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FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA DELL’AUTOMAZIONE

TESI DI LAUREA

OPTIMAL SCHEDULING OF SMART
HOME APPLIANCES USING
MIXED-INTEGER LINEAR

PROGRAMMING

Relatore: Ch.mo Prof. Fischetti Matteo

Laureando: Sartor Giorgio

Anno Accademico 2012–2013
Padova, 10 dicembre 2012



Ai miei genitori e ad Elena



Acknowledgments

I would like to thank Prof. Matteo Fischetti, the best supervisor that a

student could wish for.

A special acknowledgment to Ing. Arrigo Zanette, who oversaw this work

with outstanding kindness.

Special thanks also to M31 Italia S.r.l, who supported me during this project.

i



Contents

1 Introduction 1

1.1 Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Greedy heuristic algorithm . . . . . . . . . . . . . . . . . . . . 9

1.4 Polishing technique . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Real scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Our MIP model 13

3 A Greedy Algorithm 20

4 Battery optimization 22

5 Computational results 25

6 Conclusions 40

Appendix A: ILOG CPLEX 43

Appendix B: Blade 45

Appendix C: Detailed tables 46

Appendix D: Some plots 62

ii



Sommario

Negli ultimi anni abbiamo assistito ad un crescente interesse per gli edifici

intelligenti (smart buildings), in particolare per quanto riguarda la gestione

efficiente dell’energia, le fonti di energia rinnovabile e gli elettrodomestici

intelligenti (smart appliances). In questa tesi poniamo la nostra attenzione

sul problema dell’allocazione (scheduling) degli elettrodomestici intelligenti

lungo un certo periodo della giornata, tenendo anche conto di fonti di en-

ergia alternativa e batterie di accumulo. Il profilo energetico di una smart

appliance è modellato attraverso una sequenza di fasi, ciascuna delle quali ha

il proprio consumo energetico e le proprio caratteristiche. Lo scopo è quello

di allocare gli elettrodomestici in modo da ridurre il conto totale in bolletta,

rispettando le caratteristiche dei profili energetici e le preferenze dell’utente.

Viene progettato un modello a programmazione lineare intera (MIP) e un al-

goritmo euristico greedy, con l’idea di combinarli assieme. Mostreremo come

una generica procedura di raffinamento sfruttata dal modello MIP può es-

sere usata per migliorare, in poco tempo, la qualità della soluzione fornita

dall’algoritmo euristico. I risultati ottenuti confermano la validità di questo

approccio, sia in termini di qualità della soluzione sia di velocità.

Parole chiave Mateuristico, Programmazione Lineare Intera, euristiche di

raffinamento, gestione dell’energia, case intelligenti
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Abstract

In the last years we have witnessed an increasing interest in smart build-

ings, in particular for what concerns optimal energy management, renewable

energy sources, and smart appliances. In this paper we investigate the prob-

lem of scheduling smart appliance operation in a given time horizon with a

set of energy sources and accumulators. Appliance operation is modeled in

terms of uninterruptible sequential phases with a given power demand, with

the goal of minimizing the energy bill fulfilling duration, energy, and user

preference constraints. A Mixed Integer Linear Programming (MIP) model

and a greedy heuristic algorithm are given, intended to be used in a synergic

way. We show how a general purpose (off-the-shelf) MIP refining procedure

can effectively be used for improving, in short computing time, the quality

of the solutions provided by the initial greedy heuristic. Computational re-

sults confirm the viability of the overall approach, in terms of both solution

quality and speed.

Keywords Matheuristics, Mixed-Integer Programming, Refinement heuris-

tics, Energy Management, Smart Houses
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1 Introduction

Energy optimization is attracting an increasing interest amongst researchers

as long as new “smarter” infrastructures and devices are going to replace the

traditional ones.

The most popular scenario involves a new concept of electrical grid, the

Smart Grid (Fig. 1) that allows to convey a two-way flow of electricity

and information between central generators and customers [10]. Although

there are many ways of addressing the demand side energy management

problem like using neural network [6] or PID neural networks [11], multi-

agent systems [25], fuzzy control [17] and even ant colony optimization [8],

the most common way is by solving a scheduling problem. This involves

multiple appliances with different operational constraints, user preferences,

renewable energy sources and batteries. Other authors have investigated

variants of the appliance scheduling problem, Hatami and Pedram [14] by

taking the interaction among different users into account, Zhang et al. [24]

by considering a so-called microgrid, and Agnetis et al. [2] by addressing

additional thermal comfort constraints.

Mixed Integer Programming (MIP) models from the literature allow for

an effective mathematical formulation of the appliance scheduling problem.

Barbato et al. [3] also take the photovoltaic energy into account, and a

linearized description of battery charge states is given. Sou et al. [18] provide

a detailed MIP formulation of appliance power profiles and operations, and

model appliance operations as a set of sequential uninterruptible phases with

variable inter-phase delays.

As far as the solution of appliance scheduling problem is concerned, Car-

pentieri et al. [7] propose an LP-rounding heuristic for solving the appliance

scheduling problem with the goal of minimizing the maximum peak energy

of multiple houses. Barbato et al. [4] use different heuristics to address the

problem of online recovering an offline schedule taking into account the real

parameters.

With this paper we want to propose a solution to the energy management
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problem using a combination between greedy heuristic algorithm and the

recent technique of polishing in a smart house scenario (Fig. 2).

Many successful matheuristic schemes use a black-box MIP solver to gen-

erate high-quality heuristic solutions for difficult optimization problems. The

hallmark of this approach is the availability of a (possibly incomplete) MIP

model of the problem at hand, and of an external metascheme that iter-

atively solves sub-MIPs obtained by introducing invalid constraints (e.g.,

variable fixings) defining “interesting” neighborhoods of certain solutions.

The goal of the approach is to iteratively refine the incumbent solution, pro-

ducing a sequence of better and better feasible solutions in short (or, at least,

acceptable) computing times.

The above solution-refinement approach is completely general, i.e., it can

in principle be applied to the original MIP without the need of ad-hoc adap-

tations. An example of a general MIP refinement procedure is the evolution-

ary polishing method of Rotbergh [15] that automatically defines sub-MIPs

to combine a population of feasible solutions. (Interesting enough for prac-

titioners, an implementation of the polishing heuristic is available in some

commercial MIP solvers, hence it can be used off-the-shelf.) A more recent

approach is the proximity search by Fischetti and Monaci [12], where the

objective function of the original MIP is modified with the aim of attracting

the search in the neighborhood of the incumbent, without the need of adding

any additional constraint.

In very difficult cases, however, the approach based on general MIP re-

finement is not successful, and one tends to design ad-hoc matheuristics that

exploit the structure of the problem. As a matter of fact, an issue with the

general approach is the lack of good (or even feasible) solutions to refine. In

this context, one can argue that ad-hoc heuristics and general MIP refinement

procedures are complementary one to each other, the former being typically

able to find feasible solutions very quickly, while the latter can exploit the

underlying MIP model to improve them by reaching a quality degree that is

difficult to attain otherwise.
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In the present paper we argue that the application of above scheme can

lead to a very effective overall heuristic even in case a very simple greedy is

used to feed the general MIP refinement module with feasible solutions. The

resulting MIP-and-refine approach is exemplified and tested in the context

of smart grid energy management, whose underlying MIP models turn out to

be very difficult to solve without the hints provided by an external heuristic.

Below we present a description of the Smart Grid scenario as well as the

MIP modeling, the heuristic algorithm and the polishing technique. Moreover

we introduce the real scenario where the greedy algorithm will be applied 1.5.

In section 2 we propose a MIP model of the scheduling problem whereas in

section 3 a greedy heuristic to solve it. In section 5 we show some results.
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1.1 Smart Grid

As described in [1], the term “smart grid” refers to an electricity transmis-

sion and distribution system that incorporates elements of traditional and

cutting-edge power engineering, sophisticated sensing and monitoring tech-

nology, information technology, and communications to provide better grid

performance and to support a wide array of additional services to consumers.

A smart grid is not defined by what technologies it incorporates, but rather

by what it can do. The key attributes of the 21st century grid include the

following:

• The grid will be “self-healing.” Sophisticated grid monitors and controls

will anticipate and instantly respond to system problems in order to

avoid or mitigate power outages and power quality problems.

• The grid will be more secure from physical and cyber threats. Deploy-

ment of new technology will allow better identification and response to

manmade or natural disruptions.

• The grid will support widespread use of distributed generation. Stan-

dardized power and communications interfaces will allow customers

to interconnect fuel cells, renewable generation, and other distributed

generation on a simple plug and play basis.

• The grid will enable consumers to better control the appliances and

equipment in their homes and businesses. The grid will interconnect

with energy management systems in smart buildings to enable cus-

tomers to manage their energy use and reduce their energy costs.

• The grid will achieve greater throughput, thus lowering power costs.

Grid upgrades that increase the throughput of the transmission grid

and optimize power flows will reduce waste and maximize use of the

lowest-cost generation resources. Better harmonization of the distribu-

tion and local load servicing functions with interregional energy flows
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and transmission traffic will also improve utilization of the existing

system assets.

Smart Grid benefits are fully exploited only if the grid endpoints, home

appliances for examples, are smart as well. Smart appliances are able to

exchange data with the grid, such as dynamic energy prices and grid status.

Along with user preferences, this information can be used to optimally man-

age the energy demand in order to reduce the customer energy bill and to

prevent major blackouts.

Each appliance, to be called “smart”, must have some particular features:

• Computational capability

• Sensors

• Interconnection capability

The smart appliance must be able to measure something, analyze or process

the measure and transmit it to the other appliances or to a central station.

Hence, a smart appliance have to be interconnected and able to communicate

with each other. This could be possible by a “classic” wired connection or, in

a more fashion way, using wireless sensor network (WSN). Tung et al. [20],

Yiming et al. [22], Tsang et al. [19] and Dae et al. [13] show this application

using ZigBee, that is a specification for a suite of high level communication

protocols using small, low-power digital radios based on an IEEE 802 stan-

dard for personal area networks [26].

1.2 MIP

Linear programming (LP, or linear optimization) is a mathematical method

for determining a way to achieve the best outcome (such as maximum profit

or lowest cost) in a given mathematical model for some list of requirements

represented as linear relationships [16]. Linear programming is a specific case
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of mathematical programming (mathematical optimization). More formally,

linear programming is a technique for the optimization of a linear objective

function, subject to linear equality and linear inequality constraints. Its fea-

sible region is a convex polyhedron, which is a set defined as the intersection

of finitely many half spaces, each of which is defined by a linear inequality.

Its objective function is a real-valued affine function defined on this polyhe-

dron. A linear programming algorithm finds a point in the polyhedron where

this function has the smallest (or largest) value if such a point exists. Linear

programs are problems that can be expressed in canonical form:

min cTx

subject to Ax ≥ b

x ≥ 0

where x represents the vector of variables (to be determined), c and b

are vectors of (known) coefficients, A is a (known) matrix of coefficients, and

(·)T is the matrix transpose. The expression to be maximized or minimized

is called the objective function (cTx in this case). The inequalities Ax ≥ b

are the constraints which specify a convex polytope over which the objective

function is to be optimized. Linear programming can be applied to various

fields of study. It is used in business and economics, but can also be uti-

lized for some engineering problems. Industries that use linear programming

models include transportation, energy, telecommunications, and manufactur-

ing. It has proved useful in modeling diverse types of problems in planning,

routing, scheduling, assignment, and design.

Integer programming (IP) adds additional constraints to linear program-

ming. In particular it adds the requirement that some or all of the variables

take on integer values. This seemingly innocuous change greatly increases

the number of problems that can be modeled, but also makes the models

more difficult to solve. In fact, two seemingly similar formulations for the

same problem (one integer and the other one linear) can lead to radically

different computational experience. Integer programming is NP-hard.
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Logical condition Binary condition

At most N of a, b, c, . . . a+ b+ c+ . . . ≤ N

At least N of a, b, c, . . . a+ b+ c+ . . . ≥ N

Exactly N of a, b, c, . . . a+ b+ c+ . . . = N

If a then b b ≥ a

Not b b = 1− b
If a then not b a+ b ≤ 1

If not a then b a+ b ≥ 1

If a then b, and if b then a a = b

If a then b and c; a only if b and c b ≥ a and c ≥ a

If a then b or c b+ c ≥ a

If b or c then a a ≥ b and a ≥ c

If b and c then a a ≥ b+ c− 1

Table 1: Logical conditions to Binary condition. All variables ∈ {0, 1}

MIP (Mixed Integer Programming) is a generalization of LP in which the

variables of the linear model are integer. In some cases the variables could

be also binary.

The binary modeling can be very tricky sometimes because our thinking

is not used to. In Table 1 are presented some useful transformations of logical

conditions to binary conditions.

1.3 Greedy heuristic algorithm

Cormen et al. [9] define the greedy algorithm as an algorithm that follows the

problem solving heuristic of making the locally optimal choice at each stage

with the hope of finding a global optimum. In many problems, a greedy

strategy does not in general produce an optimal solution, but nonetheless

a greedy heuristic may yield locally optimal solutions that approximate a

global optimal solution in a reasonable time.
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Most of the problems that can be solved using greedy approach have two

parts [5]:

• Greedy choice property: Globally optimal solution can be obtained by

making locally optimal choice and the choice at present cannot reflect

possible choices at future.

• Optimal substructure: Optimal substructure is exhibited by a problem

if an optimal solution to the problem contains optimal solutions to the

subproblems within it.

To prove that a greedy algorithm is optimal we must show the above two

parts are exhibited. For this purpose first take globally optimal solution;

then show that the greedy choice at the first step generates the same but the

smaller problem, here greedy choice must be made at first and it should be

the part of an optimal solution; at last we should be able to use induction to

prove that the greedy choice at each step is best at each step, this is optimal

substructure.

In general, greedy algorithms have five components [21]:

• A candidate set, from which a solution is created

• A selection function, which chooses the best candidate to be added to

the solution

• A feasibility function, that is used to determine if a candidate can be

used to contribute to a solution

• An objective function, which assigns a value to a solution, or a partial

solution, and

• A solution function, which will indicate when we have discovered a

complete solution
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1.4 Polishing technique

In many situations can be very difficult to find quickly a feasible solution of

a complex MIP problem but it can be quite easy to find a partial feasible

solution in a short time. In this case it can be simple to create a set of partial

(or eventually complete) solutions that are differentiated among themselves

and not necessarily are close to the optimal solution. This is the common

situation in which the polishing technique is applied.

As described by Rotbergh et al. [15], polishing is an algorithm that uses

mutation and combination of solutions within a solution pool to generate

improved solutions. The polishing algorithm first randomly selects one or

more seed solutions from a solution pool for mutation. The selected seed

solutions are mutated by fixing a subset of integer variables in the models to

the value they take in the seed solution. The remaining variables are then

formulated into a sub-MIP problem that is solved by the MIP solver. The

solutions generated from this mutation process may then be added to the

solution pool. After the one or more iterations of the mutation processes

have taken place, the polishing algorithm then selects one or more plurali-

ties of parent solutions from the solution pool to use in generating offspring

solutions. The integer variables that agree between one plurality of parent

solutions are fixed in the offspring solution. The remaining variables are then

formulated into a sub-MIP problem that is solved by the MIP solver. The

offspring solutions generated by the combination process may then also be

added to the solution pool.

Summarizing, in each phase of the polish algorithm, a new generation of

solutions is created from the previous generation and is formed in a series of

three steps:

• Selection: Pairs of candidate solutions are chosen, typically based on

a fitness metric. The intent is that the fittest candidates produce the

most descendants;

• Combination: Chosen pairs of solutions are combined (in a way that
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is meaningful within the problem domain) to produce offspring. The

fitness of the offspring may be better or worse than that of its parents;

• Mutation: Random changes are introduced into some subset of the

offspring (again in a way that is meaningful within the problem do-

main). The intent of this step is to increase diversity in the population

In most of the cases this approach produces solutions that alternative ap-

proaches are unable to find.

1.5 Real scenario

The greedy heuristic algorithm created within this paper will be used in a

real energy management system to reduce the overall electricity bill. The

system is composed of four principal smart appliance:

• Washing machine

• Cooktop

• Oven

• Refrigerator

In addition, every other appliance that is not “born” smart is equipped with

an object called smart meter that can measure the consumption of that

appliance and transmit it to the central station. Those appliances, unlike

the smart one, cannot be scheduled along the day but contribute to the

energy consumption.

The central station, that works also as a gateway for all the devices,

receives all the informations from smart appliances and smart meters and,

using this algorithm, decide the allocation of the four appliance in order to

reduce the total electricity cost. Moreover, the GUI installed on the central

station lets the user browse all devices connected to the system like power

12



sources and appliances as well as all the things connected with the smart me-

ter. Each appliance connected can be controlled in detail and has a different

GUI. In the case of a washing machine, for example, the user can decide the

period of the day in which the washing machine has to be allocated, the type

of cycle and all the other parameters that the washing machine lets change,

like water temperature, etc.. The user can decide to start the cycle immedi-

ately or let that the algorithm decides for him. All these functionalities can

be moved to a tablet. Figure 3 shows the results of the algorithm, hence the

allocation of the appliances during the day.

Figure 3: Example of GUI showing the scheduling

2 Our MIP model

Following Sou et al. [18], we model appliance operations as a set of sequential

uninterruptible energy phases, each of which uses a given total amount of

electric energy. For example, typical washing machine phases are pre-wash,
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wash, rinse and spinning. The set of phases is also called the power profile

of the appliance.

Depending on the appliance, phase duration may vary, as long as the inter-

phase delay (e.g., the spinning of the washing machine must start within ten

minutes of the rinsing being finished). The total energy given for a phase

can be evenly distributed over time, or it may vary. We model the latter case

with per-phase bounds on the instantaneous power consumption.

Besides the intrinsic operational constraints, we allow the user to specify

preferences for the time interval in which an appliance should run (e.g., start

the washing machine between 4pm and 6pm).

Following Barbato et al. [3], we have modeled three classes of energy

sources: power grid, domestic renewable energy and accumulators (batteries).

The power grid advertises the maximum amount of available energy (peak

power) for each time instant. Note that this peak power can be different

from the actual user contract maximum power. In fact, a common feature

in the Smart Grid paradigm is to dynamically advertise (i.e., broadcast)

the peak power depending on the grid state, in order to let users adjust their

demands for preventing more dangerous power outages. Along with the peak

power, also the cost of energy changes with time. For example, in the Italian

market it can vary between two values depending on the day time and on

the day of the week. More dynamic power grids allow for a finer grain price

adjustment (hourly or less).

Domestic renewable energy sources provide free energy but with a limited

availability. For example, the performance of a photovoltaic (PV) plant de-

pends on geographical position, weather conditions, and time. Accumulators

allow to store energy (from grid or from other sources) when energy price is

low, and to use it later when energy price is higher. This feature represents an

important degree of freedom as far as optimization is concerned. Our model

only deals with batteries, viewed as direct electric energy accumulators; how-

ever, it can trivially be extended to other types of energy accumulators (e.g.,

boilers for thermic energy).

14



Finally, the optimization goal is to minimize the total energy cost by

finding a proper allocation of all appliance phases.

Given two integers a and b, let [a, b] denote the discrete set {a, a +

1, · · · , b}. We discretize the scheduling time horizon into m uniform time

slots, indexed by k ∈ [1,m]. The phases for each appliance i ∈ [1, N ] are

denoted by j ∈ [1, ni]. To simplify notation, in what follows we write ∀i, j
instead of ∀i ∈ [1, N ], j ∈ [1, ni], and ∀k instead of ∀k ∈ [1,m].

In our model, nonnegative continuous variables pk
ij represent the energy

assigned to phase j of appliance i during time slot k. The typical unit for pk
ij

is Watt (W) per timeslot (energy). With binary variables xk
ij, s

k
ij and tkij we

model the allocation of a time slot k for phase j of appliance i. In particular,

xk
ij = 1 iff phase j of appliance i is allocated in time slot k. Variable sk

ij jumps

from 0 to 1 right after the last time slot of where the phase j of appliance i

is allocated, and is defined by the equations:

xk−1
ij − xk

ij ≤ sk
ij ∀ i, j,∀k ∈ [2,m] (2a)

sk−1
ij ≤ sk

ij ∀ i, j,∀k ∈ [2,m] (2b)

Instead, tkij is 1 iff there is a inter-phase delay between phase j − 1 and j in

time slot k, and is defined as:

tkij = sk
i(j−1) − (xk

ij + sk
ij) ∀i, k, ∀j ∈ [2, ni]

Figure 4 illustrates the meaning of the above variables in a simple case

of an appliance with two phases: the first phase is allocated between hours

2 and 6, and the second between 14 and 16 (the day being divided into 12

time slots).

Our model also uses nonnegative continuous variables zk and yk to repre-

sent the amount of total energy sold and bought in each time slot k, respec-

tively. Then, if ck and gk denote the input cost of bought and sold electricity

during time slot k, respectively, our MIP model calls for:

z = min
m∑

k=1

(
ckyk − gkzk

)
(3)
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Figure 4: Example of binary variables xk
ij, s

k
ij and tkij
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subjct to the following constraints.

Phase energy: ensures the energy allocated during phase j of appliance i

meets the given phase total energy Eij

m∑
k=1

pk
ij = Eij ∀ i, j (4)

Energy bounds: ensures the energy allocated in phase j for appliance i in

any time slot k belongs to the allowed range [P ij, P ij]

P ij x
k
ij ≤ pk

ij ≤ P ij x
k
ij ∀ i, j,∀k (5)

Power safety: guarantees that the total energy assigned in time slot k does

not exceed the peak power limit

yk ≤ P k
peak ∀ k (6)

where P k
peak is the peak limit of slot k; this constraint can also be used to

model additional unscheduled power demands that reduce the available grid

energy in time slot k.

Energy phase duration:

T ij ≤
m∑

k=1

xk
ij ≤ T ij ∀ i, j (7)

where T ij and T ij represent, respectively, the lower and upper bound on the

number of time slots to allocate for phase j of appliance i.

Uninterruptible phase: these constraints ensure that all time slots of phase

17



j are allocated contiguosly (i.e., when an energy phase starts, it must finish

without interruptions).

xk
ij + sk

ij ≤ 1 ∀ i, j, k (8)

Recall that sk
ij is 0 before the last time slot allocated for phase j and appli-

ance i, and becomes 1 afterwards (2a) until the end (2b). Thus, constraint

(8) prevents the variable xk
ij to be 1 after the last-phase time slot.

Sequential processing: previous energy phase must be finished, before a new

one starts

xk
ij ≤ sk

i(j−1) ∀ i, k, ∀ j ∈ [2, ni] (9)

Inter-phase delay duration:

Dij ≤
m∑

k=1

tkij ≤ Dij ∀ i, ∀ j ∈ [2, ni] (10)

where Dij and Dij are the minimum and the maximum number of time slots

between phase j − 1 and j of the appliance i.

User time preferences: disable phase allocation of appliance i in the given

time slots

xk
ij ≤ TP k

i ∀ i, j, k (11)

where TP k
i is equal to zero iff phase j of appliance i cannot be allocated in

time slot k.

In order to model batteries behavior we need two extra binary variables

wk
c and wk

d , where wk
c is equal to 1 if the battery is charging in time slot k

and 0 otherwise, while wk
d is equal to 1 if the battery is discharging in time

slot k and 0 otherwise. Moreover, with the nonnegative continuous variables

vk
c and vk

d we describe the charge and discharge rates, respectively, that is

the amount of energy that is charged/discharged in time slot k. The total
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accumulated energy in time slot k is described by the nonnegative continuous

variable ek.

Battery usage constraint: the battery cannot charge and discharge at the

same time.

wk
c + wk

d ≤ 1 ∀ k (12)

Battery charge/discharge rate bounds:

vk
c ≤ vmax

c · wk
c ∀ k (13a)

vk
d ≤ vmax

d · wk
d ∀ k (13b)

where vmax
c , vmax

d denote the max charge and discharge rates respectively.

Battery energy function: this is a linearization of the actual charge/discharge

curves

ek = ek−1 + ηc · vk
c − ηd · vk

d ∀ k (14)

where ηc and ηd are, respectively, the charging and discharging efficiency

Battery capacity bounds: used to limit the energy stored in the battery

γmin ≤ ek ≤ γmax ∀ k (15)

where γmax and γmin represent the maximum capacity and the minimum en-

ergy safety value (required, for example, by lithium batteries)

Balancing constraint: balance between produced and consumed energy

yk + πk + vk
d = zk +

N∑
i=1

ni∑
j=1

pk
ij + vk

c ∀ k (16)

where πk is the the sum of the newable domestic power sources contribution

in time slot k.
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3 A Greedy Algorithm

In this section we describe a heuristic greedy algorithm for finding good

feasible solutions of the described problem, that we apply in a multi-start

fashion. The algorithm schedules appliances in order of decreasing priority,

according to a greedy policy—once an appliance has been scheduled, it is

not changed anymore, and all other appliances are allocated on top of the

current partial solution. In the first application of the greedy, we use energy

requirements as appliance priorities. In the subsequent runs, the priority

vector is shifted to generate different solutions. For each appliance, we look

for a feasible allocation of its phases according to the following rules.

We consider a simplification of problem, where the duration dij of each

phase is the minimum between T ij and dEij/P ije, and bounds (5) become

pk
ij = xk

ijEij/dij for all k.

Accordingly, every phase has a constant duration and a constant energy

consumption, and can be scheduled in the time slots interval [1,m − dmin
i ]

where dmin
i =

∑ni

j=1 dij represents the minimum duration of a complete ap-

pliance power profile (i.e., without phase delays). To be more specific, once a

phase has been allocated we look for all possible allocations of the next phase

in the range given by [Dij, Dij], see (10), and we select the most profitable

one. Our allocation procedure enforces the user preferences on time slots

(11) and three other constraints: power safety (6), uninterruptible phase (8),

and sequential processing (9).

Fig. 5 shows an example of scheduling procedure of a single appliance com-

posed of two phases and User time preferences ∈ [2, 14]

The algorithm consists of four main loops. The first loop iterates over

all the N appliances, the second one over the set of the m time slots, the

third one over the set of the ni = O(m) appliance phases, the fourth over

the set of mj delay time slots [Dij, Dij]. Moreover, our allocation procedure

requires O(T j) iterations, where Tj is the maximum duration of phase j of

appliance i, while the fourth loop requires O(mjTj) = O(m2). However, the

latter complexity can be amortized with that of the third loop, because the
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(a) Starting slot k = 2

(b) Starting slot k = 3

(c) Starting slot k = 4

Figure 5: Example of the greedy scheduling procedure of a single appliance

composed of two phases and User time preferences ∈ [2, 14]
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following bounds hold:

m2 ≥ (

ni∑
j=1

(mj + T j))
2 ≥

ni∑
j=1

(mj + T j)
2 ≥

ni∑
j=1

(mjT j).

So the overall time complexity of the proposed greedy algorithm is O (Nm3),

showing the importance of choosing the number m of time slots so as to

guarantee a good compromise between computing time and accuracy.

4 Battery optimization

The battery algorithm, like the main one, is a greedy algorithm. The task

of the algorithm is to decide in which time slot charge the battery and in

which time slot discharge it. Moreover it can decide the quantity of energy

that has to be charged or discharged in each time slot.

Let S be the set of energy sources. It comprises both the grid power source

and the renewable power source. We will denote by:

• χk
s : the cost of energy of power source s ∈ S in time slot k (that is 0

for renewable power sources and ck for grid power source)

• εk
s : the energy available from power source s ∈ S in time slot k (that is

πk − zk? and P k
peak − yk? for renewable and grid power sources respec-

tively)

For simplicity sake we will consider just one battery, being the generalization

for multiple batteries straightforward. We will denote by:

• ek: energy stored in the battery in time slot k

• ek
c : energy charged in the battery in time slot k

• ek
d: energy discharged from the battery in time slot k

• wk
c : charging indicator variable that is 1 if the battery is charging in

time slot k, 0 otherwise
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Algorithm 1 Greedy algorithm

p← vector of sorted appliances by decreasing
∑

j Eij

for all appliances i ∈ p do

z?
i ← +∞ . Initializes the best appliance solution

for all time slots k ∈ [1,m] do

zi ← +∞ . Initializes the incumbent appliance solution

for all phases j ∈ [1, ni] do

z?
ij ← +∞ . Initializes the best phase solution

for all delay slots k′ ∈ argmax(xk
ij−1 = 1) + [Dij, Dij] do

zij, xij ← feasible allocation of phase j

if z?
ij > zij then

z?
ij ← zij, x

?
ij ← xij . Updates the best phase solution

end if

end for

zi ← zi + z?
ij, xi ← xi ∪ x?

ij . Constructs the incumbent

appliance solution

end for

if z?
i > zi then

z?
i ← zi, x

?
i ← xi . Updates the best solution

end if

end for

if z?
i = +∞ then

return infeasible

end if

end for

return [z?
i , x

?
i ] for all i ∈ [1, N ]
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• wk
d : discharging indicator variable that is 1 if the battery is discharging

in time slot k, 0 otherwise

We recall that battery charging and discharging operations are mutually

exclusive, so if the battery is being charged in a given time slot in the same

time slot it cannot be discharged. Moreover the energy stored or drained in

a given time cannot exceed the values of vmax
c and vmax

d respectively.

Now the idea is to find a period along the day where we are buying expensive

energy and replace it with the one delivered by the battery which has been

charged previously in a period where the energy cost is lower.

The algorithm starts searching the time slot in which the energy cost is max,

to determine if there is a chance of removing some expensive energy used in

that time slot and replacing it with the energy of the battery. In order to do

that we sort time slots by decreasing energy cost ck and by increasing time

slot index for equal cost. Let denote this vector p. Accordingly, we sort time

time slots by increasing cost χk
s and decreasing time slot index k, for equal

χk
s . Let π be this sorted vector, whose cardinality is |S| ∗m.

The algorithm iterates on vector p computing energy bought from the power

grid ρk =
∑ni

j=1 p
k
ij, with unit cost ck. If the battery is not already charging

in time slot k (wk
c = 0) we can discharge the energy accumulated in previous

time slots to partially of completely fullfill the energy demand ρk. To do this

the algorithm scans the sorted vector π looking for a power source s whose

unit cost χh
s in time slot h < k is less than ck. If it can find a cheaper power

source s in time slot h, and discharging flag wh
d is zero, battery is charged

by the minimum value between demand ρk, battery charging rate vmax
c − eh

c ,

battery discharging rate vmax
d − ek

d, available energy εh
s and available battery

capacity γmax − el for all l ∈ [j, k]. It then updates values of ρk, εk
s and el

and continues iterating over π until either ρk = 0 or ek = γmax.

The algorithm consists of three main loops. The first loop iterates over

all the m time slots and the second over all the m time slots of each power

source. The two inner consecutive loops iterate along an interval of max
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length m, hence the computational complexity results:

O(2m
m∑

i=0

i) = O(m · m(m+ 1)

2
) = O(m3)

5 Computational results

In our tests we considered a time horizon of 24 hours, subdivided in 96 time

slots of 15 minutes each. Experiments were grouped into four sets according

to two main parameters. The first parameter is the “flexibility” of the user

time preference constraint. We considered two level of flexibility, namely:

high flexibility (HF), meaning that the appliance can be scheduled at any

time during the day, and medium flexibility (MF), meaning that appliances

can run inside a 12-hour randomly-generated time window within the day.

The second parameter is electricity cost: it can vary either every two hours

(BC), or every time slot (TC). For each of the four resulting sets, namely

HFBC, HFTC, MFBC, and MFTC, we considered 10, 20, or 30 appliances,

respectively, and solved 5 random instances for each of the 12 combinations—

60 instances in total.

A constant price of the sold photovoltaic energy was considered, equal

to half of the minimum cost of the bought energy. All the other model

parameters are taken from uniform random distributions: ck ∈ [2, 4], j ∈
[2, 5], Eij ∈ [400, 800], P ij ∈ [50, 80], P ij ∈ [400, 800], T ij ∈ [1, 2], T ij ∈ [3, 5],

Dij = 1, Dij ∈ [4, 6], and P k
peak ∈ [2400, 2600].

We considered a single renewable photovoltaic power source, whose pro-

vided energy is sampled from a Gaussian distribution N (µ, σ) with mean

µ = 52 (1pm, the period of maximum production at the latitude of Italy),

standard deviation σ = 10, and maximum value of 1250W per time slot.

The considered battery has a capacity γmax = 500 Watt per time slot and

charge/discharge rates vmax
c = vmax

d = 50 Watt per time slot, with efficiencies

ηc = ηd = 1.
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Algorithm 2 Battery algorithm

p ← vector of time slots indices sorted by decreasing bought energy cost

(ck)

π ← set of time slots and power indices sorted by increasing cost χk
s and

decreasing time slot index k for all s ∈ S
for all time slots k ∈ p do . Discharging time slot

ρk ←
∑N

i=1

∑ni

j=1 p
k
ij . Initializes the value of energy to realloc

for all pairs of timeslot and source indices 〈h, s〉 ∈ π do

µ← min(ρk, εh)

if h < k and χh
s < ck and wk

c = 0 and wh
d = 0 then

µ← min(µ, vmax
c − eh

c ) . Check the charging bound

µ← min(µ, vmax
d − ek

d) . Check the discharging bound

for all time slots l ∈ [h, k] do

µ← min(µ, γmax − el) . Check the capacity bound

end for

for all time slots l ∈ [h, k] do . Updating battery status

el ← el + µ

end for

ek
d ← ek

d + µ

wk
d ← 1

eh
c ← eh

c + µ

wh
c ← 1

εh
s ← εh

s − µ . Updating available energy for source s

εk
s ← εk

s − µ
ρk ← ρk − µ
break if ρk = 0

end if

end for

end for

26



All the simulations ran un computing cluster Blade of the University of

Padova (more explanation as well as a simple guide in section 6), in single-

thread mode.

We compared seven different solution approaches:

• Greedy-alone: our stand alone greedy algorithm without multistart

enhancement;

• Greedy: our greedy algorithm applied N times by starting from the

N possible shifts of the initial priority vector, taking the best solution

found and storing the others;

• Battery: our battery algorithm applied after Greedy-alone;

• Greedy+Battery: our battery algorithm applied after Greedy;

• Cplex: the state of the art IBM ILOG CPLEX MIP solver used as a

black-box, with its default setting, stopped as soon as the first feasible

solution is found;

• Cplex+Polish: CPLEX’s polishing refining heuristic [15] applied right

after the root node and for a total of 10 nodes, when starting from the

feasible solution found by the previous Cplex algorithm;

• Greedy+Polish: our proposed MIP-and-refine scheme, i.e., the previ-

ous Cplex+Polish algorithm but starting from the list of all feasible

solutions found by Greedy.

Table 2 entries represent percentage cost increase with respect to the

Greedy-alone algorithm per CPU second, so it is the ratio between the

percentage cost improvement of a method (respect to the Greedy-alone) and

the difference between the execution time of that method and the execution

time of Greedy-alone. In some sense that value describes the efficiency of

those methods.
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Greedy efficiency Battery efficiency

Set % Impr/sec. % Impr/sec.

HFBC 10 0.00 0.00

HFBC 20 0.24 231.22

HFBC 30 0.10 74.51

HFTC 10 0.00 0.00

HFTC 20 0.76 326.17

HFTC 30 0.09 68.84

MFBC 10 0.00 0.00

MFBC 20 2.18 326.94

MFBC 30 0.23 72.45

MFTC 10 0.00 0.00

MFTC 20 0.83 234.87

MFTC 30 0.28 59.70

Table 2: Efficiency of methods Greedy and Battery compared to

Greedy-alone. Percentage cost improve (% Impr) per CPU second.
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It is evident that in terms of efficiency Battery is fairly better and can

significantly improve the solution within a short computing time.

Moreover, Table 2 shows an apparently strange behaviour: the efficiency

of the sets with 20 appliances is always greater than the one with 30 appli-

ances. The reason of this fact must be sought on the characteristics of the

photovoltaic power source and, in particular, on the amount of energy that it

can deliver; in our case
∑m

k=1 π
k = 31253. We can notice in Tables 17 18 that

this value exceeds the total amount consumption of 10 appliances whereas is

a little bit lower than the case of 20 apps and quite lower than the case of 30.

It becomes obvious that the positioning of the apps is much more important

in the case where the total energies involved are similar. In fact, in first case

all the apps are allocated within the photovoltaic production area whereas in

the third case the photovoltaic energy is almost completely used by a bunch

of apps and the remaining ones are allocated somewhere else where the cost

saving becomes difficult, reducing the efficiency (Fig.6, Fig.7, Fig.8).
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According to Table 3 and Table 4, Greedy+Polish outperforms its com-

petitors by a large amount.

As expected, Greedy-alone is always able to provide feasible solutions

in very short computing times. In spite of its greedy nature, the solution

quality is fair in many cases, in particular in the easiest scenarios where

the greedy solution often turns out to be optimal. Nevertheless, for more

difficult scenarios there is room for important improvements—also because

of the contribution of the batteries that is exploited by the MIP model but

not by the Greedy-alone.

As to Cplex, it has a great difficulty even in finding its first feasible

solution—a task that takes a huge amount of time in the difficult cases.

Significantly improved solutions are found by Cplex+Polish, thus confirming

the effectiveness of this heuristic. However, the full power of MIP refinement

is only exploited when Greedy+Polish comes into play. This is due to two

main factors: the speed of the greedy, and the fact that several diversified

solutions are passed to the polishing method.

Of course, we cannot claim that Greedy+Polish would outperform more

sophisticated heuristic approaches from the literature on similar problems—

for that, much more extensive computational comparisons would be needed.

However, we believe our computational results support the message of the

present paper—sound matheuristics can be built around a simple greedy and

an off-the-shelf MIP refinement procedure.

A more sophisticated heuristic has been created adding the battery op-

timization. It guarantees a significant improving of the solution within a

negligible period of time but can not achieve the results of Greedy+Polish

and it costs us creating it nearly the same time of creating the Greedy-alone.

This fact proves again that to produce a very complicated heuristic can be a

real waste of time if Greedy+Polish can be used.

In Fig. 10 is represented an example of the battery status behavior as

well as the appliances scheduling using Greedy+Battery, while in Fig. 11 is

represented the same instance solved by Greedy+Polish. It can be noticed
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that Greedy+Polish can benefit of the much more complex mathematical

model of the MIP adapting the power profile of the appliances to fit perfectly

inside the area of where there is photovoltaic energy or where the power-grid-

energy cost is lower. In section 6 are reported other examples of different

instances.
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6 Conclusions

A simple MIP-and-refine matheuristic framework has been addressed, where

a greedy heuristic is used to trigger a general purpose MIP refinement proce-

dure. Moreover a more sophisticated heuristic is presented. Computational

results on a smart-grid energy management problem have been presented,

showing that the method and the heuristic produces sound results.

The approach is based on two ingredients: an initial heuristic, and a MIP

model. The heuristic needs not to be very effective, as its role is just to

initialize a pool of feasible solutions–the more diversified the better. The

MIP model itself needs not to be very sophisticated, as it is automatically

resized by the general purpose MIP refinement procedure. Nevertheless,

the combination of the two can be much more effective than the sum of

its parts, in the sense that the two modules work in a highly synergic way

and can produce outcomes whose solution quality can only be matched by

sophisticated ad-hoc heuristics. A little demonstration of this fact is that the

battery-pumped heuristic, even obtaining good results, can not achieve the

effectiveness of our approach but is much more complicated than the stand

alone heuristic.

Future research on the topic will hopefully confirm the viability of the

approach on other classes of very difficult problems.
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Appendix A: ILOG CPLEX

Cplex is the core solver engine of a family of optimization products of ILOG.

It includes [23]:

43



• simplex optimizers: to solve linear and quadratic programs using

primal and dual simplex algorithms, a presolver and a network opti-

mizer;

• barrier optimizer: an alternative to the simplex method to solve

linear and quadratic programs;

• mixed integer optimizer: to solve problems with mixed-integer vari-

ables (general or binary) and linear or quadratic objective function, us-

ing state-of-the art algorithms and techniques, including cuts, heuris-

tics, polishing, and a variety of branching and node selection strategies

ILOG CPLEX offers C, C++, Java, and .NET libraries that solve linear

programming (LP) and related problems. Specifically, it solves linearly or

quadratically constrained optimization problems where the objective to be

optimized can be expressed as a linear function or a convex quadratic func-

tion. The variables in the model may be declared as continuous or further

constrained to take only integer values.

ILOG CPLEX comes in three forms:

• The ILOG CPLEX Interactive Optimizer is an executable pro-

gram that can read a problem interactively or from files in certain

standard formats, solve the problem, and deliver the solution interac-

tively or into text files.

• ILOG Concert Technology is a set of libraries offering an API that

includes modeling facilities to allow a programmer to embed ILOG

CPLEX optimizers in C++, Java, or .NET applications.

• The ILOG CPLEX Callable Library is a C library that allows

the programmer to embed ILOG CPLEX optimizers in applications

written in C, Visual Basic, Fortran or any other language that can call

C functions.
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Since the mathematical model presented in this thesis is a MIP problem, we

only use the mixed integer optimizer of CPLEX including all the new features

like the polishing technique. More explanations on how we used CPLEX are

described in 6.

Appendix B: Blade

The computing cluster Blade of the Department of Information Engineering

(DEI) of the University of Padova is equipped with 28 Intel Quad Core R©

E5450 at 3 GHz and 6 MB of cache, for a total of 112 core. The overall

RAM memory is 224 GByte. The machine uses a batch system that allow to

run the simulations, which are automatically assigned to the free resources.

The management program is Oracle Grid Engine (previously known as

Sun Grid Engine), that is an open source batch-queuing system, developed

and supported by Sun Microsystems.

The batch has to be submitted from a computer connected at the DEI

network or can be accessed via ssh from a any computer all over the world

(with Username e Password of the DEI account).

According with Oracle Grid Engine guidelines, each batch has to be sub-

mitted using the command qsub followed by the proper options. Below an

example of the batch to be submitted.

Algorithm 3 Blade submitting batch

#!/bin/bash

#$ -P 40 Studenti

#$ -cwd

#$ -e Blade/Errors/log.err

#$ -o Blade/Outputs/log.out

#$ -m ea

./myScript

where −P 40 Studenti indicates the group membership of the submit-
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ter, −cwd states that it will be executed in the Current Working Directory,

−e Blade/Errors/log.err and −o Blade/Outputs/log.out where the logs are

saved. Moreover, the line −m ea specifies that the system will send a mail

to the submitter account if the batch is ended (e) or aborted (a). In the

successive lines can be used every batch command, in particular the launch

of a script.

In our case, the script has to contain the commands to lunch CPLEX as

an Interactive Optimizer. It is very simple and may be written as in 4.

Algorithm 4 Cplex executable script

#!/bin/bash

cplex < myCplexCommands

Where cplex lunch the CPLEX application and “<” passes to CPLEX the

file myCplexCommands that contains the instructions for the cplex execution.

An example of file to be passed to CPLEX and used within this thesis in

certain circumstances is presented in 5.

Algorithm 5 Cplex commands file

read LPModel.txt lp

read CplexStart.txt mst

set mip cuts all -1

set mip poli node 1

set mip limits nodes 10

set thread 1

optimize

write CplexSolution.xml sol

y

quit

For more explanations look at CPLEX User’s Manual available online at

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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Instance Energy consumption

HFBC 10 1 19520

HFBC 10 1 21651

HFBC 10 1 18811

HFBC 10 1 22926

HFBC 10 1 10884

HFBC 20 1 43072

HFBC 20 1 42720

HFBC 20 1 43946

HFBC 20 1 42750

HFBC 20 1 43635

HFBC 30 1 57289

HFBC 30 1 65905

HFBC 30 1 62551

HFBC 30 1 62127

HFBC 30 1 64763

HFTC 10 1 15552

HFTC 10 1 21245

HFTC 10 1 19693

HFTC 10 1 21659

HFTC 10 1 20581

HFTC 20 1 43868

HFTC 20 1 41759

HFTC 20 1 42913

HFTC 20 1 40620

HFTC 20 1 45886

HFTC 30 1 65018

HFTC 30 1 67396

HFTC 30 1 64724

HFTC 30 1 61203

HFTC 30 1 68684

Table 17: Energy total consumption of all the appliances in Watt per time

slot.
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Instance Energy consumption

MFBC 10 1 20992

MFBC 10 1 23839

MFBC 10 1 21979

MFBC 10 1 22513

MFBC 10 1 20111

MFBC 20 1 44232

MFBC 20 1 41528

MFBC 20 1 45215

MFBC 20 1 41003

MFBC 20 1 38309

MFBC 30 1 63445

MFBC 30 1 63565

MFBC 30 1 61651

MFBC 30 1 66516

MFBC 30 1 68274

MFTC 10 1 19725

MFTC 10 1 22253

MFTC 10 1 19751

MFTC 10 1 21667

MFTC 10 1 18634

MFTC 20 1 45603

MFTC 20 1 47652

MFTC 20 1 44868

MFTC 20 1 44446

MFTC 20 1 44758

MFTC 30 1 60869

MFTC 30 1 67853

MFTC 30 1 67093

MFTC 30 1 63521

MFTC 30 1 63432

Table 18: Energy total consumption of all the appliances in Watt per time

slot.
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Appendix D: Some plots
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