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Sommario

Negli ultimi anni abbiamo assistito ad un crescente interesse per gli edifici
intelligenti (smart buildings), in particolare per quanto riguarda la gestione
efficiente dell’energia, le fonti di energia rinnovabile e gli elettrodomestici
intelligenti (smart appliances). In questa tesi poniamo la nostra attenzione
sul problema dell’allocazione (scheduling) degli elettrodomestici intelligenti
lungo un certo periodo della giornata, tenendo anche conto di fonti di en-
ergia alternativa e batterie di accumulo. Il profilo energetico di una smart
appliance ¢ modellato attraverso una sequenza di fasi, ciascuna delle quali ha
il proprio consumo energetico e le proprio caratteristiche. Lo scopo ¢ quello
di allocare gli elettrodomestici in modo da ridurre il conto totale in bolletta,
rispettando le caratteristiche dei profili energetici e le preferenze dell’utente.
Viene progettato un modello a programmazione lineare intera (MIP) e un al-
goritmo euristico greedy, con l'idea di combinarli assieme. Mostreremo come
una generica procedura di raffinamento sfruttata dal modello MIP puo es-
sere usata per migliorare, in poco tempo, la qualita della soluzione fornita
dall’algoritmo euristico. I risultati ottenuti confermano la validita di questo

approccio, sia in termini di qualita della soluzione sia di velocita.

Parole chiave Mateuristico, Programmazione Lineare Intera, euristiche di

raffinamento, gestione dell’energia, case intelligenti
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Abstract

In the last years we have witnessed an increasing interest in smart build-
ings, in particular for what concerns optimal energy management, renewable
energy sources, and smart appliances. In this paper we investigate the prob-
lem of scheduling smart appliance operation in a given time horizon with a
set of energy sources and accumulators. Appliance operation is modeled in
terms of uninterruptible sequential phases with a given power demand, with
the goal of minimizing the energy bill fulfilling duration, energy, and user
preference constraints. A Mixed Integer Linear Programming (MIP) model
and a greedy heuristic algorithm are given, intended to be used in a synergic
way. We show how a general purpose (off-the-shelf) MIP refining procedure
can effectively be used for improving, in short computing time, the quality
of the solutions provided by the initial greedy heuristic. Computational re-
sults confirm the viability of the overall approach, in terms of both solution

quality and speed.

Keywords Matheuristics, Mixed-Integer Programming, Refinement heuris-

tics, Energy Management, Smart Houses
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1 Introduction

Energy optimization is attracting an increasing interest amongst researchers
as long as new “smarter” infrastructures and devices are going to replace the
traditional ones.

The most popular scenario involves a new concept of electrical grid, the
Smart Grid (Fig. 1) that allows to convey a two-way flow of electricity
and information between central generators and customers [10]. Although
there are many ways of addressing the demand side energy management
problem like using neural network [6] or PID neural networks [11], multi-
agent systems [25], fuzzy control [17] and even ant colony optimization [8],
the most common way is by solving a scheduling problem. This involves
multiple appliances with different operational constraints, user preferences,
renewable energy sources and batteries. Other authors have investigated
variants of the appliance scheduling problem, Hatami and Pedram [14] by
taking the interaction among different users into account, Zhang et al. [24]
by considering a so-called microgrid, and Agnetis et al. [2] by addressing
additional thermal comfort constraints.

Mixed Integer Programming (MIP) models from the literature allow for
an effective mathematical formulation of the appliance scheduling problem.
Barbato et al. [3] also take the photovoltaic energy into account, and a
linearized description of battery charge states is given. Sou et al. [18] provide
a detailed MIP formulation of appliance power profiles and operations, and
model appliance operations as a set of sequential uninterruptible phases with
variable inter-phase delays.

As far as the solution of appliance scheduling problem is concerned, Car-
pentieri et al. [7] propose an LP-rounding heuristic for solving the appliance
scheduling problem with the goal of minimizing the maximum peak energy
of multiple houses. Barbato et al. [4] use different heuristics to address the
problem of online recovering an offline schedule taking into account the real
parameters.

With this paper we want to propose a solution to the energy management



problem using a combination between greedy heuristic algorithm and the
recent technique of polishing in a smart house scenario (Fig. 2).

Many successful matheuristic schemes use a black-box MIP solver to gen-
erate high-quality heuristic solutions for difficult optimization problems. The
hallmark of this approach is the availability of a (possibly incomplete) MIP
model of the problem at hand, and of an external metascheme that iter-
atively solves sub-MIPs obtained by introducing invalid constraints (e.g.,
variable fixings) defining “interesting” neighborhoods of certain solutions.
The goal of the approach is to iteratively refine the incumbent solution, pro-
ducing a sequence of better and better feasible solutions in short (or, at least,
acceptable) computing times.

The above solution-refinement approach is completely general, i.e., it can
in principle be applied to the original MIP without the need of ad-hoc adap-
tations. An example of a general MIP refinement procedure is the evolution-
ary polishing method of Rotbergh [15] that automatically defines sub-MIPs
to combine a population of feasible solutions. (Interesting enough for prac-
titioners, an implementation of the polishing heuristic is available in some
commercial MIP solvers, hence it can be used off-the-shelf.) A more recent
approach is the proximity search by Fischetti and Monaci [12], where the
objective function of the original MIP is modified with the aim of attracting
the search in the neighborhood of the incumbent, without the need of adding
any additional constraint.

In very difficult cases, however, the approach based on general MIP re-
finement is not successful, and one tends to design ad-hoc matheuristics that
exploit the structure of the problem. As a matter of fact, an issue with the
general approach is the lack of good (or even feasible) solutions to refine. In
this context, one can argue that ad-hoc heuristics and general MIP refinement
procedures are complementary one to each other, the former being typically
able to find feasible solutions very quickly, while the latter can exploit the
underlying MIP model to improve them by reaching a quality degree that is

difficult to attain otherwise.



In the present paper we argue that the application of above scheme can
lead to a very effective overall heuristic even in case a very simple greedy is
used to feed the general MIP refinement module with feasible solutions. The
resulting MIP-and-refine approach is exemplified and tested in the context
of smart grid energy management, whose underlying MIP models turn out to
be very difficult to solve without the hints provided by an external heuristic.

Below we present a description of the Smart Grid scenario as well as the
MIP modeling, the heuristic algorithm and the polishing technique. Moreover
we introduce the real scenario where the greedy algorithm will be applied 1.5.
In section 2 we propose a MIP model of the scheduling problem whereas in

section 3 a greedy heuristic to solve it. In section 5 we show some results.
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1.1 Smart Grid

As described in [1], the term “smart grid” refers to an electricity transmis-
sion and distribution system that incorporates elements of traditional and
cutting-edge power engineering, sophisticated sensing and monitoring tech-
nology, information technology, and communications to provide better grid
performance and to support a wide array of additional services to consumers.
A smart grid is not defined by what technologies it incorporates, but rather
by what it can do. The key attributes of the 21st century grid include the

following;:

o The grid will be “self-healing.” Sophisticated grid monitors and controls
will anticipate and instantly respond to system problems in order to

avoid or mitigate power outages and power quality problems.

o The grid will be more secure from physical and cyber threats. Deploy-
ment of new technology will allow better identification and response to

manmade or natural disruptions.

o The grid will support widespread use of distributed generation. Stan-
dardized power and communications interfaces will allow customers
to interconnect fuel cells, renewable generation, and other distributed

generation on a simple plug and play basis.

o The grid will enable consumers to better control the appliances and
equipment in their homes and businesses. The grid will interconnect
with energy management systems in smart buildings to enable cus-

tomers to manage their energy use and reduce their energy costs.

o The grid will achieve greater throughput, thus lowering power costs.
Grid upgrades that increase the throughput of the transmission grid
and optimize power flows will reduce waste and maximize use of the
lowest-cost generation resources. Better harmonization of the distribu-

tion and local load servicing functions with interregional energy flows



and transmission traffic will also improve utilization of the existing

system assets.

Smart Grid benefits are fully exploited only if the grid endpoints, home
appliances for examples, are smart as well. Smart appliances are able to
exchange data with the grid, such as dynamic energy prices and grid status.
Along with user preferences, this information can be used to optimally man-
age the energy demand in order to reduce the customer energy bill and to
prevent major blackouts.

Each appliance, to be called “smart”, must have some particular features:
e Computational capability
e Sensors
e Interconnection capability

The smart appliance must be able to measure something, analyze or process
the measure and transmit it to the other appliances or to a central station.
Hence, a smart appliance have to be interconnected and able to communicate
with each other. This could be possible by a “classic” wired connection or, in
a more fashion way, using wireless sensor network (WSN). Tung et al. [20],
Yiming et al. [22], Tsang et al. [19] and Dae et al. [13] show this application
using ZigBee, that is a specification for a suite of high level communication
protocols using small, low-power digital radios based on an IEEE 802 stan-

dard for personal area networks [26].

1.2 MIP

Linear programming (LP, or linear optimization) is a mathematical method
for determining a way to achieve the best outcome (such as maximum profit
or lowest cost) in a given mathematical model for some list of requirements

represented as linear relationships [16]. Linear programming is a specific case



of mathematical programming (mathematical optimization). More formally,
linear programming is a technique for the optimization of a linear objective
function, subject to linear equality and linear inequality constraints. Its fea-
sible region is a convex polyhedron, which is a set defined as the intersection
of finitely many half spaces, each of which is defined by a linear inequality.
Its objective function is a real-valued affine function defined on this polyhe-
dron. A linear programming algorithm finds a point in the polyhedron where
this function has the smallest (or largest) value if such a point exists. Linear

programs are problems that can be expressed in canonical form:

min cTx
subject to Ax>Db
x>0

where x represents the vector of variables (to be determined), ¢ and b
are vectors of (known) coefficients, A is a (known) matrix of coefficients, and
()7 is the matrix transpose. The expression to be maximized or minimized

Tx in this case). The inequalities Ax > b

is called the objective function (c
are the constraints which specify a convex polytope over which the objective
function is to be optimized. Linear programming can be applied to various
fields of study. It is used in business and economics, but can also be uti-
lized for some engineering problems. Industries that use linear programming
models include transportation, energy, telecommunications, and manufactur-
ing. It has proved useful in modeling diverse types of problems in planning,
routing, scheduling, assignment, and design.

Integer programming (IP) adds additional constraints to linear program-
ming. In particular it adds the requirement that some or all of the variables
take on integer values. This seemingly innocuous change greatly increases
the number of problems that can be modeled, but also makes the models
more difficult to solve. In fact, two seemingly similar formulations for the
same problem (one integer and the other one linear) can lead to radically

different computational experience. Integer programming is NP-hard.



Logical condition Binary condition

At most N of a,b,c,... a+b+c+...<N
At least N of a,b,c, ... a+b+c+...>N
Exactly N of a,b,c, ... a+b+c+...=N
If a then b b>a

Not b b=1-b

If @ then not b a+b<1

If not a then b a+b>1

If a then b, and if b then a a=>b

If a then band ¢; aonlyifband ¢ b>aand c> a

If a then b or ¢ b+c>a

If b or ¢ then a a>banda>c
If b and ¢ then a a>b+c—1

Table 1: Logical conditions to Binary condition. All variables € {0, 1}

MIP (Mixed Integer Programming) is a generalization of LP in which the
variables of the linear model are integer. In some cases the variables could
be also binary.

The binary modeling can be very tricky sometimes because our thinking
is not used to. In Table 1 are presented some useful transformations of logical

conditions to binary conditions.

1.3 Greedy heuristic algorithm

Cormen et al. [9] define the greedy algorithm as an algorithm that follows the
problem solving heuristic of making the locally optimal choice at each stage
with the hope of finding a global optimum. In many problems, a greedy
strategy does not in general produce an optimal solution, but nonetheless
a greedy heuristic may yield locally optimal solutions that approximate a

global optimal solution in a reasonable time.



Most of the problems that can be solved using greedy approach have two
parts [5]:

o Greedy choice property: Globally optimal solution can be obtained by
making locally optimal choice and the choice at present cannot reflect

possible choices at future.

e Optimal substructure: Optimal substructure is exhibited by a problem
if an optimal solution to the problem contains optimal solutions to the

subproblems within it.

To prove that a greedy algorithm is optimal we must show the above two
parts are exhibited. For this purpose first take globally optimal solution;
then show that the greedy choice at the first step generates the same but the
smaller problem, here greedy choice must be made at first and it should be
the part of an optimal solution; at last we should be able to use induction to
prove that the greedy choice at each step is best at each step, this is optimal
substructure.

In general, greedy algorithms have five components [21]:

e A candidate set, from which a solution is created

A selection function, which chooses the best candidate to be added to

the solution

A feasibility function, that is used to determine if a candidate can be

used to contribute to a solution

An objective function, which assigns a value to a solution, or a partial

solution, and

e A solution function, which will indicate when we have discovered a

complete solution

10



1.4 Polishing technique

In many situations can be very difficult to find quickly a feasible solution of
a complex MIP problem but it can be quite easy to find a partial feasible
solution in a short time. In this case it can be simple to create a set of partial
(or eventually complete) solutions that are differentiated among themselves
and not necessarily are close to the optimal solution. This is the common
situation in which the polishing technique is applied.

As described by Rotbergh et al. [15], polishing is an algorithm that uses
mutation and combination of solutions within a solution pool to generate
improved solutions. The polishing algorithm first randomly selects one or
more seed solutions from a solution pool for mutation. The selected seed
solutions are mutated by fixing a subset of integer variables in the models to
the value they take in the seed solution. The remaining variables are then
formulated into a sub-MIP problem that is solved by the MIP solver. The
solutions generated from this mutation process may then be added to the
solution pool. After the one or more iterations of the mutation processes
have taken place, the polishing algorithm then selects one or more plurali-
ties of parent solutions from the solution pool to use in generating offspring
solutions. The integer variables that agree between one plurality of parent
solutions are fixed in the offspring solution. The remaining variables are then
formulated into a sub-MIP problem that is solved by the MIP solver. The
offspring solutions generated by the combination process may then also be
added to the solution pool.

Summarizing, in each phase of the polish algorithm, a new generation of
solutions is created from the previous generation and is formed in a series of

three steps:

e Selection: Pairs of candidate solutions are chosen, typically based on
a fitness metric. The intent is that the fittest candidates produce the

most descendants;

e Combination: Chosen pairs of solutions are combined (in a way that

11



is meaningful within the problem domain) to produce offspring. The

fitness of the offspring may be better or worse than that of its parents;

e Mutation: Random changes are introduced into some subset of the
offspring (again in a way that is meaningful within the problem do-

main). The intent of this step is to increase diversity in the population

In most of the cases this approach produces solutions that alternative ap-

proaches are unable to find.

1.5 Real scenario

The greedy heuristic algorithm created within this paper will be used in a
real energy management system to reduce the overall electricity bill. The

system is composed of four principal smart appliance:
e Washing machine
e Cooktop
e Oven
e Refrigerator

In addition, every other appliance that is not “born” smart is equipped with
an object called smart meter that can measure the consumption of that
appliance and transmit it to the central station. Those appliances, unlike
the smart one, cannot be scheduled along the day but contribute to the
energy consumption.

The central station, that works also as a gateway for all the devices,
receives all the informations from smart appliances and smart meters and,
using this algorithm, decide the allocation of the four appliance in order to
reduce the total electricity cost. Moreover, the GUI installed on the central

station lets the user browse all devices connected to the system like power

12



sources and appliances as well as all the things connected with the smart me-
ter. Each appliance connected can be controlled in detail and has a different
GUI. In the case of a washing machine, for example, the user can decide the
period of the day in which the washing machine has to be allocated, the type
of cycle and all the other parameters that the washing machine lets change,
like water temperature, etc.. The user can decide to start the cycle immedi-
ately or let that the algorithm decides for him. All these functionalities can
be moved to a tablet. Figure 3 shows the results of the algorithm, hence the
allocation of the appliances during the day.

4| Table of Day Consumption @0&_& 'Db«@‘

@/// //////////////////////////// ////////////////////////////////////////////
_Eé I I I 3 | I 'I_(’I ‘Ir | | I I I 3 I I

Figure 3: Example of GUI showing the scheduling

2 Our MIP model

Following Sou et al. [18], we model appliance operations as a set of sequential
uninterruptible energy phases, each of which uses a given total amount of

electric energy. For example, typical washing machine phases are pre-wash,

13



wash, rinse and spinning. The set of phases is also called the power profile
of the appliance.

Depending on the appliance, phase duration may vary, as long as the inter-
phase delay (e.g., the spinning of the washing machine must start within ten
minutes of the rinsing being finished). The total energy given for a phase
can be evenly distributed over time, or it may vary. We model the latter case
with per-phase bounds on the instantaneous power consumption.

Besides the intrinsic operational constraints, we allow the user to specify
preferences for the time interval in which an appliance should run (e.g., start
the washing machine between 4pm and 6pm).

Following Barbato et al. [3], we have modeled three classes of energy
sources: power grid, domestic renewable energy and accumulators (batteries).
The power grid advertises the maximum amount of available energy (peak
power) for each time instant. Note that this peak power can be different
from the actual user contract maximum power. In fact, a common feature
in the Smart Grid paradigm is to dynamically advertise (i.e., broadcast)
the peak power depending on the grid state, in order to let users adjust their
demands for preventing more dangerous power outages. Along with the peak
power, also the cost of energy changes with time. For example, in the Italian
market it can vary between two values depending on the day time and on
the day of the week. More dynamic power grids allow for a finer grain price
adjustment (hourly or less).

Domestic renewable energy sources provide free energy but with a limited
availability. For example, the performance of a photovoltaic (PV) plant de-
pends on geographical position, weather conditions, and time. Accumulators
allow to store energy (from grid or from other sources) when energy price is
low, and to use it later when energy price is higher. This feature represents an
important degree of freedom as far as optimization is concerned. Our model
only deals with batteries, viewed as direct electric energy accumulators; how-
ever, it can trivially be extended to other types of energy accumulators (e.g.,

boilers for thermic energy).

14



Finally, the optimization goal is to minimize the total energy cost by
finding a proper allocation of all appliance phases.

Given two integers a and b, let [a,b] denote the discrete set {a,a +
1,--+,b}. We discretize the scheduling time horizon into m uniform time
slots, indexed by k € [1,m]. The phases for each appliance i € [1, N] are
denoted by j € [1,n;]. To simplify notation, in what follows we write Vi, j
instead of Vi € [1, N],j € [1,n;], and VEk instead of Vk € [1,m].

In our model, nonnegative continuous variables pfj represent the energy

assigned to phase j of appliance ¢ during time slot k. The typical unit for pfj
k

ij)
model the allocation of a time slot k for phase j of appliance ¢. In particular,

is Watt (W) per timeslot (energy). With binary variables z};, sj; and t}; we
xfj = 1 iff phase j of appliance 7 is allocated in time slot k. Variable sfj jumps
from 0 to 1 right after the last time slot of where the phase j of appliance ¢
is allocated, and is defined by the equations:

ek < s Vi, j,Vk € [2,m] (2a)
sl < g Y i,5,Vk € [2,m] (2b)

Instead, tfj is 1 iff there is a inter-phase delay between phase j — 1 and j in

time slot k, and is defined as:
ty = sk qy — (@f; + s5;) Vi, k,Vj € [2,n]

Figure 4 illustrates the meaning of the above variables in a simple case
of an appliance with two phases: the first phase is allocated between hours
2 and 6, and the second between 14 and 16 (the day being divided into 12
time slots).

Our model also uses nonnegative continuous variables z* and y* to repre-
sent the amount of total energy sold and bought in each time slot &, respec-
tively. Then, if ¢* and ¢* denote the input cost of bought and sold electricity

during time slot k, respectively, our MIP model calls for:
z= minz (ckyk — gkzk) (3)
k=1

15
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Figure 4: Example of binary variables z7;, s;; and t7;
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subjct to the following constraints.
Phase energy: ensures the energy allocated during phase j of appliance i

meets the given phase total energy Fj;

S pii=E; Vi (4)
k=1

Energy bounds: ensures the energy allocated in phase j for appliance ¢ in

any time slot k belongs to the allowed range [P, P;j]

e yE

Py ﬁfj < pfj < Py If] Vi, 7,k (5)

Power safety: guarantees that the total energy assigned in time slot k& does

not exceed the peak power limit

y" < Pk vk (6)

peak

where szeak is the peak limit of slot k; this constraint can also be used to

model additional unscheduled power demands that reduce the available grid

energy in time slot k.
Energy phase duration:
Ty < Zﬂffj <Ty VYij (7)
k=1

where T';; and Tij represent, respectively, the lower and upper bound on the

number of time slots to allocate for phase j of appliance .

Uninterruptible phase: these constraints ensure that all time slots of phase

17



j are allocated contiguosly (i.e., when an energy phase starts, it must finish
without interruptions).

a4 sl <1 Vi, 4.k (8)

Recall that sfj is 0 before the last time slot allocated for phase 5 and appli-
ance 4, and becomes 1 afterwards (2a) until the end (2b). Thus, constraint

(8) prevents the variable z; to be 1 after the last-phase time slot.

Sequential processing: previous energy phase must be finished, before a new
one starts
i < Sig-1) Vi k, Vj€[2,n 9)

Inter-phase delay duration:
Dy<) ty<Dy Vi ¥Vje2n] (10)
k=1

where D,;; and D;; are the minimum and the maximum number of time slots

between phase j — 1 and j of the appliance i.

User time preferences: disable phase allocation of appliance 7 in the given
time slots
vy <TPF Vi jk (11)

where T'PF is equal to zero iff phase j of appliance i cannot be allocated in
time slot k.

In order to model batteries behavior we need two extra binary variables

k

k k
wy and w}, where w

is equal to 1 if the battery is charging in time slot k
and 0 otherwise, while w" is equal to 1 if the battery is discharging in time
slot k£ and 0 otherwise. Moreover, with the nonnegative continuous variables
v¥ and v% we describe the charge and discharge rates, respectively, that is

the amount of energy that is charged/discharged in time slot k. The total

18



accumulated energy in time slot £ is described by the nonnegative continuous
variable eF.
Battery usage constraint: the battery cannot charge and discharge at the

same time.

wh 4wk <1 Vi (12)

Battery charge/discharge rate bounds:

< Umax - w

< vl vk (13a)

v e
< etk Yk (13b)

(%

Lx O

max

where v

, v denote the max charge and discharge rates respectively.

Battery energy function: this is a linearization of the actual charge/discharge

curves
¥ =P pp 0 — gk vk (14)

where 7. and ny are, respectively, the charging and discharging efficiency

Battery capacity bounds: used to limit the energy stored in the battery

,ymzng ek S ,ymaaz Vk (15>

max min

where 7" and y"™" represent the maximum capacity and the minimum en-

ergy safety value (required, for example, by lithium batteries)

Balancing constraint: balance between produced and consumed energy

N ng
yk+ﬂk+vlj:zk+22pz+vf vk (16)

i=1 j=1

where 7* is the the sum of the newable domestic power sources contribution

in time slot k.
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3 A Greedy Algorithm

In this section we describe a heuristic greedy algorithm for finding good
feasible solutions of the described problem, that we apply in a multi-start
fashion. The algorithm schedules appliances in order of decreasing priority,
according to a greedy policy—once an appliance has been scheduled, it is
not changed anymore, and all other appliances are allocated on top of the
current partial solution. In the first application of the greedy, we use energy
requirements as appliance priorities. In the subsequent runs, the priority
vector is shifted to generate different solutions. For each appliance, we look
for a feasible allocation of its phases according to the following rules.

We consider a simplification of problem, where the duration d;; of each
phase is the minimum between T;; and [E;;/ P,;1, and bounds (5) become
pfj = :vijZ-j/dij for all k.

Accordingly, every phase has a constant duration and a constant energy
consumption, and can be scheduled in the time slots interval [1,m — d7™"]
where d"" = Z;LZI d;; represents the minimum duration of a complete ap-
pliance power profile (i.e., without phase delays). To be more specific, once a
phase has been allocated we look for all possible allocations of the next phase

in the range given by [D,;, D;j], see (10), and we select the most profitable

one. Our allocation proc]edure enforces the user preferences on time slots
(11) and three other constraints: power safety (6), uninterruptible phase (8),
and sequential processing (9).

Fig. 5 shows an example of scheduling procedure of a single appliance com-
posed of two phases and User time preferences € [2,14]

The algorithm consists of four main loops. The first loop iterates over
all the IV appliances, the second one over the set of the m time slots, the
third one over the set of the n; = O(m) appliance phases, the fourth over
the set of m; delay time slots [Qij,ﬁij]. Moreover, our allocation procedure
requires O(T);) iterations, where T} is the maximum duration of phase j of
appliance 4, while the fourth loop requires O(m;T;) = O(m?). However, the

latter complexity can be amortized with that of the third loop, because the
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Figure 5: Example of the greedy scheduling procedure of a single appliance

composed of two phases and User time preferences € [2,14]
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following bounds hold:

o> (3, + T = 3o, + T2 3
Jj=1 J=1 Jj=1

So the overall time complexity of the proposed greedy algorithm is O (Nm?),

showing the importance of choosing the number m of time slots so as to

guarantee a good compromise between computing time and accuracy.

4 Battery optimization

The battery algorithm, like the main one, is a greedy algorithm. The task
of the algorithm is to decide in which time slot charge the battery and in
which time slot discharge it. Moreover it can decide the quantity of energy
that has to be charged or discharged in each time slot.

Let S be the set of energy sources. It comprises both the grid power source

and the renewable power source. We will denote by:

e \*: the cost of energy of power source s € S in time slot & (that is 0

for renewable power sources and c* for grid power source)

o cF: the energy available from power source s € S in time slot k& (that is
7% — ZM and P}, — y"* for renewable and grid power sources respec-

tively)
For simplicity sake we will consider just one battery, being the generalization
for multiple batteries straightforward. We will denote by:

e c’: energy stored in the battery in time slot k

o x

e ¢7: energy charged in the battery in time slot £
e ck: energy discharged from the battery in time slot k

e w”: charging indicator variable that is 1 if the battery is charging in

time slot k, 0 otherwise
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Algorithm 1 Greedy algorithm

p < vector of sorted appliances by decreasing i L
for all appliances i € p do
2F «— 400 > Initializes the best appliance solution
for all time slots k € [1,m] do
z; «— +00 > Initializes the incumbent appliance solution
for all phases j € [1,n;] do
23 < +0oo > Initializes the best phase solution
for all delay slots k' € argmax(z¥,_, = 1) + [D,;, D;;] do
2ij, ¥;; < feasible allocation of phase j

if ZZ(]- > Zij then

*

235 zij, ;< xy; > Updates the best phase solution
end if
end for
Zi— zi + 23, T — ;U J;Z*j > Constructs the incumbent

appliance solution
end for
if 2" > z; then
2F = 2, X — T > Updates the best solution
end if
end for
if 27 = +oo then
return infeasible
end if
end for
return [z}, z}] for all i € [1, N]
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e wk: discharging indicator variable that is 1 if the battery is discharging

in time slot &, 0 otherwise

We recall that battery charging and discharging operations are mutually
exclusive, so if the battery is being charged in a given time slot in the same
time slot it cannot be discharged. Moreover the energy stored or drained in
a given time cannot exceed the values of v)"** and v]'** respectively.

Now the idea is to find a period along the day where we are buying expensive
energy and replace it with the one delivered by the battery which has been
charged previously in a period where the energy cost is lower.

The algorithm starts searching the time slot in which the energy cost is max,
to determine if there is a chance of removing some expensive energy used in
that time slot and replacing it with the energy of the battery. In order to do
that we sort time slots by decreasing energy cost ¢ and by increasing time
slot index for equal cost. Let denote this vector p. Accordingly, we sort time
time slots by increasing cost x* and decreasing time slot index k, for equal
x®. Let 7 be this sorted vector, whose cardinality is |S| * m.

The algorithm iterates on vector p computing energy bought from the power
grid pF = 2?21 pfj, with unit cost ¢*. If the battery is not already charging
in time slot & (w? = 0) we can discharge the energy accumulated in previous
time slots to partially of completely fullfill the energy demand p*. To do this
the algorithm scans the sorted vector @ looking for a power source s whose
unit cost x" in time slot h < k is less than c*. If it can find a cheaper power

source s in time slot h, and discharging flag w? is zero, battery is charged

by the minimum value between demand p*, battery charging rate v — el
battery discharging rate v7'%* — ¢k available energy " and available battery

capacity ym* — ¢! for all [ € [j,k]. It then updates values of p*, ¢* and ¢
and continues iterating over 7 until either p* = 0 or ef = ymaz,

The algorithm consists of three main loops. The first loop iterates over
all the m time slots and the second over all the m time slots of each power

source. The two inner consecutive loops iterate along an interval of max
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length m, hence the computational complexity results:

O2my~ i) = Ofm W> — O(m®)

5 Computational results

In our tests we considered a time horizon of 24 hours, subdivided in 96 time
slots of 15 minutes each. Experiments were grouped into four sets according
to two main parameters. The first parameter is the “flexibility” of the user
time preference constraint. We considered two level of flexibility, namely:
high flexibility (HF), meaning that the appliance can be scheduled at any
time during the day, and medium flezibility (MF), meaning that appliances
can run inside a 12-hour randomly-generated time window within the day.
The second parameter is electricity cost: it can vary either every two hours
(BC), or every time slot (TC). For each of the four resulting sets, namely
HFBC, HFTC, MFBC, and MFTC, we considered 10, 20, or 30 appliances,
respectively, and solved 5 random instances for each of the 12 combinations—
60 instances in total.

A constant price of the sold photovoltaic energy was considered, equal
to half of the minimum cost of the bought energy. All the other model
parameters are taken from uniform random distributions: ¢, € [2,4], j €
2,5], By € [400,800], P,; € [50,80], P,; € [400,800], T, €1,2], Ti; € [3,5],
D,; =1, Dy € [4,6], and P% € [2400,2600].

We considered a single renewable photovoltaic power source, whose pro-
vided energy is sampled from a Gaussian distribution N (u, o) with mean
i = 52 (1pm, the period of maximum production at the latitude of Italy),
standard deviation ¢ = 10, and maximum value of 1250W per time slot.

The considered battery has a capacity v™** = 500 Watt per time slot and

max
C

charge/discharge rates v = v = 50 Watt per time slot, with efficiencies

Ne = Mg = 1.
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Algorithm 2 Battery algorithm

p «— vector of time slots indices sorted by decreasing bought energy cost

(")

7« set of time slots and power indices sorted by increasing cost x* and

decreasing time slot index £ for all s € S

for all time slots £ € p do
N n;
pF— > in1 Zj:l p?j

> Discharging time slot

> Initializes the value of energy to realloc

for all pairs of timeslot and source indices (h, s) € w do

pu — min(p*, e")

if h <kand x" < and w? =0 and w? =0 then

. max
f— mian(p, v,

> max
p — min(p, vy

— €

> Check the charging bound
> Check the discharging bound

for all time slots [ € [h, k] do

L — min(u,,ymax _

end for

for all time slots [ € [h, k] do

e —e+p

end for

ko ok
€q < €T 1

break if p* =0
end if
end for

end for

el > Check the capacity bound

> Updating battery status

> Updating available energy for source s
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All the simulations ran un computing cluster Blade of the University of
Padova (more explanation as well as a simple guide in section 6), in single-
thread mode.

We compared seven different solution approaches:

e Greedy-alone: our stand alone greedy algorithm without multistart

enhancement;

e Greedy: our greedy algorithm applied N times by starting from the
N possible shifts of the initial priority vector, taking the best solution

found and storing the others;
e Battery: our battery algorithm applied after Greedy-alone;
e Greedy+Battery: our battery algorithm applied after Greedy;

e Cplex: the state of the art IBM ILOG CPLEX MIP solver used as a
black-box, with its default setting, stopped as soon as the first feasible

solution is found;

e Cplex+Polish: CPLEX’s polishing refining heuristic [15] applied right
after the root node and for a total of 10 nodes, when starting from the

feasible solution found by the previous Cplex algorithm;

e Greedy+Polish: our proposed MIP-and-refine scheme, i.e., the previ-
ous Cplex+Polish algorithm but starting from the list of all feasible
solutions found by Greedy.

Table 2 entries represent percentage cost increase with respect to the
Greedy-alone algorithm per CPU second, so it is the ratio between the
percentage cost improvement of a method (respect to the Greedy-alone) and
the difference between the execution time of that method and the execution
time of Greedy-alone. In some sense that value describes the efficiency of
those methods.
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Greedy efficiency Battery efficiency

Set % Impr/sec. % Impr/sec.
HFBC 10 0.00 0.00
HFBC 20 0.24 231.22
HFBC 30 0.10 74.51
HFTC 10 0.00 0.00
HETC 20 0.76 326.17
HETC 30 0.09 68.84
MFBC 10 0.00 0.00
MFBC 20 2.18 326.94
MFBC 30 0.23 72.45
MFTC 10 0.00 0.00
MFTC 20 0.83 234.87
MFTC 30 0.28 29.70

Table 2: Efficiency of methods Greedy and Battery compared to

Greedy-alone. Percentage cost improve (% Impr) per CPU second.
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It is evident that in terms of efficiency Battery is fairly better and can
significantly improve the solution within a short computing time.

Moreover, Table 2 shows an apparently strange behaviour: the efficiency
of the sets with 20 appliances is always greater than the one with 30 appli-
ances. The reason of this fact must be sought on the characteristics of the
photovoltaic power source and, in particular, on the amount of energy that it
can deliver; in our case >, 7" = 31253. We can notice in Tables 17 18 that
this value exceeds the total amount consumption of 10 appliances whereas is
a little bit lower than the case of 20 apps and quite lower than the case of 30.
It becomes obvious that the positioning of the apps is much more important
in the case where the total energies involved are similar. In fact, in first case
all the apps are allocated within the photovoltaic production area whereas in
the third case the photovoltaic energy is almost completely used by a bunch
of apps and the remaining ones are allocated somewhere else where the cost

saving becomes difficult, reducing the efficiency (Fig.6, Fig.7, Fig.8).
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According to Table 3 and Table 4, Greedy+Polish outperforms its com-
petitors by a large amount.

As expected, Greedy-alone is always able to provide feasible solutions
in very short computing times. In spite of its greedy nature, the solution
quality is fair in many cases, in particular in the easiest scenarios where
the greedy solution often turns out to be optimal. Nevertheless, for more
difficult scenarios there is room for important improvements—also because
of the contribution of the batteries that is exploited by the MIP model but
not by the Greedy-alone.

As to Cplex, it has a great difficulty even in finding its first feasible
solution—a task that takes a huge amount of time in the difficult cases.
Significantly improved solutions are found by Cplex+Polish, thus confirming
the effectiveness of this heuristic. However, the full power of MIP refinement
is only exploited when Greedy+Polish comes into play. This is due to two
main factors: the speed of the greedy, and the fact that several diversified
solutions are passed to the polishing method.

Of course, we cannot claim that Greedy+Polish would outperform more
sophisticated heuristic approaches from the literature on similar problems—
for that, much more extensive computational comparisons would be needed.
However, we believe our computational results support the message of the
present paper—sound matheuristics can be built around a simple greedy and
an off-the-shelf MIP refinement procedure.

A more sophisticated heuristic has been created adding the battery op-
timization. It guarantees a significant improving of the solution within a
negligible period of time but can not achieve the results of Greedy+Polish
and it costs us creating it nearly the same time of creating the Greedy-alone.
This fact proves again that to produce a very complicated heuristic can be a
real waste of time if Greedy+Polish can be used.

In Fig. 10 is represented an example of the battery status behavior as
well as the appliances scheduling using Greedy+Battery, while in Fig. 11 is

represented the same instance solved by Greedy+Polish. It can be noticed
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that Greedy+Polish can benefit of the much more complex mathematical
model of the MIP adapting the power profile of the appliances to fit perfectly
inside the area of where there is photovoltaic energy or where the power-grid-
energy cost is lower. In section 6 are reported other examples of different

instances.
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6 Conclusions

A simple MIP-and-refine matheuristic framework has been addressed, where
a greedy heuristic is used to trigger a general purpose MIP refinement proce-
dure. Moreover a more sophisticated heuristic is presented. Computational
results on a smart-grid energy management problem have been presented,
showing that the method and the heuristic produces sound results.

The approach is based on two ingredients: an initial heuristic, and a MIP
model. The heuristic needs not to be very effective, as its role is just to
initialize a pool of feasible solutions—the more diversified the better. The
MIP model itself needs not to be very sophisticated, as it is automatically
resized by the general purpose MIP refinement procedure. Nevertheless,
the combination of the two can be much more effective than the sum of
its parts, in the sense that the two modules work in a highly synergic way
and can produce outcomes whose solution quality can only be matched by
sophisticated ad-hoc heuristics. A little demonstration of this fact is that the
battery-pumped heuristic, even obtaining good results, can not achieve the
effectiveness of our approach but is much more complicated than the stand
alone heuristic.

Future research on the topic will hopefully confirm the viability of the

approach on other classes of very difficult problems.
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Appendix A: ILOG CPLEX

Cplex is the core solver engine of a family of optimization products of ILOG.
It includes [23]:
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e simplex optimizers: to solve linear and quadratic programs using
primal and dual simplex algorithms, a presolver and a network opti-

mizer;

e barrier optimizer: an alternative to the simplex method to solve

linear and quadratic programs;

e mixed integer optimizer: to solve problems with mixed-integer vari-
ables (general or binary) and linear or quadratic objective function, us-
ing state-of-the art algorithms and techniques, including cuts, heuris-

tics, polishing, and a variety of branching and node selection strategies

ILOG CPLEX offers C, C++, Java, and .NET libraries that solve linear
programming (LP) and related problems. Specifically, it solves linearly or
quadratically constrained optimization problems where the objective to be
optimized can be expressed as a linear function or a convex quadratic func-
tion. The variables in the model may be declared as continuous or further

constrained to take only integer values.
ILOG CPLEX comes in three forms:

e The ILOG CPLEX Interactive Optimizer is an executable pro-
gram that can read a problem interactively or from files in certain
standard formats, solve the problem, and deliver the solution interac-

tively or into text files.

e ILOG Concert Technology is a set of libraries offering an API that
includes modeling facilities to allow a programmer to embed ILOG
CPLEX optimizers in C++4, Java, or .NET applications.

e The ILOG CPLEX Callable Library is a C library that allows
the programmer to embed ILOG CPLEX optimizers in applications
written in C, Visual Basic, Fortran or any other language that can call

C functions.
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Since the mathematical model presented in this thesis is a MIP problem, we
only use the mized integer optimizer of CPLEX including all the new features
like the polishing technique. More explanations on how we used CPLEX are
described in 6.

Appendix B: Blade

The computing cluster Blade of the Department of Information Engineering
(DEI) of the University of Padova is equipped with 28 Intel Quad Core®
E5450 at 3 GHz and 6 MB of cache, for a total of 112 core. The overall
RAM memory is 224 GByte. The machine uses a batch system that allow to
run the simulations, which are automatically assigned to the free resources.

The management program is Oracle Grid Engine (previously known as
Sun Grid Engine), that is an open source batch-queuing system, developed
and supported by Sun Microsystems.

The batch has to be submitted from a computer connected at the DEI
network or can be accessed via ssh from a any computer all over the world
(with Username e Password of the DEI account).

According with Oracle Grid Engine guidelines, each batch has to be sub-
mitted using the command g¢sub followed by the proper options. Below an

example of the batch to be submitted.

Algorithm 3 Blade submitting batch
#!/bin/bash
#$ -P 40_Studenti
#$ -cwd
#$ -e Blade/Errors/log.err
#$% -0 Blade/Outputs/log.out
#$ -m ea
./myScript

where —P 40_Studenti indicates the group membership of the submit-
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ter, —cwd states that it will be executed in the Current Working Directory,
—e Blade/Errors/log.err and —o Blade/Outputs/log.out where the logs are
saved. Moreover, the line —m ea specifies that the system will send a mail
to the submitter account if the batch is ended (e) or aborted (a). In the
successive lines can be used every batch command, in particular the launch
of a script.

In our case, the script has to contain the commands to lunch CPLEX as

an Interactive Optimizer. It is very simple and may be written as in 4.

Algorithm 4 Cplex executable script
#!/bin/bash
cplex < myCplexCommands

Where cplex lunch the CPLEX application and “<” passes to CPLEX the
file myCplexCommands that contains the instructions for the cplex execution.
An example of file to be passed to CPLEX and used within this thesis in

certain circumstances is presented in 5.

Algorithm 5 Cplex commands file
read LPModel.txt Ip

read CplexStart.txt mst

set mip cuts all -1

set mip poli node 1

set mip limits nodes 10

set thread 1

optimize

write CplexSolution.xml sol

y
quit

For more explanations look at CPLEX User’s Manual available online at

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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Appendix C: Detailed tables
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Instance  Energy consumption

HFBC_10_1 19520
HFBC_10_1 21651
HFBC_10_1 18811
HFBC_10_1 22926
HFBC_10_1 10884
HFBC_20_1 43072
HFBC_20_1 42720
HFBC_20_1 43946
HFBC_20_1 42750
HFBC_20_1 43635
HFBC_30_1 27289
HFBC_30_1 65905
HFBC_30_1 62551
HFBC_30_1 62127
HFBC_30_1 64763
HFTC_10_1 15552
HFTC_10_1 21245
HFTC_10_1 19693
HFTC_10_1 21659
HFTC_10_1 20581
HFTC_20_1 43868
HFTC_20_1 41759
HFTC_20_1 42913
HFTC_20_1 40620
HFTC_20_1 45886
HFTC_30_1 65018
HFTC_30_1 67396
HFTC_30_1 64724
HFTC_30_1 61203
HFTC_30_1 68684

Table 17: Energy total consumption of all the appliances in Watt per time

slot.
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Instance Energy consumption

MFBC_10_1 20992
MFBC_10_1 23839
MFBC_10_1 21979
MFBC_10_1 22513
MFBC_10_1 20111
MFBC_20_1 44232
MFBC_20_1 41528
MFBC_20_1 45215
MFBC_20_1 41003
MFBC_20_1 38309
MFBC_30_1 63445
MFBC_30_1 63565
MFBC_30_1 61651
MFBC_30_1 66516
MFBC_30_1 68274
MFTC_10-1 19725
MFTC_10-1 22253
MFTC_10-1 19751
MFTC_10-1 21667
MFTC_10-1 18634
MFTC_20_1 45603
MFTC_20_1 47652
MFTC_20_1 44868
MFTC_20_1 44446
MFTC_20_1 44758
MFTC_30-1 60869
MFTC_30-1 67853
MFTC_30-1 67093
MFTC_30-1 63521
MFTC_30-1 63432

Table 18: Energy total consumption of all the appliances in Watt per time

slot.
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Appendix D: Some plots
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