9720 1803 CMS7504 11697 7196 16381
sienal 13741 1775 2220 berlin_5_8_0 1083 794 1532
trentol 7687 6415 1265 railway_8_1_0 1796 1177 2527
rail507 63019 63009 509 usAbbrv.8.25_70| 2312 1681 3291
rail2536¢ | 15293 15284 2539 manpowerl 10565 10564 25199
rail2586¢ | 13226 13215 2589 manpower2 10009 10008 23881
rail4284c | 21714 21705 4284 manpower3 10009 10008 23915
raild872 | 24656 24645 4875 manpower3a 10009 10008 23865
A2C1S1 3648 192 3312 manpower4 10009 10008 23914
B1C1S1 3872 288 3904 manpower4a 10009 10008 23866
B2C1S1 3872 288 3904 1jb2 771 681 1482
sp97ic 12497 12497 1033 ljb7 4163 3920 8133
sp98ar 15085 15085 1435 1jb9 4721 4460 9231
sp98ic 10894 10894 825 1jb10 5496 5196 10742
bg51242 792 240 1307 ljb12 4913 4633 9596

Table 6.2: The additional set of 38 0-1 MIP instances.

6.2 Test description

The results of the original FP implementation based on CPLEX are reported
in Table 6.3 and 6.4, with a comparison with the two FP interfaced with GLPK
and Xpress.

The software releases used are ILOG CPLEX 8.1, GLPK 4.7 and Dash Xpress-
MP 2004b.

The focus of this experiment was to measure the capability of the three FP im-
plementations to converge to an initial feasible solution. The three algorithms
were stopped as soon as the first feasible solution was found. We have compared
the quality of the first solution found, the number of iterations and the time the
algorithms needed. Computing times are expressed in CPU seconds and refer to
an AMD AthlonXP 2200+ (1800MHz) with 768MByte of RAM.

We said that the FP we used is an experimental code, it has many functions
and capabilities that one can enable changing a file named param.txrt, uncom-
menting some lines in LocBra.h and using different command strings. Now we
explain in detail the configuration we used. In Locbra.h we have enabled the line
#de fine OPT'. This function allows the solver to perform all the simplex itera-
tions it needs, without imposing a time limit or an iteration limit. This method
attempts to obtain, at each FP iteration, the optimal solution of the LP relax-
ation. This setting is very sensible to the capabilities of the solver used. Indeed,
if in a simplex session a stall situation occurs and the solver doesn’t notice it,
the FP algorithm will enter an infinite loop. This situation happened with some

6.2. TEST DESCRIPTION 67

difficult instance (only with GLPK solver). The param.tzt used is:

1005010 0 0 256 100 5000.5 .002 1.5 -1 250 5000 .2 0 0 250 O

pre -> presolve: 1 yes, O no");
heurFreq -> heuristic frequency");
prec -> precision: 0 = default; 1 = le-12");
mipInt -> print MIP interval");
timeInt -> number of time intervals");
video -> video: YES = 1, NO = 0");
emp -> emphasis: default = 0);
IT -> RINS/DIST every ... iterations
EVERY -> restart every ... iterations
times -> initial worsening of the bound allowed
soglia -> threshold for flipping
divv -> to devide the gap at each improvement
addTime -> additional time after the first solution (< O is disabled)
nodes -> number of B&B nodes for the RINS/DIST approach
itLim -> simplex iteration limit (used #ifndef OPT)
pdgap -> primal-dual gap for baropt (used #ifdef BAR)
rep -> number of loops of itLim iterations for the first LP
(used #ifndef OPT)
SM -> simplex method: 0 = CPLEX decides; P = primal; D = dual
(used #ifdef OPT)
addIter -> number of additional iteration after the first sol has been found
(SAT must be set to O to be active)
WRITE -> 1 any feasible solution encountered is written in file

‘solution.mst’, O otherwise

As one can see, we activated the presolver and disabled the heuristics. We
also disabled the RINS/DIST method. We also let the solver decide the simplex
method to use. All these choices have the target of taking the algorithms ” prob-
lem independent”. However, some knowledge of the type of instance to be solved
can improve the FP performance considerably, especially for highly degenerate
cases.

As to the string command, we used:
F P 2500 20 100000 0 0 2 problem.mps

F Pglpk 2500 20 100000 0 0 2 problem.mps
FPxpress 2500 20 100000 0 0 2 problem.mps

68 CHAPTER 6. TEST

Note that for all the instances we chosed an mps version. This because GLPK
supports this format in a better way. Indeed, if one uses the LP format, GLPK
takes some time for conversion. The first parameter (2500) is the max time (in
CPU seconds) allowed to find the first integer feasible solution. When this time is
reached the algorithm terminates in any case. The second one is the T parameter
discussed in Chapter 1. Value 100000 is the maximum number of FP iterations
allowed. This is a very large number as, it isn’t important if the algorithm
requires several iterations to terminate. The subsequent parameter is important
if one wants to use enumeration, but we did not enable this function. The next
one decides if RINS (1) or DISTANCE (2) heuristic method can be used; as we
said, these functions are disabled but the two interfaces give the possibility of
using them. The last one parameter (before the problem file name) stops the
algorithm at the first feasible solution found. All the test results are in Table 6.3
and 6.4. If the algorithm terminated because of the time limit, we report the FP
iterations performed. If stalling is detected during a simplex session, we wrote
“stall”. We wrote “error” if an error was generated and the program terminated.

We wrote “iterations” if the program terminated due to iteration limit.

6.3 Computational Results

As one can see, the time needed and sometime the first feasible solution value
obtained with the original FP are different with respect to the results reported in
[1]: this because we have used a different PC and an updated version of the FP
algorithm. Moreover, we don’t know which is the FP and ILOG-CPLEX tuning
used for tests in the article.

Our first order of business here was to evaluate the percentage of success in finding
a feasible MIP solution (with a time limit of 2500s). In this respect, the original
FP was unsuccessful only in 3 cases. As to the FP with GLPK (FPglpk), in 9
cases there was a stall, and in 3 cases FPglpk was unsuccessful. There are also 11
critical instances in which the time limit stopped the search (in particular in all
the manpower and in many rail problems); in these last cases, the GLPK simplex
solver needed much time for each iteration but without stalling or instability. So
FPglpk was successful in 59 cases. As to the FP with Xpress (FPxpress), the
percentage of success is very good, indeed only in 5 cases the program failed and

only in 2 cases due to time limit. None of the tests caused a stall situation.

6.3. COMPUTATIONAL RESULTS 69

Talking about speed, tables 6.5 and 6.6 report the ratio of the average times for
iteration between FPglpk (FPxpress) and the original FP (the higher is the ratio,
the slower is the solver). Even if an FP implementation did not find a feasible
value, we reported the ratio considering the iterations performed before the time
limit exceeding (not in case of stalling). If the total time is lower than 1 second
for all the problems we wrote “too low” because the ratio is not meaningful. The
average ratio of FPglpk is 71.2, a very large value which is negatively influenced
by two instances: CMS750_4 and swath. Indeed, with this instances, FPglpk was
respectively 712.45 and 840.34 times slower than the CPLEX version. If we not
consider these problems which penalizes too much the solver, the average ratio
becomes 45.25. The results in the tables show us that FPglpk was very slow
also in the manpower instances: from 181.08 to 411.84 times slower (if we not
consider also these problems, the average ratio is 14.31). There are instances in
which FPglpk obtained a very good result, for example in air05 or cap6000; with
net12 FPglpk obtained more or less the same time per iteration as the original
FP.

As to FPxpress, the average ratio is 2.52. As one can see from the tables, there are
no critical cases in which the ratio is very high as in the previous implementation.
We obtained the worst results with the manpower instances (from 2.44 to 12.14
times slower), but with many problems FPxpress was faster than the CPLEX
version: first of all net12 and then all the 1jb instances.

As to the solution quality and the number of iterations performed, there is
not a clear winner. Indeed, the results are similar in all cases, as the framework
is the same. There are some noticeable cases, for example the quality of the first
solution found with FPxpress of dano3mip and mas76 is very good. One must
take into consideration the random choices of the framework used. With danoint
instance the original FP found a way which needed only 3 iterations to terminate
(191 FPglpk and 81 FPxpress!). Another example is harp2: FPglpk found the
best solution with 344 iterations while the original FP required 654 iterations
and FPxpress 977. None of the FP implementations has found a feasible solution
for ds, rd-rplusc-21 and p2756. This last problem is a pathological case for FP

(see [1] for an explanation).

70 CHAPTER 6. TEST

ILOG CPLEX GLPK Dash Xpress-MP
Name value nIT time value nIT time value nIT time
10teams 992.00 53 10.13 970.00 177 121.53 1,076.00 173 44.64
A1C1s1 18,377.24 5 8.53 19,153.53 5 46.53 16,257.50 5 28.13
aflow30a 4,398.00 16 0.16 3,325.00 3 0.22 5,123.00 17 0.42
aflow40b 6,859.00 7 0.73 4,562.00 5 2.22 5,210.00 7 1.34
air04 58,950.00 6 112.33 59,987.00 7 647.81 58,278 4 21.47
air05 29,937.00 2 15.30 31,899.00 8 110.00 32,120.00 4 11.48
cap6000 -2,354,320.00 2 0.80 -2,354,320.00 2 1.58 -2,354,320.00 2 0.34
dano3mip 2,882,022.45 2 118.83 stall 1 2500.00 756.62 2 179.55
danoint 77.00 3 0.23 73.33 191 52.62 74.50 81 8.95
ds - 112 2500.00 error - - - 18 2500.00
fast0507 181.00 4 51.91 190.00 2 586.56 186.00 4 84.2
fiber 1,911,617.79 2 0.03 1,324,277.64 2 0.11 1,686,325.48 2 0.05
fixnet6 9,131.00 4 0.03 8,5642.00 4 0.14 11,261.00 4 0.09
glass4 5,600,050,250.00 124 0.34(4,650,041,100.00 3 0.05|3,691,696,333.33 0 0.01
harp2 -43,856,974.00 654 5.36| -38,231,320.00 344 16.33| -49,695,263.00 977 19.31
liu 6,262.00 O 0.06 6,450.00 O 0.58 5,384.00 0 0.06
marksharel 1,114.00 9 0.02 165.00 10 0.02 851.00 1 0.00
markshare2 1,738.00 O 8.00 182.00 3 0.02 2,546.00 1 0.00
mas74 52,429,700.59 1 0.00 14,372.87 1 0.02 19,524.00 1 0.02
mas76 194,527,859.06 1 0.00 43,744.26 1 0.02 48,566.00 1 0.00
misck07 3,700.00 29 0.17 4,385.00 149 8.00 4,200.00 38 1.27
mkc -164.56 2 0.36 -45.85 3 1.22 -126.40 3 0.44
mod011 0.00 O 0.23 0.00 O 2.51 0.00 O 1.22
modglob 35,147,088.88 0 0.02 35,147,088.88 0 0.02 35,147,088.88 0 0.02
momentuml 462,127.33 502 1870.02 - 20 2500.00 436,506.00 228 1799.00
neti12 337.00 3 8219 337.00 12 326.80 337.00 84 205.77
nsrand_ipx 340,800.00 3 0.92 339,200.00 3 4.81 384,800.00 3 1.38
nw04 19,882.00 1 3.36 19,792.00 1 16.25 19,792.00 1 7.45
opt1217 -12.00 0 0.02 -16.00 0 0.03 0.00 1 0.03
p2756 iterations - - iterations - - iterations - -
pkil 57.00 1 0.02 68.00 O 0.00 69.00 O 0.00
pp08a 11,150.00 2 0.00 12,430.00 3 0.05 11,870.00 3 0.02
pp08aCUTS 10,940.00 2 0.02 11,740.00 3 0.09 12,690.00 3 0.05
protfold -10.00 367 1104.67 | num. instability - - -13.00 216 926.94
qiu 389.36 3 0.45 918.72 2 1.34 688.98 3 0.69
rd-rplusc-21 - 115 2500.00 - 6 2500.00 - 14 2500.00
setich 76,951.50 2 0.03 98,147.25 2 0.14 87,866.25 2 0.06
seymur 452.00 9 6.27 457.00 5 215.88 443.00 6 9.83
sp97ar 1,398,705,728.00 6 6.03 stall 1 2500.00|1,657,416,281.60 6 7.98
swath 19,221.42 49 3.56 39,212.87 3 183.16 42,665.45 296 139.78
t1717 826,848.00 42 1459.30 - 7 2500.00 225,200.00 22 2163.81
tr12-30 277,218.00 9 0.13 248,684.00 8 1.88 279,714.00 7 0.45
van 8.21 4 326.03 7.37 4 931.53 6.41 7 1038.00
vpm2 19.25 3 0.02 17.75 2 0.05 21.00 2 0.02

Table 6.3: FP performance comparison with different solvers

6.3. COMPUTATIONAL RESULTS 71
ILOG CPLEX GLPK Dash Xpress-MP

Name value nIT time value nIT time value nIT time
biellal 3,637,959.54 5 14.41| 13,678,241.92 6 135.78 3,269,058.80 5 23.83
dclc 27,348,312.19 4 30.32] 21,986,395.78 4 350.83| 17,044,961.00 6 41.95
dci1l 8,256,022.49 5 153.94 stall 12500.00] 76,686,594.47 5 164.53
doloml 298,684,615.17 7 48.27| 514,489,757.13 4 743.30| 186,950,753.06 8 70.00
sienal 104,004,996.99 5 138.30 stall 2 2500.00 - 6 208.58
trentol 356,179,003.01 2 29.22]2,771,711,194.07 2 280.38| 347,208,438.00 2 45.66
rail507 178.00 2 65.23 197.00 3 959.61 860,986.05 3 91.67
rail2536¢ 715.00 4 44.22 stall 2 2500.00 714.00 4 98.41
rail2586¢ 1,007.00 5 129.22 stall 2 2500.00 1,004.00 5 181.66
rail4284c 1,124.00 3 1623.05 stall 1 2500.00 1,119.00 5 515.19
rail4d872 1,614.00 5 467.56 stall 1 2500.00 1,622.00 5 564.56
A2C1S1 19,879.93 5 8.69 19,883.00 5 40.84 19,528.00 5 21.67
B1C1S1 38,530.65 7 11.58 stall 2 2500.00 42,489.19 7 32.84
B2C1S1 48,279.95 6 9.88 59,217.00 6 78.53 46,198.04 6 33.08
sp97ic 1,280,793,707.52 3 3.84| 314,809,721.12 4 21.98|1,073,817,106.08 4 5.61
sp98ar 988,402,511.00 4 6.17/1,050,813,686.88 4 55.25|1,136,153,068.32 3 6.84
sp98ic 959,924,716.00 3 3.08| 107,765,747.52 4 18.48| 75,902,608.00 4 4.59
blp-ar98 25,094.03 161 30.63 - 498 2500.00 22,372.94 1279 670.03
blp-ic97 7,874.87 4 0.97 7,618.51 7 11.58 7,423.29 11 3.83
blp-ic98 14,848.96 6 2.09 14,822.98 8 17.81 13,707.62 5 3.56
blp-ir98 5,388.84 3 0.56 6,573.28 4 3.38 5,277.00 4 1.05
CMS750_4 606.00 131 28.73 - 16 2500.00 6.23 128 113.69
berlin 580 79.00 10 0.19 79.00 11 5.95 79.00 14 0.45
railway_8.1.0 440.00 13 0.38 436.00 13 22.89 441.00 16 1.06
usAbbrv.8.25_70 164.00 34 0.95 162.00 28 67.17 error

bgh12142 120,738,665.00 0 0.20| 120,690,438.67 0 0.47| 120,738,655.00 0 0.48
dg012142 153,406,945.50 0 1.75| 140,064,121.25 0 5.03| 153,406,921.50 0 2.95
manpowerl 8.00 66 58.86 - 11 2500.00 10.00 55 120.09
manpower?2 7.00 148 240.17 - 72500.00 8.00 30 453.67
manpower3 6.00 49 84.56 - 82500.00 6.00 49 622.39
manpower3a 6.00 73 99.86 - 52500.00 7.00 65 848.77
manpower4 7.00 192 166.50 - 72500.00 7.00 77 810.47
manpower4a 7.00 53 121.83 - 72500.00 9.00 119 1349.39
1jb2 731 0 1.72 731 0 0.40 7.34 0 0.03
1jb7 861 0 0.06 8.61 0 27.83 8.61 0 0.50
1jb9 948 0 1.23 948 0 37.44 9.48 0 0.59
1jb10 731 0 1.72 731 0 5244 7.31 0 0.81
1jb12 6.20 0 1.20 6.20 0 42.33 6.20 0 0.63

Table 6.4: FP performance comparison with different solvers (cont.d)

72

CHAPTER 6. TEST

ILOG CPLEX GLPK Dash Xpress-MP
Name value ratio value ratio value ratio
10teams 992.00 1.00 970.00 3.59 1,076.00 1.35
A1C1S1 18,377.24 1.00 19,153.53 5.45 16,257.50 3.29
aflow30a 4,398.00 1.00 3,325.00 7.33 5,123.00 2.47
aflow40b 6,859.00 1.00 4,562.00 4.25 5,210.00 1.83
air04 58,950.00 1.00 59,987.00 4.94 58,278 0.29
air05 29,937.00 1.00 31,899.00 1.79 32,120.00 0.37
cap6000 -2,354,320.00 1.00 -2,354,320.00 1.97 -2,354,320.00 0.42
dano3mip 2,882,022.45 1.00 stall - 756.62 1.51
danoint 77.00 1.00 73.33 3.59 74.50 1.44
ds - 1.00 error - - 6.22
fast0507 181.00 1.00 190.00 22.60 186.00 1.62
fiber 1,911,617.79 1.00 1,324,277.64 3.67 1,686,325.48 1.67
fixnet6 9,131.00 1.00 8,542.00 4.66 11,261.00 3.00
glass4 5,600,050,250.00 1.00 | 4,650,041,100.00 too low | 3,691,696,333.33 too low
harp2 -43,856,974.00 1.00| -38,231,320.00 5.79| -49,695,263.00 2.41
liu 6,262.00 1.00 6,450.00 too low 5,384.00 too low
marksharel 1,114.00 1.00 165.00 too low 851.00 too low
markshare2 1,738.00 1.00 182.00 too low 2,546.00 too low
mas74 52,429,700.59 1.00 14,372.87 too low 19,524.00 too low
mas76 194,527,859.06 1.00 43,744.26 too low 48,566.00 too low
misck07 3,700.00 1.00 4,385.00 9.15 4,200.00 5.70
mkc -164.56 1.00 -45.85 2.25 -126.40 0.81
mod011 0.00 1.00 0.00 10.91 0.00 5.30
modglob 35,147,088.88 1.00 35,147,088.88 too low 35,147,088.88 too low
momentuml 462,127.33 1.00 - 33.56 436,506.00 2.11
net12 337.00 1.00 337.00 0.99 337.00 0.09
nsrand_ipx 340,800.00 1.00 339,200.00 5.22 384,800.00 1.50
nw04 19,882.00 1.00 19,792.00 4.84 19,792.00 2.22
opt1217 -12.00 1.00 -16.00 too low 0.00 too low
p2756 iterations 1.00 iterations - iterations -
pk1 57.00 1.00 68.00 too low 69.00 too low
pp08a 11,150.00 1.00 12,430.00 too low 11,870.00 too low
pp08aCUTS 10,940.00 1.00 11,740.00 too low 12,690.00 too low
protfold -10.00 1.00 | num. instability - -13.00 1.43
qiu 389.36 1.00 918.72 4.47 688.98 1.53
rd-rplusc-21 - 1.00 - 19.17 - 8.21
setich 76,951.50 1.00 98,147.25 too low 87,866.25 too low
seymur 452.00 1.00 457.00 61.97 443.00 2.35
sp97ar 1,398,705,728.00 1.00 stall -11,657,416,281.60 1.32
swath 19,221.42 1.00 39,212.87 840.34 42,665.45 6.50
t1717 826,848.00 1.00 - 10.28 225,200.00 2.83
tr12-30 277,218.00 1.00 248,684.00 too low 279,714.00 too low
van 8.21 1.00 7.37 2.85 6.41 1.82
vpm2 19.25 1.00 17.75 too low 21.00 too low

Table 6.5: Average time per iteration (ratio with respect to FPcplex)

6.3. COMPUTATIONAL RESULTS

ILOG CPLEX GLPK Dash Xpress-MP

Name value value ratio value ratio

biellal 3,537,959.54 1.00 13,678,241.92 7.85 3,269,058.80 1.65
dclc 27,348,312.19 1.00 21,986,395.78 11.57 17,044,961.00 0.92
dc1l 8,256,022.49 1.00 stall - 76,686,594.47 1.07
doloml 298,684,615.17 1.00| 514,489,757.13 26.95| 186,950,753.06 1.26
sienal 104,004,996.99 1.00 stall - - 1.25
trentol 356,179,003.01 1.00 |2,771,711,194.07 9.60 | 347,208,438.00 1.56
rail507 178.00 1.00 197.00 9.80 860,986.05 0.94
rail2536¢ 715.00 1.00 stall - 714.00 2.22
rail2586¢ 1,007.00 1.00 stall - 1,004.00 1.41
rail4284c 1,124.00 1.00 stall - 1,119.00 0.19
rail4872 1,614.00 1.00 stall - 1,622.00 1.21
A2C1581 19,879.93 1.00 19,883.00 4.69 19,528.00 2.49
B1C1S1 38,530.65 1.00 stall - 42,489.19 2.83
B2C1S1 48,279.95 1.00 59,217.00 7.94 46,198.04 3.34
sp97ic 1,280,793,707.52 1.00| 314,809,721.12 4.301,073,817,106.08 1.10
sp98ar 988,402,511.00 1.00 | 1,050,813,686.88 8.95|1,136,153,068.32 1.48
sp98ic 959,924,716.00 1.00| 107,765,747.52 4.50 75,902,608.00 1.12
blp-ar98 25,094.03 1.00 - 26.38 22,372.94 2.75
blp-ic97 7,874.87 1.00 7,618.51 6.82 7,423.29 1.44
blp-ic98 14,848.96 1.00 14,822.98 6.39 13,707.62 2.04
blp-ir98 5,388.84 1.00 6,573.28 4.53 5,277.00 1.41
CMS750_4 606.00 1.00 - 712.45 6.23 4.04
berlin 5.8.0 79.00 1.00 79.00 28.46 79.00 1.70
railway_8.1.0 440.00 1.00 436.00 60.23 441.00 2.26
usAbbrv.8.25_70 164.00 1.00 162.00 85.86 error -
bg512142 120,738,665.00 1.00| 120,690,438.67 too low | 120,738,655.00 too low
dg012142 153,406,945.50 1.00| 140,064,121.25 2.87| 153,406,921.50 1.65
manpowerl 8.00 1.00 - 254.84 10.00 2.44
manpower?2 7.00 1.00 - 220.08 8.00 9.31
manpower3 6.00 1.00 - 181.08 6.00 7.36
manpower3a 6.00 1.00 - 365.51 7.00 9.54
manpower4 7.00 1.00 - 411.84 7.00 12.14
manpower4a 7.00 1.00 - 155.37 9.00 4.93
1jb2 7.31 1.00 7.31 too low 7.34 too low
1jb7 8.61 1.00 8.61 too low 8.61 too low
1jb9 9.48 1.00 9.48 30.44 9.48 0.48
1jb10 7.31 1.00 7.31 30.48 7.31 0.47
1jb12 6.20 1.00 6.20 35.28 6.20 0.53

Table 6.6: Average time per iteration (ratio with respect to FPcplex)(cont.d)

74

CHAPTER 6. TEST

Chapter 7
Conclusions

This thesis required the study of three important optimization codes: ILOG
CPLEX, GLPK, and Dash Xpress. Moreover, the Feasibility Pump code was
analyzed to find all the CPLEX functions it uses and to understand which tuning
it requires. After this studies, we have implemented the interfaces previously
discussed.

The functioning of these interfaces is very good, indeed they preserve all the
functionalities of the FP software, exploiting in the best possible way the solvers
abilities.

Even if GLPK is a free LP solver, it can solve many difficult MIP problems if
used within the FP framework. As to Xpress, this is a commercial software and
better performance are expected. Indeed this software is faster than GLPK, but,
on average, it is slightly slower than CPLEX. However, for the FP algorithm,
Xpress can be considered a valid choice.

The interfaces limit, as explained in Chapter 5, is mainly the management of the
error codes returned, which is too different in the three solvers. It is also very
difficult to find a correspondence in many control attributes.

If further developed, the software proposed in this thesis could be very useful
because it may be applied to all the pieces of software based on CPLEX which
do not need a powerful solver as CPLEX.

75

76

CHAPTER 7. CONCLUSIONS

Appendix A

Interface for GLPK

A.1 interface.h

#include "c:/cygwin/usr/local/include/glpk.h"
typedef int * CPXENVptr;

typedef LPX * CPXLPptr;

#define CPXoptimize CPX1popt

ok sk ok okok sk stk sk ok sk kol sk stk sk ok sk ok ok ok ok

I don’t report all the CPLEX parameters redefinition

kKoK KoK oK oK ok o KK KoK oK ok ok o K KK oK oK ok o K K KoK
char *nomefile;

char *tipofile;

int lastsolver; //1: 1lp 2: mip 3:bar

int limiter; //Iteration limit for simplex
int msglev;

int presolver;

double epagap;

double epgap;

//Creating problems

(code)

CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname);
CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status_p);

//0Optimizing problems

int CPXprimopt (CPXENVptr env, CPXLPptr 1px);
int CPXlpopt (CPXENVptr env, CPXLPptr 1px);
int CPXbaropt (CPXENVptr env, CPXLPptr 1lpx);
int CPXmipopt(CPXENVptr env, CPXLPptr 1lpx);
int CPXdualopt(CPXENVptr env, CPXLPptr 1lpx);

7

78 APPENDIX A. INTERFACE FOR GLPK (CODE)

//Accessing LP/MIP results

int CPXgetstat (CPXENVptr env, CPXLPptr 1px);

int CPXgetobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);
int CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end);
int CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end);
int CPXgetbase (CPXENVptr env, CPXLPptr lpx, int *cstat, int *rstat);

int CPXgetphaselcnt (CPXENVptr env, CPXLPptr 1lpx);

int CPXgetmipobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);
int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

//Problem modification

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int nzcnt, double *rhs,
char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **colname, char **rowname);

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat);

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double *obj, int *cmatbeg,
int *cmatind, double *cmatval, double *1b, double *ub, char **colname);

int CPXchgbds (CPXENVptr env, CPXLPptr 1lpx, int cnt, int *indices, char *1lu, double *bd);

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense);

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXchgprobtype (CPXENVptr env, CPXLPptr lpx, int type);

//Accessing problem data

int CPXgetprobname (CPXENVptr env, CPXLPptr 1lpx, char *buf_str, int bufspace, int *surplus_p);

int CPXgetcolname (CPXENVptr env, CPXLPptr lpx, char **name, char *namestore, int storespace,
int *surplus_p, int begin, int end);

int CPXgetnumcols (CPXENVptr env, CPXLPptr 1lpx);

int CPXgetnumrows (CPXENVptr env, CPXLPptr 1lpx);

int CPXgetobjsen (CPXENVptr env, CPXLPptr 1lpx);

int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end);

int CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end);

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end);

int CPXgetub (CPXENVptr env, CPXLPptr 1lpx, double *ub, int begin, int end);

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int *rmatbeg, int *rmatind,
double *rmatval, int rmatspace, int *surplus, int begin, int end);

int CPXgetctype (CPXENVptr env, CPXLPptr 1lpx, char *xctype, int begin, int end);

//File reading/writing
int CPXreadcopyprob (CPXENVptr env, CPXLPptr 1lpx, char *filename_str, char *filetype_str);
int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype);

//Parameters setting and querying routines
int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue);

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue);

//General utilities

CPXENVptr CPXopenCPLEX (int *status_p);

int CPXcloseCPLEX (CPXENVptr *env_p);

int CPXflushstdchannels (CPXENVptr env);

int CPXgetcallbackinfo (CPXENVptr env, void *cbdata, int wherefrom, int whichinfo,

void *result_p);

A.2. IFC.IMP.C

A.2 ifc_imp.c

#include "LocBra.h"

CPXENVptr CPXopenCPLEX (int *status_p){
limiter = -1;
presolver = 1;
int valore = 1;
msglev = 3;
int *falso;
falso = &valore;

return falso;

CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname){
LPX *temp;
temp = lpx_create_prob();
*status_p = 0;
lpx_set_prob_name(temp, probname);
return temp;

int CPXgetprobname (CPXENVptr env, CPXLPptr 1lpx, char *buf_str, int bufspace, int *surplus_p){
int tmp = bufspace;
char *probname = lpx_get_prob_name(lpx);
int size = (strlen(probname)) + 1;

tmp = tmp - size;

if (tmp >= 0)

{
int t;
for(t =0 ; t < size ; t++)
{

*buf _str = probname[t];
buf_str++;
}
*surplus_p = tmp;
return O;
}
*surplus_p = tmp;
return CPXERR_NEGATIVE_SURPLUS;

int CPXgetnumrows (CPXENVptr env, CPXLPptr lpx){

return lpx_get_num_rows(1lpx);

int CPXgetnumcols (CPXENVptr env, CPXLPptr 1px){

return lpx_get_num_cols(1lpx);

int CPXreadcopyprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype_str)

nomefile = filename_str;
tipofile = filetype_str;

80 APPENDIX A.

char *ext = filetype_str;
char *nome = filename_str;
int s;

int size = strlen(filename_str);

char *tmp = filename_str;

if (filetype_str == NULL)

{
tmp = (tmp + size) - 3;
s = Controllo(tmp,".1lp",".LP");
if (s == 1)
{
lp = lpx_read_cpxlp(filename_str);
return 0;
}
if (s == 0)
{
tmp = (filename_str + size) - 4;
s = Controllo(tmp,".mps",".MPS");
if (s == 1)
{
1lp = lpx_read_freemps(filename_str);
return O;
}
}
return 1;
}
else
{
int 1 = strlen(ext);
if (1 == 2)
{
if(Controllo(ext,"1lp","LP"))
{
1lp = lpx_read_cpxlp(filename_str);
return O;
}
else
{
return 1; //Ext unknown
}
}
if (1 == 3)
{
if (Controllo(ext,"mps","MPS"))
{
1lp = lpx_read_freemps(filename_str) ;
return O;
}
else
{
return 1; //Ext unknown

INTERFACE FOR GLPK (CODE)

A.2. IFC.IMP.C 81

return 1;

int Controllo (char *tmp, char *t, char *T)
{ int s = 0;
if ((strcmp(tmp,t) == 0) || (strcmp(tmp,T)== 0)) s=1;

return s;

int CPXgetobjsen (CPXENVptr env, CPXLPptr 1lpx){
if (lpx_get_obj_dir(1lpx) == LPX_MAX) return CPX_MAX;
if (lpx_get_obj_dir(lpx) == LPX_MIN) return CPX_MIN;

return 0;

CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lploc, int *status_p)
{

CPXLPptr copia;

char *ext = tipofile;

char *nome = nomefile;

int s;

int size = strlen(nomefile);

char *tmp = nomefile;

*status_p = O;

if (tipofile == NULL)

{
tmp = (tmp + size) - 3;
s = Controllo(tmp,".1lp",".LP");
if (s == 1)
{
copia = lpx_read_cpxlp(nomefile);
return copia;
}
if (s == 0)
{
tmp = (nomefile + size) - 4;
s = Controllo(tmp,".mps",".MPS");
if (s == 1)
{
copia = lpx_read_freemps(nomefile);
return copia;
}
}
return NULL;
¥
else
{

int 1 = strlen(ext);

82

int

APPENDIX A. INTERFACE FOR GLPK (CODE)

if (1 == 2)
{
if (Controllo(ext,"lp","LP"))
{
copia = lpx_read_cpxlp(nomefile);
return copia;
}
else
{
return NULL;
}
}
if (1 == 3)
{
if (Controllo(ext,"mps","MPS"))
{
copia = lpx_read_freemps(nomefile);
return NULL;
}
else
{
return NULL;
}
}

return NULL;

CPXgetctype(CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int end)

1lpx_set_class(1lpx, LPX_MIP);

begin++;

end++;

int i;

for(i = begin ; i < (end + 1); i++)

{
int t = lpx_get_col_kind(lpx, i);
if (t == LPX_CV)

{
*xctype = ’C’;
xctypet+;
}
else
{
if (t == LPX_IV)
{
if ((lpx_get_col_1b(lpx, i) == 0) && (lpx_get_col_ub(lpx, i) ==
{
*xctype = ’B’;
xctype++;
}
else

{

1)

A.2. IFC.IMP.C

*xctype = ’I’;
xctype++;

}

return O; //To see for errors

int CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end)

begin++;
end++;
int i;
for(i = begin ; i < (end+ 1) ; i++)
{
obj[i-begin] = 1lpx_get_obj_coef(lpx, i);

}

return 0; //To see for errors

int CPXlpopt (CPXENVptr env, CPXLPptr lpx) {
lastsolver = 1;
lpx_set_int_parm(lpx, LPX_K_MSGLEV, msglev);
lpx_set_int_parm (1lpx, LPX_K_PRESOL, presolver);
lpx_set_int_parm (1px, LPX_K_DUAL , 1);
lpx_set_int_parm(lpx, LPX_K_ITCNT, 0);
lpx_set_int_parm (lpx, LPX_K_ITLIM , limiter);
1px_simplex(1px) ;
return 0O;

int CPXbaropt (CPXENVptr env, CPXLPptr 1lpx) {
lastsolver = 3;
lpx_set_int_parm (lpx, LPX_K_ITLIM , limiter);
lpx_set_int_parm(lpx, LPX_K_ITCNT, 0);
lpx_set_int_parm(lpx, LPX_K_MSGLEV, msglev);

lpx_interior(lpx);

return 0O; //To see for errors

}

int CPXgetstat (CPXENVptr env, CPXLPptr 1lpx) { //OK for lpx_simplex and lpx_integer
int stato;
int res;

switch (lastsolver)
{
case 1:
stato = lpx_get_status (1px);
switch(stato)
{
case LPX_OPT:
res = CPX_STAT_OPTIMAL;
break;

83

APPENDIX A. INTERFACE FOR GLPK (CODE)

84
case LPX_FEAS:
res = CPX_STAT_NUM_BEST;
break;
case LPX_INFEAS:
res = CPX_STAT_INFEASIBLE;
break;
case LPX_NOFEAS:
res = CPX_STAT_INFEASIBLE;
break;
case LPX_UNBND:
res = CPX_STAT_INForUNBD;
break;
default:
res = CPX_STAT_ABORT_USER;
break;
}
break;
case 2:
stato = (1px);
switch(stato)
{
case LPX_I_OPT:
res = CPXMIP_OPTIMAL;
break;
case LPX_I_FEAS:
res = CPXMIP_NODE_LIM_FEAS;
break;
case LPX_I_UNDEF:
res = CPXMIP_INForUNBD;
break;
case LPX_I_NOFEAS:
res = CPXMIP_INFEASIBLE;
break;
default:
res = CPX_STAT_ABORT_USER;
break;
}
break;
default:
break;
}
return res;
}
int CPXprimopt (CPXENVptr env, CPXLPptr 1lpx) {
lastsolver = 1;
lpx_set_int_parm(lpx, LPX_K_MSGLEV, msglev);
lpx_set_int_parm (lpx, LPX_K_PRESOL, presolver);
lpx_set_int_parm (1lpx, LPX_K_DUAL , 0);
lpx_set_int_parm(lpx, LPX_K_ITCNT,O0);
lpx_set_int_parm (lpx, LPX_K_ITLIM , limiter);
lpx_simplex (1px) ;
return O; //To see for errors

A.2. IFC.IMP.C

int

CPXgetphaselcnt (CPXENVptr env, CPXLPptr 1lpx) {
return lpx_get_int_parm(lpx,LPX_K_ITCNT);

}
int CPXgetobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p) {
*objval_p = lpx_get_obj_val(lpx);
return O;
}
int CPXdualopt (CPXENVptr env, CPXLPptr 1lpx) {
lastsolver = 1;
lpx_set_int_parm(lpx, LPX_K_MSGLEV, msglev);
lpx_set_int_parm (lpx, LPX_K_PRESOL, presolver);
lpx_set_int_parm (1lpx, LPX_K_DUAL , 1);
lpx_set_int_parm(lpx, LPX_K_ITCNT,O);
lpx_set_int_parm (lpx, LPX_K_ITLIM , limiter);
lpx_simplex (1px) ;
return O; //To see for errors
}
int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)
{
int t;
for(t =0 ; t < cnt ; t++)
{
lpx_set_obj_coef (1px, (indices[t]+1), values[t]);
}
return 0; //To see for errors
}
int CPXgetub (CPXENVptr env, CPXLPptr 1lpx, double *ub, int begin, int end)
{

begin++;
end++;
int i;
for(i = begin ; i < (end + 1) ; i++)
{
int bound = lpx_get_col_type(lpx, 1i);
if ((bound == LPX_UP) || (bound == LPX_DB) || (bound == LPX_FX))
{
if (lpx_get_col_ub(lpx, i) > CPX_INFBOUND) *ub = CPX_INFBOUND;
else *ub = lpx_get_col_ub(lpx, i);

ub++;

}

else

{
*ub = CPX_INFBOUND;
ub++;

}

}

return 0; //To see for errors

85

86 APPENDIX A. INTERFACE FOR GLPK (CODE)

int CPXchgprobtype (CPXENVptr env, CPXLPptr lpx, int type) //Only CPXPROB_LP and CPXPROB_MILP
{

if (type == CPXPROB_LP) lpx_set_class(lpx, LPX_LP);

if (type == CPXPROB_MILP) lpx_set_class(lpx, LPX_MIP);

return O;

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int nzent,
double *rhs, char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **colname,
char **rowname)

int t;
if (ccnt > 0)
{
int ncol = lpx_add_cols(lpx, ccnt);
for (t =0 ; t < ccnt ; t++)
{
lpx_set_col_bnds(lpx, (ncol+t), LPX_LO, O, O); // it is set as the CPLEX default
if (colname '= NULL) lpx_set_col_name(lpx, (ncol+t), colnamel[t]);

int nrow = lpx_add_rows(lpx, rcnt);
int inizio;

int fine;

int len;

for (t =0 ; t < rcnt ; t++)
if (rowname != NULL) lpx_set_row_name(lpx, (nrow+t), rownamel[t]);

inizio = rmatbeglt];

if (t == (rcnt-1)) fine = (nzcnt-1);
else fine = (rmatbeg[t+1]-1);

len = fine - inizio + 1;

int ind[len+1];

double val[len+1];

int q;

int lentmp = 1;

for(g =1 ; q < (len+l) ; q++)

{
if (rmatvall[inizio] !'= 0)
{
ind[lentmp] = (rmatind[inizio] + 1);
val[lentmp] = rmatvall[inizio];
lentmp++;
}
inizio++;
}
lentmp--;

lpx_set_mat_row(lpx, (nrow+t), lentmp, ind, val);
if (semse !'= NULL)
{

A.2. IFC.IMP.C

int

int

char tipo = sense[t];

switch(tipo)
{
case ’L’:

if (rhs != NULL) lpx_set_row_bnds(lpx, (nrow+t), LPX_UP, rhs[t], rhs[t]);
else lpx_set_row_bnds(lpx, (nrow+t), LPX_UP, 0, 0);
break;
case ’G’:
if (rhs != NULL) lpx_set_row_bnds(lpx, (nrow+t), LPX_LO, rhs[t], rhs[t]);
else lpx_set_row_bnds(lpx, (nrow+t), LPX_LO, O, 0);
break;
case ’R’:
if (rhs !'= NULL) lpx_set_row_bnds(lpx, (nrow+t), LPX_DB, rhs([t], rhs[t]);
else lpx_set_row_bnds(lpx, (nrow+t), LPX_DB, 0, 0);
break;
case ’E’:
if (rhs !'= NULL) lpx_set_row_bnds(lpx, (nrow+t), LPX_FX, rhs([t], rhs[t]);
else lpx_set_row_bnds(lpx, (nrow+t), LPX_FX, 0, 0);
break;
default:
lpx_set_row_bnds(1lpx, (nrow+t), LPX_FX, 0, 0);
break;

}

return 0; //To see for errors

CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat)

int nrows = lpx_get_num_rows(1lpx);
int delrows[nrows+1];

int i;

int nrs = 0;

for(i =0 ; i < nrows ; i++)

{
if (delstat[i] == 1)
{
nrs++;
delrows[nrs] = (i+1);
}
}

if (nrs > 0) lpx_del_rows(lpx, nrs, delrows);
return 0; //To see for errors

CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end) {
begin++;
end++;
int i;
for (i = begin; i < (end+1) ; i++)
{
x[i-begin] = lpx_get_col_prim(lpx, 1i);

87

88

int

int

int

APPENDIX A. INTERFACE FOR GLPK (CODE)

return 0; //To see for errors

CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end) {
begin++;

end++;

int i;

for (i = begin ; i < (end + 1) ; i++)

{
*dj = lpx_get_col_dual(lpx, i);
dj++;

¥

return O; //To see for errors

CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end)

begin++;

end++;

int i;

for (i = begin ; i < (end + 1) ; i++)

{
int ub = lpx_get_row_type(lpx, 1i);
if ((ub == LPX_UP) || (ub == LPX_DB) || (ub == LPX_FX))
{
*rhs = lpx_get_row_ub(lpx, i);
rhs++;
}
else
{
if ((ub == LPX_LO))
{
*rhs = lpx_get_row_lb(lpx, i);
rhs++;
}
else
{
*rhs = -CPX_INFBOUND;
rhs++;
}
}
}

return 0; //To see for errors

CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end)

begin++;

end++;

int i;

for (i = begin ; i < (end + 1) ; i++)

{

A.2. IFC.IMP.C

*pi = lpx_get_row_dual(lpx, i);
pit++;
}

return 0; //To see for errors

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)
{

int i;
for (i =0 ; i< cnt ; i++)
{
int tipo = lpx_get_row_type(lpx, (*indices+1));
switch(tipo)
{
case LPX_UP:
lpx_set_row_bnds(lpx, (indices[i]+1), LPX_UP, *values, *values);
break;
case LPX_LO:
lpx_set_row_bnds(lpx, (indices[i]+1), LPX_LO, *values, *values);
break;
case LPX_DB:
lpx_set_row_bnds(lpx, (indices[i]+1), LPX_DB, *values, *values);
break;
case LPX_FX:
lpx_set_row_bnds(lpx, (indices[i]+1), LPX_FX, *values, *values);
break;
default:
break;
}
values++;
indices++;

}

return 0; //To see for errors

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu, double *bd)
{
int i;
int indice;
for (i =0 ; i < cnt ; i++)
{
indice = indices[i] + 1;
int tipo = lpx_get_col_type(lpx, indice);
double o0ldlb;
double oldub;

switch(tipo)
{
case LPX_FR:
switch(lulil)
{
case ’U’:

lpx_set_col_bnds(lpx, indice, LPX_UP, bd[i], bd[il);
break;

90 APPENDIX A. INTERFACE FOR GLPK (CODE)

case ’L’:
lpx_set_col_bnds(lpx, indice, LPX_LO, bd[il, bd[il);
break;
case ’B’:
lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i]l, bd[il);
break;
default:
break;
}
break;
case LPX_LO:
switch(lulil)
{
case ’U’:
0ldlb = 1lpx_get_col_1b(lpx, indice);
if (bd[i] == o0l1ldlb) lpx_set_col_bnds(lpx, indice, LPX_FX,
0ldlb, bd[il);
else
{
if (bd[i] > o0l1dlb) lpx_set_col_bnds(lpx, indice, LPX_DB,
oldlb, bd[il);
else lpx_set_col_bnds(lpx, indice, LPX_UP, oldlb, bd[il);
}
break;
case ’L’:
lpx_set_col_bnds(lpx, indice, LPX_LO, bd[i], bd[i]);
break;
case ’B’:
lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i], bd[i]);
break;
default:
break;
}
break;
case LPX_UP:
switch(lulil)
{
case ’U’:
lpx_set_col_bnds(lpx, indice, LPX_UP, oldlb, bd[il);
break;
case ’L’:
oldub = 1lpx_get_col_ub(lpx, indice);
if (oldub == bd[i]) 1lpx_set_col_bnds(lpx, indice, LPX_FX, bd[il, oldub);
else
{
if (oldub > bd[i]) lpx_set_col_bnds(lpx, indice, LPX_DB, bd[i], oldub);
else lpx_set_col_bnds(lpx, indice, LPX_LO, bd[i], oldub);
}
break;
case ’B’:
lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i], bd[i]);
break;
default:
break;

A.2. IFC.IMP.C 91

}
break;
case LPX_DB:
switch(lul[il)
{
case ’U’:
0ldlb = lpx_get_col_lb(lpx, indice);
if (oldlb == bd[i]) lpx_set_col_bnds(lpx, indice, LPX_FX, oldlb, bd[i]);
else
{
if (oldlb < bd[i]) 1lpx_set_col_bnds(lpx, indice, LPX_DB, oldlb, bd[il);
else lpx_set_col_bnds(lpx, indice, LPX_UP, oldlb, bd[il);
}
break;
case ’L’:
oldub = 1lpx_get_col_ub(lpx, indice);
if (oldub == bd[i]) 1lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i], oldub);
else
{
if (oldub > bd[i]) 1lpx_set_col_bnds(lpx, indice, LPX_DB, bd[i], oldub);
else lpx_set_col_bnds(lpx, indice, LPX_LO, bd[il, bd[il);
}
break;
case ’'B’:
lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i]l, bd[il]);
break;
default:
break;
}
break;
case LPX_FX:
switch(lul[i])
{
case ’U’:

0ldlb = 1lpx_get_col_1b(lpx, indice);
if (oldlb == bd[i]) lpx_set_col_bnds(lpx, indice, LPX_FX, oldlb, bd[i]);
else
{
if (oldlb < bd[i]) 1px_set_col_bnds(lpx, indice, LPX_DB, oldlb, bd[i]);
else lpx_set_col_bnds(lpx, indice, LPX_UP, oldlb, bdl[il);

}
break;
case ’L’:
oldub = 1lpx_get_col_ub(lpx, indice);
if (oldub == bd[i]) lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i], oldub);
else
{
if (oldub > bd[i]) lpx_set_col_bnds(lpx, indice, LPX_DB, bd[i], oldub);
else lpx_set_col_bnds(lpx, indice, LPX_LO, bd[i], bd[il);
¥
break;
case ’B’:

lpx_set_col_bnds(lpx, indice, LPX_FX, bd[i]l, bd[il);
break;

92 APPENDIX A. INTERFACE FOR GLPK (CODE)

default:
break;
}
break;
default:
break;

}

return 0; //To see for errors

int CPXgetcolname (CPXENVptr env, CPXLPptr 1lpx, char **name, char *namestore,

int storespace, int *surplus_p, int begin, int end)

begin++;

end++;

int i;

int tmp = storespace;

for (i = begin ; i < (end+1) ; i++)

{

char *nametmp = lpx_get_col_name(lpx, i);
int size = (strlen(nametmp)) + 1;
tmp = tmp - size;
if (tmp >= 0)
{
*name = namestore;
name++;
int t;
for(t =0 ; t < size ; t++){
*namestore = *nametmp;
namestore++;
nametmp++;

}

*surplus_p = tmp;

if (tmp < 0) return CPXERR_NEGATIVE_SURPLUS;
return 0O;

int CPXgetmipobjval (CPXENVptr env, CPXLPptr 1lpx, double *objval_p)

*objval_p = lpx_mip_obj_val(lpx);
return 0; //To see for errors

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end)

begin++;
end++;
int i;
for (i = begin ; i < (end+1) ; i++)
{
*x = lpx_mip_col_val(lpx, i);

A.2. IFC.IMP.C

xX++;

}

return 0; //To see for errors

int CPXmipopt(CPXENVptr env, CPXLPptr lpx)

lastsolver = 2;

lpx_set_int_parm(lpx, LPX_K_ITCNT,O);
lpx_set_int_parm (lpx, LPX_K_ITLIM , limiter);
lpx_set_real_parm(lpx, LPX_K_TOLINT, epagap);
lpx_set_real_parm(lpx, LPX_K_TOLOBJ, epgap);
lpx_integer (1px) ;

return 0; //To see for errors

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue)

switch(whichparam)
{
case CPX_PARAM_MIPINTERVAL:
break;
case CPX_PARAM_SCRIND:
if (newvalue == 0) msglev = 0;
if (newvalue == 1) msglev = 3;
break;

case CPX_PARAM_ITLIM:
limiter = newvalue;

break;

case CPX_PARAM_INTSOLLIM:

break;

case CPX_PARAM_MIPSTART:

break;

case CPX_PARAM_PREIND:
presolver = newvalue;

default:
break;

}

return O;

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue)
{
switch(whichparam)
{
case CPX_PARAM_EPAGAP:
epagap = newvalue;
break;
case CPX_PARAM_EPGAP:
epgap = newvalue;
break;
case CPX_PARAM_CUTUP:
break;
case CPX_PARAM_TILIM:

94

int

int

APPENDIX A. INTERFACE FOR GLPK (CODE)

break;
default:
break;

}

return 0O;

CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype)
// Only mps and lp allowed

if (filetype == NULL)

{
char *punto = strrchr(filename, ’.’);
punto++;
if ((stremp(punto, "1p") == 0) || (strcmp(punto, "LP") == 0))
return lpx_write_cpxlp(lpx, filename);
if ((stremp(punto, "mps") == 0) || (strcmp(punto, "MPS") == 0))
return lpx_write_freemps(lpx, filename);
return 1;
}

if ((strcmp(filetype, "lp") == 0) || (strcmp(filetype, "LP") == 0))
return lpx_write_cpxlp(lpx, filename);
else
{
if ((strcmp(filetype, "mps") == 0) || (strcmp(filetype, "MPS") == 0))
return lpx_write_freemps(lpx, filename) ;

else return 1;

CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double *obj, int *cmatbeg,
int *cmatind, double *cmatval, double *1b, double *ub, char **colname)

int ncol = 1lpx_add_cols(lpx, ccnt);
int t;
double inf;
double sup;
for (t =0 ; t < cent ; t++)
{
if (colname != NULL) lpx_set_col_name(lpx, (ncol+t), colnamel[t]);
if (1b == NULL)
{
inf = 0;

else if (1b[t] <= -CPX_INFBOUND)
{

inf -CPX_INFBOUND;

inf = 1b[t];

if ((ub[t] >= CPX_INFBOUND) || (ub == NULL))

A.2. IFC.IMP.C 95

int

int

sup = CPX_INFBOUND;
}
else
{
sup = ub[t];
}
if (inf == -CPX_INFBOUND)
{
if (sup == CPX_INFBOUND) lpx_set_col_bnds(lpx, (ncol+t), LPX_FR, inf, sup);
else lpx_set_col_bnds(lpx, (ncol+t), LPX_UP, inf, sup);
}
else
{
if (sup == CPX_INFBOUND) lpx_set_col_bnds(lpx, (ncol+t), LPX_LO, inf, sup);
else lpx_set_col_bnds(lpx, (ncol+t), LPX_DB, inf, sup);
}
}
int len;

for (t =0 ; t < cent ; t++)

{
if (obj == NULL) lpx_set_obj_coef(lpx, (ncol+t), 0);
else lpx_set_obj_coef (lpx, (ncol+t), objl[tl);
if (t != ccnt-1) len = cmatbeg[t+1] - cmatbeg[t];
else len = (nzcnt-cmatbeglt]);
int ind[len+1];
double val[len+1];
int q;
for(g =1; q< (len + 1); g++)
{
ind[q] = (1 + cmatind[cmatbegl[t] + q - 11);
val[q] = cmatvall[cmatbeg[t] + q - 1];
}
lpx_set_mat_col(lpx, (ncol+t), len, ind, val);
}

return 0; //To see for errors

CPXcloseCPLEX (CPXENVptr *env_p)

return 0;

CPXgetbase (CPXENVptr env, CPXLPptr lpx, int *cstat, int *rstat)

int i;
if (cstat != NULL)
{

for (i =0 ; i < lpx_get_num_cols(lpx) ; i++)

{

96

APPENDIX A. INTERFACE FOR GLPK (CODE)

int tipo = lpx_get_col_stat(lpx, (i+l));
switch(tipo)
{
case LPX_BS:
cstat[i] = CPX_BASIC;
break;
case LPX_NL:
cstat[i] = CPX_AT_LOWER;
break;
case LPX_NU:
cstat[i] = CPX_AT_UPPER;
break;
case LPX_NF:
cstat[i] = CPX_FREE_SUPER;
break;
case LPX_NS: // Different in Cplex, set CPX_AT_LOWER
cstat[i] = CPX_AT_UPPER;
break;
default:

break;

}
}
if (rstat != NULL)
{
for (i =0 ; i< (Ipx) ; i++)
{
int tipo;
tipo = lpx_get_row_stat(lpx, (i+1));
switch(tipo)
{
case LPX_BS:
rstat[i] = CPX_BASIC;
break;
case LPX_NL:
rstat[i] = CPX_AT_LOWER;
break;
case LPX_NU:
rstat[i] = CPX_AT_UPPER;
break;
case LPX_NF:
rstat[i] = CPX_FREE_SUPER;
break;
case LPX_NS: //Different in CPLEX, set CPX_AT_LOWER
rstat[i] = CPX_AT_LOWER;
break;
default:

break;

}
}

return 0;

A.2. IFC.IMP.C 97

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense)
{
int i;
for (1 =0 ; i < cnt ; i++)
{
char tipo = sensel[i];
switch(tipo)
{
case ’L’:
lpx_set_row_bnds(lpx, (indices[i]+1), LPX_UP, sense[i], sense[i]);
break;
case ’G’:
lpx_set_row_bnds(1px, (indices[il+1), LPX_LO, sense[i], sense[il);
break;
case ’E’:
lpx_set_row_bnds(1px, (indices[il+1), LPX_FX, sense[i], sense[il);
break;
case ’R’:
lpx_set_row_bnds(lpx, (indices[il+1), LPX_DB, 0, 0);
break;
default:

break;

}

return 0; //To see for errors

int CPXflushstdchannels (CPXENVptr env)

return 0;

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)
//There isn’t this function in GLPK

*objval_p = lpx_get_obj_val(lpx); //Return the root value

return O;

int CPXgetcallbackinfo (CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p)

cbdata = 1p;

double r;

if (wherefrom == CPX_CALLBACK_BARRIER)

{ «r = lpx_ipt_obj_val(lp); }

else

{ if (wherefrom == CPX_CALLBACK_MIP)
{ r = lpx_mip_obj_val(lp); }
else { r = 1lpx_get_obj_val(lp); }

¥

result_p = &r;

return 0;

98 APPENDIX A. INTERFACE FOR GLPK (CODE)

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int *rmatbeg, int *rmatind,

double *rmatval, int rmatspace, int *surplus, int begin, int end)

{
begin++;
end++;
int nz = 0;
int i;
int tmp = rmatspace;
int ncols = lpx_get_num_cols(1lpx);
int len;
for(i = begin ; i < (end + 1) ; i++)
{
int ind[ncols+1];
double val [ncols+1];
len = lpx_get_mat_row(lpx, i, ind, val);
int t;
for (t =0 ; t < (len) ; t++)
{
if (tmp > 0)
{
rmatbeg[i-begin] = nz;
rmatval[nz] = val[t];
rmatind[nz] = (ind[t] -1);
nz++;
tmp--;
}
*surplus--;
}
}
*nzcnt = nz;
return 0; //To see for errors
}

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end)

begin++;

end++;

int i;

int type;

for (i = begin ; i< (end + 1); i++)

{ type = 1lpx_get_row_type(lpx,i);
if (type == LPX_L0O)

{
*sense = ’G’;
sense++;
}
if (type == LPX_UP)
{
*sense = ’L’;
sense++;
}
if ((type == LPX_DB) && (lpx_get_row_ub(lpx, i) != lpx_get_row_lb(lpx, i)))
{

*sense = ’R’;

A.2. IFC.IMP.C

senset+;
}
if ((type == LPX_FX) ||
{
*sense = ’E’;
senset+;
}

}

return 0; //To see for errors

((type

== LPX_DB) && (lpx_get_row_ub(lpx, i)
== lpx_get_row_1b(lpx, i))))

99

100 APPENDIX A. INTERFACE FOR GLPK (CODE)

Appendix B

Interface for Xpress (code)

B.1 interface.h

#include "C:/XpressMP/include/xprs.h"
typedef int * CPXENVptr;

typedef XPRSprob CPXLPptr;

#define CPXoptimize CPX1popt

3k >k 3k >k 5k 3k 5k 3k 5k 3k >k 3k >k >k 3k >k 3k >k 3k %k 5k %k >k %k >k %k %k 5k %k >k k k

I don’t report all the CPLEX parameters redefinition

3k >k 3k >k 3k ok 3k 3k >k 3k ok 3k ok >k ok >k 3k >k 3k ok 3k ok >k 5k >k 3k >k 3k >k >k >k *k

int lastsolver;//1: 1lp 2: mip 3: bar
int probclass;

int presolver;

int lpiter;

int output;

int timemax;

//Creating problems
CPXLPptr CPXcreateprob (CPXENVptr env, int *status_p, char *probname);
CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status_p);

//Optimizing problems

int CPXprimopt (CPXENVptr env, CPXLPptr 1lpx);
int CPXlpopt (CPXENVptr env, CPXLPptr 1lpx);
int CPXdualopt(CPXENVptr env, CPXLPptr 1lpx);
int CPXmipopt(CPXENVptr env, CPXLPptr 1lpx);

//Accessing LP/MIP results
int CPXgetstat (CPXENVptr env, CPXLPptr 1lpx);

101

102 APPENDIX B. INTERFACE FOR XPRESS (CODE)

int CPXgetobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);

int CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end);
int CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end);
int CPXgetbase (CPXENVptr env, CPXLPptr lpx, int *cstat, int *rstat)

int CPXgetphaselcnt (CPXENVptr env, CPXLPptr lpx);

int CPXgetmipobjval (CPXENVptr env, CPXLPptr 1lpx, double *objval_p);

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p);

int CPXgetmipx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end);

//Problem modification

int CPXaddrows (CPXENthr env, CPXLPptr 1lpx, int ccnt, int rcnt, int nzcnt, double *rhs,
char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **colname, char **rowname);

int CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat);

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double *obj, int *cmatbeg,
int *cmatind, double *cmatval, double *1b, double *ub, char **colname);

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense);

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values);

int CPXchgprobtype (CPXENVptr env, CPXLPptr lpx, int type);

int CPXchgbds(CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *lu, double *bd);

//Accessing problem data

int CPXgetnumrows (CPXENVptr env, CPXLPptr 1lpx);

int CPXgetnumcols (CPXENVptr env, CPXLPptr 1px);

int CPXgetobjsen (CPXENVptr env, CPXLPptr 1px);

int CPXgetctype (CPXENVptr env, CPXLPptr 1lpx, char *xctype, int begin, int end);

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char *buf_str, int bufspace, int *surplus_p);

int CPXgetobj (CPXENVptr env, CPXLPptr 1lpx, double *obj, int begin, int end);

int CPXgetub (CPXENVptr env, CPXLPptr lpx, double *ub, int begin, int end);

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end);

int CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end);

int CPXgetcolname (CPXENVptr env, CPXLPptr lpx, char **name, char *namestore, int storespace,
int *surplus_p, int begin, int end);

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int *rmatbeg, int *rmatind,

double *rmatval, int rmatspace, int *surplus, int begin, int end);

//File reading/writing
int CPXreadcopyprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype_str);
int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename, char *filetype);

//Parameters setting and querying routines
int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue);
int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue);

//General utilities

CPXENVptr CPXopenCPLEX (int *status_p);

int CPXcloseCPLEX (CPXENVptr *env_p);

int CPXflushstdchannels (CPXENVptr env);

int CPXgetcallbackinfo (CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p);

B.2. IFC_IMP.C 103

B.2 ifc_imp.c

#include "LocBra.h"

CPXENVptr CPXopenCPLEX (int *status_p){
presolver = 1;
lpiter = 2147483645;
output = 1;
*status_p = XPRSinit (NULL);
int x;

return &x;

void XPRS_CC Message (XPRSprob my_prob, void* my_object, const char *msg, int len, int msgtype)
{

switch(msgtype)

{

case 4: /* error */

case 3: /* warning */

case 2: /* dialogue */

case 1: /* information */

printf ("%s\n", msg);

break;

default: /* exiting - buffers need flushing */
fflush(stdout);

break;

}

CPXLPptr CPXcreateprob (CPXENVptr env, int #*status_p, char *probname){
XPRSprob temp;
*status_p = XPRScreateprob(&temp) ;
XPRSsetcbmessage(temp , Message, NULL);
XPRSsetprobname(temp, probname);
return temp;

int CPXgetprobname (CPXENVptr env, CPXLPptr lpx, char xbuf_str, int bufspace, int *surplus_p){
int tmp = bufspace;
char probname[200];
XPRSgetprobname (1px, probname);
int size = (strlen(probname)) + 1;
tmp = tmp - size;
if (tmp >= 0)
{

104 APPENDIX B. INTERFACE FOR XPRESS (CODE)

int t;
for(t =0 ; t < size ; t++)
{
*buf_str = probname[t];
buf_str++;
}
*surplus_p = tmp;
return 0;
¥
*surplus_p = tmp;
return CPXERR_NEGATIVE_SURPLUS;

int CPXgetnumrows (CPXENVptr env, CPXLPptr 1lpx){
int rows;
XPRSgetintattrib(lpx,XPRS_ROWS,&rows) ;

return rows;

int CPXgetnumcols (CPXENVptr env, CPXLPptr 1lpx){
int cols;
XPRSgetintattrib(lpx,XPRS_COLS,&cols);
return cols;

int CPXreadcopyprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype_str)
int size = strlen(filename_str);

char * point = strchr(filename_str, ’.’);

if (point == NULL) return XPRSreadprob(lpx, filename_str,"");

else
{
if (Controllo(point,".lp",".LP") == 1)
{
filename_str[size-3] = ’\0’;
return XPRSreadprob(lpx, filename_str,"");
}
if (Controllo(point,".mps",".MPS") == 1)
{
filename_str([size-4] = ’\0’;
return XPRSreadprob(lpx, filename_str,"");
}
}
return -1;

}

int Controllo (char *tmp, char *t, char *T)

{
int s = 03
if ((stremp(tmp,t) == 0) || (strcmp(tmp,T)== 0)) s=1;
return s;

}

int CPXgetobjsen (CPXENVptr env, CPXLPptr lpx)

B.2. IFC_IMP.C 105

double sense;

XPRSgetdblattrib(lpx ,XPRS_OBJSENSE,&sense) ;
if (sense == -1) return CPX_MAX;

else return CPX_MIN;

CPXLPptr CPXcloneprob (CPXENVptr env, CPXLPptr lpx, int *status_p)

{

int

int

int

{

CPXLPptr tmp;

XPRScreateprob (&tmp) ;

XPRSsetcbmessage (tmp ,Message,NULL);

*status_p = XPRScopyprob(tmp, lpx, "cloned");

return tmp;

CPXgetctype(CPXENVptr env, CPXLPptr lpx, char *xctype, int begin, int end)

XPRSgetcoltype(lpx, xctype, begin, end);
int i;

double ub;

double 1b;

int mindex[1];

char qctypel1];

qctype[0] = ’B’;

int nels;

for(i = begin; i < (end+1); i++)

{
if (xctypeli-begin] == ’I’)
{
XPRSgetub(1lpx, &ub, i, i);
XPRSgetlb(1lpx, &lb, i, i);
if (Cub==1) & (1b == 0)) xctypeli-begin] = ’B’;
}
¥

return 0; //To see for errors

CPXgetobj (CPXENVptr env, CPXLPptr lpx, double *obj, int begin, int end)

return XPRSgetobj(1lpx, obj, begin, end);

CPXgetstat (CPXENVptr env, CPXLPptr 1lpx)

int res;
int lpstat;
int mipstat;
switch(lastsolver)
{
case 1:
XPRSgetintattrib(lpx ,XPRS_LPSTATUS,&lpstat);
switch (lpstat)
{

106

int

APPENDIX B. INTERFACE FOR XPRESS (CODE)
case XPRS_LP_OPTIMAL:
res = CPX_STAT_OPTIMAL;
break;
case XPRS_LP_INFEAS:
res = CPX_STAT_INFEASIBLE;
break;
case XPRS_LP_UNBOUNDED:
res = CPX_STAT_UNBOUNDED;
break;
case XPRS_LP_UNFINISHED:
res = CPX_STAT_ABORT_IT_LIVM;
break;
default:
res = CPX_STAT_ABORT_USER;
break;
}
break;
case 2:
XPRSgetintattrib(lpx ,XPRS_MIPSTATUS,&mipstat);
switch(mipstat)
{
case XPRS_MIP_NO_SOL_FOUND:
res = CPXMIP_ABORT_INFEAS;
break;
case XPRS_MIP_SOLUTION:
res = CPXMIP_ABORT_FEAS;
break;
case XPRS_MIP_INFEAS:
res = CPXMIP_INFEASIBLE ;
break;
case XPRS_MIP_OPTIMAL:
res = CPXMIP_QOPTIMAL;
break;
default:
res = CPXMIP_TIME_LIM_INFEAS;
break;
}
break;
default:
res = -1;
printf("Attention: a problem in CPXgetstat");
break;
¥

return res;

CPXprimopt (CPXENVptr env, CPXLPptr 1lpx)

lastsolver = 1;

XPRSsetintcontrol (1px, XPRS_OUTPUTLOG, output);
XPRSsetintcontrol(lpx, XPRS_MAXTIME, -timemax);
XPRSsetintcontrol (1px, XPRS_PRESOLVE, presolver);
XPRSsetintcontrol (1px, XPRS_LPITERLIMIT,lpiter);

B.2. IFC_IMP.C 107

double sense;

XPRSgetdblattrib(lpx, XPRS_OBJSENSE, &sense);
if (sense == 1) XPRSminim(lpx, "pl");

else if (sense == -1) XPRSminim(lpx, "pl");
else return -1;

return O; //To see for errors

int CPXgetphaselcnt (CPXENVptr env, CPXLPptr 1lpx) {
int iter;
XPRSgetintattrib(lpx, XPRS_SIMPLEXITER, &iter);

return iter;

int CPXgetobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p) {
XPRSgetdblattrib(lpx, XPRS_LPOBJVAL, objval_p);

return 0;

int CPXchgobj (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)

return XPRSchgobj(lpx, cnt, indices, values);

int CPXgetub (CPXENVptr env, CPXLPptr 1lpx, double *ub, int begin, int end)

return XPRSgetub(lpx, ub, begin, end);

int CPXchgprobtype (CPXENVptr env, CPXLPptr lpx, int type)

{
if (type == CPXPROB_LP) probclass = 0;
if (type == CPXPROB_MILP) probclass = 1;
return O;

}

int CPXaddrows (CPXENVptr env, CPXLPptr lpx, int ccnt, int rcnt, int nzcnt, double *rhs,
char *sense, int *rmatbeg, int *rmatind, double *rmatval, char **colname, char **rowname)

if (cent > 0)
{
double zerosc[ccnt];
double bdl[ccnt];
double bdulccnt];
int i;
for (i = 0; i < ccnt; i++)
{
zerosc[i] = 0;
bdl[i] = 0;
bdl[i] = XPRS_PLUSINFINITY;
}
XPRSaddcols(1lpx, cecnt, O, zerosc, 0, 0, 0, bdl, bdu);
¥

double zerosr[rcnt];

108

int

int

int

int

{

APPENDIX B. INTERFACE FOR XPRESS (CODE)

XPRSaddrows (1px, rcnt, nzcnt, sense, rhs, zerosr, rmatbeg, rmatind, rmatval);

return 0O;

CPXdelsetrows (CPXENVptr env, CPXLPptr lpx, int *delstat)

int nrows;
XPRSgetintattrib(1lpx,XPRS_ROWS,&nrows) ;
int delrows[nrows];

int i;

int nrs = 0;

for(i =0 ; i < nrows ; i++)

{
if (delstat[i] == 1)
{
nrs++;
delrows[nrs] = i;
}
¥

if (nrs > 0) XPRSdelrows(lpx, nrs, delrows);
return 0; //To see for errors

CPXgetx (CPXENVptr env, CPXLPptr lpx, double *x, int begin, int end)

int ncols;
XPRSgetintattrib(1lpx,XPRS_COLS,&ncols) ;
double x2[ncols];
XPRSgetsol(1lpx, x2, NULL, NULL, NULL);
int i;
for (i = begin; i < (end+1) ; i++)
{

*x = x2[i];

X++;

}

return 0; //To see for errors

CPXgetdj (CPXENVptr env, CPXLPptr lpx, double *dj, int begin, int end) {
int ncols;

XPRSgetintattrib(lpx,XPRS_COLS,&ncols);

double dj2[ncols];

XPRSgetsol(lpx, NULL, NULL, NULL, dj2);

int i;
for (i = begin; i < (end+1) ; i++)
{
*dj = dj2[il;
dj++;
¥

return 0; //To see for errors

CPXgetrhs (CPXENVptr env, CPXLPptr lpx, double *rhs, int begin, int end)

B.2. IFC_IMP.C 109

int

int

int

int

int

int

XPRSgetrhs(lpx, rhs, begin, end);

return 0; //To see for errors

CPXgetpi (CPXENVptr env, CPXLPptr lpx, double *pi, int begin, int end)

int nrows;
XPRSgetintattrib(1lpx,XPRS_ROWS,&nrows) ;
double pi2[nrows];

XPRSgetsol(1lpx, NULL, NULL, pi2, NULL);
int i;

for (i = begin; i < (end+1) ; i++)

{
*pi = pi2[il;
pi++;

}

return 0;

CPXchgrhs (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, double *values)

return XPRSchgrhs(lpx, cnt, indices, values);

CPXchgbds (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *1lu, double *bd)

return XPRSchgbounds(lpx, cnt, indices, lu, bd);

CPXgetcolname (CPXENVptr env, CPXLPptr lpx, char **name, char *namestore, int storespace,

int *surplus_p, int begin, int end)

return 0;

CPXgetmipobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)

XPRSgetdblattrib(lpx, XPRS_MIPOBJVAL, objval_p);

return 0; //To see for errors

CPXgetmipx (CPXENVptr env, CPXLPptr 1lpx, double *x, int begin, int end)

int ncols;
XPRSgetintattrib(1lpx,XPRS_COLS,&ncols) ;
double x2[ncols];

XPRSgetsol(lpx, x2, NULL, NULL, NULL);
int i;

for (i = begin; i < (end+1) ; i++)

*
W
[

x2[i];

return 0; //To see for errors

110 APPENDIX B. INTERFACE FOR XPRESS (CODE)

int CPXmipopt(CPXENVptr env, CPXLPptr 1lpx)

{
lastsolver = 2;
XPRSsetintcontrol (1px,XPRS_OUTPUTLOG, output);
XPRSsetintcontrol (1px,XPRS_MAXTIME, -timemax) ;
XPRSinitglobal (1px) ;
return XPRSglobal(1px);

}

int CPXsetdblparam (CPXENVptr env, int whichparam, double newvalue)

switch(whichparam)

{
case CPX_PARAM_EPAGAP:
break;
case CPX_PARAM_EPGAP:
break;
case CPX_PARAM_CUTUP:
break;
case CPX_PARAM_TILIM:

timemax = newvalue;

break;
default:
break;

}

return O;

int CPXsetintparam (CPXENVptr env, int whichparam, int newvalue)

switch(whichparam)

{
case CPX_PARAM_MIPINTERVAL:
break;
case CPX_PARAM_PREIND:

presolver = newvalue;
break;
case CPX_PARAM_SCRIND:
output = newvalue;
break;
case CPX_PARAM_ITLIM:
lpiter = newvalue;

break;
case CPX_PARAM_INTSOLLIM:
break;
case CPX_PARAM_MIPSTART:
break;
default:
break;

¥

return 0;

B.2. IFC_IMP.C

int CPXwriteprob (CPXENVptr env, CPXLPptr lpx, char *filename_str, char *filetype)

{
char * point = strchr(filename_str, ’.’);
int size = strlen(filename_str);
if ((filetype == NULL) && (point == NULL)) return XPRSwriteprob(lpx, filename_str,"1");
if ((filetype == NULL) && (point != NULL))
{
if (Controllo(point,".lp",".LP") == 1)
{
filename_str([size-3] = ’\0’;
return XPRSwriteprob(lpx, filename_str,"1");
}
if (Controllo(point,".mps",".MPS") == 1) //File .mat
{
filename_str([size-4] = ’\0’;
return XPRSwriteprob(lpx, filename_str,"");
}
}
if (Controllo(filetype,".mps",".MPS") == 1) //File .mat
{
filename_str[size-4] = ’\0’;
return XPRSwriteprob(lpx, filename_str,"");
¥
if (Controllo(filetype,".lp",".LP") == 1)
{
filename_str[size-3] = ’\0’;
return XPRSwriteprob(lpx, filename_str,"1");
}
return -1;
}

int CPXaddcols (CPXENVptr env, CPXLPptr lpx, int ccnt, int nzcnt, double *obj, int *cmatbeg,
int *cmatind, double *cmatval, double *1b, double *ub, char **colname)

return XPRSaddcols(lpx, ccnt, nzent, obj, cmatbeg, cmatind, cmatval, lb, ub);

}

int CPXcloseCPLEX (CPXENVptr *env_p)
{
XPRSfree();

return O;

int CPXgetbase (CPXENVptr env, CPXLPptr lpx, int *cstat, int *rstat)
{
return XPRSgetbasis(lpx, rstat, cstat);

int CPXchgsense (CPXENVptr env, CPXLPptr lpx, int cnt, int *indices, char *sense)

{

return XPRSchgrowtype(lpx, cnt, indices, sense);

111

112 APPENDIX B. INTERFACE FOR XPRESS (CODE)

int CPXflushstdchannels (CPXENVptr env)
{

return 0O;

int CPXgetbestobjval (CPXENVptr env, CPXLPptr lpx, double *objval_p)
XPRSgetdblattrib(lpx, XPRS_LPOBJVAL, objval_p); //Return the root value

return 0O;

int CPXgetrows (CPXENVptr env, CPXLPptr lpx, int *nzcnt, int *rmatbeg, int *rmatind,

double *rmatval, int rmatspace, int *surplus, int begin, int end)

{
XPRSgetrows(lpx, NULL, NULL, NULL, O, nzcnt, begin, end);
*surplus = *nzcnt - rmatspace;
XPRSgetrows (1px, rmatbeg, rmatind, rmatval, rmatspace, nzcnt, begin, end);
return 0; //To see for errors
}

int CPXgetsense (CPXENVptr env, CPXLPptr lpx, char *sense, int begin, int end)

return XPRSgetrowtype(lpx, sense, begin, end);

int CPXgetcallbackinfo (CPXENVptr env, void *cbdata, int wherefrom, int whichinfo, void *result_p)

cbdata = 1p;

double r;

if (wherefrom == CPX_CALLBACK_BARRIER) XPRSgetdblattrib(lp, XPRS_BARPRIMALOBJ, &r);

else

{
if (wherefrom == CPX_CALLBACK_MIP) XPRSgetdblattrib(lp, XPRS_MIPOBJVAL , &r);
else XPRSgetdblattrib(lp, XPRS_LPOBJVAL, &r);

}

result_p = &r;

return 0O;

int CPXdualopt(CPXENVptr env, CPXLPptr 1lpx)

{

lastsolver = 1;
XPRSsetintcontrol (1px,XPRS_MAXTIME, -timemax);
XPRSsetintcontrol (1px,XPRS_OUTPUTLOG, output);
XPRSsetintcontrol(lpx, XPRS_PRESOLVE, presolver);
XPRSsetintcontrol (1px,XPRS_LPITERLIMIT,1lpiter);
double sense;
XPRSgetdblattrib(lpx, XPRS_OBJSENSE, &sense);
if (sense == 1) XPRSminim(lpx, "d1");
else if (sense == -1) XPRSminim(lpx, "d1");
else return -1;

return O; //To see for errors

B.2. IFC_IMP.C

int CPXlpopt(CPXENVptr env, CPXLPptr 1lpx)

{

lastsolver = 1;

XPRSsetintcontrol (1px,XPRS_OUTPUTLOG, output);
XPRSsetintcontrol (1px,XPRS_MAXTIME, -timemax) ;
XPRSsetintcontrol (1px, XPRS_PRESOLVE, presolver);
XPRSsetintcontrol (1px,XPRS_LPITERLIMIT,lpiter);
double sense;

XPRSgetdblattrib(lpx, XPRS_OBJSENSE, &sense);

if (sense == 1) XPRSminim(lpx, "1");

else if (sense == -1) XPRSminim(lpx, "1");

else return -1;

return O; //To see for errors

113

114 APPENDIX B. INTERFACE FOR XPRESS (CODE)

Bibliography

1]
2]

[10]

[11]

M. Fischetti, F. Glover, A. Lodi: The Feasibility pump. May 8, 2004.

M. Fischetti and A. Lodi. Local Branching. Mathematical Programming 98,
23-47, 2003.

CPLEX: ILOG CPLEX 8.1 User’s Manual and Reference Manual. ILOG,
S.A., 2003 (http://www.ilog.com)

GNU Linear Programming Kit, Reference manual version 4.7. August 2004

Xpress-MP: Dash optimization Xpress-MP release 2004b. Xpress-Optimizer
Reference Manual, 2004 (http://www.dashoptimization.com)

T. Achterberg, T. Koch, A. Martin. The mixed integer programming library:
MIPLIB 2003. http://miplib.zib.de.

E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki. OCTANE: A New
Heuristic For Pure 0-1 Programs. Operations Research 49, 207225, 2001.

E. Balas and C.H. Martin. Pivot-And-Complement: A Heuristic For 0-1
Programming. Management Science 26, 86-96, 1980.

E. Balas, S. Schmieta, C. Wallace. Pivot and Shift-A Mixed Integer Pro-
gramming Heuristic. Discrete Optimization 1, 3-12, 2004.

R.E. Bixby. Personal communication, 2003.

J.W. Chinneck. The constraint consesus method for finding approximately
feasible points in nonlinear programs. Technical Report Carleton University,
Ottawa, Ontario, Canada, October 2002.

115

116

[12]

[13]

[14]

[15]

[16]

[17]

[21]

[22]
[23]

[24]

BIBLIOGRAPHY

E. Danna, E. Rothberg, C. Le Paper. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming DOI
10.1007/s10107-004-0518-7, 2004.

Double-Click sas. Personal communication, 2001.

F. Glover and M. Laguna. General Purpose Heuristics For Integer Program-
ming: Part I. Journal of Heuristics 2, 343-358, 1997.

F. Glover and M. Laguna. General Purpose Heuristics For Integer Program-
ming: Part II. Journal of Heuristics 3, 161-179, 1997.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston,
Dordrecht, London, 1997.

F.S. Hillier. Effcient Heuristic Procedures For Integer Linear Programming
With An Interior. Operations Research 17, 600-637, 1969.

T. Ibaraki, T. Ohashi and H. Mine. A Heuristic Algorithm For Mixed-Integer
Programming Problems. Mathematical Programming Study 2, 115-136, 1974.

G.W. Klau. Personal communication, 2002.

A. Lokketangen. Heuristics for 0-1 Mixed-Integer Programming. In P.M.
Pardalos and M.G.C. Resende (ed.s) Handbook of Applied Optimization, Ox-
ford University Press, 474-477, 2002.

A. Lgkketangen and F. Glover. Solving Zero/One Mixed Integer Program-
ming Problems Using Tabu Search. FEuropean Journal of Operational Re-
search 106, 624-658, 1998.

M. Liibbecke. Personal communication, 2002.
A.J. Miller. Personal communication, 2003.

M. Nediak and J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed
Integer Programming. Research Report RRR 53-2001, RUTCOR, Rutgers
University, October 2001.

J. Patel and J.W. Chinneck. Active-Constraint Variable Ordering for Faster
Feasibility of Mixed Integer Linear Programs. Technical Report Carleton
University, Ottawa, Ontario, Canada, November 2003.

BIBLIOGRAPHY 117

[26] E. Rothberg. Personal communication, 2002.
[27] E. Rothberg. Personal communication, 2003.

[28] K. Spielberg, M. Guignard. Sequential (Quasi) Hot Start Method for BB
(0,1) Mixed Integer Programming. Wharton School Research Report, 2002.

