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Abstract

The classification problem, known in the statistic field also as discriminant analysis

or recognition, is a theme of particular importance for problems resolution in the real

world. Possible examples are the medical diagnosis of the benign or malignant nature

of a disease, or the pattern image recognition.

As it is well known in the scientific literature for nearly two decades, a valid

approach to face the binary classification problem is the one represented by Support

Vector Machines. SVMs solve the learning problem by constructing a system which,

based on a subset of pre-categorized data and relative features, is able to classify

with high accuracy new, not already classified, data. From the mathematical point of

view, the SVM approach implies the resolution of a quadratic programming model.

The present thesis work consisted in a computational analysis, conducted via a

proper software implementation, of the mathematic behaviour of the aforesaid op-

timization model (equipped with the so-called Gaussian kernel); in a comparative

evaluation of the efficacy of approaches based on the resolution of alternative math-

ematical models (having in common the intent of reducing overfitting phenomenon);

and in a statistical evaluation of the accuracy superiority of a SVM approach classifi-

cation towards the use of a simpler but much less computationally expensive classifier.

The results we got revealed the intrinsic good nature of Gaussian kernel to be a

proper classifier by itself, a characteristic that limits the possible rooms for improve-

ment of accuracy results. We also found that SVM approach, with Gaussian kernel,

can boast just a 6% accuracy superiority over a simpler classification approach, that

does not require the computationally expensive resolution of a quadratic program-

ming optimization model. This observation, together with an analogous comparative

evaluation of the accuracy superiority of SVM approach using linear kernel, enabled

us to confirm the aforesaid thesis about Gaussian kernel nature. The previously col-

lected results allowed us to understand that the nature of the linear kernel could offer

more degrees of improvement and very preliminary tests seemed to confirm the va-

lidity of our alternative approaches. Eventually, the whole procedure produced lower

accuracies with respect to the SVM approach, so we leave this kind of approach as a

hint for further researches in this area.
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Chapter 1

Introduction

1.1 Thesis scope

The context of the present work belongs to that discipline of the Artificial Intelligence

known in the scientific literature as machine learning. And, specifically, it concerns the

so-called classification problem. The classification problem, starting from a historical

set of observations (or points or items), each constituted by a set of elements values,

named features (or attributes), and a relative category, named class, consists in the

assignment of new experimental items to the class considered to be the most correct.

The theme of classification has lots of variants and the one we are interested in is

classification with just two possible classes for each observation: binary classification.

We will concentrate on the approach proposed by Vladimir Vapnik and his colleagues

in the 90s, called Support Vector Machines approach.

1.2 Work focus

Our work focuses on the mathematical background that constitutes the algorithmic

bases of the functionality of Support Vector Machines. Their operational procedure,

that will be described in detail in Chapter 3, refers to the resolution of a quadratic

programming problem, whose formulation is strictly related to the choice of the so-

called kernel function. It is the key idea on which is based the use of Support Vector

Machines as linear classifiers: as a matter of fact, it permits to transform the original

features space, where classification can become very arduous, in an equivalent space,

where classification can be realized through a simple linear classifier.

First of all in our analysis, that required the implementation of the necessary

software and the utilization of appropriated tools for mathematical optimization and

statistical evaluations, we investigated in details the behaviour and the role of the

Gaussian kernel in the classification procedure.

Secondly, analyzing the values assumed by the classification parameters after the
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resolution of the aforesaid quadratic programming problem, we made the hypothesis

that this approach could have the collateral effect of taking the system to an overfitting

behaviour. Therefore, in the aim of reducing the impact of this phenomenon, we

planned, implemented and tested alternative mathematical models.

Afterward we shifted our focus to the analysis of the behaviour of the linear kernel.

We compared the performance of the system equipped with the classical quadratic

model, using linear kernel, with an alternative approach, based on the resolution of a

mixed-integer programming problem, aimed again at the reduction of the overfitting

problem.

Eventually, we treated an evaluation of the superiority, in terms of accuracy, of

the approach adopted by Support Vector Machines that, as previously said, implies

the resolution of a quadratic programming problem, towards a much more simplified

approach, based on the offline setting of the classification parameters, which can be

implemented with an exiguous number of code lines and that requires a very small

computational effort.

1.3 Contents structure

In the following we introduce briefly the global structure and the chapter contents of

this thesis.

In Chapter 2 we face a panoramic introduction, from the theoretical point of view,

of the theme of machine learning and the problem of classification, pointing out the

specific aspects on which our focus will be based.

In Chapter 3 we get a deeper sight in a detailed description, from the mathematical

point of view, of the approach adopted by Support Vector Machines.

In Chapter 4 we present the alternative approaches we propose to the original

SVM approach. We describe the mathematical models tested, motivating the aim of

their formulation.

In Chapter 5 we describe the practical effort and the experimental work performed

in this thesis, motivating the choices also on theoretical basis, and we provide and

analyse the collected experimental results.

In Chapter 6 we treat the characteristics and the modality of use of the software

we implemented to perform the experimental tests, in addition to the software that

was necessary to implement to interface properly to the first one, and to guarantee

an adequate automatization of tests procedures.

In the Appendices we report the experimental results at a larger level of detail,

an exemplificative C source code listing and some scripts that were necessary to

implement in order to automatize the whole experimental procedures.



Chapter 2

A short introduction to the
Classification Problem

2.1 Areas of interest

First of all let us identify the proper areas related to the classification problem.

There are several contexts in applications where it is very important to construct

a system which is able to learn how to classify correctly a set of items, using the most

significative parameters that characterize the items themselves.

Examples of those contexts are:

The medical field: a system that, based on a sufficient set of past clinical data,

is able to discover if a patient is affected by a specific disease (those kinds of

systems are really useful in the diagnosis of cancer – see figure 2.1);

The Information Retrieval field: a system that is able to decide if a text is rele-

vant for a specific topic, based on the terms that appear in it;

The image classification field: a system that, based on a small set of points of a

simple drawn, is able to reconstruct the pattern below it;

The economical field: a system that is able to determinate different typologies of

clients (to produce targeted advertising campaigns).

2.2 Description of the problem

Classification problem is

A process for grouping a set of data into groups so that data within a

group have high similarity and, at the same time, quite high dissimilarity

from data in other groups [2].
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Figure 2.1: Multiclass cancer classification scheme.
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Classification technique is the most commonly used technique to analyze large sets

of data in automatic or semi-automatic way, with the purpose of extracting knowledge

from them.

The ascription of a single item to a specific class is the result of a procedure known

as learning procedure. Typically, a learning procedure is realized by a learning ma-

chine that, observing an already classified training set of data, constructs an operator

that is able to predict the output y for each input x not belonging to the aforesaid

training set.

2.2.1 Discriminations in theme of classification

We can make several distinctions in theme of classification.

Multi class vs binary classification

There are different problems of classification:

� With several possible classes the single item can belong to: multi class classifi-

cation;

� With only two possible classes the single item can belong to: binary classifica-

tion.

For simplicity we consider only problems of the second type, because they are the

problems of interest for our SVM-oriented theoretical overview.

Supervised vs unsupervised classification

This is perhaps the most important distinction in classification problems:

� In supervised classification we know the possible groups and we have data al-

ready classified, being used overall for training. The problem consists in associ-

ating the data in the most appropriate group taking advantage of those already

labeled.

� In unsupervised classification, also-called clustering, possible groups (or clusters)

are not known in advance, and the data available are not classified. The goal

is then to classify in the same cluster the data considered as similar.

We will consider only supervised classification, that is the one used by the SVM

approach.

Generative vs discriminative classification methods

We can distinguish two different approaches:
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� Discriminative methods: building a boundary between the classes, they di-

rectly model the posterior probability P (Z|X); the empirical observations are

explained by the model that describes probabilistically the interaction between

the variables of the problem;

� Generative methods: deducing the a posteriori probability through the Bayes’

Rule, they first model the joint probability distribution P(X,Z); they deal di-

rectly with the problem of finding the criteria that permit to group together

the empirical observations.

The first approach is the one used by Support Vector Machines.

2.3 Classifier

We refer to the algorithm that realizes classification as classification function or clas-

sifier.

The purpose, in the determination of the classifier, is to minimize the classification

error : it occurs when an item x is assigned to a class Ci, but actually it belongs to

another class Cj . We will talk about different kinds of errors to be minimized in

2.5.1.2.

2.3.1 Steps of the classification problem

In the solution of classification problem we can recognize three fundamental phases:

� construction of a model that describes a certain set of classes after the analysis

of some of the multi-dimensional items, through their features: this phase is

also-called learning phase ;

� evaluation of the constructed model on other items;

� use of the aforesaid model to classify new items: this phase is also-called clas-

sification phase .

Given a dataset of points and relative classification, two particular subsets, always

strictly disjoint, are taken from the original dataset to implement the learning proce-

dure:

Training set: it permits to train the system, so that it is possible to find the most

appropriate classification function (it is used during the learning phase);

Test set: it permits to realize an estimation of the accuracy of the classification

function previously defined (it is used during the classification phase).

Some classification methods further divide the training set in k disjoined subsets to

perform the so-called k-fold cross validation.
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2.3.2 K-fold cross validation

Classification techniques often involve the use of special parameters, that can either

be defined “offline” or chosen, through a trial-and-error procedure, by the algorithm.

Choosing the second possibility, they can be determined before the final training

procedure, during the so-called validation phase , in the most proper way in order

to give the best classification results.

One of the possible ways to choose the optimal parameters setting is to perform

the so-called k-fold cross validation.

Cross-validation is a computer intensive technique, introduced in [4]. It mimics

the use of training and test sets by repeatedly training the algorithm k times with a

fraction 1
k of training examples left out for testing purposes.

Analytically, it consists in:

� extracting n·(k−1)
k items from the training set (where n is its dimension);

� constructing a classification rule over the extracted items;

� classifying the remaining n
k items obtaining the related accuracy;

� re-start again from point 1 the whole procedure, k times.

In our experimentation we used 5-fold cross validation that consists in randomly

dividing the training set into 5 disjoined subsets: in turn, 4 of the 5 aforesaid subsets

assume the role of training set and the remaining subset the role of the so-called

validation set.

Training method is now applied to the previously described training set, and the

classification phase takes place over the validation set. This procedure is repeated 5

times, in turn changing the training-validation role by the different fractions of the

original training set.

After the completion of the 5 phases, the mean value of the accuracies obtained for

each parameter setting is computed: the best mean accuracy obtained identifies the

optimal parameter setting to be used during the subsequent learning and classification

phases. After validation, the learning procedure is applied over the whole training

plus validation set, while classification will take place over the test set.

As terminology can be confusing, let us recap the concepts just explained: vali-

dation technique involves to select randomly a fraction of 4
5 of the training set and to

call again this portion “training set” during the validation phase, while “validation

set” refers to the complementary portion acting as a fictitious test set.

2.3.3 Leave-one-out

This is a validation technique alternative to the previously described K-fold cross

validation [6].
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The only difference between the two approaches is that leave-one-out extracts just

a single item to be excluded from the training set use during the validation phase.

That is, the validation set in each iteration is composed by a single element.

Leave-one-out is more computationally expensive than K-fold cross validation

because the aforesaid procedure has to be repeated n times (where n is the dimension

of the training set), since each single item of the training set has to be classified

during the validation.

Scientific experimentations affirm that the efficacy of leave-one-out can be com-

pared to that of K-fold cross validation [25].

2.4 Mathematical formalization of the problem

Considering just binary classification (classification problem in presence of only two

possible alternatives), we can formalize the problem as in the following:

Formalization of the classification problem

Let X be a generic set (usually X = Rn).

Let T = {(xi, yi), i = 1, . . . ,m} ⊂ X × {+1,−1} be a set of couples that

we call training set.

We want to determinate a map δ : X −→ {+1,−1}, that implements the

right association between an item x that does not belong to the training

set and the class y it is associated to with highest probability.

So, classification aims at building a decision rule δ:

δ : X −→ {+1,−1}

x 7→ y = δ(x)

2.4.1 Learning procedure

Given a set of pre-classified examples (the training set):

(x1, y1), . . . , (xm, ym)

where xi ∈ Rn and yi ∈ {−1,+1}, a learning machine realizes a class of functions fΛ,

each of that is identified by a set of parameters (the vector Λ).

The learning procedure consists in choosing, between those functions, the one that

is the most appropriate. Obviously the choice of a function is equivalent to the choice

of a set of optimal parameters Λ.

Formally, a learning machine is given by the set of functions:

fΛ : R −→ {−1, 1}

This procedure has the purpose of choosing the fΛ∗ that realizes “the best clas-

sification”.
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Figure 2.2: Learning procedure scheme.

2.5 Parameters for the evaluation of a classifier

Below we itemize some parameters that enable us to evaluate a particular classifier.

� ACCURACY:

Accuracy =
truepositiveclass1 + truepositiveclass−1

|class1|+ |class− 1|
It represents the percentage of instances correctly classified, whose predicted

class coincides with the real one.

� PRECISION:

Precisionclass1 =
truepositiveclass1

truepositiveclass1 + falsepositiveclass1

It is a measure of correctness.

The lower the number of false positives, the higher (the closer to 1) the precision.

� RECALL:

Recallclass1 =
truepositiveclass1

truepositiveclass1 + falsenegativeclass1

It is a measure of completeness.

The lower the number of false negatives, the higher (the closer to 1) the recall.

� F-MEASURE:

F −Measureclass1 =
2 ·Recallclass1 · Precisionclass1

Recallclass1 + Precisionclass1
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2.5.1 Goodness and comparison measurements for binary classifiers

Up to now we have talked about “the most appropriated class” an item can be assigned

to. It is important to understand on which bases a binary classifier is intended to be

a “good” classifier: to choose between the possible fΛ we mentioned in 2.4.1, we have

to define a quality criterion.

As we can imagine intuitively, the goodness of a classifier is inversely proportional

to the errors it commits (quantitatively and qualitatively).

2.5.1.1 Notation

We will use to talk about classification in an intuitive way: we will consider classifica-

tion as a data mining problem that aims to determinate the membership of different

points to different sets.

We have a set of points (about some hundreds of points) expressed as vectors of

n coordinates in the n-dimensional space.

We have to realize a binary classification for those points. So we have to assign

to each point a value in {+1,−1}, to indicate the membership of the relative item to

a specific set, which we call also class.

2.5.1.2 Different possible error measurements

There are several possibilities in measuring that kinds of errors. We itemize the

possible error measurements and describe more deeply some of them:

� Empirical error minimization;

� Structural risk minimization;

� Posterior likelihood;

� Percentage of error.

Empirical error minimization.

First of all let us define:

Loss function: L(y, fΛ(x)) = L(y,Λ,x)

it measures the gap between the predicted value fΛ(x) and the real one

y.

Examples of loss function for fΛ(x) : Rn −→ {−1, 1} are:

� Misclassification error, first type:

L(y, fΛ(x)) =
{

0 fΛ(x) = y
1 fΛ(x) ̸= y
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� Misclassification error, second type:

L(y, fΛ(x)) =
1

2
|fΛ(x)− y|

� Logistic loss:

L(y, fΛ(x)) = ln
(
1 + e−(y·f(x))

)
What we want to minimize is the effective risk or theoretical error, committed on

the different choices of the vector Λ; it can be viewed also as the expected value of

the loss we have choosing a particular function.

R(Λ) = R(fΛ) = E [L(y, fΛ(x)] =
∫

L(y, fΛ(x)P (x, y)dxdy

Since the join probability distribution P (x, y) is not known, we are not able to cal-

culate the theoretical error. However we know a set of m empirical observations

(independent and identically distributed – the data of the training set) that permit

us to calculate the empirical error or empirical risk.

Remp(fΛ) =
1

m

m∑
i=1

L(yi, fΛ(xi))

For the Big Numbers Law we know that

lim
m→∞

Remp(fΛ) = R(fΛ)

So we can minimize the empirical error instead of the theoretical one.

The function that minimizes the empirical error is not unique. We can decide to

choose functions of different complexities, but the complexity degree is related to two

particular phenomenons:

� Overfitting : when the class of functions fΛ(x) is too complex we will not have

a good approximation of the function on the test set;

� Underfitting : when the class of functions fΛ(x) is too simple we will not have

a good approximation of the function on the training set.

Structural risk minimization.

First of all let us introduce the notion of VC dimension (whose name refers to the

scientists Vapnik and Chervonenkis) [17].

VC dimension (of a binary classifier): is the maximum number of items

of the training that the classifier (with a proper function fΛ(x)) is able

to separate into two classes; informally it can be intended as a sort of

complexity of the classifier.



26 A short introduction to the Classification Problem

Figure 2.3: Underfitting and overfitting.

Figure 2.4: a. It is always possible to linearly separate three points. b. It is not
always possible for four points. So the VC dimension in this case is 3.

Below, in figure 2.4, we can see that the VC dimension of a linear classifier in R2 is

3: in fact we can always separate 3 points with a rect, but no more than 3.

The SVM approach [15] [16] tries to minimize at the same time the empirical error

and the complexity of the classifier: this tradeoff approach is called minimization of

the structural risk, as we can see in figure 2.5.

Figure 2.5: Tradeoff of the structural risk minimization.
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If m are the points in the training set, h is the VC dimension and η ∈ (0, 1) fixed,

an upper bound for that risk, valid with a confidence of 1− η, is given by

R(fΛ) ≤ Remp(fΛ) + Φ(h,m, η)

where

Φ(h,m, η) =

√
h(log

(
2m
h

)
+ 1)− log

(η
4

)
m

Posterior likelihood

This technique measures the probability that the model makes the correct ascrip-

tion of the items to the relative class, based on the training set data.

L(M|T ) =

m∏
i=1

p(yi|xi, T ,M)

where T is the training set and M is the test set.

Typically, for simplicity, is used the logarithm of this measure, we talk about

log-likelihood

L(M|T ) =
m∑
i=1

log[p(yi|xi, T ,M)]

Percentage of error

Is the simplest and most intuitive measure of error. It is directly linked to the

accuracy defined in section 2.5.
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Chapter 3

What a SVM is and
how it solves the classification
problem

3.1 Some history

Support Vector Machines were introduced by Vladimir Vapnik and colleagues (Boser

and Guyon) in the late 70s.

The earliest mention was in [Vapnik, 1979], but the first main paper seems to be

[Vapnik, 1995].

The theoretical bases were developed from Statistical Learning Theory (Vapnik

and Chervonenkis) since the 60s.

Empirically they immediately showed good performances: successful applications

in many fields (bioinformatics, text, image recognition, . . . ).

3.2 A short description

A Support Vector Machine is defined as

A binary classifier that is able to learn the bound between elements that

belong to two different classes [19].

The SVM approach can be thought as an alternative learning technique to poly-

nomial, radial basis function and multi-layer perceptron classifiers.

SVMs are sets of supervised learning methods whose training technique permits

to represent complex non linear functions. The characteristic parameters of the sys-

tem are determined solving a quadratic convex optimization problem. That SVM

has the “mathematical advantage” of having a global minimum: it ensures that the

resulting parameters are actually the best that can be found for the problem, given

the particular training set.
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The purpose of SVM is to perform a classification by constructing a n-dimensional

hyperplane that optimally separates the data (the points) into two categories.

With reference to the description we will do in 3.3.2.2 about non linear classifiers

on non linearly separable data, SVM were originally defined for the classification in

classes of objects that are linearly separable, but obviously they can be used also to

separate classes of elements non linearly separable, making them really interesting in

the scientific environment.

Summarizing, the functionality of a SVM depends on three factors:

The kernel type specific for a particular problem: it enables the system to classify

properly also non linearly separable data;

The optimization model that works on the training set, but provides robust val-

ues Λ and b parameters, that can be adequate also to the classification of the

test set items;

The setting of parameters γ and C that is realized by a trial-and-error valida-

tion procedure and represents the most difficult part in the use of SVM.

For a mathematical description of SVM approach see section 3.3 [7] [8] [9] [10] [11].

3.3 How a SVM solves the classification problem

Given the training set

T = {(xi, yi) | xi ∈ Rn, yi ∈ {−1,+1}, i = 1, . . . ,m}

and a properly tuned parameter C, the SVM approach solves the following optimiza-

tion problem

minξ,b,w C
m∑
i=1

ξi +
1

2
||w||2

yi(w
Txi + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

b ∈ R

w ∈ Rn

We will deal with the dual of the problem above, which is

maxλ

l∑
i=1

λi −
1

2

l∑
i,j=1

λiλjyiyjxixj

l∑
i=1

λiyi = 0

0 ≤ λi ≤ C i = 1, . . . , l
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To understand the theory the model above is based on, we have to clarify how to

deal with linearly and non linearly separable data.

3.3.1 Classifier on linearly separable data

We want to find the hyperplane H, identified by the parameters (w, b), that separates

the data in the best way: it has to be as far as possible by each point xi to be

separated.

For the training set represented in figures below, figure 3.1 shows one of the infinite

hyperplanes that separate the linearly separable points of the dataset, and figure 3.2

shows the optimum one among them.

Figure 3.1: A generical separating hyperplane.

The distance between a point x and hyperplane (w, b) is:

d(x, (w, b)) =
|wT · x+ b|

||w||

Explanation of the result.

Let us explain the result got above, helping with figure 3.3.

We have:

� A hyperplane H, defined by a linear discriminant function:

g(x) = wTx+ b = 0
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Figure 3.2: The optimum separating hyperplane.

Figure 3.3: Distance point x - hyperplane g(x) = 0.

� A point x, defined by a n-dimensional vector, whose distance from

H we want to calculate.
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Using the vectorial sum we can express x as

x = xp + xn

where xp is the component parallel to the hyperplane and xn is the

normal one;

� A unitary norm vector, normal to the hyperplane H

w′ =
w

||w||
.

The parallel component xp is the orthogonal projection of x on the hy-

perplane H.

We can express the component that is normal to the hyperplane as

xn = r ·w′ = r · w

||w||

Where r is the algebraic distance between x and H.

So we can write

x = xp + r · w

||w||

Using that decomposition of x we find that

g(x) = wTx+ b = wT · (xp + r · w

||w||
) + b =

= wTxp + b+ r · w
Tw

||w||
=

= g(xp) + r · w
Tw

||w||
Since the vector g(xp) lies on the hyperplane (and so we have that g(xp) =

0) and since the inner product wTw is equal to ||w||2, we can simplify

the expression above finding that

g(x) = r · ||w||

And so that

r =
g(x)

||w||
=

wTx+ b

||w||
Since a distance is always expressed as a positive value

r =
|wTx+ b|

||w||

That is what we wanted to explain.
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The optimal hyperplane is the one that has the maximum distance to the closest

points. So we have to deal with a max-min optimization function

maxw,b min1≤i≤nd(xi, (w, b))

We have a parametrization that is function of ||w||: we have to fix the value of

||w||. There are multiple choices:

� ||w|| = 1

� ||w|| such that min1≤i≤nd(xi, (w, b)) = 1
||w||

In the second case the condition imposed is equivalent to the following

min1≤i≤n|wTxi + b| = 1

that comes from

min1≤i≤n
|wTx+ b|

||w||
=

1

||w||
The algebraic manipulation we made, permits to reduce the problem to a quadratic

programming problem.

Let us consider the points xπk
, k = 1, . . . , t where {πk, k = 1, . . . , t} ⊆ {i =

1, . . . ,m} of the system that have the minimum distance to the hyperplane H. We

call that points support vectors. As we said before, for each support vector xi we

have

xi : |wTxi + b| = 1

We introduce the concept of margin M , that refers to the distance between the

hyperplanes defined by the support vectors (they are the hyperplanes that are parallel

to the hyperplane H and that have in common with the specific support vector the

point defines by its coordinates).

M =

∣∣∣∣ 1

||w||
− −1

||w||

∣∣∣∣ = 2

||w||

Our purpose is to maximize the margin, satisfying the conditions that define w and

b.

Since maximizing the margin is equivalent to minimizing the reciprocal of the

margin, so we can formulate the problem as defined below

min
1

2
||wTw||

yi(w
Txi + b) ≥ 1 i = 1, 2, . . . ,m

b ∈ R

w ∈ Rn

(3.1)
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The Lagrangian relaxation of the given problem is

min
1

2
||w||2 −

m∑
i=1

λi(yi(w
Txi + b)− 1)

b ∈ R

w ∈ Rn

The solution of this relaxation is obtained applying the Karush-Kuhn-Tucker

(KKT) conditions to the problem in (3.1).

We recall them in the following [12]

Theorem [KKT conditions] :

Suppose that the objective function f : Rn → R and the constraint func-

tion gi : Rn → R are continuously differentiable at a point w∗.

Assume w∗ is a regular local minimum of a nonlinear programming prob-

lem.

Then there is a Lagrange multiplier vector Λ such that

∇f(w∗) =
m∑
i=1

λi
∗∇gi(w

∗)

λi
∗ ≥ 0 i = 1, . . . ,m

gi(w
∗) ≥ 0 i = 1, . . . ,m

λi
∗gi(w

∗) = 0 i = 1, . . . ,m

Note that

∇f(w∗) =

m∑
i=1

λi
∗∇gi(w

∗) ⇐⇒ ∇L(w, b,Λ) = 0

Necessary and sufficient conditions for

∇L(w, b,Λ) = 0

are

w∗ =

m∑
i=1

yiλi
∗xi

m∑
i=1

yiλi
∗ = 0
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The complete formulation of the Lagrangian relaxation is

min
1

2
||w||2 −

m∑
i=1

λi(yi(w
Txi + b)− 1)

m∑
i=1

λiyi = 0

λi ≥ 0 i = 1, . . . ,m

b ∈ R

w ∈ Rn

The objective function can be properly manipulated, using the necessary and

sufficient conditions previously obtained. That is, knowing that the hyperplanes can

be written as linear combinations of the vectors of the training set (w =
∑m

i=1 λiyixi)

and using the second condition that implies that
∑m

i=1 λiyib = 0.

min

[
1

2
||w||2 −

m∑
i=1

λi(yi(w
Txi + b)− 1)

]
=

= min

1
2

m∑
i=1

λixiyi

m∑
j=1

λjxjyj −
m∑
i=1

λixiyi

m∑
j=1

λjxjyj −
m∑
i=1

λiyib+

m∑
i=1

λi

 =

= min

−1

2

m∑
i=1

λixiyi

m∑
j=1

λjxjyj +

m∑
i=1

λi


The Lagrangian relaxation has to be minimized on w and b and to be maximized

on Λ.

So we can formulate the problem as in the following

maxΛ

m∑
i=1

λi −
1

2

m∑
i,j=1

λiλjyiyjxixj

m∑
i=1

λiyi = 0

λi ≥ 0 i = 1, . . . ,m

In the model above the bounds on w and b are replaced by bounds on the Lagrangian

multipliers and the training set vectors appear only as inner products between vectors.

Since the equation of the optimal hyperplane can be written as a linear combina-

tion of the vectors of the training set

w∗ =
∑
i

λ∗
i yixi = Λ∗y x

Then

w∗x+ b = Λ∗y x · x+ b
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So the classifier is given by

sign

[
m∑
i=1

yiλ
∗
i (x · xi) + b∗

]

where we can find the value of b∗ from the following conditions

λ∗
i (yi(w

∗x+ b∗)− 1) = 0 i = 1, . . . ,m

−→ b∗ = yi −w∗ · xi

Eventually, it is possible to demonstrate that [13]

b∗ = −1

2

[
maxyi=−1w

∗Txi +minyi=+1w
∗Txi

]
In the solution, the points that have the correspondent Lagrangian multipliers λi > 0

are the support vectors; the other points of the training set have the correspondent

λi = 0 and so they do not influence the classifier (we could consider just the support

vectors’ points – the whole information about the training set is contained in those

points).

3.3.2 Classifier on non linearly separable data

When datasets are not linearly separable (see figure 3.5), we can either decide to use

linear classifier, or to use non linear classifier.

We should prefer the use of the second type of classifiers in order to perform a

more accurate classification. Obviously its use makes stuffs also more complicated,

as we will see in the following.

Figure 3.4: Non linearly separable dataset.
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3.3.2.1 Linear classifier on non linearly separable data

The linear classifier described above cannot deal with dataset that are non linearly

separable.

However it is possible to use a linear classifier (see figure 3.5) also on this kind of

data: we just have to relax the classification bounds, tolerating a certain number of

errors.

Figure 3.5: Non linearly separable dataset with a linear separation.

The optimum hyperplane is again determined by the support vectors points, but

there are some points that do not satisfy the condition yi(w
Txi + b) ≥ 1. A possible

solution is to add some slack variables.

The new bounds are

yi(w
Txi + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

b ∈ R

w ∈ Rn

where ξi > 1 represents the error that occurs.

We can reformulate the problem with a model that tries at the same time to

minimize ||w|| and minimum number of errors (in the objective function there is a

term
∑m

i=1 ξi that represents an upper bound on the number of errors on the training
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data).

min
1

2
||w||2 + C(

m∑
i=1

ξi)
k

yi(w · xi + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

b ∈ R

w ∈ Rn

where C and k are parameters that are related to the penalty that occurs in case of

an error, and typically is k = 1.

Recalling that w =
∑m

i=1 λiyixi, an equivalent formulation of the primal problem

(for k = 1), which we used in our experimentation, is

min
1

2

m∑
i=1

m∑
j=1

λiλjyiyjxixj + C
m∑
i=1

ξi

yi

 m∑
j=1

λjyjxj · xi + b

 ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m

b ∈ R

As in 3.3.1, the Lagrangian relaxation of the given problem is

min

[
1

2
||w||2 + C(

m∑
i=1

ξi)
k −

m∑
i=1

λi(yi(w
Txi + b)− 1 + ξi)−

m∑
i=1

γiξi

]

Under the following constraint, obtained applying KKT conditions to the problem

formulation
m∑
i=1

λiyi = 0

and

ξi ≥ 0 i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m

b ∈ R

w ∈ Rn

The objective function can be properly manipulated, using the necessary and

sufficient conditions previously obtained. That is, knowing that the hyperplanes can
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be written as linear combinations of the vectors of the training set (w =
∑m

i=1 λiyixi)

and using the condition
∑m

i=1 λiyi = 0 that implies that
∑m

i=1 λiyib = 0.

min

[
1

2
||w||2 + C(

l∑
i=1

ξi)
k −

m∑
i=1

λi(yi(w
Txi + b)− 1 + ξi)−

m∑
i=1

γiξi

]
=

= min

1
2

m∑
i=1

λixiyi

m∑
j=1

λjxjyj + C

m∑
i=1

ξi −
m∑
i=1

λixiyi

m∑
j=1

λjxjyj +

m∑
i=1

λi −
m∑
i=1

λiξi +

m∑
i=1

γiξi

 =

= min

−1

2

m∑
i=1

λixiyi

m∑
j=1

λjxjyj +

m∑
i=1

λi +

m∑
i=1

(C − λi − γi)ξi


It is possible to demonstrate that

∑m
i=1(C − λi − γi)ξi = 0.

The Lagrangian relaxation has to be minimized on w and b and to be maximized

on λ.

So we can formulate the problem as in the following

maxλ

m∑
i=1

λi −
1

2

m∑
i,j=1

λiλjyiyjxixj

m∑
i=1

λiyi = 0

0 ≤ λi ≤ C i = 1, . . . ,m

And, as in 3.3.1, the classifier is given by

sign

[
m∑
i=1

yiλ
∗
i (x · xi) + b∗

]

3.3.2.2 Non linear classifier on non linearly separable data

Another possibility to deal with non linearly separable data is to use a non linear

classifier.

The idea behind this approach is to create a sort of “lifting” (using a function Φ)

of the non linearly separable data on a new space (generally having more dimensions

than the previous one) where they are become linearly separable.

Φ : Rn 7→ RN N ≫ n

x 7→ Φ(x)

Through this procedure (known in the literature as kernel trick [14]) we can use once

again a linear classifier in the new space, as seen before.
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Figure 3.6: The SVM trick for non linearly separable data.

The previous equation for the classifier

sign

[
m∑
i=1

yiλ
∗
i (x · xi) + b∗

]

is changed in the following equation

sign

[
m∑
i=1

yiλ
∗
i (Φ(x) · Φ(xi)) + b∗

]

That model has a limit: the product Φ(x)·Φ(xi) involves high dimensional vectors.

A solution here is to introduce a kernel function of the form

K : Rn × Rn 7→ R

that substitutes the product K(xi,xj) = Φ(xi) · Φ(xj).

The characteristics and properties of the kernel function are defined by

Mercer Theorem :

A symmetric function K(xi,xj) is a kernel

if and only if

for any sample S = {x1, . . . ,xm}, the kernel matrix for S is positive

semi-definite.

Using the definition of the kernel function in the classifier we have

sign

[
m∑
i=1

yiλ
∗
iK(x,xi) + b∗

]
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And in the model

max

m∑
i=1

λi −
1

2

m∑
i,j=1

λiλjyiyjK(xi,xj)

m∑
i=1

λiyi = 0

0 ≤ λi ≤ C i = 1, . . . ,m

Or equivalently for the primal problem

min
1

2

m∑
i=1

m∑
j=1

λiλjyiyjK(xi,xj) + C
m∑
i=1

ξi

yi

 m∑
j=1

λjyjK(xi,xj) + b

 ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m

b ∈ R

How to choose the kernel function?

Kernel methods work:

� mapping items on a different vectorial space;

� looking for linear relationships between items in that space.

Here there are several possibilities for the kernel method:

Linear:

K(xi,xj) =
m∑
k=1

(xi)k · (xj)k

Polynomial:

K(xi,xj) =

(
1 +

m∑
k=1

(xi)k · (xj)k

)d

Radial Based function:

K(xi,xj) = e−
∑m

k=1((xi)k−(xj)k)2

2σ2

Gaussian:

K(xi,xj) = e−γ[
∑m

k=1((xi)k−(xj)k)
2] = e−γ||xi−xj ||2
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Multi-Layer Perceptron:

K(xi,xj) = tanh

[
b

(
m∑
k=1

(xi)k(xj)k

)
− c

]

However, there are not limits to the choice of the kernel function; necessary and

sufficient condition is that, since that functions have to represent an inner product in

the extended space, kernel functions satisfy the following properties:

1. K(x1,x2) = K(x2,x1)

2. K(x1,x2 + x3) = K(x1,x2) +K(x1,x3)

3. K(x1, αx2) = αK(x1,x2)

The most used kernel is the Gaussian one. It is different from the other types of

kernel because of its meaning: it represents a function whose value, given two points

in input, depends only on the distance between them, without any dependency on

the absolute position of the points in the whole set of points.

To understand the meaning and behaviour of Gaussian kernel, let us consider two

points in the original space: xi and xj .

� If the two points coincide, then d(xi,xj) = 0, then K(xi,xj) = 1;

� If not, the trend of K is strictly decreasing in the amount of distance (the

function trend is given in figure 3.7, where the x-axis represents the distance

and the y-axis the value of K, for Gaussian kernel).

An analogy to figure with Gaussian kernel.

To go deeply inside an intuitive comprehension of the behaviour of Gaussian kernel,

a useful analogy can be given.

Each point x of the training set is like a communication source that transmits a

particular signal f(x) uniquely associated to it, namely the constant signal +1 or −1.

This signal is manipulated externally (this is the contribution of the Gaussian kernel)

so that, after its emission, it is decreased with an exponential law, depending on the

distance (far from the transmitting point, the signal is close to 0, near the point the

signal is close to 1).

When we want to classify a new point x1, not belonging to the training set, we

perform the following actions: standing in x1, we measure the whole perceived signals,

computing the total signed sum: if the result is positive, then x1 is classify as a point

that belongs to class +1, otherwise if the result is negative x1 belongs to −1.
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Figure 3.7: Gaussian kernel value vs distance, for the parameter γ = 0.1, 1, 10, 100.

Clearly, the density of the training set points is strictly related to the determina-

tion of the constant (the value of γ in the exponential Gaussian function) that defines

the decay of the signal with the distance: if points are close together, then signals

can decrease in a less intense way than in the case they are far each from the others

(in this last case, if signals decrease too quickly there is the risk that the points do

not get any signal from the others).
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Figure 3.8: Signals analogy.
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Chapter 4

Alternative training models

4.1 Gaussian kernel models

In this section we will describe the mathematical models we implemented as alter-

native approaches to the classical quadratic programming model used by the SVM

approach, namely:

min
1

2

m∑
i=1

m∑
j=1

λiλjyiyjK(xi,xj) + C
m∑
i=1

ξi

yi

(
m∑
j=1

λjyjK(xi,xj) + b

)
≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m

b ∈ R

(4.1)

where K(xj ,xi) is the considered kernel, e.g. the Gaussian one

K(xi,xj) = e−γ||xi−xj ||2

We recall that the resolution of the proper mathematical model enables a SVM

to determinate the optimum Λ and b parameters to be used in phase of classification.

The aforesaid model is structured on the training set points.

About the models that will be proposed in the following, we also recall that

A MIP problem (Mixed Integer Programming) consists in the minimiza-

tion of a linear objective function with a finite number of linear con-

straints, with an additional constraint that requires some/all variables to

be integer [26].
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This kind of models have to be solved with proper CPLEX settings. In the .dat file,

where we define the parameters setting to be read by CPLEX before the optimization,

we have the following “rules”:

set mip tolerance integer 0

set mip timelimit 1200

set mip polishaftertime 900

where:

� the first line refers to the tolerance considered by the solver on the constrains;

� the second line sets a timelimit of 20 minutes for the optimization process;

� the third line establishes to start a proper procedure, called polish, after the

passage of 3
4 of the timelimit interval.

4.1.1 SVM aINT

In this model we impose λi variables to be integer and also we impose an upper bound

for their values.

min
1

2

m∑
i=1

m∑
j=1

λiλjyiyjK(xi,xj) + C
m∑
i=1

ξi

yi

(
m∑
j=1

λjyjK(xi,xj) + b

)
≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

0 ≤ λi ≤ R integer i = 1, . . . ,m

b ∈ R

(4.2)

where R ∈ {1, 10, 100}.

This model is aimed to limit overfitting on λi values. As a matter of facts, this

phenomenon tends to produce high accuracies on the validation set, but actually gives

worse final accuracies over the test set.

The model realizes its purpose imposing λi values to belong to a finite subset

of possible values (through the simultaneous imposition of integer values and upper

bound for λi).
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4.1.2 SVM TV

In this model we train the system not on the overall training set, but on just a 4
5

portion of it. At the same time we try to minimize, though the minimization of

the objective function, the number of errors on the complementary 1
5 portion of the

training set.

min
l∑

j=1

zj

yj

(
n∑

i=1

λiyiK(xi,xj) + b

)
≥ 1−M · zj j = 1, . . . , l

zj ∈ {0, 1} j = 1, . . . , l

λi ≥ 0 i = 1, . . . , n

b ∈ R

(4.3)

where V ⊂ {(x1, y1), . . . , (xl, yl)} is the validation set, and T = TrainingSet− V .

As we can see, we train the system over V, obtaining the relative Λ and b values,

and, at the same time, we test our approach on T, through the count the committed

errors.

This way we will obtain at the end just 4
5 of the λi variables, but we hope the

mixed procedures helps us to reduce the overfitting of the variables on the training

set items.

This problem has a particularity: it does not use the parameter C, that appears in

the objective function of the classic SVM quadratic programming model. Therefore,

its validation procedure is not aimed to the determination of the optimum parameters

pair (C, γ), but actually to the determination of the combination between parameter

γ and training set division that gives the best training accuracy.

4.1.3 SVM TV aINT

In the current section we propose a model that is a variant of the one described in

section 4.1.2, but here we impose also variables λi to be integer, trying again to reduce

overfitting.
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min
m∑
j=1

zj

yj

(
n∑

i=1

λiyiK(xi,xj) + b

)
≥ 1−M · zj j = 1, . . . ,m

zj ∈ {0, 1} j = 1, . . . ,m

0 ≤ λi ≤ R integer i = 1, . . . ,m

b ∈ R

(4.4)

The same consideration made previously for the characteristics of SVM TV model

are valid also for this model. In addiction, the restricted possible values imposed for

variables λi represent a further attempt to the reduction of overfitting.

4.1.4 SVM aAll TV

This is the same model as in section 4.1.2, but, in this case, we use all the variables

λk in the final classifier, integrating the missing λj (those that were not determined

by the resolution of the model) with the mean value calculated on the given λi.

With this model we want to improve the performances of SVM TV using more

variables than those used by the aforesaid model.

4.1.5 SVM Mixed

In this model we accept to incur in a number of errors during the classification of the

training items that is at most equal to a certain percentage of the total number of

training items themselves.

min
1

2

m∑
i=1

m∑
j=1

λiλjyiyjK(xi,xj)

yi

(
m∑
j=1

λjyjK(xj,xi)

)
≥ 1−M · zi i = 1, . . . ,m

m∑
i=1

zi ≤ C ·m

zi ∈ {0, 1} i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m

(4.5)

where C ∈ {1, 10}.
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With this model we want again to reduce the overfitting phenomenon on the

training set. We aim to do that through the action of the constraint that enables the

system to commit a number of errors that is even higher than the number commit-

ted by the classic SVM approach model. This action reduces the accuracies on the

validation set, that is it makes the variables less fitting to the validation set itself.

Besides, another interesting observation is that we try to minimize the total mis-

classification not through the minimization of the sum of ξi variables, but yet through

the minimization of the number of misclassified points (represented by zi variables).

4.1.6 SVM MixedMu

This model is a variant of the one proposed in section 4.1.5.

min

m∑
i=1

zi

yi

(
m∑
j=1

λjyjK(xj,xi)

)
≥ C · µ−M · zi i = 1, . . . ,m

m∑
i=1

λi ≤ µ ·m

zi ∈ {0, 1} i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m

µ ≥ 1

(4.6)

where C ∈ {1, 10}.

In this model we substitute the quadratic objective function of the one in section

4.1.5 with a linear one that tries to minimize the number of errors we incur in on the

test set items.

Besides, we substitute the 1, that appears in the right side of the first set of

constraints, with the mean of the λi values.
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4.2 Linear kernel models

In this section we will describe models that are intended to use the linear kernel.

Hence, they are expressed in terms of (w, b), instead of Λ and b.

4.2.1 SVM K-lin

This is the classical quadratic programming problem, using linear kernel.

min
1

2
||w||2 +

m∑
i=1

ξi

yi(w
Txi + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

w ∈ Rn

b ∈ R

(4.7)

As we can see, the kernel function does not appear in the usual formulation
K(xi,xj), where

K(xi,xj) =

m∑
k=1

(xi)k · (xj)k

but instead, it is intrinsic in the use of the hyperplane formulation

w =

m∑
i=1

λiyixi

4.2.2 SVM K-lin wINT

This model is similar to the one proposed in section 4.2.1, but here we also impose

w to be an integer vector.

min
1

2 · S2
||w||2 +

m∑
i=1

ξi

yi(
1

S
wTxi + b) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

w ∈ Zn

b ∈ R

(4.8)

where S ∈ {1, 10, 100, 1000} is a scaling factor.
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With this model we want to limit the possible values to be assumed by w vector’s

components.

Our guess here is that we risk much more overfitting permitting w to belong to

Rn instead of imposing w (or 10w, or 100w, or 1000w) to belong to Zn.
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Chapter 5

Experimental tests and results

5.1 Real world datasets

All the datasets used in our experimentation were downloaded from UCI Machine

Learning Repository [21].

The UCI Machine Learning Repository is a collection of databases, domain the-

ories, and data generators that are used by the machine learning community for the

empirical analysis of machine learning algorithms. The archive was created as an ftp

archive in 1987 by David Aha and fellow graduate students at UC Irvine. Since then,

it has been widely used by students, educators, and researchers all over the world as

a primary source of machine learning data sets.

We decided to test our approaches on eleven datasets, the same ones that also

J.P. Brooks used in his work about classification [22].

The chosen datasets contain numerical (real or integer) and categorical (numerical

and literal) attributes, and just two possible classes for each item. In other words

they are perfectly suitable for binary classification through SVM and other similar

approaches.

In table 5.1 we have a summary description of the datasets used in the experi-

mental tests: their name from the repository, their label (used by Brooks), number

of instances, and number of features.

5.1.1 Preprocessing on raw data

Data from UCI Repository is not immediately suitable for testing our classification

methods.

As Brooks suggests, before their use data has to be properly preprocessed and

normalized.

1Before-after preprocessing and normalization of the dataset.
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Characteristics1

Original Mnemonical # of # of
dataset name [21] dataset name istances attributes

Adult Adult 30157 105

Statlog
Australian 690 14-41

(Australian Credit Approval)

Connectionist Bench
Sonar 208 60

(Sonar, Mines vs Rocks)

Pima Indians Diabetes Pima 769-768 8

Statlog
German 1000 24

(German Credit Data)

Statlog (Heart) Heart 270 13-23

Ionosphere Ionosphere 351 34-33

Liver Disorders Bupa 345 6

Breast Cancer Wisconsin
Wdbc Mangasarian and Wolberg 568 30

(Diagnostic)

Breast Cancer Wisconsin
Breast Mangasarian and Wolberg 699-683 9

(Original)

Breast Cancer Wisconsin
Wdpc Mangasarian and Wolberg 198-194 33

(Prognostic)

Table 5.1: Datasets: names, number of instances, number of attributes.
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In the following we describe the procedure to be performed on raw data to prepare

the input to our classification procedures.

Removing missing values

If there are items with one or more missing values, those items are removed from

the relative dataset.

Most of the times, missing attributes are indicated, in the UCI Repository, with

a ’?’, or a ’-’.

Converting categorical attributes

If an attribute is of categorical type, that can assume k possible values, it is replaced

by k attributes which can attain just 2 possible values (generally 0 or 1).

Example:

If there is an attribute size, that has values ∈ {small,medium, large}, it
is replaced by 3 attributes: size 1, size 2 and size 3 that have all values

∈ {0, 1}.

size ∈ {small,medium, large}

. . . size . . .

. . . large . . .

. . . . . . . . .

. . . size1 size2 size3 . . .

. . . 0 0 1 . . .

. . . . . . . . . . . . . . .

Converting literal attributes

If an attribute is a literal one, that can attain literal values within a finite set of

words of cardinality k, it is conceptually treated as a categorical attribute, so it is

replaced by k binary attributes.

Calculating mean value and standard deviation

For each attribute in the dataset, mean value and standard deviation are computed

on the training set.

Normalizing the dataset values

First of all, attributes that have standard deviation that is zero are removed from

the relative datasets.

Secondly, each attribute value is normalized by subtracting the mean value and

dividing by the standard deviation, both calculated, as seen above, on the training

set items only.
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5.1.2 Experimental choices for data training

In order to perform our experiments, each dataset is randomly partitioned in such

a way that the 70% of the items belong to the training set, and the remaining 30%

to the test set. This last part of the dataset is taken away at the beginning, and is

never used during the whole training procedure: it is used just at the end, during the

computation of the final accuracy (the accuracy on the test set) that permits us to

evaluate the goodness of the considered approach.

The training part of the dataset is, in turn, divided into 5 parts to perform 5-fold

cross validation. This procedure is necessary to choose the optimal parameters to

train the system and use the classifier on the test set.

Since our experimental tests require the subsequent resolution of several optimiza-

tion problems, some of them require a resolution time of about twenty minutes, we

decided to restrict in most cases out analysis to nine of the eleven datasets that have

less then 800 items. So, for the experimentations described in section 4, we excluded

the use of “Adult” and “German” datasets.

5.1.3 Availability of the data on the web

As we said previously, the datasets used, which where taken from the UCI Machine

Learning Repository, contain raw data that are inhomogeneous.

Since the programming effort to create a proper parser for each dataset, in order

to extract the ordered non zero features and the classes, was not trivial, we thought

that it could be useful to make available on the web the postprocessed datasets.

The format we chose is the SVMlight format, described in 6.1.2.2, for not nor-

malized dataset items, with categorical and literal attributes converted to numerical

ones.

The eleven datasets used can be found at the link

www.dei.unipd.it/˜fisch/datasetSVM.tar.gz

altogether in a single compressed folder.
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5.2 Comparison between
SVM approach and A1B0 approach

In the following we report an analysis about the advantage, in term of accuracy, of a

classification based on the classic SVM approach (with Gaussian kernel) without any

kind of training procedure, just applying the final classifier (sign[
∑m

i=1 yiλiK(x, xi)+

b] – with λi = 1 ∀i, and b = 0).

5.2.1 A1B0 approach

This approach just sets

λi = 1 ∀i = 1, . . . ,m

b = 0

so that the classifier becomes:

sign

[
m∑
i=1

yiK(xi, xj)

]
(5.1)

where

K(xi,xj) = e−γ||xi−xj ||2

We want to remark the fact that the use of A1B0 approach allows to realize a

classification without performing any kind of training procedure on data. For this

reason, A1B0 approach is much less computationally expensive than SVM approach,

and also not subject to overtuning.

5.2.2 Parameters setting: γ = 0.1

SVM approach

In the comparison in analysis only one parameter is free and can be set offline.

Namely parameter γ in the Gaussian kernel.

In our experimentation, according to [22], we performed our tests on just few

values of γ, i.e.

γ ∈ {0.1, 1, 10, 100, 1000}

As we could experiment in the very numerous tests, in more than the 90% of the

cases, the highest accuracies are obtained using γ = 0.1.

That is the reason why we decided to restrict the interest of this comparison to

the use of this value for γ.

For the value of parameter C, we decided to leave the choice to the software used

for the computation of the 50 accuracies of SVM approach, that is to SVMlight .
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The default value used is [20]

C = [avg. x · x]−1

that is, the reciprocal of the average of the feature vectors inner products is the value

assigned to C.

5.2.3 Organization of the tests

First of all we have to sample randomly each datasets, in order to obtain what we

call an instance of a dataset.

A single instance of a dataset consists in the random division of the dataset itself

in training set (portion of 7
10 of the dataset) and complementary test set.

We produce 50 different instances for each dataset.

Then, in parallel, we obtain, for each of the aforesaid instances:

� The accuracy with SVM approach;

� The accuracy with A1B0 approach.

We produced 50 couples of accuracies, where the first element of the couple is

obtained with SVM approach and the second with A1B0 approach.

We can consider each couple as a couple of “measurements” produced by two dif-

ferent “instruments” on the same data – in our case the instrument is the classification

procedure used.

We want to:

� Understand, with a rigorous analysis, if the two instruments have a statistically

significative difference, or if they are statistically comparable.

� Perform a statistical analysis and comparison of the two methods.

The first evaluation can be done through the use of a statistical method known

as Wilcoxon test, described in detail in Appendix B.

The second aim can be reached by computing some statistical indicators like

mean and standard deviation of the accuracies given by SVM approach and by A1B0

approach, percentage of SVM approach and A1B0 approach wins, mean and standard

deviation of Λ parameters sparsity for SVM approach. These indicators enable us to

understand if the use of a SVM is really always useful and advantageous in place of

the use of a much simpler and computationally inexpensive method like the classifier

in equation (5.1).
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5.3 Experimental results for tests described in section
5.2

In this section we will give a global evaluation of the results of the tests described in

section 5.2.

5.3.1 Statistical significance of the difference between
the two methods

As previously said, we used Wilcoxon test (presented and described in Appendix B,

to evaluate if there is a statistically significative difference between SVM approach

and A1B0 approach for the classification of the same test set items.

We perform the test using the statistical software R; for details about its installa-

tion and use see 6.1.4.

In the following the evaluation of the results and some considerations about them.

Dataset p-value
Adult < 0.001

Australian 0.0051
Breast Mangasarian and Wolberg < 0.001

Bupa < 0.001
German < 0.001
Heart < 0.001

Ionosphere < 0.001
Pima < 0.001
Sonar < 0.001

Wdbc Mansagarian and Wolberg < 0.001
Wpbc Mangasarian and Wolberg 0.0038

Table 5.2: p-values for comparison between SVM approach and A1B0 approach.

In table 5.3.1 we can see the p-values obtained comparing, through the use of

Wilcoxon test technique, 50 couples of measurements, computed respectively with

SVM approach and A1B0 approach.

As we can see, for all the eleven datasets used in our experimentation, we have

p− value < 0.01

That is, we can state that:

SVM approach is statistically different from A1B0 approach with a level

of confidence greater than the 99%.

This result could not seem to be very interesting. Considering all the theory

and the scientific research about all the possible settings (parameters settings, kernel
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choices, . . . ) of Support Vector Machines, we could imagine that SVM approach

would be always preferable, in terms of accuracy gain, to A1B0 approach.

But the results of a statistical analysis and comparison between the two ap-

proaches are rather surprising.

5.3.2 Some statistical considerations about the comparison of
the two methods

In the following we will evaluate the results for the tests in analysis at two different

levels:

� At the level of each single dataset;

� At a high global level comprehensive of all the used datasets.

For the results in detail, at the level of each of the 50 instances taken from each

of the eleven datasets, we refer to Appendix A.

5.3.2.1 Datasets level

A global vision of those results at the level of each dataset is given in table 5.32.

Dataset µSVM µA1B0 σSVM σA1B0 SVM> A1B0> µspars σspars
Adult 81.79 75.11 0.39 0.38 100.00 0.00 35.99 0.28

Australian 82.78 83.69 2.74 2.51 30.00 70.00 15.51 0.42

Breast Mangasarian and Wolberg 96.84 90.27 0.91 1.97 100.00 0.00 85.15 1.08

Bupa 70.52 58.73 3.90 4.11 98.00 0.00 20.51 2.25

German 72.03 70.03 2.48 2.36 100.00 0.00 23.03 1.56

Heart 79.80 81.78 3.67 4.04 28.00 62.00 21.52 2.12

Ionosphere 93.96 73.28 2.14 4.59 100.00 0.00 41.12 1.99

Pima 75.80 65.83 2.20 3.13 100.00 0.00 42.82 1.86

Sonar 59.59 83.49 7.06 5.15 0.00 100.00 0.61 0.50

Wdbc Mangasarian and Wolberg 95.49 92.68 1.88 2.51 86.00 12.00 55.09 1.04

Wpbc Mangasarian and Wolberg 75.09 75.93 5.06 5.04 16.00 48.00 9.65 2.44

Table 5.3: Results for each dataset for comparison SVM vs A1B0.

Where:

� µSVM is the mean calculated on the accuracies obtained from SVM approach;

� µA1B0 is the mean calculated on the accuracies obtained from A1B0 approach;

� σSVM is the standard deviation calculated on the accuracies obtained from SVM

approach;

2In yellow we marked where the SVM approach wins, in green where the A1B0 approach wins.
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� σA1B0 is the standard deviation calculated on the accuracies obtained from

A1B0 approach;

� SVM> is the percentage of wins of SVM approach (percentage of times the
accuracy obtained with SVM approach is strictly greater than the one obtained
with A1B0 approach on the same instance);

� A1B0> is the percentage of wins of A1B0 approach (percentage of times the
accuracy obtained with A1B0 approach is strictly greater than the one obtained
with SVM approach on the same instance);

� µspars is the average sparsity (number of zero component of the vector Λ) of
SVM approach;

� σspars is the sparsity standard deviation of SVM approach.

As we can see, differently from our expectations, the SVM approach does not lead

always to produce higher accuracies than A1B0 approach. Actually, in four cases out

of eleven, the simpler and computationally inexpensive A1B0 approach gives better

accuracies than the competitor.

Another interesting observation concerns the values computed for the sparsity of

SVM approach. The claim of SVM theory is that its approach enables to determine Λ

vectors characterized by a high sparsity. This property is quite important and useful

because it ensures to decrease the overfitting effect in classification: sparse Λ vectors

permits to identify a few points (the so-called support vectors) of the training set that

really give useful information for the classification of new points (those belonging

to the test set), while removing all the other points that, in the final process of

classification, could give a misleading information (for example, because they are

outliers in the training points system).

Recalling that our analysis is restricted to the use of the Gaussian kernel, with pa-

rameter γ = 0.1, we can observe that actually, except for dataset Breast Mangasarian

and Wolberg, sparsity of SVM approach is not so relevant.

Furthermore, we can observe that, even in the rare cases where the mean sparsity

reaches the 50%, this does not have a relevant impact that enables to realize a con-

siderable gain in term of accuracy. In addiction, that these values for sparsity do not

affect the use of the SVM with a really sensible reduction of memory use and overall

speed of the SVM computations.

5.3.2.2 Higher global level

For an overview of the results at a higher level, we can consider altogether the eleven

datasets; the related indicators are given in table 5.4.

where, ad before:
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µSVM µA1B0 σSVM σA1B0 SVM> A1B0> µspars σspars

83.24 77.35 2.95 3.25 68.91 26.55 31.9 1.41

Table 5.4: Global results for comparison SVM vs A1B0.

� µSVM is the mean calculated on the accuracies obtained from SVM approach;

� µA1B0 is the mean calculated on the accuracies obtained from A1B0 approach;

� σSVM is the standard deviation calculated on the accuracies obtained from SVM

approach;

� σA1B0 is the standard deviation calculated on the accuracies obtained from

A1B0 approach;

� SVM> is the percentage of wins of SVM approach (percentage of times the
accuracy obtained with SVM approach is strictly greater than the one obtained
with A1B0 approach on the same instance);

� A1B0> is the percentage of wins of A1B0 approach (percentage of times the
accuracy obtained with A1B0 approach is strictly greater than the one obtained
with SVM approach on the same instance);

� µspars is the mean calculated on the sparsity (number of zero component of the
vector Λ) of SVM approach;

� σspars is the sparsity standard deviation of SVM approach.

Before any analysis of those data, it is fundamental to make an important con-

sideration. The percentage results in table 5.4 are much less significative than the

results in table 5.3, because the first give overall statistical information about data

whose nature is “clustered”. As a matter of fact, considering altogether the eleven

datasets, we deal with data showing a quite high similarity within a single dataset,

and a quite high dissimilarity between a dataset and another one. In other words, in

this case, data are highly inhomogeneous.

However, as we can see, using SVM approach (that implies to solve a computa-

tionally expensive quadratic programming model), we can get an accuracy advantage

just of the 5.9% over the use of a much simpler approach based on the classifier in

equation (5.1).

Furthermore, the simpler approach is not always worse than the first one: about

27% times A1B0 approach wins giving higher accuracies, and 4-5% times it matches

the SVM one.
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5.4 Experimental results for tests described in chapter
4

Results are obtained through a preliminary 5-fold cross validation on the training set

items, performed in order to get the optimum parameters setting. These parameters

will be used to train a final time the system in order to determinate the optimum

parameters to classify the test set items, obtaining in such a way the final accuracy.

The aforesaid procedure is then repeated three times and the final percentage

accuracy is the mean value of the three accuracies obtained at the end of the three

iterations.

For all the methods that involve the use of Gaussian kernel the parameters settings

that have been tested are the 25 combinations of five values for the parameters γ and

C, as suggested in [22]

γ ∈ {0.1, 1, 10, 100, 1000}

C ∈ {0.01, 0.1, 1, 10, 100}

The comparison terms for the evaluation of our approaches are the accuracies

obtained using, in the procedure above, the classic quadratic programming model

with Gaussian kernel.

We give in table 5.5, the average (out of 3) accuracy.

Dataset Final accuracy

Australian 81.8
Breast Mangasarian and Wolberg 96.8

Bupa 67.3
Heart 77.0

Ionosphere 93.7
Pima 74.3
Sonar 82.0

Wdbc Mangasarian and Wolberg 95.5
Wpbc Mangasarian and Wolberg 76.3

Table 5.5: Accuracy with SVM approach.

For all the methods that involve the use of the linear kernel, we tested five possible

values for parameter C

C ∈ {0.01, 0.1, 1, 10, 100}
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5.4.1 Results with Gaussian kernel

In the following we report the results we got training the system with classifiers ob-

tained by the alternative mathematical models previously described, all using Gaus-

sian kernel. We recall that the results in tables 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 have

to be compared with the ones in table 5.5.

Preliminary considerations

� Small values of γ, in general, give the highest accuracies (in our tests, optimum

parameters couples involve, in the 90% of the cases, by the value γ = 0.1). In

other words, high values of γ give scarce accuracies. Recalling the signal analogy

explained in figure 3.8, we have that the kernel function can be conceptually

associated to the power shape of the signal irradiated by each point in the space

around. A big value of γ implies that the kernel function acts like an impulse:

it is strong near the item point and much lower in the immediate vicinity of

the point itself. In this respect, a kernel function similar to an impulse (Dirac

delta), is associated to a classifier that is particularly able to categorize with

high accuracy a known point, that is, a point of the training set, instead of a

new and unknown point belonging to the test set.

� The values assumed by λi’s parameters, that we obtained from the resolution of

the classical quadratic programming problem with Gaussian kernel, differently

from what we imagined, have lots of decimal places, that is, tend to be very

fitting to items set in training set.

� Accuracies estimated during the repeated procedure of validation, as we could

imagine, are higher than the ones got during the final classification.

The analysis of the behaviour of the system confirm the overfitting phenomenon plays

a central role in the procedure.

The above considerations prompted us to plan, implement and test new alterna-

tive approaches that try to answer to the question “how can we try to contrast the

overfitting effect?”

We undertook the following possibilities:

� Trying to impose the choice of variables λi’s and b that have less degrees of

freedom than in the case of the classical problem – SVM aINT model ;

� Trying to impose that, during the validation phase, also a test procedure is

realized, in such a way to choose Λ and b parameters whose validity is already

tested on a items subset different from the training one – SVM TV models;
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� Allowing the system for a certain number of misclassifications in the training

set, hoping that this makes the model less fitting to the specific training set

and produce more appropriated variables to be used by the final classifier –

SVM Mixed and MixedMu models.

Final considerations

The goodness of a classifier depends on:

1. The type of the chosen kernel;

2. The validity of the training model;

3. The validation procedure.

Now, we understood that the Gaussian kernel is a good and complete classifier by

itself, that is: it provides reasonable accuracies also without taking care to the other

two factors just enumerated.

Our claim is that the use of Gaussian kernel reduces the importance of the op-

timization problem, or makes it even counter-productive in some cases (because of

overfitting).

To further prove this thesis about the role of Gaussian kernel, we performed the

same tests for the evaluation of the superiority, in terms of accuracy, of SVM approach

towards A1B0 approach (see section 5.3), but this time using linear kernel. This way,

we could evaluate the behaviour of the linear kernel as a classifier by itself, compared

to the behaviour of the overall SVM approach that uses the same linear kernel to

perform the final classification over the test set.

We observed that linear kernel is not a so good classifier by itself as Gaussian

kernel is. Overall results, for tests performed on 50 instances for each of the eleven

datasets, are given in table 5.6. As we can see, the superiority of SVM approach

towards A1B0 approach, that for Gaussian kernel is 5.9%, for linear kernel increases

to 7.4%.

µSVM µA1B0 σSVM σA1B0 SVM> A1B0> µspars σspars

82.18 74.80 1.19 3.12 79.45 12.38 30.80 1.52

Table 5.6: Global results for comparison SVM vs A1B0 with linear kernel.
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SVM aINT

Dataset value of R Final accuracy

Australian
1 81.5
10 79.7
100 77.6

Breast Mangasarian and Wolberg
1 96.9
10 96.2
100 96.2

Bupa
1 68.9
10 67.6
100 67.0

Heart
1 78.6
10 77.4
100 76.7

Ionosphere
1 94.0
10 93.4
100 93.7

Pima
1 73.0
10 74.3
100 73.7

Sonar
1 78.3
10 79.4
100 81.5

Wdbc Mangasarian and Wolberg
1 97.5
10 96.3
100 96.3

Wpbc Mangasarian and Wolberg
1 76.3
10 76.8
100 76.8

Table 5.7: Accuracy with SVM aINT approach.
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SVM TV aINT

Dataset value of R Final accuracy

Australian

1 77.0
10 77.6
100 77.0
1000 77.6

Breast Mangasarian and Wolberg

1 97.1
10 96.7
100 96.1
1000 96.7

Bupa

1 60.0
10 60.2
100 60.2
1000 58.8

Heart

1 74.1
10 77.0
100 76.7
1000 74.1

Ionosphere

1 92.8
10 92.8
100 94.0
1000 90.7

Pima

1 67.6
10 68.4
100 69.0
1000 68.4

Sonar

1 77.3
10 76.7
100 77.3
1000 80.4

Wdbc Mangasarian and Wolberg

1 93.4
10 92.8
100 93.4
1000 93.6

Wpbc Mangasarian and Wolberg

1 76.8
10 73.6
100 73.6
1000 73.6

Table 5.8: Accuracy with SVM TV aINT approach.
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SVM TV

Dataset Final accuracy

Australian 79.9
Breast Mangasarian and Wolberg 96.1

Bupa 66.4
Heart 74.9

Ionosphere 93.1
Pima 71.7
Sonar 80.4

Wdbc Mangasarian and Wolberg 92.2
Wpbc Mangasarian and Wolberg 76.8

Table 5.9: Accuracy with SVM TV approach.

SVM Mixed

Dataset C Final accuracy

Australian
1 79.8
10 80.5

Breast Mangasarian and Wolberg - n.d.3

Bupa
1 63.8
10 64.1

Heart
1 76.7
10 77.0

Ionosphere
1 87.7
10 87.7

Pima
1 66.2
10 65.8

Sonar
1 83.6
10 85.7

Wdbc Mangasarian and Wolberg
1 97.5
10 97.5

Wpbc Mangasarian and Wolberg
1 77.4
10 76.7

Table 5.10: Accuracy with SVM Mixed approach.

3CPLEX error in solving: Q matrix non semi-definite positive because of numerical
issues.

4CPLEX error in solving: Q matrix non semi-definite positive because of numerical
issues.
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SVM aAll

Dataset Final accuracy

Australian 80.7
Breast Mangasarian and Wolberg 94.6

Bupa 67.7
Heart 78.2

Ionosphere 94.3
Pima 70.6
Sonar 83.1

Wdbc Mangasarian and Wolberg 94.3
Wpbc Mangasarian and Wolberg 77.4

Table 5.11: Accuracy with SVM aAll TV approach.

SVM MixedMu

Dataset C Final accuracy

Australian
1 78.4
10 78.4

Breast Mangasarian and Wolberg - n.d.4

Bupa
1 63.8
10 64.4

Heart
1 76.3
10 75.9

Ionosphere
1 82.4
10 80.7

Pima
1 71.6
10 72.9

Sonar
1 82.0
10 82.0

Wdbc Mangasarian and Wolberg
1 94.2
10 91.7

Wpbc Mangasarian and Wolberg
1 76.3
10 76.7

Table 5.12: Accuracy with SVM MixedMu approach.

In table 5.13 we have the unified vision of all the results obtained with Gaussian

kernel.
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5.4.2 Results with linear kernel

In the following we report the results with our alternative classifiers using the linear

kernel.

Results in table 5.15 are thought to be compared to the ones in table 5.14.

Our attempt here was motivated by the first results obtained from the evaluation

of our SVM K-lin wINT approach on the training set items, conduct at the very

beginning without the use of any validation procedure. The aforesaid results are

reported in Appendix C.

Dataset Final accuracy

Australian 82.9
Breast Mangasarian and Wolberg 97.1

Bupa 69.6
Heart 81.3

Ionosphere 89.6
Pima 74.5
Sonar 76.2

Wdbc Mangasarian and Wolberg 97.5
Wpbc Mangasarian and Wolberg 78.0

Table 5.14: Accuracy with SVM K-lin approach.

5.5 Final comments over the results

An accurate analysis of the experimental results could raise some doubt about the

correctness of the accuracy values, for classical SVM with Gaussian kernel, reported

in the various tables of this work. The given accuracies are not everywhere identical.

Actually, the results slightly differ because of the procedure used to obtain them:

accuracies reported in the present chapter are means of 3 final accuracy values ob-

tained with relative optimal parameters setting; accuracies reported in Appendix A

are values obtained varying the training-test set division and using a offline set pa-

rameters couple (C, γ); accuracies reported in Appendix C are values obtained testing

all the 25 possible parameters couples (C, γ).

Similar considerations can be done for accuracies of classical SVM with linear

kernel.

In other words, it is perfectly reasonable that the reported accuracies vary slightly

between them.
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Dataset value of S Final accuracy

Australian

1 83.9
10 84.1
100 83.3
1000 84.1

Breast Mangasarian and Wolberg

1 96.9
10 96.4
100 96.4
1000 96.4

Bupa

1 62.8
10 59.6
100 57.1
1000 62.8

Heart

1 80.7
10 77.4
100 73.7
1000 77.0

Ionosphere

1 88.1
10 88.1
100 87.7
1000 87.7

Pima

1 71.7
10 72.4
100 71.7
1000 71.7

Sonar

1 72.0
10 61.9
100 54.5
1000 54.5

Wdbc Mangasarian and Wolberg

1 96.5
10 96.9
100 96.3
1000 96.3

Wpbc Mangasarian and Wolberg

1 76.3
10 76.8
100 75.7
1000 75.7

Table 5.15: Accuracy with SVM K-lin wINT approach.



Chapter 6

Software

6.1 Used software

6.1.1 CPLEX

IBM ILOG CPLEX Optimization Studio (often informally referred to simply as

CPLEX) is an optimization software package.

The CPLEX Optimizer was named after the simplex method as implemented

in the C programming language, although today it provides additional methods for

mathematical programming and offers interfaces other than just C. It was originally

developed by Robert E. Bixby and was offered commercially starting in 1988 by

CPLEX Optimization Inc., which was acquired by ILOG in 1997; ILOG was subse-

quently acquired by IBM in January 2009. CPLEX continues to be actively developed

under IBM [3].

CPLEX represents one of the most efficient software application, among those we

can find nowadays, created to solve LP and mixed-integer problems.

Precisely, this software enables the user to:

� Solve linear programming problems, even with thousands of variables and con-

straints, through the simplex algorithm (using either primal or dual variants)

and the barrier method;

� Solve integer programming problems, through procedures based on implicit enu-

meration (i.e. branch and bound);

� Solve quadratic (mixed-integer) problems.

There are two possible ways to interact with CPLEX:

� Writing a linear (integer) programming model in a text file, in the so-called LP

format, directly by the user or through a proper software (i.e. GAMS, AMPL,

OPL), that is then passed to the solver;
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� Using the API of the solver, implementing an interface through source code.

We choose the first alternative, that allows for a better check and debug of the

misclassification.

6.1.1.1 Command line code

Since we use the interactive mode, we have to deal with some instructions that enable

us to run properly the solver software giving the CPLEX LP file as input (this file

format will be described in section 6.1.1.2).

First of all, from the command prompt on a UNIX/Linux system, we have to

move to the parent directory that contains the executable file of cplex. The run of

the program through the command

cplex

enables us to enter a CPLEX command prompt : the bash shell should change to

CPLEX>

We are now ready to submit the .lp file which contains the PL/PLI problem to be

optimized. In the following we will see the basic commands to obtain the optimized

solution we need (see [3] for all the other options about the use of the system).

With

read filemodel.lp

we let the system read the problem.

With

opt

we let the system start the branch-and-bound/branch-and-cut optimization of the

problem.

With

write filesolution.sol

we let the system write the solution file into the same directory where the program

is installed.

With

quit

we let CPLEX quit and return to the operating mode.

In figure 6.3, an example of interaction with CPLEX from the command shell is

given.
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Some additional settings

During the optimization phase of CPLEX, some parameters or optimization options

can be set.

We will give all the relative details when talking about specific optimization runs

for the each specific problem.

6.1.1.2 lp file format

This file format is one of those accepted in input by CPLEX software.

CPLEX LP format is intended for coding LP/MIP problem data. It is a row-

oriented format that assumes the usual formulation of LP/MIP problem.

CPLEX LP file is a plain text file coded using the CPLEX LP format.

Figure 6.1: Example of CPLEX LP file.

The fundamental components of a CPLEX LP file are

Objective function definition (mandatory): it must appear at the be-

ginning of the file and must be introduced by the keyword

MINIMIZE

or

MAXIMIZE

followed by the function to be optimized;

Constraints section (mandatory): it is introduced by the keywords

SUBJECT TO

followed by a constraint in one or more rows, where the constant

term appears to the right;

Bounds section (optional, when not specified we intend every variable

to be nonnegative): it is introduced by the keyword

BOUNDS

followed by a bound specification for each variable on a new row;

Variables specification section (optional): it is introduced by the key-

word
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GENERAL

or

BINARY

or

INTEGER

followed by the list of the relative variables;

Termination keyword (mandatory):

END.

In figure 6.1, we can see an example of a CPLEX LP file for a small PL model.

6.1.1.3 .sol file format

This is the format of files produced in output by CPLEX: they contain lots of in-

formation about the solution of the LP model, like variables values at the optimal

solution, number of iterations, bounds value to the solution at each iteration, quality

of the solution, number of nodes of the solution tree processed and so on . . .

In figure 6.2 we can see an example of that kind of file.

Figure 6.2: Example of CPLEX output file.
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Figure 6.3: Example of use of CPLEX interactive optimizer.
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6.1.2 SVMlight

SVMlight is an implementation of Support Vector Machines in C code, developed by

Thorsten Joachims [5].

The main features we are interested in, for this thesis work, are the following:

� fast optimization algorithm

– working set selection based on steepest feasible descent

– caching of kernel evaluations

– use of folding in the linear case

� classification problems resolution

� support for standard kernel functions

SVMlight is an implementation of Vapnik’s Support Vector Machine for the problem

of pattern recognition, for the problem of regression, and for the problem of learning

a ranking function. The optimization algorithms used in SVMlight are described in

[Joachims, 2002a].

SVMlight consists of a learning module, called svm learn, and a classification mod-

ule, called svm classify. The classification module can be used to apply the learning

module to new examples.

For the running of the cited modules see section 6.1.2.1.

6.1.2.1 SVMlight installation and use

There are several ways of using SVMlight . They are all described in [20].

One of those possibilities is to download, in a UNIX/Linux environment, the

binary code for both the modules that compose SVMlight .

Opening a terminal shell and moving to the directory where we saved the binaries

and the input files, we just have to run first the learning module typing

svm learn [options] filetrain filemodel

For the whole list of available options see [5].

The options we used in our work are:

[-t] integer (kernel type selector – 0:default-linear, 1:polynomial, 2:Gaus-

sian)

[-g] float (value of gamma parameter for Gaussian kernel)

[-c] float (value of C parameter for quadratic optimization model)

[-a] string (file with λ values to be written)
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The input file filetrain contains the training examples.

The result of svm learn is the model which is learned from the training data in

filetrain. The model is written to filemodel. To make predictions on test examples,

svm classify reads this file.

We can run the classification module typing

svm classify [options] filetest filemodel filesolution

For the whole list of available options see [5].

The test examples in filetest are given in the same format as the training ex-

amples.

For all test examples in filetest the predicted values are written to filesolution.

There is one line per test example in filesolution containing the value of the de-

cision function on that example. This value represents the signed sum computed by

the classifier

sign

[
m∑
i=1

yiλ
∗
iK(x,xi) + b∗

]

with the parameters values and the kernel values obtained though the run of svm learn

module.

The related class for each test item is the signed of the associate value stored in

filesolution.

In figure 6.4, an example of interaction with SVMlight from the command shell.

Figure 6.4: Example of use of the modules svm learn and svm classify of SVMlight .
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6.1.2.2 SVMlight file format

This file format is the one that is accepted in input by SVMlight software.

Each of the lines in input files represents one training example and is of the format

in figure 6.5:

Figure 6.5: Pattern line of SVMlight input files.

Where:

� target represents the class the item belongs to

� feature represents the ordered index number of the relative feature whose value

is given by

� value pairs (feature:value) where value = 0 can be skipped

Below in figure 6.6 we can see an example of such a line.

Figure 6.6: Example line of SVMlight input files.
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6.1.3 LIBSVM

In this work we decided also to use another software, that can be directly downloaded

from the internet: LIBSVM.

Despite of the fact that we have already used SVMlight to realize classification, we

decided to have another comparison term, to test the correctness of our results.

We choose LIBSVM for its use simplicity, as we will see in the following.

LIBSVM is an integrated software for support vector classification, (C-SVC, nu-

SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM)

developed by Chih-Chung Chang and Chih-Jen Lin [23].

LIBSVM can be simply used through a Python script that makes everything

automatic, from data scaling to parameter selection.

LIBSVM provides a simple interface where users can easily link it with their own

programs. Some of the features of LIBSVM we are interested in include:

� Cross validation for model selection

� Probability estimates

� Various kernels (including precomputed kernel matrix)

6.1.3.1 LIBSVM installation and use

There are several ways of using LIBSVM. They are all described in [23].

One of those possibilities is to download, in a UNIX/Linux environment, the

Python script and the C++ source code that permits to realize classification.

To use this script, it is mandatory to install, always in a UNIX/Linux environment,

Python and gnuplot.

Opening a terminal shell and moving to the directory where we saved the Python

script, we just have to run it:

./easy filetrain [filetest]

For the whole list of available options see [23].

The options we used in our work are:

[-t] integer (kernel type selector – 0:default-linear, 1:polynomial, 2:gaus-

sian)

[-g] float (value of gamma parameter for gaussian kernel)

[-c] float (value of C parameter for quadratic optimization model)

[-a] string (file with λ values to be written)

The input file filetrain contains the training examples. The input file filetest

contains the test examples.
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Figure 6.7: Example of use of the LIBSVM Python script.

In figure 6.7, an example of interaction with LIBSVM from the command shell.

The outputs produced are the accuracies on the testset, in a file named filetrainoutput.txt,

.log files and a graphical interpretation of classification at the variation of the used

parameters (an example in figure 6.8).

Figure 6.8: Example of a graphical classification representation obtained with LIB-
SVM.
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6.1.3.2 LIBSVM file format

This file format is the one that is accepted in input by LIBSVM software.

This data format is exactly the same accepted in input by SVMlight software, so

see 6.1.2.2.
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6.1.4 R

The most-widely known and used software to perform Wilcoxon test is R.

R is a language and environment for statistical computing and graphics. It is a

GNU project which is similar to the S language and environment which was developed

at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers

and colleagues.

R provides a wide variety of statistical (linear and nonlinear modelling, classical

statistical tests, time-series analysis, classification, clustering, . . . ) and graphical

techniques, and is highly extensible.

One of R’s strengths is the ease with which well-designed publication-quality plots

can be produced, including mathematical symbols and formulas where needed. Great

care has been taken over the defaults for the minor design choices in graphics, but

the user retains full control.

R is available as Free Software under the terms of the Free Software Founda-

tion’s GNU General Public License in source code form. It compiles and runs on a

wide variety of UNIX platforms and similar systems (including FreeBSD and Linux),

Windows and MacOS.

There are two possible ways of using R:

� as a programming language, that has its own libraries to be linked;

� in interactive way.

6.1.4.1 Command line code

Since we use the interactive alternative, we have to deal with some instructions that

enable us to run properly the software to realize the statistical computations we need.

The run of the program through the command

R

enables us to enter a R command prompt : the bash shell should change to

R>

We are now ready to type three simple commands that perform the Wilcoxon

test.

With

a = c(x1,x2,...,xn)

We submit the first array of percentage accuracies.

With
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b = c(y1,y2,...,yn)

We submit the second array of percentage accuracies.

With

wilcox.test (a,b, paired=TRUE)

We let the system performs the test – defining that the null hypothesis is that the

methods compared are equal.

Since R provides also the commands for redirect input and output, we chose this

quick alternative.

The previously described commands are written, one for line, in a .txt file, for

example the accur for Wilcoxon.txt in figure 6.9.

Figure 6.9: Example of LIBSVM input file.

If we want the result of the performed test to be written in a file name, for example,

result Wilcoxon.txt, we just have to type:

R < accur for Wilcoxon.txt --no-save > result Wilcoxon.txt

Where --no-save is the default argument (that nevertheless must be declared) that

specifies not to save the R workspace at exit.

The output produced contains the lines in figure 6.10.

Figure 6.10: Significative output lines from R software for Wilcoxon test.
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6.2 Implemented software

In the following an overview about the software we needed to implement and execute

for our tests.

6.2.1 C source code

As we saw in section 6.1, we used software directly downloaded from the web.

The use of that software required the implementation of several programs, written

in C code, that enabled us to realize an adequate interface to the software itself.

In figure 6.11, we schematically take a vision of the whole procedure (that inte-

grates the use of implemented and downloaded software) which permits us to simulate

the overall operating process of the Support Vector Machines. And also, with some

proper changes, of other numerous variants, implemented in this thesis work, of the

classical problem.

The starting point of the whole procedure is represented by the dataset file,

that is the file containing the specific dataset directly downloaded from the UCI

Repository [21].

Dataset stored in the aforesaid repository have not got a predefined structure: in

general everyone has items and features saved in a different format.

Some have just numerical attributes, but however they can be stored in different

ways: an item for each line, with attributes separated by commas, or by hyphens,

or by tabs, or dots, and so on. Some other datasets have also categorical attributes:

they have to be converted in binary attributes as seen in 5.1. Other datasets contain

even literal attributes, that first of all have to be converted in categorical attributes

and then to numerical ones.

Parser 1

Parser 1 is an executable that “extracts” the dataset from its original format and

structures it in a particular format that is the same for all the datasets.

Between all the possible formats we chose the one that is accepted in input either

by SVMlight and by LIBSVM (see 6.1.2.2 for details). That way, we could also have

the possibility of making a debug of our code in the first phases of our experimentation

and also of comparing the final accuracies produced by our approaches with the ones

produced by these well known and reliable software.

Beside the formatting of the dataset, Parser 1, receiving in input a seed for the C

method srand(), produce also the random division of the dataset in the 7
10 training

and the 3
10 test set.
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Figure 6.11: Scheme flow for our SVM implementation.
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Pseudocode 6.1: Pseudocode for the extraction of n train different indexes between 0 and
n train-1.

1 init seed s
2 init array of different indexes el[n_train]
3 r = rand() % n_train
4 t_e = 0 // number of taken elements
5

6 whilewhilewhile (t_e < n_train)
7 found = false
8 forforfor (i from 0 to t_e -1)
9 ififif (el[i] == r)

10 found = true
11 breakbreakbreak
12 ififif (found == false)
13 el[t_e] = r
14 t_e++
15 r = rand() % n_train

Random indexes produced with the procedure in listing 6.1, are placed in ascend-

ing order. Then the lines with the corresponding number equal to each index are

extracted from the original dataset file and printed in a new file that represents the

training set, as described in listing 6.2.

Complementary indexes, at the same time, allow to extract the remaining dataset

items, which will form the test set.

Pseudocode 6.2: Pseudocode for the extraction of the training set from the dataset.

1 init training matrix t_m[n_train ][# feature]
2 c_r = 0 // number of the currently read row of the dataset
3 sc = 0 // index for scanning the array of random ordered indexes
4 line = read() //read a line of the dataset
5

6 whilewhilewhile (c_r < n_dataset)
7 ififif (c_r = el[sc])
8 forforfor (each feature k)
9 t_m[c_r][k] = feature k of line #c_r

10 c_r++
11 sc++
12 elseelseelse
13 c_r++
14 line = read()

Parser 1, according to [22], realizes also the normalization of the dataset items,

subtracting the mean and dividing by the standard deviation, both calculated on the

training set items.

Pseudocode 6.3: Pseudocode for the calculation of mean and standard deviation and for
the normalization of the training set.

1 init array of mean values of the attributes mean[# features]
2

3 forforfor (i from 0 to #features -1)
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4 forforfor (j from 0 to #n_train -1)
5 mean[i] = mean[i] + t_m[j][i]
6 mean[i] = mean[i]/ n_train
7

8 init array of standard deviations stdr_dev [# features]
9

10 forforfor (i from 0 to #features -1)
11 forforfor (j from 0 to #n_train -1)
12 stdr_dev[i] = stdr_dev[i] + (t_m[j][i] - mean[i])ˆ2
13 stdr_dev[i] = sqrt(stdr_dev[i]/( n_train -1))
14

15 forforfor (i from 0 to #features -1)
16 forforfor (j from 0 to #n_train -1)
17 t_m[i][j] = (t_m[i][j] - mean[i])/ stdr_dev[i]

In progress, during the experimentations, Parser 1 has been further complicated

in order to realize also the division of the training set in the 5 folds to be used during

5-fold cross validation (the procedure is similar to the one described in pseudocode

6.1 and 6.2).

ModelConstructor

ModelConstructor is the executable that constructs the mathematical model in .lp

file format, the one accepted in input by CPLEX (for details see 6.1.1.2).

Obviously lots of model constructors have been implemented because each differ-

ent mathematical model we tested is formatted by a different code.

The constructor, in order:

� Reads the training set;

� Constructs the relative kernel matrix (pseudocode in listing 6.4);

� Computes the coefficients of the objective function and the bounds;

� Formats the relative .lp model (pseudocode in listing 6.5).

Pseudocode 6.4: Pseudocode for the computation of the kernel matrix.

1 init kernel matrix k[n_train ][ n_train]
2 init gamma // parameter of Gaussian kernel
3

4 forforfor (i from 0 to n_train -1)
5 forforfor (j from 0 to n_train -1)
6 sum = 0
7 forforfor (k from 0 to #features -1)
8 sum = sum + (t_m[j][k] - t[i][k])ˆ2
9 sum = - sum * gamma

10 k[i][j] = exp(sum)
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Pseudocode 6.5: Pseudocode for formatting the .lp file.

1 print to .lp ’’MINIMIZE\n’’
2 print to .lp ’’OBJ: ’’
3 forforfor (i from 0 to n_train -1)
4 print to .lp ’’ + C x_i’’
5 forforfor (i from 0 to n_train -1)
6 forforfor (j from 1 to n_train -1)
7 ififif (i==0)
8 ififif (i==j)
9 ififif (coeff[i][j] > 0)

10 print to .lp (’’[%lf a_iˆ2 ’’, coeff[i][j])
11 elseelseelse ififif (coeff[i][j] < 0)
12 c = - coeff[i][j]
13 print to .lp (’’[ - %lf a_iˆ2 ’’, c)
14 elseelseelse
15 ififif (coeff[i][j] > 0)
16 print to .lp (’’+ %lf a_i*a_i ’’, coeff[i][j])
17 elseelseelse ififif (coeff[i][j] < 0)
18 c = - coeff[i][j]
19 print to .lp (’’ - %lf a_i*a_i ’’, c)
20 elseelseelse ififif (i==n_train -1)
21 ififif (i==j)
22 ififif (coeff[i][j] > 0)
23 print to .lp (’’+ %lf a_i ˆ2]\2’’, coeff[i][j])
24 elseelseelse ififif (coeff[i][j] < 0)
25 c = - coeff[i][j]
26 print to .lp (’’- %lf a_i ˆ2]\2’’, c)
27 elseelseelse
28 ififif (i==j)
29 ififif (coeff[i][j] > 0)
30 print to .lp (’’+ %lf a_iˆ2 ’’, coeff[i][j])
31 elseelseelse ififif (coeff[i][j] < 0)
32 c = - coeff[i][j]
33 print to .lp (’’- %lf a_iˆ2’’, c)
34

35 print to .lp ’’SUBJECT TO:\n’’
36 forforfor (i from 0 to n_train -1)
37 print to .lp (’’V%d:\n’’, i+1)
38 forforfor (j from 0 to n_train -1)
39 print to .lp (’’+ %lf a_i ’’, coeff[i][j])
40 ififif (y[i]>0)
41 print to .lp (’’+ b + x%d >= 1\n’’, i+1)
42 elseelseelse
43 print to .lp (’’+ b + x%d >= 1\n’’, i+1)
44

45 print to .lp ’’BOUNDS :\n’’
46 print to .lp ’’b free’’
47

48 print to .lp ’’END’’

Parser 2

Parser 2 is an executable that “extracts” from .sol file produced in output by

CPLEX (for details see 6.1.1.2) just the variables that are used in the classifier, that

is, the optimal Λ∗ and b∗ produced with the optimization software.
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Pseudocode 6.6: Pseudocode for the extraction of variables indexes and values from .sol file.

1 to_be_found = ’’variables ’’
2 line = readline () //read a line from .sol file
3 init file_index
4 init file_values
5

6 whilewhilewhile (line != NULL)
7 search to_be_found in line
8 ififif found
9 whilewhilewhile (line is not ended)

10 search variable name
11 ififif (name == b)
12 search variable value and write in file_b
13 elseelseelse ififif (name = a)
14 search variable number and write in file_index
15 search variable value and write in file_values
16 line = read(line)
17

18 init array forforfor variables alpha[n_train]
19 forforfor (i from 0 to n_train -1)
20 ind = read(file_index)
21 val = read(file_values)
22 alpha[ind -1] = val

Classifier
Classifier is an executable that implements the classifier

sign

[
m∑
i=1

yiλ
∗
iK(x,xi) + b∗

]
(6.1)

on the test set points, x.

The Classifier, in sequence:

� Calculates the kernel matrix (with a procedure similar to that in listing 6.4, but
this time using both training and test set items);

� Implements (listing 6.7) the classification procedure described by equation (6.1);

� Compares, for each test set item, the predicted class with the real one, known
in advance;

� Based on the number of misclassifications committed, computes the final accu-
racy on the test set (listing 6.8).

Pseudocode 6.7: Pseudocode for the calculation of the predicted classes for test set items.

1 init the test set item classes y1[n_test]
2 init the training set item classes y[n_train]
3 init the kernel matrix k[n_test ][ n_train]
4 init the array forforfor each item classification sum[n_test]
5 init the array forforfor each item predicted class sign[n_test]
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6

7 forforfor (i from 0 to n_test -1)
8 sum[i] = 0
9 forforfor (j from 0 to n_train -1)

10 sum[i] = sum[i] + k[i][j]*alpha[j]*y[j]
11 sum[i] = sum[i] + b
12 ififif (sum > 0)
13 sum[i] = 1
14 elseelseelse
15 sum[i] = -1

Pseudocode 6.8: Pseudocode for the computation of the accuracy.

1 init the test set item classes y1[n_test]
2 acc = 0
3

4 forforfor (i from 0 to n_test -1)
5 ififif (y1[i] == sign[i])
6 acc++
7

8 final_accuracy = (acc/n_test )*100

6.2.2 Scripts

The tests performed in our experimentation require to repeat the whole procedure

several times.

As a matter of fact, we have to remember that every single accuracy obtained

in our experimentation is the mean value of three accuracies derived from a whole

procedure of 5-fold cross validation (5 iterations per parameters setting, the most of

the times we worked combining the simultaneous try of two parameters in a set of 5

values – that is, for each cross validation there are 25 executions, for a total of 125

sequential executions).

What we want to say is that it was necessary to implement proper scripts that

enable us to start just a single time the whole procedure and not to lose time compiling

and executing several times our codes.

Two examples of scripts, respectively for the realization of the SVM approach and

for the comparison between SVM approach and A1B0 approach on the dataset Heart

are given in Appendix D.

6.2.3 Hardware specifications

Tests have been performed on a machine Intel(R) Core(TM) i7-2670QM CPU @

2.20GHz, and 4GB RAM.
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6.3 Instructions for compilation and execution of C source
code

First of all we will describe the structure of directories and subdirectories for saving,

compiling and executing all the source code implemented in this thesis project.

Secondly we will give some instructions for the use of the source code.

6.3.1 Directories structure

To compile and execute properly the source code implemented in our work, the fol-

lowing directories structure has to be created:

> CODES/

> File txt/

> Accuracy/

> Alpha/

> Dataset/

> PerSVMlight/

> SCRIPTS/

> 50 A1B0/

> 50 SVMlight/

> SVM aINT/

> SVM aAll TV/

> SVM K-gauss/

> SVM K-lin/

> SVM K-lin wINT/

> SVM Mixed/

> SVM MixedMu/

> SVM TV/

> SVM TV aINT/

> OUTPUT/

Where

� 50 A1B0/: refers to the realization of A1B0 approach;

� 50 SVMlight/: refers to the realization of SVM approach;
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� SVM aINT/: refers to the realization of classification using a INT model ;

� SVM aAll TV/: refers to the realization of classification using aAll TV model ;

� SVM K-gauss/: refers to the realization of classification using K-gauss model ;

� SVM K-lin/: refers to the realization of classification using K-lin model ;

� SVM K-lin wINT/: refers to the realization of classification using K-lin wINT

model ;

� SVM Mixed/: refers to the realization of classification using Mixed model ;

� SVM MixedMu/: refers to the realization of classification using MixedMu model ;

� SVM TV/: refers to the realization of classification using TV model ;

� SVM TV aINT/: refers to the realization of classification using TV a INT model ;

6.3.2 Where to save files

All the datasets, in the original format from UCI Repository, has to be saved in the

directory Dataset/ as

dataset <DATASET NAME>.txt

In the directory CODES/ have to be saved:

� C source codes: *.c files

� parameters for CPLEX: *.dat files

The directory containing the scripts, as we can see, is articulated in a set of

subdirectories, one for each of the mathematical models we tested.

There is a specific script, with proper parameters, for each dataset and for each

model to be tested1.

If the script subdirectory is, for example, SVM K-lin/, scripts named

throws<DATASET NAME> SVM K-lin.sh

have to be saved inside it.

If the subdirectory is SVM TV/, scripts named

throws<DATASET NAME> SVM TV.sh

have to be saved inside it.

And so forth for all the other scripts to be saved in all the other subdirectories of

directory SCRIPTS.

1A further work to be done could be to unify all the scripts for a model in a single script.
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6.3.3 How to make the code work

Source code has been implemented and executed on a Linux environment, so correct-

ness and efficacy of the following instructions for the code execution is guaranteed

only for this type of platform.

6.3.3.1 Prerequisites

CPLEX

All the scripts, except the ones in directory 50 SVMlight/ and in directory 50 A1B0/,

requires the previous installation of the interactive CPLEX optimization solver (for

details see 6.1.1).

Notice that, reading a script, we can see that CPLEX is called typing

cplex

instead of

./cplex

That means that the execute permission for CPLEX has to be previously extended

to all.

This can be done typing, by the command prompt after moved to the directory

containing its executable

chmod a+x cplex

SVMlight

All the scripts in directory 50 SVMlight/ requires the previous installation of SVMlight

software (for details see 6.1.2).

Notice that, reading a script, we can see that module svm learn is called typing

svm learn

instead of

./svm learn

That means that the execute permission for svm learn has to be previously extended

to all.

This can be done typing, by the command prompt after have moved to the direc-

tory containing its executable

chmod a+x svm learn

The same considerations and consequent procedure above apply to module svm classify.
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6.3.3.2 Instructions for scripts runs

The organization of the source code has been thought with the aim of reducing the

number of programs to be used, trying to adopt a modular approach in the imple-

mentation of the code itself.

Conversely, the organization of the scripts is probably redundant, but permits to

have the total control over the specific codes execution.

In the following an example to clarify the use of the scripts.

First of all we have to make all the scripts executable. This can be done, from a

command prompt, moving to the directories where we can find the scripts and typing

chmod +x <SCRIPT NAME>

If we want to know the final mean accuracy for Ionosphere dataset, produced by

the classification approach based on the so-called TV model, we just have to move

with the command prompt to SCRIPTS/SVM TV/ directory and type

. ./throwsIONOSPHERE SVM TV validation.sh > outputfile.txt

This way, all the outputs produced by the optimization of CPLEX and eventually by

the execution of codes are redirected to an output file that can be use for controls

and debugs.

The final accuracy will be printed in a file named

Accuracy.txt

in directory OUTPUT/.



Conclusions and future
perspectives

This thesis work involved a particularly intense effort and dedication. It represented

for the student a challenge in the use and the acquisition of familiarity with new

software tools and new programming procedures.

We started our analysis from documentation about the theoretical foundations of

the functionality of Support Vector Machines. And we faced a practical experience

with SVM software tools like SVMlight and LIBSVM.

Afterwards, we first provided the global software implementation (comprehensive

of C programs, bash scripts and the use of CPLEX as interactive optimizer) that

allowed us to emulate a classic SVM, either with Gaussian or linear kernel. Starting

from its use we could perform a detailed investigation (that required several tests) of

the behaviour of its variables, which are determined by the resolution of an optimiza-

tion method and realize the final classification. That enabled us to confirm that the

behaviour of the system could suffer for the overfitting phenomenon. Knowing that,

we planned and implemented several alternative approaches, all aimed at ensuring a

functionality with less overfitting.

We observed, first of all, that the proposed approaches, which are alternative to

the classic SVM approach with Gaussian kernel, globally guarantee performances that

are equivalent, in terms of accuracy, to the ones produced by SVM approach itself.

Secondly, we understood that the performances of the overall functionality of a

SVM depends on three factors: the optimization model, the kernel type and the trial-

and-error validation of the parameters setting. In this context our analysis pointed

out that the Gaussian kernel tends to act like a good classifier by itself, characteristic

that considerably limits the rooms for improvement that we could think to achieve

acting on the remaining two factors.

Then we evaluated the entity of the superiority, in terms of accuracy, of the SVM

approach towards the one based just on the use of the final SVM classifier. In the

last one the variables values are fixed a priori in such a way to consider each point

in the system to give the same information for the classification of new items. This

evaluation allowed us to validate our thesis about the good nature of the Gaussian
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kernel as a classifier by itself: we observed an overall loss lower than the 6% of the

simplified approach towards the SVM one; besides, we noticed a bigger loss when

replicating the same comparison with the use of linear kernel.

Eventually, we terminated our analysis with the investigation of the behaviour of

linear kernel. The information collected during the previous experimentations tells us

that the use of this type of kernel surely permits more rooms for improvement. The

tests on linear kernel, aimed again to the reduction of overfitting, were performed at

the end of this thesis work. That was actually just a first attempt, that we could not

deepen for reasons of time.

At the end of our work some hints for future researches can be given: we think

that the same experimental tests conducted for Gaussian kernel, using alternative

mathematical models, can be replicated also for linear kernel with hopeful improve-

ments of the global performances. We suggest also to act with further modifications

on the simplified approach based on the use of the classifier without any kind of op-

timization and validation procedures: with the proper adaptations it could become a

valid alternative to the computationally expensive SVM approach, with comparable

accuracy but much less computational effort.



Appendix A

Detailed results for tests
described in section 5.2

In the following we report the detailed results obtained, for each dataset instance,

for the comparison of SVM approach towards A1B0 approach with Gaussian kernel.

The description of the tests is given in section 5.2.

For SVM approach, sparsity is defined as the number of zero component of the

vector Λ; its value is always 0% for A1B0.
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Adult
Seed SVM approach A1B0 approach SVM sparsity
1 81.70 74.64 35.92
2 81.72 75.35 36.04
3 81.64 75.43 36.09
4 81.32 74.99 36.24
5 81.35 74.59 36.54
6 81.66 74.82 36.04
7 82.65 76.02 35.60
8 81.73 74.65 35.83
9 81.18 74.75 36.16
10 81.28 75.69 35.53
11 81.91 75.41 35.39
12 81.22 74.72 36.04
13 82.66 75.98 35.70
14 82.24 75.38 35.87
15 82.38 75.08 35.48
16 81.61 74.90 36.07
17 82.06 75.25 35.73
18 81.91 75.25 36.28
19 81.69 75.32 35.81
20 82.23 75.72 35.54
21 81.85 74.92 36.38
22 81.69 75.08 36.26
23 81.50 74.46 35.95
24 81.87 75.04 36.32
25 81.39 75.23 36.25
26 81.94 75.20 36.16
27 81.62 74.66 35.97
28 80.99 74.35 36.65
29 81.69 75.00 36.28
30 81.47 74.71 36.32
31 82.21 75.32 35.92
32 81.98 74.89 35.64
33 82.05 74.82 36.00
34 81.98 74.89 35.54
35 82.17 75.17 35.74
36 81.86 75.86 36.05
37 81.61 75.06 36.35
38 82.56 75.41 35.69
39 81.68 75.64 36.02
40 81.65 75.36 36.05
41 81.43 75.27 35.95
42 81.64 74.67 35.98
43 81.26 75.15 36.23
44 81.55 74.83 36.24
45 81.44 74.64 36.24
46 82.23 75.30 36.16
47 81.63 74.83 36.19
48 82.07 75.15 35.62
49 81.63 75.35 35.93
50 82.54 75.40 35.79
µ 81.79 75.11 35.99
σ 0.39 0.38 0.28

Table A.1: Comparison table for dataset Adult.
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Australian
Seed SVM approach A1B0 approach SVM sparsity
1 77.78 76.33 16.77
2 83.09 85.99 17.39
3 83.57 79.71 16.77
4 78.26 81.64 16.15
5 82.61 85.02 17.18
6 83.57 84.54 17.60
7 79.71 82.61 16.36
8 85.51 84.54 14.29
9 85.51 81.64 16.98
10 83.57 86.47 14.49
11 78.26 84.06 15.94
12 85.02 86.47 15.11
13 81.16 85.99 12.22
14 85.51 83.57 16.15
15 82.61 84.06 13.04
16 83.09 85.02 15.94
17 82.13 83.57 15.11
18 81.16 82.61 16.56
19 85.02 85.99 15.72
20 76.81 81.64 15.94
21 84.06 85.02 15.32
22 84.54 85.02 15.32
23 80.68 80.19 16.77
24 81.64 83.09 16.98
25 81.64 83.09 15.94
26 81.64 83.57 12.42
27 78.74 82.13 13.87
28 85.02 81.64 14.91
29 85.02 84.06 16.15
30 80.19 78.74 17.39
31 79.71 82.13 15.94
32 79.23 79.71 14.91
33 82.13 82.61 16.56
34 84.06 85.99 12.42
35 85.99 85.51 15.53
36 85.51 86.96 14.29
37 87.44 88.41 15.11
38 76.81 82.61 16.98
39 84.54 85.02 13.04
40 80.19 82.13 14.29
41 85.99 87.44 16.77
42 81.16 79.23 16.36
43 82.13 83.57 12.63
44 84.06 82.61 15.11
45 85.51 86.47 16.15
46 85.02 88.41 13.87
47 84.54 83.09 16.15
48 86.47 83.57 16.98
49 85.51 84.54 15.73
50 85.99 86.47 16.14
µ 82.78 83.69 15.51
σ 2.74 2.51 0.42

Table A.2: Comparison table for dataset Australian.
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Breast Mangasarian and Wolberg
Seed SVM approach A1B0 approach SVM sparsity
1 97.07 91.22 85.15
2 97.07 89.76 86.40
3 97.56 93.66 84.10
4 98.05 90.73 84.73
5 96.10 87.80 86.82
6 96.59 88.29 86.19
7 96.59 90.24 84.94
8 97.56 87.80 84.94
9 97.56 89.27 85.78
10 98.05 92.68 82.43
11 96.59 89.27 86.61
12 95.61 86.34 86.40
13 98.05 90.24 83.89
14 97.56 89.76 84.10
15 96.59 89.76 85.98
16 96.59 85.37 85.77
17 97.07 90.24 85.98
18 99.02 93.17 82.22
19 95.61 92.20 86.82
20 97.56 93.66 84.73
21 96.10 91.22 85.77
22 96.59 91.71 85.98
23 97.56 92.20 83.68
24 97.07 88.29 85.36
25 97.07 92.68 84.73
26 97.07 89.76 85.98
27 96.10 92.68 84.52
28 96.59 87.80 85.77
29 95.61 89.76 86.61
30 95.61 87.32 85.98
31 97.56 89.27 83.68
32 97.56 90.24 84.94
33 96.59 88.29 85.77
34 97.56 89.76 85.36
35 96.10 90.24 85.36
36 94.63 90.24 85.15
37 96.10 92.68 85.77
38 98.05 89.27 83.89
39 97.56 92.20 84.31
40 95.61 89.27 87.03
41 98.54 92.20 84.31
42 96.59 94.15 85.77
43 96.10 92.20 84.94
44 97.07 86.83 85.36
45 96.10 89.76 84.52
46 97.07 90.24 85.15
47 95.61 90.24 85.98
48 96.10 90.24 84.10
49 95.61 91.22 84.10
50 98.05 90.24 83.89
µ 96.84 90.27 85.15
σ 0.91 1.97 1.08

Table A.3: Comparison table for dataset Breast Mangasarian and Wolberg.
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Bupa
Seed SVM approach A1B0 approach SVM sparsity
1 67.31 53.85 22.41
2 67.31 52.88 23.24
3 73.08 61.54 19.92
4 63.46 54.81 22.82
5 75.00 62.50 20.33
6 64.42 56.73 22.82
7 67.31 50.00 21.16
8 70.19 55.77 19.50
9 72.12 59.62 19.50
10 73.08 54.81 18.67
11 67.31 57.69 22.82
12 74.04 59.62 16.18
13 75.00 60.58 18.67
14 66.35 59.62 22.40
15 70.19 66.35 19.50
16 72.12 58.65 18.67
17 72.12 60.58 20.33
18 69.23 53.85 18.26
19 68.27 58.65 21.16
20 71.15 63.46 21.16
21 68.27 58.65 19.09
22 74.04 61.54 19.92
23 68.27 67.31 21.16
24 72.12 61.54 22.82
25 74.04 60.58 19.50
26 72.12 61.54 17.01
27 68.27 60.58 21.58
28 72.12 56.73 20.75
29 62.50 62.50 24.07
30 67.31 58.65 22.41
31 75.00 54.81 16.60
32 73.08 51.92 19.09
33 75.96 56.73 19.92
34 76.92 58.65 19.50
35 69.23 54.81 23.24
36 59.62 48.08 25.31
37 67.31 56.73 23.65
38 71.15 58.65 21.16
39 72.12 62.50 22.41
40 68.27 62.50 22.82
41 64.42 52.88 24.07
42 76.92 59.62 16.60
43 76.92 63.46 17.43
44 67.31 54.81 22.41
45 75.00 64.42 16.60
46 71.15 56.73 20.33
47 70.19 59.62 20.33
48 73.08 61.54 19.92
49 72.12 64.42 19.92
50 72.12 62.50 16.60
µ 70.52 58.73 20.51
σ 3.90 4.11 2.25

Table A.4: Comparison table for dataset Bupa.
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German
Seed SVM approach A1B0 approach SVM sparsity
1 74.00 72.00 23.57
2 76.00 74.33 22.57
3 75.00 71.00 23.29
4 69.33 67.67 25.43
5 72.67 69.67 23.86
6 72.00 70.67 21.86
7 73.00 71.00 23.71
8 72.33 70.67 23.00
9 69.67 67.67 23.71
10 73.00 72.33 24.43
11 73.33 71.00 24.57
12 67.00 64.67 27.57
13 72.67 70.00 23.00
14 74.33 70.67 21.71
15 73.33 71.33 22.86
16 69.67 68.00 21.00
17 76.67 75.67 21.29
18 72.33 71.33 21.71
19 71.67 70.00 23.29
20 71.33 69.00 23.71
21 73.67 70.00 22.14
22 72.33 69.33 23.71
23 70.33 68.00 23.86
24 69.67 69.00 25.14
25 72.33 69.33 22.00
26 70.00 69.00 22.71
27 73.67 70.67 18.71
28 73.00 71.33 22.00
29 69.67 68.00 24.86
30 73.67 71.00 21.14
31 74.33 73.00 22.42
32 72.67 70.33 22.00
33 73.00 69.33 24.00
34 71.67 70.00 24.43
35 69.00 65.33 25.00
36 64.67 63.67 24.86
37 68.67 67.00 22.57
38 70.33 70.00 24.00
39 76.00 74.67 21.14
40 71.67 69.67 22.57
41 68.00 67.67 23.86
42 71.00 70.33 22.00
43 73.67 70.33 22.14
44 72.67 69.33 22.71
45 73.33 72.00 23.86
46 74.33 71.67 20.86
47 76.00 74.00 20.57
48 67.00 66.33 25.43
49 71.33 69.67 23.00
50 74.33 72.67 21.43
µ 72.03 70.03 23.03
σ 2.48 2.36 1.56

Table A.5: Comparison table for dataset German.
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Heart
Seed SVM approach A1B0 approach SVM sparsity
1 76.54 81.48 20.11
2 79.01 80.25 21.16
3 72.84 76.54 22.22
4 85.19 87.65 19.05
5 79.01 83.95 20.63
6 79.01 82.72 20.11
7 79.01 81.48 18.52
8 81.48 80.25 18.52
9 75.31 79.01 20.63
10 75.31 77.78 22.75
11 77.78 88.89 19.05
12 86.42 86.42 20.11
13 82.72 82.72 22.75
14 80.25 83.95 23.81
15 75.31 76.54 20.63
16 83.95 90.12 21.16
17 79.01 85.19 20.63
18 82.72 82.72 19.05
19 80.25 76.54 21.16
20 82.72 81.48 19.05
21 77.78 77.78 22.22
22 79.01 77.78 22.22
23 79.01 80.25 23.81
24 82.72 81.48 23.81
25 85.19 86.42 17.99
26 70.37 77.78 25.93
27 80.25 87.65 18.52
28 83.95 85.19 21.69
29 77.78 80.25 20.63
30 82.72 86.42 23.28
31 76.54 76.54 25.93
32 76.54 80.25 20.11
33 76.54 74.07 23.28
34 76.54 77.78 25.40
35 76.54 79.01 21.69
36 77.78 82.72 21.69
37 82.72 81.48 22.75
38 80.25 79.01 21.69
39 81.48 85.19 22.75
40 85.19 81.48 21.69
41 83.95 86.42 20.11
42 87.65 90.12 19.05
43 79.01 81.48 21.16
44 76.54 74.07 23.28
45 77.78 81.48 21.69
46 80.25 82.72 22.22
47 86.42 88.89 16.93
48 76.54 79.01 24.34
49 81.48 80.25 23.81
50 77.78 80.25 25.40
µ 79.80 81.78 21.52
σ 3.67 4.04 2.12

Table A.6: Comparison table for dataset Heart.
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Ionosphere
Seed SVM approach A1B0 approach SVM sparsity
1 92.45 80.19 38.78
2 91.51 69.81 40.41
3 96.23 67.92 40.82
4 94.34 71.70 42.45
5 93.40 73.58 41.63
6 90.57 65.09 44.49
7 96.23 79.25 37.55
8 97.17 80.19 40.41
9 96.23 73.58 39.18
10 94.34 72.64 41.63
11 94.34 77.36 40.82
12 98.11 69.81 38.78
13 95.28 65.09 42.45
14 93.40 75.47 40.41
15 92.45 66.98 44.90
16 92.45 72.64 41.63
17 92.45 67.92 46.12
18 96.23 78.30 37.55
19 96.23 74.53 42.63
20 95.28 75.47 41.63
21 93.40 76.42 42.45
22 89.62 76.42 42.45
23 89.62 74.53 41.63
24 96.23 77.36 42.04
25 95.28 72.64 38.37
26 94.34 71.70 39.59
27 92.45 80.19 40.82
28 92.45 70.75 43.67
29 94.34 75.47 41.22
30 92.45 66.98 43.67
31 94.34 74.53 42.04
32 95.28 69.81 40.00
33 94.34 78.30 41.63
34 94.34 76.42 38.78
35 93.40 71.70 40.82
36 95.28 74.53 37.96
37 96.23 72.64 42.04
38 92.45 67.92 42.04
39 92.45 80.19 39.59
40 96.23 71.70 40.41
41 95.28 71.70 41.63
42 92.45 76.42 42.45
43 90.57 78.30 37.96
44 95.28 75.47 41.63
45 98.11 73.58 38.37
46 96.23 82.08 39.18
47 90.57 68.87 44.90
48 94.34 70.75 39.59
49 90.57 61.32 42.04
50 91.51 67.92 42.86
µ 93.96 73.28 41.12
σ 2.14 4.59 1.99

Table A.7: Comparison table for dataset Ionosphere.
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Pima
Seed SVM approach A1B0 approach SVM sparsity
1 74.46 67.97 46.18
2 72.73 69.26 44.13
3 75.32 65.37 43.76
4 77.49 68.83 41.34
5 75.32 66.23 42.27
6 76.62 64.07 44.69
7 74.03 64.94 45.44
8 76.19 64.94 45.07
9 76.19 67.10 42.83
10 73.59 61.90 44.51
11 76.19 72.29 40.41
12 80.09 68.40 40.41
13 76.62 70.56 42.64
14 78.35 64.94 42.27
15 76.19 68.40 43.20
16 74.03 60.61 43.02
17 75.32 65.80 42.27
18 71.43 56.28 48.60
19 75.32 67.10 43.95
20 73.16 66.67 40.97
21 72.73 66.23 43.39
22 76.19 67.53 43.20
23 76.19 64.07 40.78
24 78.35 68.83 40.22
25 73.16 62.34 44.32
26 78.35 65.80 42.46
27 74.89 64.50 41.15
28 74.89 59.31 45.44
29 78.35 67.53 41.15
30 76.62 64.50 42.46
31 74.46 62.77 43.58
32 75.32 67.97 42.83
33 78.35 66.23 40.78
34 78.35 70.13 40.41
35 74.89 66.23 43.95
36 78.79 71.86 40.22
37 75.76 64.07 41.15
38 77.92 64.50 43.76
39 78.35 65.80 41.71
40 79.22 64.50 40.60
41 77.92 67.97 43.20
42 74.46 65.37 42.83
43 75.76 71.86 40.60
44 74.89 63.20 44.32
45 76.62 61.90 41.71
46 77.49 65.80 42.27
47 68.40 61.90 47.11
48 76.62 64.94 41.90
49 74.46 66.67 42.09
50 73.59 65.37 43.58
µ 75.80 65.83 42.82
σ 2.20 3.13 1.86

Table A.8: Comparison table for dataset Pima.
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Sonar
Seed SVM approach A1B0 approach SVM sparsity
1 65.08 85.71 0.69
2 63.49 77.78 0.69
3 60.32 82.54 1.38
4 58.73 82.54 0.69
5 60.32 90.48 0.00
6 63.49 80.95 1.38
7 65.08 88.89 0.00
8 49.21 71.43 0.69
9 65.08 88.89 0.69
10 63.49 84.13 2.07
11 57.14 85.71 0.69
12 63.49 82.54 0.00
13 47.62 84.13 0.69
14 68.25 88.89 0.69
15 52.38 80.95 1.38
16 42.86 80.95 0.69
17 50.79 82.54 0.00
18 60.32 90.48 0.00
19 61.90 85.71 0.00
20 61.90 84.13 0.69
21 57.14 76.19 0.69
22 66.67 90.48 0.69
23 69.84 88.89 0.69
24 50.79 77.78 0.69
25 46.03 77.78 0.00
26 66.67 87.30 0.69
27 63.49 77.78 0.69
28 53.97 74.60 1.38
29 50.79 79.37 0.69
30 65.08 90.48 0.69
31 57.14 90.48 1.38
32 58.73 87.30 1.38
33 74.60 88.89 0.69
34 55.56 85.71 0.00
35 53.97 80.95 0.69
36 63.49 82.54 0.69
37 55.56 77.78 0.69
38 63.49 85.71 0.00
39 66.67 90.48 1.38
40 50.79 80.95 0.00
41 58.73 71.43 0.00
42 60.32 85.71 0.00
43 68.25 87.30 0.00
44 74.60 80.95 0.00
45 66.67 87.30 0.00
46 55.56 82.54 0.69
47 57.14 84.13 0.69
48 57.14 73.02 0.69
49 58.73 84.13 0.69
50 50.79 87.30 0.69
µ 59.59 83.49 0.61
σ 7.06 5.15 0.50

Table A.9: Comparison table for dataset Sonar.
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Wdbc Mangasarian and Wolberg
Seed SVM approach A1B0 approach SVM sparsity
1 97.08 91.23 56.17
2 97.66 96.49 53.40
3 94.15 92.98 55.67
4 97.66 97.08 54.41
5 95.91 94.15 54.66
6 98.25 94.74 55.16
7 95.32 92.98 56.42
8 95.32 95.91 53.90
9 94.74 91.81 52.90
10 97.08 95.32 53.40
11 97.66 90.64 53.15
12 95.91 90.06 55.16
13 98.25 97.08 55.42
14 94.15 96.49 55.92
15 94.15 93.57 54.91
16 97.66 89.47 55.16
17 94.74 93.57 54.16
18 97.08 92.98 55.67
19 95.91 93.57 54.66
20 94.15 94.15 56.68
21 91.23 88.30 58.19
22 95.32 92.98 55.16
23 97.66 88.89 55.16
24 94.74 92.40 53.90
25 90.06 91.23 56.42
26 95.32 91.81 54.91
27 96.49 91.81 54.91
28 95.91 90.64 55.42
29 92.40 90.06 54.41
30 95.32 94.74 54.41
31 95.32 92.40 54.66
32 96.49 90.06 54.91
33 94.74 96.49 53.65
34 93.57 94.15 54.41
35 95.91 89.47 55.92
36 97.08 93.57 55.16
37 95.91 89.47 56.17
38 92.40 91.81 56.93
39 96.49 90.64 54.16
40 96.49 91.23 55.16
41 98.25 94.74 55.16
42 94.15 87.72 56.42
43 92.40 91.81 55.67
44 92.98 92.40 55.42
45 95.32 87.13 56.42
46 97.66 95.32 54.41
47 95.91 94.74 54.16
48 95.32 94.74 55.16
49 96.49 94.74 55.16
50 95.91 94.15 55.42
µ 95.49 92.68 55.09
σ 1.88 2.51 1.04

Table A.10: Comparison table for dataset Wdbc Mangasarian and Wolberg.
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Wpbc Mangasarian and Wolberg
Seed SVM approach A1B0 approach SVM sparsity
1 74.58 74.58 9.63
2 77.97 79.66 9.63
3 77.97 79.66 8.89
4 79.66 77.97 9.63
5 69.49 69.49 8.89
6 77.97 81.36 9.63
7 77.97 79.66 5.93
8 77.97 79.66 11.11
9 72.88 72.88 11.11
10 81.36 83.05 8.89
11 76.27 76.27 12.59
12 69.49 69.49 15.56
13 72.88 72.88 12.59
14 83.05 83.05 3.70
15 76.27 79.66 8.89
16 79.66 84.75 8.15
17 69.49 72.88 13.33
18 67.80 69.49 11.11
19 77.97 77.97 11.85
20 71.19 74.58 14.07
21 79.66 77.97 10.37
22 71.19 72.88 11.11
23 67.80 67.80 7.41
24 67.80 67.80 7.41
25 71.19 69.49 16.30
26 77.97 74.58 8.15
27 79.66 77.97 6.67
28 74.58 76.27 7.41
29 67.80 69.49 8.15
30 71.19 69.49 10.37
31 71.19 72.88 10.37
32 69.49 72.88 11.85
33 67.80 69.49 11.11
34 83.05 83.05 9.63
35 84.75 84.75 8.15
36 81.36 81.36 8.15
37 88.14 86.44 5.19
38 72.88 72.88 8.15
39 77.97 79.66 9.63
40 74.58 74.58 6.67
41 74.58 76.27 7.41
42 77.97 81.36 7.41
43 77.97 77.97 10.37
44 76.27 76.27 11.11
45 72.88 74.58 10.37
46 69.49 71.19 11.85
47 72.88 74.58 10.37
48 66.10 66.10 9.63
49 77.97 77.97 8.15
50 76.27 79.66 8.15
µ 75.09 75.93 9.65
σ 5.06 5.04 2.44

Table A.11: Comparison table for dataset Wpbc Mangasarian and Wolberg.
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A statistical tool: Wilcoxon Test

Wilcoxon Test is a nonparametric test used to compare two different series of measures

obtained on the same items. With that test we can compare two different instruments

or analytical procedure or operators.

There are tree different types of what is known in the scientific literature as

Wilcoxon test :

� Wilcoxon Two Sample Test;

� Wilcoxon Matched-Pairs Test;

� Wilcoxon Signed Rank Sum Test.

The test we will describe, that is the one we used, is the last one. Wilcoxon

Paired Signed Rank test is a nonparametric evaluation of paired differences. Pairs of

measurements forms the raw data, and the difference between the two members of

the pair is used to calculate the statistics. Wilcoxon is therefore the nonparametric

equivalent of the paired t test.

B.1 Prerequisites and hypothesis

Input data distribution. The test can be used on data that have a Gaussian dis-

tribution or on data that represent ordinal variables (recalling, from the theory,

that an ordinal variable is a variable whose value set V is a linearly ordered

set);

Measures on the same data. It is necessary that the items, on which the meth-

ods we are comparing are used, form exactly the same instances set for the

application of both the measurements;

Null hypothesis. We state that:

H0 : the first instances set is equal to the second one.
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That is: there is not a statistically significative difference between the use of

the first or the second method on the items.

Number of measurements. It is necessary to have more than a certain number of

measurements: usually between a few dozen and the Student threshold.

B.2 Procedure

To perform the test, the following steps have to be done:

� The test begins with the transformation of each couple of values (measure1 =

X1i, measure2 = X2i) into the absolute value of the difference between them:

|X1i −X2i| ∀i

� Couples that produces null differences do not give any kind of information in

the test, so they can be eliminated

if |X1i −X2i| then entryi isremoved

� The obtained differences are ordered for increasing absolute values. And then

a rank (unsigned quantity) is assigned to each of them, through a special pro-

cedure

|X1i −X2i| : Ri

� A sign is reassigned to each rank, depending on whether X1i−X2i was originally

positive or negative

ifX1i −X2i > 0 then R
′
i = Ri

ifX1i −X2i < 0 then R
′
i = −Ri

� The Wilcoxon test statistic value W is computed as the sum of the signed ranks

W =
∑
i

R
′
i

It can be demonstrated that, for samples with ndiff > 20, the test statistic W is

approximately normally distributed with mean µW and standard deviation σW .

The mean value of W is given by

µW =
ndiff (ndiff + 1)

4

and its standard deviation by

σW =

√
ndiff (ndiff + 1)(2ndiff + 1)

24
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It is now possible to normalized the W distribution

Z =
W − ndiff (ndiff+1)

4√
ndiff (ndiff+1)(2ndiff+1)

24

Then, knowing the value of a certain occurrence of W , the relative value of Z can

be computed.

Recalling the concept of Rejection Region:

The rejection region is used in hypothesis testing. Let T be a test statis-

tic. Possible values of T can be divided into two regions: the acceptance

region and the rejection region. If the value of T comes out to be in the

acceptance region, the null hypothesis (the one being tested) is accepted,

or at any rate not rejected. If T falls in the rejection region, the null

hypothesis is rejected.

Thus, null hypothesis is rejected if the computed Z falls in the rejection region.

E.g., referring to the standard Gaussian distribution1 and assuming to accept a state-

ment with a statistical significativeness greater of equal to 95%, the decision rule states

that:

H0 is rejected if Z > 1.96 or Z < −1.96

otherwise H0 is accepted.

B.3 An example to describe the mathematical steps of
the test

To make more clear the whole procedure, we extracted a small sample of measure-

ments we actually compared in our work. We have 20 couples of measurements of

accuracy calculated on as many dataset instances of Wpbc Mangasarian and Wolberg,

obtained randomly.

In table B.1 we have:

� Id or seed, it represents the identifier of the specific instance randomly defined

on the dataset;

� X1, it represents the first accuracy measurement, the one made with classic

SVM approach;

� X2, it represents the second accuracy measurement, the one made using just

the simple classifier, without solving mathematical models;

1In Appendix F the normal standard distribution table.
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id X1 X2 X1 −X2 |X1 −X2| rank signed rank
1 74.58 74.58 0 0 - -

2 79.66 77.97 1.69 1.69 1/7 1/7

3 79.66 77.97 1.69 1.69 1/7 1/7

4 77.97 79.66 -1.69 1.69 1/7 -1/7

5 69.49 69.49 0 0 - -

6 81.36 77.97 3.39 3.39 1.25 1.25

7 79.66 77.97 1.69 1.69 1/7 1/7

8 79.66 77.97 1.69 1.69 1/7 1/7

9 72.88 72.88 0 0 - -

10 81.36 83.05 -1.69 1.69 1/7 -1/7

11 76.27 76.27 0 0 - -
12 69.49 69.49 0 0 - -
13 72.88 72.88 0 0 - -
14 83.05 83.05 0 0 - -

15 79.66 76.27 3.39 3.39 1.25 1.25

16 79.66 84.75 -5.09 5.09 3 -3

17 72.88 69.49 3.39 3.39 1.25 1.25

18 67.80 69.49 -1.69 1.69 1/7 -1/7

19 77.97 77.97 0 0 - -

20 71.19 74.58 -3.39 3.39 1.25 -1.25

Table B.1: Wilcoxon test table for a small sample on Wpbc Mangasarian and Wolberg
dataset.
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� X1 −X2, it represents the signed difference between the two measurements;

� |X1 −X2|, it represents the absolute value of the difference between the two

measurements;

� rank, it represents the rank assigned to the unsigned difference (the not null

unsigned differences are first of all increasing ordered: if there are k different

possible values for the differences, then the ranks will belong to the interval

[1, k]; if the jth possible value for the unsigned difference, in the previously

described order, belongs to kj different couple than the rank for them is given

by (j − 1) + 1
kj

– e.g. in the table there 3 possible values for the unsigned

differences, so the ranks will belong to [1, 3], since 3, 39 is the second value,

in increasing order, and it belongs to 4 couples, the associated rank value is

(2− 1) + 1
4 = 1, 25);

� signed rank, it represents the rank with the original difference sign.

In the following lets perform Wilcoxon test on the data in B.1, step by step.

Since that ndiff = 11, in this case, we can compute

µW = 33 and σW =
√

126, 5

And also

W =
∑
i

ranki =
1

14

Then

Z =
1
14 − 33
√
126, 5

≃ −2, 93

From the normal standard distribution table we obtain

p = p[Z < −2, 93 ||Z > 2, 93] = 1−p[|Z| > 2, 93] = 1−2·Z−1(2, 93) ≃ 0, 0034 ≪ 0, 05

that tells us that the null hypothesis H0 is rejected with a statistical confidence of

99,66%: the two compared methods are statistically significatively different.

The last thing to do now is to understand which of the two methods wins and

which loses.

The simplest approach to realize that is to calculate the sign of the mean values

of the signed differences.
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Appendix C

More detailed results

In the following we report some detailed results obtained during our several experi-

mental tests.

In table C.1 we can find the detailed accuracies obtained for each couple of pa-

rameters (C, γ), with the classic SVM approach, equipped with Gaussian kernel. The

values have been obtained without performing any kind of cross validation, just solv-

ing the classic quadratic model for the training procedure on the training set and

classifying, with the computed parameters, the test set items. As previously noticed,

the value of parameter γ that generally gives the best accuracies on our normalized

is γ = 0.1.

In table C.2 we can find the accuracies obtained at the variation of parameter C,

with the classic SVM approach, equipped with linear kernel. The values have been

obtained without performing any kind of cross validation, just solving the classic

quadratic model for the training procedure on the training set and classifying, with

the computed parameters, the test set items.

In table C.3 we report the detailed results obtained, for each dataset, for the

first evaluation of the use of a MIP model in SVM approach with linear kernel. The

description and the purposes of these last tests are given in section 4.2.2.

Australian
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 54.59 54.59 54.59 54.59 54.59

0.1 54.59 54.59 54.59 54.59 54.59

1 84.06 57.00 54.11 54.59 54.59

10 81.64 56.52 54.59 54.11 54.59

100 76.81 57.00 54.59 54.11 54.59
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Breast Mangasarian and Wolberg
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 95.61 62.44 62.44 62.44 62.44

0.1 96.10 93.17 62.44 62.44 62.44

1 97.07 95.61 84.39 71.71 71.71

10 95.61 97.07 86.83 71.71 71.71

100 94.63 97.07 86.83 71.71 71.71

Bupa
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 52.88 52.88 52.88 52.88 52.88

0.1 52.88 52.88 52.88 52.88 52.88

1 64.42 65.38 53.85 53.85 53.85

10 64.42 65.38 56.73 53.85 53.85

100 62.50 62.54 56.73 53.85 53.85

Heart
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 62.96 62.96 62.96 62.96 62.96

0.1 76.54 62.96 62.96 62.96 62.96

1 79.01 64.20 62.96 62.96 62.96

10 75.31 64.20 62.96 62.96 62.96

100 75.31 64.20 62.96 62.96 62.96

Ionosphere
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 63.21 63.21 63.21 63.21 63.21

0.1 65.09 63.21 63.21 63.21 63.21

1 93.40 66.04 63.21 63.21 63.21

10 92.45 66.04 63.21 63.21 63.21

100 90.57 66.04 63.21 63.21 63.21
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Pima
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 68.40 68.40 68.40 68.40 68.40

0.1 74.46 68.40 68.40 68.40 68.40

1 73.16 71.00 68.40 68.40 68.40

10 74.46 67.53 68.40 68.40 68.40

100 66.67 67.53 68.40 68.40 68.40

Sonar
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 57.14 57.14 57.14 57.14 57.14

0.1 57.14 57.14 57.14 57.14 57.14

1 80.95 57.14 57.14 57.14 57.14

10 80.95 57.14 57.14 57.14 57.14

100 80.95 57.14 57.14 57.14 57.14

Wdbc Mangasarian and Wolberg
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 61.40 61.40 61.40 61.40 61.40

0.1 95.91 61.40 61.40 61.40 61.40

1 98.25 61.99 61.40 61.40 61.40

10 97.08 61.99 61.40 61.40 61.40

100 96.49 61.99 61.40 61.40 61.40

Wpbc Mangasarian and Wolberg
PPPPPPPPPC

γγγ
0.1 1 10 100 1000

0.01 77.97 77.97 77.97 77.97 77.97

0.1 77.97 77.97 77.97 77.97 77.97

1 79.66 77.97 77.97 77.97 77.97

10 77.97 77.97 77.97 77.97 77.97

100 77.97 77.97 77.97 77.97 77.97

Table C.1: Accuracies for SVM approach, Gaussian kernel.
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Australian

C 0.01 0.1 1 10 100

Accuracy 82.61 80.68 79.23 80.19 79.19

Breast Mangasarian and Wolberg

C 0.01 0.1 1 10 100

Accuracy 97.07 96.10 96.59 96.59 96.10

Bupa

C 0.01 0.1 1 10 100

Accuracy 53.85 59.62 66.35 66.35 66.35

Heart

C 0.01 0.1 1 10 100

Accuracy 80.25 80.25 81.48 79.01 81.48

Ionosphere

C 0.01 0.1 1 10 100

Accuracy 90.57 91.51 91.51 89.62 89.62

Pima

C 0.01 0.1 1 10 100

Accuracy 74.46 71.43 71.00 71.00 71.00

Sonar

C 0.01 0.1 1 10 100

Accuracy 84.13 80.95 76.19 76.19 76.19

Wdbc Mangasarian and Wolberg

C 0.01 0.1 1 10 100

Accuracy 95.32 97.08 97.08 95.91 95.91

Wpbc Mangasarian and Wolberg

C 0.01 0.1 1 10 100
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Accuracy 74.58 76.27 74.58 77.97 74.58

Table C.2: Accuracies for SVM approach, linear kernel.

Australian
PPPPPPPPPC

S
1 10 100 1000

0.01 83.09 83.57 82.61 82.61

0.1 83.09 83.09 81.64 81.16

1 83.09 83.09 82.13 82.13

10 83.57 82.13 81.16 81.16

100 81.16 81.64 81.16 81.16

Breast Mangasarian and Wolberg
PPPPPPPPPC

S
1 10 100 1000

0.01 96.59 97.07 97.07 97.07

0.1 96.59 96.59 93.59 97.07

1 96.59 96.10 96.10 96.10

10 96.59 96.10 96.10 96.10

100 96.59 96.10 96.10 96.10

Bupa
PPPPPPPPPC

S
1 10 100 1000

0.01 53.85 64.42 60.58 61.54

0.1 56.73 61.54 61.54 61.54

1 59.62 65.38 63.46 64.46

10 59.62 64.42 63.46 63.46

100 59.62 64.42 63.46 63.46

Heart
PPPPPPPPPC

S
1 10 100 1000

0.01 76.54 81.48 87.65 87.65

0.1 90.12 79.01 79.01 79.01

1 77.78 83.95 92.72 81.48

10 77.78 81.48 81.48 82.72
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100 77.78 81.48 81.48 81.48

Ionosphere
PPPPPPPPPC

S
1 10 100 1000

0.01 78.30 88.86 88.68 88.68

0.1 89.62 90.57 92.45 92.45

1 89.62 91.51 91.51 91.51

10 92.45 90.57 91.51 91.51

100 89.62 91.51 89.62 89.62

Pima
PPPPPPPPPC

S
1 10 100 1000

0.01 70.13 71.43 70.56 69.70

0.1 70.13 71.00 71.00 71.00

1 72.73 71.86 71.00 71.00

10 72.73 71.86 71.00 71.00

100 72.73 71.86 71.00 71.00

Sonar
PPPPPPPPPC

S
1 10 100 1000

0.01 52.38 82.54 82.54 82.54

0.1 74.60 80.95 82.54 82.54

1 77.78 74.60 76.19 76.19

10 79.37 74.60 74.60 74.60

100 77.78 76.19 74.60 74.60

Wdbc Mangasarian and Wolberg
PPPPPPPPPC

S
1 10 100 1000

0.01 94.15 96.49 97.08 97.08

0.1 97.08 97.66 97.08 97.08

1 96.49 97.08 97.08 97.08

10 97.66 96.49 96.49 96.49

100 95.32 95.91 95.91 95.91
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Wpbc Mangasarian and Wolberg
PPPPPPPPPC

S
1 10 100 1000

0.01 74.58 74.58 61.02 59.32

0.1 74.58 61.02 61.02 61.02

1 72.88 55.93 54.24 54.24

10 72.88 66.10 57.63 55.93

100 74.58 67.80 66.80 66.10

Table C.3: Detailed accuracies for MIP alternative approach
with linear kernel.
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Appendix D

Scripts

D.1 Example 1

In this section we report an example of a script for the simulation of the SVM approach
on dataset Heart.

Script D.1: Script for SVM approach with 5-fold cross validation.

1 #!/bin/bash
2 cdcdcd ..
3 cdcdcd ..
4 cdcdcd CODICI/
5 gamma =(0.1 1 10 100 1000)
6 C=(0.01 0.1 1 10 100)
7 filedimensione=’’n_feature.txt ’’
8 n_item =270
9 forforfor (( r=1; r<=3; r++ ))

10 dododo
11 file3accuracy=’’accuracy_finale_ ’’$r$ ’’.txt ’’
12 gcc Parser1_HEART.c -o Parser1_HEART -lm
13 ./ Parser1_HEART $r
14 filetrainingFIN=’’File_txt/PerSVMlight/input_TrS_SVM_HEART_norm.txt

’’
15 filetestFIN=’’File_txt/PerSVMlight/input_TeS_SVM_HEART_norm.txt ’’
16 forforfor (( l=1; l<=5; l++ ))
17 dododo
18 forforfor (( j=0; j <=${#gamma [*]} -1; j++ ))
19 dododo
20 forforfor (( k=0; k <=${#C[*]} -1; k++ ))
21 dododo
22 fileaccuracy=’’File_txt/Accuracy/accuracy ’’${

gamma[j]}$’’_’’${C[k]}$’’_’’$l$ ’’.txt ’’
23 filetraining=’’File_txt/PerSVMlight/

tutti_meno_ ’’$l$ ’’.txt ’’
24 filetest=’’File_txt/PerSVMlight/’’$l$ ’’.txt ’’
25 filenumelementi=’’File_txt/PerSVMlight/

num_elementi ’’$l$ ’’.txt ’’
26 echoechoecho ’’esecuzione gamma ’’ ’’${gamma[j]}, ’’ ’’

C’’ ’’${C[k]}’’
27 gcc ModelConstructor_SVM.c -o

ModelConstructor_SVM -lm
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28 ./ ModelConstructor_SVM ${gamma[j]} ${C[k]}
$filetraining $filenumelementi
$filedimensione

29 cplex < inputcpx.dat
30 gcc Parser2.c -o Parser2 -lm
31 ./ Parser2 $filenumelementi $filedimensione

$filetraining $filetest ${gamma[j]}
$fileaccuracy

32 cdcdcd File_txt/
33 DAESCLUDERE=dataset_HEART.txt
34

35 forforfor i in $( ls );
36 dododo
37 ififif [[ $i == *.txt ]]
38 thenthenthen
39 ififif [[ $i != $DAESCLUDERE ]]
40 thenthenthen
41 rm $i
42 fififi
43 fififi
44 ififif [[ $i == *.lp ]]
45 thenthenthen
46 rm $i
47 fififi
48 ififif [[ $i == *.sol ]]
49 thenthenthen
50 rm $i
51 fififi
52 donedonedone
53

54 cdcdcd ..
55 rm ModelConstructor_SVM
56 rm Parser2
57

58 donedonedone
59 donedonedone
60 donedonedone
61 gcc MaxCouple.c -o MaxCouple -lm
62 ./ MaxCouple
63 gcc ModelConstructorFIN_SVM.c -o ModelConstructorFIN_SVM -lm
64 ./ ModelConstructorFIN_SVM $filetrainingFIN $filedimensione $n_item
65 cplex < inputcpx.dat
66 gcc Parser2FIN.c -o Parser2FIN -lm
67 ./ Parser2FIN $filedimensione $filetrainingFIN $filetestFIN

$file3accuracy $n_item
68

69 cdcdcd File_txt/
70 DAESCLUDERE=dataset_HEART.txt
71 forforfor i in $( ls );
72 dododo
73 ififif [[ $i == *.txt ]]
74 thenthenthen
75 ififif [[ $i != $DAESCLUDERE ]]
76 thenthenthen
77 rm $i
78 fififi
79 fififi
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80 ififif [[ $i == *.lp ]]
81 thenthenthen
82 rm $i
83 fififi
84 ififif [[ $i == *.sol ]]
85 thenthenthen
86 rm $i
87 fififi
88 donedonedone
89 cdcdcd PerSVMlight/
90 forforfor i in $( ls );
91 dododo
92 ififif [[ $i == *.txt ]]
93 thenthenthen
94 rm $i
95 fififi
96 donedonedone
97 cdcdcd ..
98 cdcdcd Accuracy/
99 forforfor i in $( ls );

100 dododo
101 ififif [[ $i == *.txt ]]
102 thenthenthen
103 rm $i
104 fififi
105 donedonedone
106 cdcdcd ..
107 cdcdcd ..
108

109 rm Parser1_HEART
110 rm MaxCouple
111 rm ModelConstructorFIN_SVM
112 rm Parser2FIN
113 donedonedone
114

115 gcc MeanFinalAccuracy.c -o MeanFinalAccuracy -lm
116 ./ MeanFinalAccuracy
117

118 rm accuracy_finale_1.txt
119 rm accuracy_finale_2.txt
120 rm accuracy_finale_3.txt
121 rm MeanFinalAccuracy
122 rm param_max_acc.txt
123 rm n_feature.txt
124 rm *.log
125

126 cdcdcd ..
127 cdcdcd X_SCRIPT

We can see that the execution of the code involves 4 for cycles:

� forforfor (( r=1; r <=3; r++ ))

enables us to repeat the whole procedure of classification, including the 5-fold

cross validation, 3 times, to compute the final mean accuracy;
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� forforfor (( l=1; l <=5; l++ ))

enables us to realize 5-fold cross validation (lines 22-25 rename properly at each

iteration training and validation sets in order to change them correctly);

� forforfor (( j=0; j <=${#gamma [*]} -1; j++ ))

enables us to try all the values of γ, defined at line 5;

� forforfor (( k=0; k <=${#C[*]} -1; k++ ))

enables us to try all the values of C, defined at line 6.

Scripts for all the other mathematical models used in out tests in general differs

from this one for the model constructor called at lines 27-28 and 63-64.

At lines 29 and 65 we can see a call of the optimization solver CPLEX, with a

redirection of the input from the file inputcpx.dat.

An example of that file can be as the one in listing D.2 (actually, since it contains

MIP settings, this .dat refers to the resolution of a MIP model).

Listing D.2: File with CPLEX settings.

1 set mip int tol 0
2 set timelimit 1200
3 set mip pol time 900
4 r ModelSVM_HEART.lp
5 opt
6 w Sol_ModelSVM_HEART.sol
7 disp pro var a* > Alpha\a.txt
8 quit

It contains some settings used for the optimizer and the instructions for read,

optimize and write in a .sol file the got solution.

Lines 35-52 and 71-105 permit to remove all the files produced during the com-

putation, including occupying space .log files or .txt files written for debugging but

also, and it is a fundamental action, to remove the .sol file just finished to use. This

is important because CPLEX asks the user if he/she wants to overwrite a solution

file, and the software considers “no” to be the default answer. Since in our iterations

we re-use the same input.dat file, we need to remove the previous .sol file in the

working directory.

D.2 Example 2

In this section an example of a script for the fifty executions of the SVM approach in

parallel with A1B0 approach on fifty different instances of dataset HEART, without

the validation procedure.
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Script D.3: Script for the determination of the accuraries
by SVM approach and A1B0 approach.

1 #!/bin/bash
2 cdcdcd ..
3 cdcdcd ..
4 cdcdcd CODICI
5 n_item =270
6 n_feature=’’n_feature.txt ’’
7 forforfor (( r=1; r <=50; r++ ))
8 dododo
9 echoechoecho ’’seed ’’ $r

10 gcc Parser1_HEART.c -o Parser1_HEART -lm
11 ./ Parser1_HEART $r
12 filetrainingset=’’File_txt/PerSVMlight/input_TrS_SVM_HEART_norm.txt

’’
13 filetestset=’’File_txt/PerSVMlight/input_TeS_SVM_HEART_norm.txt ’’
14 gcc Parser2_A1B0.c -o Parser2_A1B0 -lm
15 ./ Parser2_A1B0 $n_item $n_feature $filetrainingset $filetestset
16 donedonedone
17

18 cdcdcd File_txt
19 forforfor i in $( ls );
20 dododo
21 ififif [[ $i == *.txt ]]
22 thenthenthen
23 rm $i
24 fififi
25 donedonedone
26 cdcdcd PerSVMlight
27 forforfor i in $( ls );
28 dododo
29 ififif [[ $i == *.txt ]]
30 thenthenthen
31 rm $i
32 fififi
33 donedonedone
34 cdcdcd ..
35 cdcdcd ..
36 cdcdcd ..
37 cdcdcd X_SCRIPT
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Appendix E

C Code

In the following we report a listing of C code. It enables us to format the .lp file

that contains the model to be sent in input to CPLEX optimizer.

E.1 Example of Model constructor

Code E.1: Code for formatting .lp model.

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4

5 int main( int argc , char *argv []){
6

7 int i, j, elemento1;
8 double elemento;
9 char car;

10

11 //number of da tase t e lements
12 int n_elementi = atoi(argv [3]);
13 int n_train = (n_elementi *7) /10;
14

15 //number of a t t r i b u t e s ( a f t e r preprocess ing )
16 int n_dimensione;
17 FILE *file_dim = fopen(argv[2], ’’r’’);
18 fscanf(file_dim , ’’%d’’, &elemento1);
19 n_dimensione = elemento1;
20 fclose(file_dim);
21

22 // optimal couple (\gamma, C) from va l i d a t i on procedure
23 FILE *file_param = fopen(’’param_max_acc.txt’’, ’’r’’);
24 fscanf(file_param , ’’%lf’’, &elemento);
25 double gamma = elemento;
26 fscanf(file_param , ’’%lf’’, &elemento);
27 double C = elemento;
28 fclose(file_param);
29

30 // t ra in ing s e t
31 FILE *file_trainingset;
32 file_trainingset = fopen(argv[1], ’’r’’);



134 C Code

33

34 /* reading and saving t ra in ing s e t items */
35

36 double **x;
37 x = (double**) malloc(n_train * sizeof (double) );
38 for(i=0; i<n_train; i++)
39 x[i] = (double*) malloc(n_dimensione * sizeof (double) );
40

41 int *y;
42 y = ( int *) malloc(n_train * sizeof ( int));
43

44 for (i = 0; i < n_train; i++){
45 fscanf(file_trainingset , ’’%d’’, &elemento1);
46 y[i] = elemento1;
47 for (j = 0; j < n_dimensione; j++){
48 fscanf(file_trainingset , ’’%d’’, &elemento1);
49 fscanf(file_trainingset , ’’%c’’, &car);
50 fscanf(file_trainingset , ’’%lf’’, &elemento);
51 x[i][j] = elemento;
52 }
53 }
54

55 fclose(file_trainingset);
56

57 /* computing kerne l matrix */
58

59 double ** kernel;
60 kernel = (double**) malloc(n_train * sizeof (double) );
61 for(i=0; i<n_train; i++)
62 kernel[i] = (double*) malloc(n_train * sizeof (double) );
63

64 int indice , l;
65

66 for(i = 0; i < n_train; i++){
67 for (j = 0; j < n_train; j++){
68 kernel[i][j] = 0;
69 }
70 }
71

72 for (indice =0; indice < n_train; indice ++){
73 for(j = 0; j < n_train; j++){
74 double somma = 0;;
75 for(i = 0; i < n_dimensione; i++){
76 somma = somma + (x[indice ][i] - x[j][i])*(

x[indice ][i] - x[j][i]);
77 }
78 kernel[indice ][j] = - somma*gamma;
79 kernel[indice ][j] = exp(kernel[indice ][j]);
80 }
81 }
82

83 /* computing model c o e f f i c i e n t s */
84

85 double ** coeff;
86 coeff = (double**) malloc(n_train * sizeof (double) );
87 for(i=0; i<n_train; i++)
88 coeff[i] = (double*) malloc(n_train * sizeof (double) );
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89

90 for (i = 0; i < n_train; i++){
91 for (j = 0; j < n_train; j++){
92 coeff[i][j] = (double) y[j]*y[i]* kernel[i][j];
93 }
94 }
95

96 /* cons t ruc t ing SVM model in . l p format */
97

98 FILE *file_lp;
99 file_lp = fopen(’’File_txt/Model_SVM.lp’’, ’’w’’);

100

101 /* o b j e c t i v e funct ion */
102

103 fprintf(file_lp , ’’MINIMIZE\n’’);
104 fprintf(file_lp , ’’ OBJ: ’’);
105 j = 0;
106 fprintf(file_lp , ’’%.10lf x%d ’’, C, j+1);
107 for (j=1; j<n_train; j++){
108 fprintf(file_lp , ’’+ %.10lf x%d ’’, C, j+1);
109 }
110

111 for(i = 0; i < n_train; i++){
112 for (j = 0; j < n_train; j++){
113 i f (i == j){ // \ lambdaˆ2 terms
114 i f (i == 0){ // i f f i r s t open [
115 i f (coeff[i][j] > 0){
116 fprintf(file_lp , ’’+ [%.20

lf a%dˆ2 ’’, coeff[i][j
], i+1);

117 }
118 else {
119 double cff = - coeff[i][j

];
120 fprintf(file_lp , ’’+

[-%.20lf a%dˆ2 ’’, cff ,
i+1);

121 }
122 }
123 else i f (i == n_train -1){ // i f l a s t

c l o s e ]
124 i f (coeff[i][j] >

0.000000000000001){
125 fprintf(file_lp , ’’+ %.20

lf a%d ˆ 2] / 2\n’’,
coeff[i][j], i+1);

126 }
127 else i f (coeff[i][j] <

-0.000000000000001){
128 double cff = - coeff[i][j

];
129 fprintf(file_lp , ’’- %.20

lf a%d ˆ 2] / 2\n’’,
cff , i+1);

130 }
131 }
132 else {
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133 i f (coeff[i][j] >
0.000000000000001){

134 fprintf(file_lp , ’’+ %.20
lf a%d ˆ 2 ’’, coeff[i
][j], i+1);

135 }
136 else i f (coeff[i][j] <

-0.000000000000001){
137 double cff = - coeff[i][j

];
138 fprintf(file_lp , ’’- %.20

lf a%d ˆ 2 ’’, cff , i
+1);

139 }
140 }
141 }
142 else { // \ lambda i *\ lambda j i<>j terms
143 i f (coeff[i][j] > 0.000000000000001){
144 fprintf(file_lp , ’’+ %.20lf a%d *

a%d ’’, coeff[i][j], i+1, j+1);
145 }
146 else i f (coeff[i][j] < -0.000000000000001)

{
147 double cff = - coeff[i][j];
148 fprintf(file_lp , ’’- %.20lf a%d *

a%d ’’, cff , i+1, j+1);
149 }
150 }
151 }
152 }
153

154 /* bounds */
155

156 fprintf(file_lp , ’’SUBJECT TO\n’’);
157 for(i = 0; i < n_train; i++){
158 int k = i+1;
159 fprintf(file_lp , ’’ V%d: ’’, k);
160 for (j = 0; j < n_train; j++){
161 int h = j+1;
162 i f (coeff[i][j] > 0.000000000000001){ //non

nega t i ve c o e f f i c i e n t
163 i f (j == 0){ // i f f i r s t wi thout s ign
164 fprintf(file_lp , ’’%.20lf a%d ’’,

coeff[i][j], h);
165 }
166 else { // i f not with s ign
167 fprintf(file_lp , ’’+ %.20lf a%d ’’

, coeff[i][j], h);
168 }
169 }
170 else i f (coeff[i][j] < -0.000000000000001){ //

nega t i ve c o e f f i c i e n t
171 i f (j == 0){
172 fprintf(file_lp , ’’%.20lf a%d ’’,

coeff[i][j], h);
173 }
174 else {
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175 double cff = coeff[i][j]*(-1);
176 fprintf(file_lp , ’’- %.20lf a%d ’’

, cff , h);
177 }
178 }
179 }
180 i f (y[i] > 0)
181 fprintf(file_lp , ’’+ b + x%d >= 1\n’’, i+1);
182 else
183 fprintf(file_lp , ’’- b + x%d >= 1\n’’, i+1);
184 }
185

186 /* v a r i a b l e s */
187

188 fprintf(file_lp , ’’BOUNDS\n’’);
189 for(i = 0; i < n_train; i++){
190 int k = i+1;
191 fprintf(file_lp , ’’ a%d >= 0\n’’, k);
192 }
193 fprintf(file_lp , ’’ - infinity <= b <= + infinity \n’’);
194

195 for(i = 0; i < n_train; i++){
196 int k = i+1;
197 fprintf(file_lp , ’’ x%d >= 0\n’’, k);
198 }
199

200 /* c lo sure tag */
201

202 fprintf(file_lp , ’’END\n’’);
203

204 fclose(file_lp);
205

206 return 0;
207 }
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Appendix F

Table of the normal distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .00000 .00399 .00792 .01197 .01595 .01994 .02392 .02790 .03188 .03586
0.1 .03983 .04380 .04776 .05172 .05567 .05962 .06356 .06749 .07142 .07535
0.2 .07926 .08317 .08706 .09095 .09483 .09871 .10257 .10642 .11026 .11409
0.3 .11791 .12172 .12552 .12930 .13307 .13683 .14058 .14431 .14803 .15173
0.4 .15542 .15910 .16276 .16640 .17003 .17364 .17724 .18082 .18439 .18793
0.5 .19146 .19497 .19847 .20194 .20540 .20884 .21226 .21566 .21904 .22240
0.6 .22575 .22907 .23237 .23565 .23891 .24215 .24537 .24857 .25175 .25490
0.7 .25804 .26115 .26424 .26730 .27035 .27337 .27637 .27935 .28230 .28524
0.8 .28814 .29103 .29389 .29673 .29955 .30234 .30511 .30785 .31057 .31327
0.9 .31594 .31859 .32121 .32381 .32639 .32794 .33147 .33398 .33646 .33891
1.0 .34134 .34375 .34614 .34849 .35083 .35314 .35543 .35769 .35993 .36214
1.1 .36433 .36650 .36864 .37076 .37286 .37493 .37698 .37900 .38100 .38298
1.2 .38493 .38686 .38877 .39065 .39251 .39435 .39617 .39796 .39973 .40147
1.3 .40320 .40490 .40658 .40824 .40988 .41149 .41309 .41466 .41621 .41774
1.4 .41924 .42073 .42220 .42364 .42507 .42647 .42786 .42922 .43056 .43189
1.5 .43319 .43448 .43574 .43699 .43822 .43943 .44062 .44179 .44295 .44408
1.6 .44520 .44630 .44738 .44845 .44950 .45053 .45154 .45254 .45352 .45449
1.7 .45543 .45637 .45728 .45818 .45907 .45994 .46080 .46164 .46246 .46327
1.8 .46407 .46485 .46562 .46637 .46712 .46784 .46856 .46926 .46995 .47062
1.9 .47128 .47193 .47257 .47320 .47381 .47441 .47500 .47558 .47615 .47670
2.0 .47725 .47778 .47831 .47882 .47932 .47982 .48030 .48077 .48124 .48169
2.1 .48214 .48257 .48300 .48341 .48382 .48422 .48461 .48500 .48537 .48574
2.2 .48610 .48645 .48679 .48713 .48745 .48778 .48809 .48840 .48870 .48899
2.3 .48928 .48956 .48983 .49010 .49036 .49061 .49086 .49111 .49134 .49158
2.4 .49180 .49202 .49224 .49245 .49266 .49286 .49305 .49324 .49343 .49361
2.5 .49379 .49396 .49413 .49430 .49446 .49461 .49477 .49492 .49506 .49520
2.6 .49534 .49547 .49560 .49573 .49585 .49598 .49609 .49621 .49632 .49643
2.7 .49653 .49664 .49674 .49683 .49693 .49702 .49711 .49720 .49728 .49736
2.8 .49745 .49752 .49760 .49767 .49774 .49781 .49788 .49795 .49801 .49807
2.9 .49813 .49819 .49825 .49831 .49836 .49841 .49846 .49851 .49856 .49861
3.0 .49865 .49869 .49874 .49878 .49882 .49886 .49889 .49893 .49897 .49900
3.1 .49903 .49906 .49910 .49913 .49916 .49918 .49921 .49924 .49926 .49929
3.2 .49931 .49934 .49936 .49938 .49940 .49942 .49944 .49946 .49948 .49950
3.3 .49952 .49953 .49955 .49957 .49958 .49960 .49961 .49962 .49964 .49965
3.4 .49966 .49968 .49969 .49970 .49971 .49972 .49973 .49974 .49975 .49976
3.5 .49977 .49978 .49978 .49979 .49980 .49981 .49981 .49982 .49983 .49983
3.6 .49984 .49985 .49985 .49986 .49986 .49987 .49987 .49988 .49988 .49989
3.7 .49989 .49990 .49990 .49990 .49991 .49991 .49991 .49992 .49992 .49992
3.8 .49993 .49993 .49993 .49994 .49994 .49994 .49994 .49995 .49995 .49995
3.9 .49995 .49995 .49995 .49996 .49996 .49996 .49996 .49996 .49997 .49997
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