
Department of Information Engineering
University of Padua

DRT: a General Method for
Mixed Integer Problems

Author: Massimo Scantamburlo

Supervisor: prof. Matteo Fischetti

University of Padua

Academic Year: 2001/2002



Abstract

In questo lavoro è stato affrontato il problema della risoluzione di problemi di
programmazione lineare intera mista (MIP) per istanze particolarmente impeg-
native. È noto, infatti, che molti problemi di questo tipo sono NP-hard e quindi
non si riesce a ottenere l’ottimo in tempi accettabili se la taglia dell’istanza è
elevata. In questi casi si preferisce, quindi, accontentarsi di una soluzione vicina
all’ottimo pur di ottenere un risultato in un tempo ragionevole. Gli algoritmi
sviluppati in questo ambito vengono detti euristici e si contrappongono a metodi
esatti già implementati in softwares commerciali. Per quanto riguarda metodi
esatti, abbiamo descritto brevemente sia Cplex 7.0 di ILOG S.A., sia il GLPK
(GNU Linear Programming Toolkit) distribuito gratuitamente e open source.
Entrambi mettono a disposizione delle librerie di programmazione che possono
essere usate nei metodi euristici per indagare regioni limitate dello spazio delle
soluzioni. In questa sede sono stati trattati poi tre tipi di algoritmi euristici già
sviluppati e testati: la Tabu Search proposta da F. Glover, il Variable Neighbor-
hood Search di N. Mladenov́ıc e P. Hansen e il Local Branching di M. Fischetti e
A. Lodi. Per ciascuno di essi viene riportata una breve introduzione teorica e un
possibile pseudocodice. Dopo questa parte introduttiva e propedeutica, si passa
all’esposizione del metodo DRT (Diversification, Refining, Tight-Refining). Esso
si basa essenzialmente sulla considerazione che, in alcuni casi, la struttura logica
delle variabili binarie di un problema può consentire di ridurre notevolmente gli
sforzi computazionali. In particolare, vengono individuati due livelli di variabili
binarie: livello 1 e 2. Il primo diremo che controlla il secondo, poiché una de-
terminata configurazione delle variabili di primo livello impone alle variabili di
secondo livello un range di configurazioni possibili. Si pensi, ad esempio, al caso
dei problemi di location: se un concentratore viene disattivato, allora tutti i links
che lo connettono ai terminali devono essere annullati. Ci si rende conto, dunque,
di quanto il problema si semplifichi in questo modo. Sono stati discussi due algo-
ritmi di costruzione automatica dell’insieme di variabili di primo livello. Il primo
è basato proprio sulla struttura dei vincoli appena discussa. Il secondo sulla
presenza di coefficienti big M : imponendo un determinato valore per ciascuna
di esse, viene eliminato l’indesiderato effetto di generare molti livelli dell’albero
di branching causato da un coefficiente molto maggiore degli altri. Il metodo di
risoluzione qui proposto consiste nell’alternanza di tre fasi. Nella prima (diversi-
fication), si restringe l’indagine dello spazio delle soluzioni ad un intorno di primo
livello, relativo cioè alle variabili di livello 1. Una volta fissata la configurazione
delle variabili di primo livello, si passa a una fase di intensificazione, in cui si es-
plorano intorni di secondo livello (refining). Se il problema cos̀ı ottenuto dovesse
essere ancora troppo difficile da essere risolto con il software a disposizione (nel
nostro caso ILOG-Cplex o GLPK), si applica un algoritmo iterativo di ricerca lo-
cale (fase di tight-refining). Al termine di ciascun ciclo DRT si impone un vincolo
tabu alle variabili di primo livello, in modo da non visitare nuovamente la stessa



2

configurazione. Si è poi proposta anche una variante del DRT, detta DRT2, in
cui viene aggiunta una fase di big dievrsification: nel caso in cui non vengano ot-
tenute significative migliorie dopo un certo numero di diversificazioni, si applica
una drastico cambiamento di intorno di primo livello, al fine di cercare regioni
più promettenti. Questo procedimento in parte sfrutta il concetto di conoscenza
della storia recente delle soluzioni considerta, ereditato dalla tabu search. Viene
quindi riportato un dettagliato pseudo-codice del DRT2.

Come test bed è stata utilizzato un insieme di istanze legate alla progettazione
di reti UMTS, affrontata da due punti di vista diversi. Altre istanze sono state
indicate come possibili candidati, nonché utilizzate per testare gli algoritmi di
costruzione dell’insieme di variabili di primo livello. I risultati sono stati sempre
molto buoni nel caso del metodo delle variabili forzate. Nel caso del metodo
basato sui big M, invece, si sono evidenziati comportamenti influenzati dal set-
taggio del criterio per dire se un coefficiente è o no big M.

Per quanto riguarda il metodo vero e proprio, si sono fatti dei confronti sia con
ILOG-Cplex, uno dei punti di riferimento nell’ambito dei software commerciali,
sia con gli altri metodi euristici citati prima. I risultati sono sempre stati più
che soddisfacenti, evidenziando come il DRT ottenga soluzioni uguali o migliori
rispetto a tutti i concorrenti in quasi tutti i casi. Anche la variante del DRT,
il DRT2, ha dati risultati soddisfacenti, seppure non quanto desiderato, poiché
un cambiamento totale di regione di indagine obbliga a fare alcuni cicli di DRT
prima di arrivare ad una soluzione di qualità paragonabile a quella che si aveva
prima della big diversification. A margine sono stati effettuati anche alcuni test
per confrontare Cplex con il GLPK al fine di vedere quale dei due solver potesse
essere utilizzato come strumento per la risoluzione dei sotto-problemi generati.
Se da un punto di vista della velocità e della qualità della soluzione le differenze
non sono eclatanti, Cplex si è dimostrato più affidabile sia per quanto riguarda la
capacità di leggere i modelli in ingresso, sia per la maggiore stabilità numerica,
nonché per la disponibilità di molti più parametri di configurazione a livello di
librerie di programmazione.



Contents

3



4 CONTENTS



Chapter 1

Introduction

In this work we face the task of solving large mixed integer problems (MIPs).
Their importance is growing in these times since new kinds of models have been
developed to solve optimization tasks such as the planning of a telecommunica-
tions network. In most cases we deal with an enormous number of entities, thus
commercial solvers that try to find the optimum value would take too long time
(these problems are often NP-hard). So, in real cases we may need to find a
good (not necessarily the best) solution in an acceptable time. In this thesis we
present a general MIP metaheuristic method based on the use of a solver like, for
example, ILOG-Cplex or the GNU linear programming kit (GLPK) to investigate
subspaces of the starting problem. The aim of this procedure is that we will di-
vide the main problem in many smaller subproblems that will hopefully be easier
to solve. Dynamically adding new cuts will help us to investigate subspaces of
the solution space using the general purpose solver. A fundamental point is how
to generate these neighborhoods. The basic idea is to split the binary variables
into two subsets: we build the subproblems changing the configuration of one
of these two subsets. Then we apply to each configuration a research divided in
two phases: the first based on increasing size neighborhoods and the second on a
classical iterative procedure. We will call the whole algorithm DRT standing for
the three steps: diversification, refining, tight-refining.

Before the discussion of the main algorithm given in chapter 4, we will in-
troduce two MIP solvers in chapter 2 and then, in chapter 3, three heuristic
algorithms to highlight some ideas that will be deeply exploited . For each solu-
tion method a theoretical description and a pseudo-code are given. At the end
we will present some computational results on a large set of instances of different
kinds (a complete description of each test model is provided in appendix). The
aim is to show that our method can works with good performance for a significant
class of problems.

5



6 CHAPTER 1. INTRODUCTION



Chapter 2

MIP and LP solvers

2.1 Introduction to ILOG-Cplex 7.0

2.1.1 Introduction

The commercial software Cplex by ILOG S.A. is a state-of-the-art tool for op-
timization problems: it can solve linear Mixed Integer Programming, Quadratic
programming and Network flow problems. We can choose between three inter-
faces:

• Cplex Interactive Optimizer : an interactive shell that can read the problem
from a file or from standard input and solve the model writing the solution
on a file or to standard output

• Concert technology : a set of libraries to include Cplex optimizers in C++
programs

• Cplex Callable library : a library to include Cplex optimizers in C, Visual
Basic, Java, and Fortran applications.

We will focus our attention on the Cplex capability of solving linear program-
ming problems with or without integer variables constraints in the form:

7



8 CHAPTER 2. MIP AND LP SOLVERS

max/min c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ∼ b1

a21x1 + a22x2 + . . . + a2nxn ∼ b2

· · ·
am1x1 + am2x2 + . . . + amnxn ∼ bm

bounds l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

· · ·
ln ≤ xn ≤ un

where ∼ can be ≤, ≥ or = while the lower bounds li and upper bounds ui are real
numbers, including positive and negative infinity. For each variable (also called
column) we can specify the type (integer, binary, general). The functional mode
we will use is the Concert Technology since implement our methods using C++.

We pass to the program the ci costs that are the coefficients of the objective
function; the aij constraints coefficients and bi constants. We can build the model
first reading it from a file in any supported format and then, at run time, by
adding constraints. The lp and mps formats are the most common ones: the first
let us entering the model in an algebraic, row-oriented form; in other words we
specify the problem in terms of its constraints. The latter uses columns-oriented
models. For a detailed lp/mps file types description see [?].

2.1.2 Programming with Cplex 7.0

Briefly, to solve a problem with Cplex using Concert Technology we have to
follows these steps:

• include the ilcplex/ilocplex.h header (for detailed instructions concern-
ing Cplex use with programming environments such as Microsoft Visual
C++ see file provided with Cplex distribution);

• eventually call the macro ILOSTLBEGIN needed for portability;

• declare the environment with IloEnv env;

• declare the model, the class used to represent optimization problems, with
IloModel mod(env);

• build the model loading it from a file or interactively using
mod.add(objective function), and mod.add(constraint);

• declare a Cplex object and assign to it the model to be solved with IloCplex

cplex(mod);



2.1. INTRODUCTION TO ILOG-CPLEX 7.0 9

• eventually set the solver parameters with instructions
cplex.setParam(Parameter,value);

• solve the model with cplex.solve(). We can choose between eight solving
algorithms that belong to the enumeration type IloCplex::Algorithm.
We also can set the type of solver with cplex.setRootAlgorithm(alg);

• query solution

• end the environment with env.close() to destroy implementation objects
(it avoids memory leaks).

2.1.3 Solver parameters

As we said, Cplex let us set some parameters: in this way we can have different
behaviors of the solver suiting our needs. For a detailed list of these parameters
see [?]. Here we see just those ones which will be used for a complete understand-
ing of the algorithms implementation.

• TiLim: maximum execution time; once it’s elapsed the solver stops even if
optimality is not reached

• NodeLim: maximum number of nodes to be explored before the solver stops
even without optimal solution has been found

• TreLim: maximum memory amount (in Mega Bytes) that branch and cut
algorithm can use to build the tree

• NodeFileInd: tells the solver what to do when maximum memory amount
(TreLim) has been reached: if set to 0 the solver stops, else writes some
nodes to files in the hard disk

• MIPEmphasis: if it is set to 0 the solver gives priority to the optimality while
value 1 forces the solver to generate as many feasible good intermediate
solutions as possible

• CutUp: upper cutoff; cuts off any nodes having an objective value above this
parameter (assuming a minimization problem). When a mixed integer opti-
mization problem is continued, the smaller of these values and the updated
cutoff found during optimization are used during the next mixed integer op-
timization. A too restrictive value may result in no integer solutions being
found.

• IntSolLim: maximum number of MIP solutions to be found before stopping



10 CHAPTER 2. MIP AND LP SOLVERS

• EpAGap: absolute mipgap tolerance; sets an absolute tolerance on the gap
between the value of best integer solution and the lower bound of the best
node remaining. When this difference falls below this value, the mixed
integer optimization is stopped

• EpGap: relative mipgap tolerance; sets a relative tolerance on the gap be-
tween the value of best integer solution and the lower bound of the best
node remaining. When this difference falls below this value the mixed in-
teger optimization is stopped

2.2 Introduction to GLPK 3.2.2

Now we are going to give a brief overview of GLPK (GNU Linear Programming
Kit), a quite new software for solving MIPs. The package was developed in the
2002 and distributed under the GPL (GNU Public Licence) and so comes for free.
The other main issue is that we have access to the whole source code and so we
can change it in order to suite our needs.

We have three main ways to use this tool:

• GLPK/L: a modeling language which is intended for writing mathematical
programming models. Model description written in GLPK/L language con-
sists of a sequence of statements constructed by the user from the language
elements. In a process called translation a program called the language
processor analyzes the model description statements and translates them
into internal data structures, which may be then used either for gener-
ating mathematical programming problem data or directly by a program
called the solver for obtaining numerical solution of the problem. Note that
this language is theoretically not restricted to the linear programming (LP)
since it can describe also nonlinear models. However the solver doesn’t
implement a solution method for these ones and so we will consider only
LP.

• GLPSOL: a sort of the ILOG Cplex interactive optimizer. We can use it
giving at the prompt line the path of the model file in mps or lp format
(and also in GLPK/L).

• GLPK: the package is basically a set of routines written in ANSI C pro-
gramming language and organized in the form of a callable library. It is
intended for solving linear programming, mixed integer programming and
other related problems.

We focus our attention on the third way.



2.2. INTRODUCTION TO GLPK 3.2.2 11

2.2.1 The problem model

GLPK assumes the following formulation of linear programming (LP) problem:

minimize (or maximize)

Z = c1x1 + c2x2 + . . . + cm+nxm+n + c0

subject to linear constraints

x1 = a11xm+1 + a12xm+2 + . . . + a1nxm+n

x2 = a21xm+1 + a22xm+2 + . . . + a2nxm+n

. . . . . . . . . . . . . . . . . .
xm = am1xm+1 + am2xm+2 + . . . + amnxm+n

and bounds of variables

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

. . . . . . . . .
lm+n ≤ xm+n ≤ um+n

where: x1, x2, . . . , xm — auxiliary variables; xm+1, xm+2, . . . , xm+n — structural
variables; Z — objective function; c1, c2, . . . , cm+n — coefficients of the objective
function; c0 — constant term of the objective function; a11, a12, . . . , amn — con-
straint coefficients; l1, l2, . . . , lm+n — lower bounds of variables; u1, u2, . . . , um+n

— upper bounds of variables.
Auxiliary variables are also called rows, because they correspond to rows of the

constraint matrix (i.e. a matrix built of the constraint coefficients). Analogously,
structural variables are also called columns, because they correspond to columns
of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and upper
bounds can be equal to each other. Thus, the following types of variables are
possible:

Bounds of variable Type of variable
−∞ < xk < +∞ Free (unbounded) variable

lk ≤ xk < +∞ Variable with lower bound
−∞ < xk ≤ uk Variable with upper bound

lk ≤ xk ≤ uk Double-bounded variable
lk = xk = uk Fixed variable

Note that the types of variables shown above are applicable to structural as well
as to auxiliary variables.

To solve the LP problem is to find such values of all structural and auxiliary
variables, which:



12 CHAPTER 2. MIP AND LP SOLVERS

a) satisfy to all the linear constraints, and
b) are within their bounds, and
c) provide an optimum value of the objective function.
For solving LP problems GLPK uses a well known numerical procedure called

the simplex method. The simplex method performs iterations, where on each
iteration it transforms the original system of equaility constraints resolving them
through different sets of variables to an equivalent system called the simplex table
(or sometimes the simplex tableau), which has the following form:

Z = d1(xN)1 + d2(xN)2 + . . . + dn(xN)n

(xB)1 = α11(xN)1 + α12(xN)2 + . . . + α1n(xN)n

(xB)2 = α21(xN)1 + α22(xN)2 + . . . + α2n(xN)n

. . . . . . . . . . . . . . . . . .
(xB)m = αm1(xN)1 + αm2(xN)2 + . . . + αmn(xN)n

where: (xB)1, (xB)2, . . . , (xB)m — basic variables; (xN)1, (xN)2, . . . , (xN)n — non-
basic variables; d1, d2, . . . , dn — reduced costs; α11, α12, . . . , αmn — coefficients of
the simplex table. (May note that the original LP problem also has the form of
a simplex table, where all equalities are resolved through auxiliary variables.)

From the linear programming theory it is well known that if an optimal solu-
tion of the LP problem exists, it can always be written in the second form, where
non-basic variables are fixed on their bounds, and values of the objective function
and basic variables are determined by the corresponding equalities of the simplex
table.

A set of values of all basic and non-basic variables determined by the simplex
table is called basic solution. If all basic variables are within their bounds, the
basic solution is called (primal) feasible, otherwise it is called (primal) infeasible.
A feasible basic solution, which provides a smallest (in case of minimization) or a
largest (in case of maximization) value of the objective function is called optimal.
Therefore, for solving LP problem the simplex method tries to find its optimal
basic solution.

Primal feasibility of some basic solution may be stated by simple checking if all
basic variables are within their bounds. Basic solution is optimal if additionally
the following optimality conditions are satisfied for all non-basic variables:

Status of (xN)j Minimization Maximization
(xN)j is free dj = 0 dj = 0
(xN)j is on its lower bound dj ≥ 0 dj ≤ 0
(xN)j is on its upper bound dj ≤ 0 dj ≥ 0

In other words, basic solution is optimal if there is no non-basic variable, which
changing in the feasible direction (i.e. increasing if it is free or on its lower bound,
or decreasing if it is free or on its upper bound) can improve (i.e. decrease in
case of minimization or increase in case of maximization) the objective function.



2.2. INTRODUCTION TO GLPK 3.2.2 13

If all non-basic variables satisfy to the optimality conditions shown above
(independently on whether basic variables are within their bounds or not), the
basic solution is called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution due to
incorrect formulation — this means that its constraints conflict with each other.
It also may happen that some LP problem has unbounded solution again due
to incorrect formulation — this means that some non-basic variable can improve
the objective function, i.e. the optimality conditions are violated, and at the
same time this variable can infinitely change in the feasible direction meeting no
resistance from basic variables. (May note that in the latter case the LP problem
has no dual feasible solution.)

2.2.2 The software interface

As we said, this package is mainly devoted to be used as a set of routines in a C
program to solve linear programming or mixed integer programming problems.
The three aspects we are going to tell something about regard:

• the way variables and constraints are treated

• how to solve a model

• parameters

Note that the API routines provide also some data checking and if something
gone wrong display a message and stop the execution. Thus, in order to prevent
crashes we should check all data which are suspected to be incorrect before calling
GLPK routines.

To all routines we have to pass a pointer to the problem object structure called
LPX: we can create it from scratch with LPX *lpx_create_prob() or reading
it from a file with the routines LPX *lpx read mps(char *file name) or LPX

*lpx read lp(char *file name) or LPX *lpx read lpt(char *file name) for
each supported file type. It is up to the programmer check what type of file has
been submitted and so what routine must be called.

Variables and constraints

As we have told in 2.2.1, variables and constraints are basically seen in the same
way: in GLPK terms we can call the first columns and the latter rows or auxiliary
variables. They all have an identifier made up of an index and a mnemonic name
and a couple of bounds. Note that in constraints or variables operation we can’t
refer to a row or a column with its name but only using its index. The most
important operations we can do are:

• add one or more columns/rows



14 CHAPTER 2. MIP AND LP SOLVERS

• delete one or more colums/rows

• query colums/rows information such as bounds, coefficients, type (applied
only to columns)

It is worth to emphasize the mechanism to add rows and delete them since we
will use these ones a lot1.

To add a new constraint we have to use these routines:

1. void lpx add rows(LPX *lp,int num rows): add at the end of the rows
list new num rows empty rows to the problem object pointed by lp;

2. void lpx set row bnds(LPX *lp,int row index,int type,

double LB,double UB): set the bounds of the row index-th row;

3. void set mat row(LPX *lp, int row index, int len,

int ndx[], double val[]): sets (replaces) the row index-th row of the
constraint matrix for the problem object, which the parameter lp points
to. Column indices and numerical values of new non-zero coefficients of the
row index-th row should be placed in the locations ndx[1], . . . , ndx[len]
and val[1], . . . , val[len], respectively, where 0 ≤ len ≤ n is the new
length of the row index-th row, n is number of columns.

4. void lpx set row name(LPX *lp, int index, char *name) : set a
mnemonic name for the index-th row

5. void lpx mark row(LPX *lp, int i, int mark) : assigns an integer mark
to the i-th row. The reason to mark a row is that is the only way we can
delete it after.

To delete a constraint we use the routine void lpx del items(LPX *lp)

which will erase all marked rows. Again, since we can’t refer to indexes or names
to delete a constraint, the programmer has to use the markers in a clever way.

Solving a problem

To solve a linear programming problem we use the simplex method calling the
routine int lpx simplex(LPX *lp) which is an interface to the LP problem
solver based on the two-phase revised simplex method. This routine obtains
problem data from the problem object, which the parameter lp points to, calls
the solver to solve the LP problem, and stores the found solution and other rele-
vant information back in the problem object. Generally, the simplex solver does

1The GLPK uses to start arrays index from 1 instead of 0. We have to keep it in mind to
avoid abnormal behaviors.



2.2. INTRODUCTION TO GLPK 3.2.2 15

the following:
1 - “warming up” the initial basis;
2 - searching for (primal) feasible basic solution (phase I);
3 - searching for optimal basic solution (phase II)
4 - storing the final basis and found basic solution back in the problem object.
Since large scale problems may take a long time, the solver reports some infor-
mation about the current basic solution, which is sent to the standard output.
This information has the following format:

*nnn: objval = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objective
function (which is unscaled and has correct sign), ‘yyy’ is the current sum of
primal infeasibilities (which is scaled and therefore may be used for visual esti-
mating only), ‘ddd’ is the current number of fixed basic variables. If the asterisk
‘*’ precedes to ‘nnn’, the solver is searching for an optimal solution (phase II),
otherwise the solver is searching for a primal feasible solution (phase I). The
routine lpx_simplex returns one of the following exit codes:

LPX_E_OK the LP problem has been successfully solved. (Note that, for
example, if the problem has no feasible solution, this exit code
is reported.)

LPX_E_FAULT unable to start the search because either the problem has no
rows/columns, or the initial basis is invalid, or the initial basis
matrix is singular or ill-conditioned.

LPX_E_OBJLL the search was prematurely terminated because the objective
function being maximized has reached its lower limit and con-
tinues decreasing (the dual simplex only).

LPX_E_OBJUL the search was prematurely terminated because the objective
function being minimized has reached its upper limit and con-
tinues increasing (the dual simplex only).

LPX_E_ITLIM the search was prematurely terminated because the simplex it-
erations limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the time limit
has been exceeded.

LPX_E_SING the search was prematurely terminated due to the solver failure
(the current basis matrix got singular or ill-conditioned).

Sometimes numerical instability troubles can arise; we can try to eliminate
them using the routine lpx_scale_prob which performs scaling problem data
for the specified problem object. The purpose of scaling is to replace the original
constraint matrix A by the scaled matrix A′ = RAS, where R and S are diagonal
scaling matrices, in the hope that A′ has better numerical properties than A.
On API level the scaling effect is almost invisible, since all data entered into the
problem object (say, constraint coefficients or bounds of variables) are automati-



16 CHAPTER 2. MIP AND LP SOLVERS

cally scaled by API routines using the scaling matrices R and S, and vice versa,
all data obtained from the problem object (say, values of variables or reduced
costs) are automatically unscaled. However, round-off errors may involve small
distortions (of order DBL_EPSILON) of the original problem data.

When we face MIPs we have to use the routine int lpx integer(LPX *lp),
an interface to the MIP problem solver based on the branch-and-bound method.
As the simplex one, this routine obtains problem data from the problem object,
which the parameter lp points to, calls the solver to solve the MIP problem, and
stores the found solution and other relevant information back in the problem ob-
ject. On entry to this routine the problem object should contain an optimal basic
solution for LP relaxation, which can be obtained by means of the simplex-based
solver. So, remember that to solve a mixed integer programming problem we
have to:

1. find a solution for LP relaxation with lpx simplex

2. solve the problem with lpx integer

Again, the solver reports some information about the best known solution, which
is sent to the standard output. This information has the following format:

+nnn: mip = xxx; lp = yyy (mmm; nnn)

where nnn is the simplex iteration number, xxx is a value of the objective function
for the best known integer feasible solution (if no integer feasible solution has
been found yet, xxx is the text not found yet), yyy is an optimal value of
the objective function for LP relaxation (this value is not changed during all
the search), mmm is number of subproblems in the active list, nnn is number of
subproblems which have been solved (considered).

Note that the branch-and-bound solver implemented in GLPK uses easiest
heuristics for branching and backtracking, and therefore it is not perfect. Even
if the GLPK author states that most probably this solver can be used for solving
MIP problems with one or two hundreds of integer variables, we have tested it on
some very large problems with good results (see the results section). The routine
lpx_integer returns one of the following exit codes:



2.2. INTRODUCTION TO GLPK 3.2.2 17

LPX_E_OK the MIP problem has been successfully solved. (Note that, for
example, if the problem has no integer feasible solution, this exit
code is reported.)

LPX_E_FAULT unable to start the search because either:
the problem is not of MIP class, or
the problem object doesn’t contain optimal solution for LP re-
laxation, or
some integer variable has non-integer lower or upper bound, or
some row has non-zero objective coefficient.

LPX_E_ITLIM the search was prematurely terminated because the simplex it-
erations limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the time limit
has been exceeded.

LPX_E_SING the search was prematurely terminated due to the solver failure
(the current basis matrix got singular or ill-conditioned).

Parameters

The GLPK provides a set of control parameters, real or integer. To access
them we can use int lpx get int parm(LPX *lp, int parm); to change their
value we call void lpx set int parm(LPX *lp, int parm, int val) (or the
real correspondent). The most important parameters are:

LPX_K_MSGLEV type: integer, default: 3
Level of messages output by solver routines:
0 — no output
1 — error messages only
2 — normal output
3 — full output (includes informational messages)

LPX_K_SCALE type: integer, default: 3
Scaling option:
0 — no scaling
1 — equilibration scaling
2 — geometric mean scaling, then equilibration scaling

LPX_K_DUAL type: integer, default: 0
Dual simplex option:
0 — do not use the dual simplex
1 — if initial basic solution is dual feasible, use the dual simplex

LPX_K_PRICE type: integer, default: 1
Pricing option (for both primal and dual simplex):
0 — textbook pricing
1 — steepest edge pricing



18 CHAPTER 2. MIP AND LP SOLVERS

LPX_K_ROUND type: integer, default: 0
Solution rounding option:
0 — report all primal and dual values “as is”
1 — replace tiny primal and dual values by exact zero

LPX_K_OBJLL type: real, default: -DBL_MAX
Lower limit of the objective function. If on the phase II the ob-
jective function reaches this limit and continues decreasing, the
solver stops the search. (Used in the dual simplex only.)

LPX_K_OBJUL type: real, default: +DBL_MAX
Upper limit of the objective function. If on the phase II the
objective function reaches this limit and continues increasing, the
solver stops the search. (Used in the dual simplex only.)

LPX_K_ITLIM type: integer, default: −1
Simplex iterations limit. If this value is positive, it is decreased by
one each time when one simplex iteration has been performed, and
reaching zero value signals the solver to stop the search. Negative
value means no iterations limit.

LPX_K_ITCNT type: integer, initial: 0
Simplex iterations count. This count is increased by one each
time when one simplex iteration has been performed.

LPX_K_TMLIM type: real, default: −1.0
Searching time limit, in seconds. If this value is positive, it is de-
creased each time when one simplex iteration has been performed
by the amount of time spent for the iteration, and reaching zero
value signals the solver to stop the search. Negative value means
no time limit.

LPX_K_OUTFRQ type: integer, default: 200
Output frequency, in iterations. This parameter specifies how
frequently the solver sends information about the solution to the
standard output.

LPX_K_OUTDLY type: real, default: 0.0
Output delay, in seconds. This parameter specifies how long the
solver should delay sending information about the solution to the
standard output. Non-positive value means no delay.

LPX_K_BRANCH type: integer, default: 2
Branching heuristic option (for MIP only):
0 — branch on the first variable
1 — branch on the last variable
2 — branch using a heuristic by Driebeck and Tomlin



2.2. INTRODUCTION TO GLPK 3.2.2 19

LPX_K_BTRACK type: integer, default: 2
Backtracking heuristic option (for MIP only):
0 — depth first search
1 — breadth first search
2 — backtrack using the best projection heuristic

LPX_K_TOLINT type: real, default: 10−6

Absolute tolerance used to check if the current basic solution is
integer feasible. (Do not change this parameter without detailed
understanding its purpose.)

LPX_K_TOLOBJ type: real, default: 10−7

Relative tolerance used to check if the value of the objective func-
tion is not better than in the best known integer feasible solution.
(Do not change this parameter without detailed understanding its
purpose.)

The number of parameters is quite smaller than the one provided by Cplex.
However they may change in future, especially with respect to the solvers since
their implementations could be modified. Other parameters can be added in a
quite easy way such as the MIP absolute or relative gaps (see Cplex EpAGap and
EpGap)



20 CHAPTER 2. MIP AND LP SOLVERS



Chapter 3

MIP general methods

3.1 Introduction

Mixed-integer linear programming plays a central role in modelling difficult-to-
solve (NP-hard) combinatorial problems. So it’s not surprising that the avail-
ability of effective exact or heuristic solution methods for mixed-integer problems
(MIPs) is of paramount importance for practical applications. The main prob-
lem is that even if we know that the optimal solution can be reached, in most of
common real cases the problem size is too large to be solved in a reasonable time.
Several “ad hoc” heuristic algorithms have been developed for specific classes
of problems; that often can give a solution with a low gap with respect to the
optimal one in a fixed time. We have also commercial or free MIP solvers that
let us to configure some parameters in order to improve the performance using a
clever tuning. However in some very large size problems they can take too much
time.

In this thesis we develop a general method that can exploit the use of a general-
purpose MIP solver as a black-box “tactical” tool (in our case the state-of-the-art
commercial software ILOG-Cplex 7.0). With it we can explore effectively suit-
able solution subspaces defined and controlled at a “strategic” level by a simple
external framework. This allows one to work within a perfectly general MIP en-
vironment, and to take advantage of the impressive research and implementation
effort that nowadays is devoted to the design of MIP solvers. The new solution
strategy is exact in nature, though it is designed to improve the heuristic behav-
ior of the MIP solver at hand. A simple but very powerful variant is to fix some
variables obtaining simple subproblems that we can solve in a short time.

3.2 The problem formulation

We consider a generic MIP with 0-1 variables of the form:

21



22 CHAPTER 3. MIP GENERAL METHODS

(P ) min cT x (3.1)

Ax ≥ b (3.2)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (3.3)

xj ≥ 0, integer ∀j ∈ G (3.4)

xj ≥ 0 ∀j ∈ C (3.5)

Here, the variable index set N := {1, . . . , n} is partitioned into (B,G, C), where
B 6= ∅ is the index set of the 0-1 variables, while the possibly empty sets G and
C index the general integer and the continuous variables, respectively.

Given a reference solution x̄ of (P ), let S := {j ∈ B : x̄j = 1} denote the
binary support of x̄. For a given positive integer parameter k, we define the k-
OPT neighborhoodN (x̄, k) of x̄ as the set of the feasible solutions of (P ) satisfying
the additional local branching constraint:

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k (3.6)

where ∆(x, x̄) is the distance between x and x̄ and the two terms in the left-hand
side count the number of binary variables flipping their value (with respect to x̄)
either from 1 to 0 or from 0 to 1, respectively.

In the relevant case in which the cardinality of the binary support of any
feasible solution of (P ) is a constant, this constraint can more conveniently be
written in its equivalent “asymmetric” form∑

j∈S

(1− xj) ≤ k′ (= k/2) (3.7)



3.3. TABU SEARCH 23

3.3 Tabu search

3.3.1 The method

The tabu search method was developed essentially by Fred Glover (see [?]) and
is deeply discussed in [?]. It is a general algorithm that can solve problems on
the form

minimize f(x)

x ∈ X

with a very low programming effort.
We start from an initial solution x0 ∈ X and take its neighborhood N(x0) ⊆ X

built with some pre-defined metrics. Solving the new problem with the added
constraint that x ∈ N(x0) leads to the new solution x1 = argmin(f(x) : x ∈
N(x0)). We set x1 as the current best solution if is better than the previous one.
Now take x ∈ N(x1) as additional constraint and solve the problem finding x2

and so on. This iterative procedure will end when we find a solution xn that is a
local optimum, so no other x ∈ N(xn) is better.

As we said, the current solution is just a local optimum, hence we could try
to explore other solutions subspaces. One could take another solution xn+1 worse
than xn. Obviously, we can take the solution that is nearest to xn and so we
have xn+1 = argmin(f(x)) with x ∈ N(xn) \ {xn}. From this new point we start
again our local search with the hope that a new better solution will be found.

Changing the neighborhood can lead to visit twice a solution, with the risk of
loops. We can avoid this problem keeping track of the last visited solutions and
checking if we are going to consider one of them again. In practice we can put a
certain number of solutions in a FIFO list of forbidden (tabu) solutions: the oldest
solution in the list will be the first deleted, since we hope that in the meanwhile
we went far enough from that point to avoid finding that solution again. Since
for most problems the size of a solution (that is the number of variables) can be
very large, managing a list of them could be time and space expensive. What we
do is to keep track of moves instead of complete solutions: they are defined as the
set of basic operations to be done to pass from a solution to another. So, for each
solution i ∈ S, we define M(i) as the set of moves m that can be applied to i in
order to reach a solution j ∈ S (the notation is j = i⊕m; usually m is reversible,
that is (i ⊕ m) ⊕ m−1 = i). The improvement of this method is basically done
by the implementation of the way we keep track of previous solutions and by
the choice of the moves. This last is obviously strictly related to the problem at
hand.

A good idea should be to apply a diversification phase: when we see that
no better solution (with respect to the current one) can be found after a fixed



24 CHAPTER 3. MIP GENERAL METHODS

number of steps, we go from the current neighborhood to a completely different
subspace and continue the search starting from there. So we have two phases: the
intensification phase when we apply the basic algorithm, and the diversification
phase when we jump to another solution.

3.3.2 The pseudo-code

Briefly, an idea of how the Tabu Search method can be implemented. We report
the pseudo-code fragment related to a generic iteration of the algorithm.

Algorithm 1 : Tabu Search pseudo-code

1: function TS()
2: choose a starting solution i from S set of solutions
3: i∗=i
4: k:=1
5: while not stop condition do
6: k:=k+1
7: add the move to the tabu list T(k)
8: build N(i,k):=N(i)\T(k)
9: build the reduced neighborhood N̂(i, k) ⊆ N(i, k)

10: find the best j ∈ N̂(i, k)
11: i:=j
12: if f(i) is better than f(i∗) then
13: i∗:=i
14: end if
15: end while

As already said, the main problems are the choice of new moves and of the
data structure T to keep track of them while the starting solution can be obtained
for example by a simple greedy algorithm. It is worth emphasizing that, no
matter the way to manage and implement T, a cycle of length smaller than
|T | can take place since we loose some information by keeping memory of the
moves instead of the whole solution. The stop condition can be defined by the
user considering a time limit or a maximum number of iterations, or the fact
that the next neighborhood is empty. Now we see the diversification method
presented in [?]. We can assign an high priority to solutions that are “similar” to
the current one by introducing in the objective function a new term (called fint)
to penalize the “distant” solutions (that is, the ones we can reach with a huge
number of moves) and which is different from zero for all the iterations we want
to perform the intensification. On a very similar way we obtain a diversification
by introducing a correcting component in the objective function called fdiv. The
new global function to be minimized will be:



3.4. VNS METHOD 25

f̄ := f + fint + fdiv

3.4 Variable Neighborhood Search (VNS)

3.4.1 The method

The Variable Neighborhood Search (VNS) is a quite recent metaheuristic tech-
nique introduced by Mladenov́ıc and Hansen in [?]. In its first version this algo-
rithm implementation is dependent on the problem type we have to solve. The
VNS we are going to expose is the one generalized by Polo in [?]. It explores
neighborhoods at growing distance from the current best solution; we move from
this one only if we find a new solution that leads to a better value of the objective
function. The solution subspace exploration ends under a condition that can be a
time limit or a maximum number of iterations without finding a better solution.

We define Nk as a set of preselected neighborhood structures with
k ∈ {1, . . . , kmax}, and denote by Nk(x) the set of solutions of the k-th neighbor-
hood of x.

We follow these steps:

Initialization:

• build the structure of neighborhoods Nk with k ∈ {1, . . . , kmax}

• find an initial solution x

• fix the condition for the exploration ending

Do until ending condition is reached:

1. k := 1

2. do until k ≤ kmax

(a) shaking (diversification): generate an x′ ∈ Nk at random

(b) local search (intensification): apply a local search method starting
from x′ and find solution x′′

(c) moving : if the optimum value founded in step 2.b is better than the
current one x, fix x := x′′ and continue the search starting from N1

(k := 1), else increase k by setting k := k + 1



26 CHAPTER 3. MIP GENERAL METHODS

Figure 3.1: a VNS method example in two dimensions

3. since we have reached a value of k greater than kmax, fix x := x′′ even if x′′

is worse than x and continue the search starting from here

We can notice how the two phases idea exposed in 3.3 has been used in this
algorithm at steps 2.a and 2.b. Figure 3.4.1 illustrates an example for a single
variable problem. We start from the local optimum x: consider the neighborhood
N1 and randomly select a solution called x

′
1 ∈ N1. Apply the iterative algorithm

falling on x, that is x
′′
1 = x. Since we would like to find a better solution searching

in another region we consider a second neighborhood N2 at increasing distance
from x. Again we randomly choose x

′
2 ∈ N2 and again we arrive at the initial

solution without an improvement. So we move to N3 using the same procedure
as above but this time we get a new local minimum x

′′
3 ∈ N3 which is also the

global one. At this time we consider this new solution as the best current one,
that is x := x

′′
3 and repeat the previous steps.

3.4.2 VNS extensions

A well known variant of this method is the Variable Neighborhood Descent (V.N.D.).
In this case we apply the increasing distance neighborhood concept also to the
local search (step 2.b). The idea is that a local minimum for a neighborhood,
i.e. N ′

1(x), is not necessary minimum for another neighborhood. So, while the
VNS ends its local search as soon as the first minimum is reached in N ′

1(x), the
V.N.D. tries to find a better solution in N ′

2(x) or N ′
3(x) and so on until finds a

solution better than the current one or an ending condition is verified. In this
last case the solution will obviously be the same x.

The steps that the V.N.D. follows in the i-th intensification phase are:

Initialization:

• build up the structure of neighborhoods N ′
k with k ∈ {1, . . . , k′

max}

• take as initial solution the random solution x ∈ Ni(x
∗) given by the diver-

sification phase (with x∗ current solution)

Iterative algorithm:

1. k := 1



3.4. VNS METHOD 27

2. do until k ≤ k′
max

(a) exploration: explore the neighborhood finding the best solution x′ ∈
N ′

k(x)

(b) moving : if the optimum value found in the previous step is better than
the current one x, fix x := x′′ and continue the search starting from
N ′

1 (k := 1), else increase k by setting k := k + 1

3. consider x as the local optimum

Another variant of the VNS that will be used is the Reduced Variable Neigh-
borhood Search R.VNS.

The first issue is that in the diversification phase (step 2.a of the VNS), instead
of taking a random solution x′ ∈ Nk(x) we take the best solution between l
random solutions, where l is a parameter of the algorithm. So the choice of the
new solution is more clever than the blind one and leads to a new starting point
that will hopefully be not too bad, avoiding a lot of computational extra time.

The second point is that we choose two parameters: kmin and kstep to control
the neighborhood changing. So we will fix k := kmin instead of k := 1 at the
1.a step of the VNS and k := k + kstep at the 1.c. The advantage is that we can
implements the intensification and diversification phases in a very similar way by
simply choosing different values of these two parameters. With high values we do
the diversification forcing the algorithm to visit regions far from the current one.
With low values we do the intensification since we look at near possible solutions
subsets.

These two parameters can be chosen considering the problem at hand. For
example, in some network problems the minimum change we can have between
two solutions is 2 components, so kstep := 2.

3.4.3 The pseudo-code

Now take a look to the pseudo-code of the algorithm. We are going to use ILOG-
Cplex 7.0 as a black-box in the spirit of what we said in paragraph 3.1. See
section 2.1 for a brief introduction to this tool.

Algorithm 2 : VNS pseudo-code

1: function VNS()
2: set Cplex parameters for general search;
3: build the initial model and solve it with Cplex, stopping at the first feasible

solution;
4: best solution:=first feasible solution;
5: start solution:=best solution;
6: /* use R.VNS extension */



28 CHAPTER 3. MIP GENERAL METHODS

7: k1 := kmin;
8: k2 := k1 + kstep;
9: while execution time ≤ maximum time do

10: /* diversification */
11: add the diversification constraint k1 ≤ 4(x, start solution) ≤ k2;
12: set Cplex parameters for diversification;
13: solve the current model stopping at the l-th feasible solution (or at the

maximum allowed time);
14: /* local search algorithm */
15: k′ := kmin;
16: while (k′ ≤ k′

max) and (execution time≤maximum time) do
17: add to the model the constraint 4(x, current solution) = k′ and set

Cplex parameters for intensification;
18: solve the current model;
19: if new current solution is better than current solution then
20: current soluton:=new current solution;
21: k′ := k′

min;
22: else
23: k′ := k′ + k′

step;
24: end if
25: remove the intensification constraint;
26: end while
27: remove the diversification constraint;
28: new local solution:=current solution;
29: if new local solution is better than best solution then
30: best solution:=new local solution;
31: start solution:=best solution;
32: add the tabu constraint 4(x, start solution) ≥ 1;
33: k1 := kmin;
34: k2 := k1 + kstep;
35: else
36: if k1 < kmax then
37: k1 := k1 + kstep;
38: k2 := k1 + kstep;
39: else
40: start solution:=new local solution;
41: add the tabu constraint 4(x, start solution) ≥ 1;
42: k1 := kmin;
43: k2 := k1 + kstep;
44: end if
45: end if
46: end while
47: output best solution;



3.5. LOCAL BRANCHING METHOD 29

3.5 Local branching method

3.5.1 The method

Local branching is a recent method proposed by M. Fischetti and A. Lodi in 2002
in [?]. As its name suggests, the local branching constraint, on which the method
is based, can be used as a branching criterion within an enumerative scheme
for the model (P ) exposed in 3.2. Indeed, given the incumbent solution x̄, the
solution space associated with the current branching node can be partitioned by
means of the disjunction

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch) (3.8)

As to the neighborhood-size parameter k, it should be chosen as the largest value
producing a left-branch subproblem which is likely to be much easier to solve than
the one associated with its father. The idea is that the neighborhood N (x̄, k)
corresponding to the left branch must be “sufficiently small” to be optimized
within short computing time, but still “large enough” to likely contain better
solutions than x̄. According to computational experience, the choice of k is sel-
dom a problem by itself, in that values of k in range [10, 20] proved effective in
most cases. The local branching philosophy is quite different from the standard
one: here we do not want to force the value of a fractional variable as happens
in the classic branching, but we rather instruct the solution method to explore
first some promising regions of the solution space. The expected advantage of the
local-branching scheme is an early (and more frequent) update of the incumbent
solution. In other words, we expect to find quickly better and better solutions
until we reach a point where local branching cannot be applied anymore, hence
we have to resort to tactical branching to conclude the enumeration. Note that
the algorithm leads to an overall structure with shape of a tree, as depicted in
figure 3.2. Every node represents a subproblem solved with a commercial general
purpose solver such as ILOG Cplex or the GNU GLPK described in sections 2.1
and 2.2 respectively.

In order to enhance the basic idea we could modify it with a couple of features.
The first improvement is related to the fact that, in some cases, the exact solution
of the left-branch node can be very time consuming for the value of the parameter
k at hand. Hence, from the point of view of a heuristic, it is reasonable to impose
a time limit for the left-branch computation. In case the time limit is exceeded,
we have two cases.



30 CHAPTER 3. MIP GENERAL METHODS

mm

mm

m

%
%

%
%

%%

e
e

e
e

ee

%
%

%
%

%%

e
e

e
e

ee

m

m
e

e
e

e
ee

�
�

� T
T

T

�
�

� T
T

T �
�

� T
T

T

%
%

%
%

%%

�
�

� T
T

T

1

2 3

4 5

6 7

∆(x, x̄1) ≤ k ∆(x, x̄1) ≥ k + 1

∆(x, x̄2) ≤ k ∆(x, x̄2) ≥ k + 1

∆(x, x̄3) ≤ k ∆(x, x̄3) ≥ k + 1

T

improved solution x̄2

T

improved solution x̄3

T

no improved solution

T

Figure 3.2: The basic local branching scheme.

(a) If the incumbent solution has been improved, we backtrack to the father
node and create a new left-branch node associated with the new incumbent so-
lution, without modifying the value of parameter k.

(b) If the time limit is reached with no improved solution, instead, we reduce
the size of the neighborhood in the attempt of speeding-up its exploration. This
is obtained by dividing the value of k by a given factor α > 1.

A further improvement of the heuristic performance of the method can be ob-
tained by exploiting well-known diversification mechanisms borrowed from local
search metaheuristics. In the local branching scheme, diversification is worth ap-
plying whenever the current left-node is proved to contain no improving solutions.
In order to keep a strategic control on the enumeration even in this situation, we
use two different diversification mechanisms. We first apply a “soft” diversifica-
tion consisting in enlarging the current neighborhood by increasing its size by a
factor β > 1. Diversification then produces a left-branch node which is processed
by tactical branching within a certain time limit. In case no improved solution
is found even in the enlarged neighborhood, we apply a “strong” diversification



3.5. LOCAL BRANCHING METHOD 31

step, in the spirit of Variable Neighborhood Search described in section 3.4. Here,
we look for a solution (typically worse than the incumbent one) which is not “too
far” from x̄2, e.g., a feasible solution x such that

∆(x, x̄2) ≤ bβ2kc (3.9)

3.5.2 The pseudo-code

Algorithm 3 : Local Branching pseudo-code

1: function locBra(k,time limit,node time limit, dv max,x∗)
2: rhs:=bestUB:=UB:=TL:=+∞; x∗:=undefined
3: opt:=true /*optimization status*/
4: first:=true /*stop at first feasible sol*/
5: diversify:=true /*perform strong diversification*/
6: repeat
7: if (rhs< ∞) then
8: add the local branching constraint 4(x, x̃) ≤rhs
9: end if

10: TL:=min{TL,total time limit-elapsed time}
11: stat:=MIP SOLVE(TL,UB,first,x̃)
12: TL:=node time limit
13: if (stat=opt sol found) then
14: /*optimum found for current MIP*/
15: if cost(x̃) <bestUB then
16: bestUB:=cost(x̃)
17: x∗:=x̃
18: end if
19: if (rhs≥ +∞) then
20: return opt
21: end if
22: reverse the local branching constraint into 4(x, x̃) ≥rhs+1
23: diversify:=first:=false

24: x̄ := x̃; UB:=cost(x̃); rhs:=k
25: end if
26: if (stat=proven infeasible) then
27: /*infeasible problem: MIP current has no feasible solution bet-

ter than UB*/
28: if (rhs≥ +∞) then
29: return opt
30: end if
31: reverse the local branching constraint into 4(x, x̃) ≥rhs+1
32: if (diversify) then



32 CHAPTER 3. MIP GENERAL METHODS

33: UB:=TL:=+∞; dv++; first:=true

34: end if
35: rhs:=rhs + k/2; diversify:=true

36: end if
37: if (stat=feas sol found) then
38: /*feasible solution found: improving the reference solution*/
39: if (rhs< ∞) then
40: if (first) then
41: delete the last local branching constraint 4(x, x̃) ≤rhs
42: else
43: replace the last local branching constraint4(x, x̃) ≤rhs by4(x, x̃) ≥1
44: end if
45: end if
46: /*compute the optimal solution with the MIP solver*/
47: REFINE(x̃)
48: if (cost(x̃)<bestUB) then
49: bestUB:=cost(x̃); x∗:=x̃
50: end if
51: first:=diversify:=false; x̄ := x̃; UB:=cost(x̃); rhs:=k
52: end if
53: if (stat=no feas sol found) then
54: /*no feasible solution found for current node*/
55: if (diversify) then
56: /*strong diversification*/
57: replace the last local branching constraint 4(x, x̃) ≤rhs by 4(x, x̃) ≥1
58: UB:=TL:=+∞; dv++; rhs:=rhs+k/2; first:=true

59: else
60: /*strong diversification*/
61: delete the last local branching constraint 4(x, x̃) ≤rhs
62: rhs:=rhs-k/2
63: end if
64: diversify:=true

65: end if
66: until (elapsed time>total time limit) or (dv > dv max))
67: TL:=total time limit - elapsed time; first:=false

68: stat:=MIP SOLVE(TL,bestUB,first,x∗)
69: opt:=(stat=opt sol found) or (stat=proven infeasible)
70: return opt

Function LocBra receives on input the neighborhood size (k), the overall
time limit (total time limit), the time limit for each tactical branching explo-
ration (node time limit), and the maximum number of diversifications allowed



3.5. LOCAL BRANCHING METHOD 33

(dv max). It returns on output the best/optimal feasible solution found (x∗) along
with the final optimization status (opt).



34 CHAPTER 3. MIP GENERAL METHODS



Chapter 4

Diversification-Refining-Tight
refining method

4.1 Introduction

So far we have seen some important ideas that can help us to solve large MIPs.
We have learn how to explore the solutions space without considering a solution
more than once (section 3.3) and how to build neighborhoods for a more clever
search using a two phases procedure (section 3.4). Now we introduce another
important ingredient to obtain a metaheuristic algorithm that will use also all
these features.

Trying to solve a very-large problem taking it as a whole can be very time
expensive, hence the interest in dividing it into smaller subproblems. Each one of
them will take a typically short computational time, so as to get a good solution
in a very fast way. The underlaying idea is in effect quite simple: we split the set
of binary variables into two subsets. We call each subset a level and so we have
first level and second level variables. The set of subproblems is made by setting
the first level variables in different configurations. So, if L1 denotes the first level
subset, we have up to 2|L1| subproblems. It is clear that the cardinality of first
level set should be sufficiently small to have a reasonable number of subproblems.
This division can be left to the user which can exploit its knowledge of the problem
to split the variables in a clever way, or to an algorithm that bases its decision
upon information given by the constraints.

The method we are going to describe is very general and can solve problems
in the form of (P) introduced in section 3.2. We will see that if no first level set is
provided (or cannot be automatically detected) the algorithm enters VNS mode
while if no binary variables are given the Cplex solver is directly applied to the
whole model. We will test the algorithm using instances related to telecommu-
nication networks design.

35



36 CHAPTER 4. DRT METHOD

4.2 Splitting of the variables

Now we are going to see some methods to build up the 1st level variables set in
an automated way. All algorithms let the user force some variables to belong to
the first level by specifying them in a text file on the form

var1

var2
...

varn

\end

The algorithm also checks if each variable belongs to the model and is binary,
so as to prevent some user’s error. For practical reasons we will denote with
y the first level variables and with x the second level ones. Note that since
all constraints treatment is done by Cplex using the extractable objects (such
as constraints and variables), the methods are file-type independent, so we can
process any file type supported by Cplex. Another advantage in using Cplex
interface towards the model is that a lot of effort in file parsing is left to the
ILOG application, while the programmer can focus his attention on the logical
structure.

4.2.1 The forced-variables method

A very important characteristic of the 1st level variables is that they can force
the values of some 2nd level ones. For example, take x1,1 and x2,1 two 2nd level
variables and y1 at the first level. In many location problems we can see the
x’s as links from terminals or users that request a service from some provider.
If provider 1 is not activated (y1 = 0) both links can’t be used, so this choice
for y1 forces to zero also the other two variables. In terms of constraints we can
formulate this condition as

x1,1 + x2,1 ≤ y1

Generalizing this example we have a constraint like:∑
i∈N

cijxij ≤
∑
j∈M

Tjyj (4.1)

Figure 4.2.1 represents the situation with one 1st level variable y1 and n 2nd level
variables.



4.2. SPLITTING OF THE VARIABLES 37

~
1

~
2

~
n

~y1

r r r r

x1,1 x1,2 x1,n

Figure 4.1: n 2nd level variables forced by one 1st level.

We base our method on an equivalent form of the constraint 4.1:∑
j∈M

Tjyj −
∑
i∈N

cijxij ≥ 0 (4.2)

The algorithm is quite simple and very efficient and is made of two nested for
loops. The first scans all constraints while the second is done inside each con-
straint, considering the coefficient of the variables involved:

Algorithm 4 : Splitting method based on forced-variables

1: initialize L1 reading variables from a file (if given);
2: for all constraints C in form 4.2 do
3: for all variables var in C do
4: number variables = no binary = num second lev = 0;
5: L′

1 := ∅
6: if var∈ L1 then
7: continue;
8: end if
9: number variables++;

10: if var is not binary then
11: no binary++;



38 CHAPTER 4. DRT METHOD

12: break;
13: end if
14: if coeff(var) > 0 then
15: add var to L′

1

16: else
17: num second lev++;
18: end if
19: end for
20: if number variables=no binary then
21: continue;
22: end if
23: if |L′

1|+num second lev > 1 then
24: add variables in L′

1 to L1

25: end if
26: end for
27: return L1

After the initialization of the first level set L1, we scan each constraint in the
model. For each constraint, we consider the variables var with nonzero coefficient.
If var is already in L1, we jump to the next one since no new information can
be extracted. If all variables involved in the constraint aren’t binary, again jump
to the next constraint because we are sure that here we can’t find new 1st level
variables. We put potential 1st level variables in L′

1 basing on the coefficient
sign: from equation 4.2 we have positive sign for the first level. If the number
of variables is greater than 1 (to prevent constraints which are just bounds), we
put all L′

1 elements in L1. The function returns the L1 set.
A more theoretical approach to the task is the following. We consider con-

straints in the form:

∑
j

αjxj ≤ α0 (or = α0) (4.3)

Assuming that each variable xj is bounded by LBj ≤ xj ≤ UBj, the minimum
value for the left-hand side term in (??) is obtained when all variables with a
positive coefficient αj are set to their lower bound LBj, whereas all variables
with a negative coefficient αj are set to their upper bound UBj. With this
variable setting, the total slack for the constraint attains its maximum value:

δmax := α0 − (
∑

j:αj>0

αjLBj +
∑

j:αj<0

αjUBj) (4.4)

Therefore, our condition to insert a binary variable xj into the first level set B1

is:



4.2. SPLITTING OF THE VARIABLES 39

αj < 0 : |αj|(UBj − LBj) ≥ δmax (4.5)

as in this case setting xj = 0(= LBj) implies that all other variables with a
nonzero coefficient αj are forced to keep their (upper or lower bound) value as in
(??).

4.2.2 The big M method

We are going to show a method for variables splitting based on the presence of
coefficients much higher than the others (big M). We can find them in bad mod-
eled problems or in linearized models. In fact, if there are no-linear constraints,
we can often linearize them by introducing big M coefficients. There are two
ways to say if a coefficient is a big M or not: the first is absolute, that is we
have a coefficient which is much larger than all the others. This case can occur
especially in linearizations. The pseudo-code is:

Algorithm 5 : Splitting method based on absolute big M

1: initialize L1 reading variables from a file (if given);
2: for all constraints C do
3: for all variables var in C do
4: if |coeff(var)| > bigM and var is binary and var /∈ L1 then
5: add var to L1

6: end if
7: end for
8: end for

The main disadvantage of this method is that it not considers the different kind
of values: for example 1000 meters can be viewed as a big value while 1 Km
would be taken as a small one but clearly they are the same thing. Again, we
have different classes of constraints inside a model and so a value can be a big
M for a class but not for another one. We can supply to this last trouble with
a second method which can be called relative. Fix a gap in percentage (call it
for example bigMperc); find a reference value which captures the trend of all
coefficients inside a constraint (for example the average) and then compare all
coefficients to it. If someone is higher than the bigMperc of it we say that have
found a big M coefficient. The way we choose the reference value is the key for a
good identification of variables with big M value. The pseudo-code is:



40 CHAPTER 4. DRT METHOD

Algorithm 6 : Splitting method based on the average

1: initialize L1 reading variables from a file (if given);
2: for all constraints C do
3: for all variables var in C do
4: if var is not binary then
5: no binary++
6: end if
7: tot+=|coeff(var)|
8: num variables++
9: end for

10: if num variabels==no binary then
11: /* no 1st level can be found here; jump to next constraint */
12: continue
13: end if
14: aver:=tot/num variables
15: for all variables var in C do
16: if |coeff(var)|>(1+bigMperc)·aver AND var /∈ L1 then
17: add var to L1

18: end if
19: end for
20: tot = num variables = 0
21: end for

The reason why we put these variables at the first level is that they can cause a
slow down in the branching procedure forcing to a very deep investigation in the
branch tree. In fact, consider for example a constraint like:∑

i∈S

cixi ≤ My (4.6)

with ci � M . During the relaxation the integrality constraint is not applied and
so this cut is satisfied even by very low y values. So, several subproblems may be
added to the branching tree to find out an integer solution.

4.3 The resolution method

Let’s recall the MIP formulation that we have seen in paragraph 3.2:

(P ) min cT x (4.7)

Ax ≥ b (4.8)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (4.9)



4.3. THE RESOLUTION METHOD 41

xj ≥ 0, integer ∀j ∈ G (4.10)

xj ≥ 0 ∀j ∈ C (4.11)

We split the binary variables in two subsets named L1 for the first level and
L2 for the second level (as seen in section 4.2). So we partition B respectively B1

and B2. For each possible first level variables configuration we have:

(Pk) min cT x

A2x2 ≥ b̃ (4.12)

xj ∈ {0, 1} ∀j ∈ B2 (4.13)

xj = x̄j ∀j ∈ B1 (4.14)

xj ≥ 0, integer ∀j ∈ G (4.15)

zj ≥ 0 ∀j ∈ C (4.16)

where A2 and x2 are the components of coefficients matrix A and variables vector
x related to all non first level variables and b̃ = b−A1x̄ if A1 denotes the matrix
coefficients part regarding the first level variables. Each problem is characterized
by

We start from a solution, in the hope that we can obtain a better solution
keeping the current first variables configuration. During this phase, called refin-
ing, we add the constraint1

∑
j∈B1(1)

(1− xj) +
∑

j∈B1(0)

xj = 0 (4.17)

imposing that configuration of x̄j ∀j ∈ B1 never changes. The structure of this
inequality is very similar to that we have seen for the distance definition (see
3.2): in effect we are imposing that the number of the changes between two
configurations is zero. Now we proceed with the solution of this subproblem
using Cplex.

If the problem is still too large and its solution takes more than a given
time, we enter in the tight-refining phase. This is an iterative algorithm that
investigates the current subspace adding constraints like∑

j∈B2(1)

(1− xj) +
∑

j∈B2(0)

xj = k (4.18)

so we follow the same idea of increasing neighborhoods seen in the VNS for the
intensification by adding kstep to the k value at each iteration. It stops when
the termination condition arises that is when k has reached a maximum allowed
value kmax or the maximum time for this phase is elapsed. If Cplex can’t find a

1we define Bi(w) as the set of the variables of level i fixed at the w value. In our case
i ∈ {1, 2} and w ∈ {0, 1}



42 CHAPTER 4. DRT METHOD

solution which leads to a better objective function value, the current solution will
be marked as the best one for the current configuration. We remove constraints
4.14 and 4.15.

Now we have to consider another configuration for the first level variables so we
apply a diversification phase as seen in the VNS method adding the diversification
constraint

k1 ≤
∑

j∈B1(1)

(1− xj) +
∑

j∈B1(0)

xj ≤ k2 (4.19)

As the tabu search method tells us, a random choice of the new configuration
can lead to solving twice a yet visited scenario. To avoid this risk we add a tabu
constraint like ∑

j∈B1(1)

(1− xj) +
∑

j∈B1(0)

xj ≥ 1 (4.20)

From here we start again with the refining phase in order to find the best
solution for the current settings. If we find a solution cost better than the previous
one we consider this solution as the new global optimum.

We can summarize the procedure in this scheme:

1: repeat
2: fix the first level variables adding 4.14
3: solve the subproblem with Cplex adding constraints 4.15 for increasing

neighborhoods investigation
4: if current solution is better than the previous global one then
5: global solution:=current solution
6: end if
7: remove previous added constraints
8: build the new subproblem with the diversification 4.16 and the tabu 4.17

constraint
9: until ending condition is verified

4.3.1 DRT variation

As we will see in the computational section 5, the way we choose the parameters
(especially the time limit for each phase) can cause the method to emphasize
one of the two search sides. The local searching is preferred if we have a small
number of diversifications exploring a little set of 1st level variable configurations
in a very deep way. If we allow for a great number of diversifications, we expect
to examine as much configurations as possible and so we should spend less time
in the local search phase. This case can be very useful, for example, when we
have very large cardinality sets L1 .

Applying the same reasoning as above, we can control the subspaces visited
by the algorithm to prevent that for a too long time we spend our resources ex-



4.3. THE RESOLUTION METHOD 43

ploring configurations that lead to not significant results, i.e., the improvement
at each diversification is not significant. When for a too long time we have not
improvement in solution objective better than a given percentage of the last im-
provement, we can force the algorithm to make a big diversification step changing
a great number of 1st level set variables. Obviously, we have to add a tabu con-
straint also for this phase to avoid a new search for this configuration. We can
decide the maximum number of big diversifications, the number of 1st level vari-
ables to change, the gap to consider a solution as an improvement or not and the
maximum number of no improvement before the big diversification starts.

4.3.2 The pseudo-code

Now we take a look to the pseudo-code of the algorithm with the variation intro-
duced in the previous section.

Algorithm 7 : DRT2 pseudo-code

1: function DRT()
2: read algorithm parameters defined by the user from a file
3: /* search for start solution */
4: set the solver parameters for initial search
5: start solution=solve()
6: if solver can’t find a start solution then
7: print(No solution has been found)
8: return
9: end if

10: if start solution is optimal then
11: output(start solution)
12: return
13: end if
14: current solution=best solution=start solution;
15: while (execution time < time limit) and (num div < max div number) and

(num big div < max big div number) do
16: if num div with no improv==max div with no improv then
17: /***** big diversification *****/
18: num div with no improv=0;
19: num big div++;
20: add the tabu constraint for big diversification;
21: set solver parameters for diversification;
22: kbig

1,div = kbig
min,div

23: kbig
2,div = kbig

1,div + kbig
step,div

24: repeat
25: add the constraint for diversification with kbig

1,div and kbig
2,div;

26: if new sol then



44 CHAPTER 4. DRT METHOD

27: current solution=solver solution;
28: if current solution is better than best solution then
29: best solution=current solution
30: end if
31: else
32: kbig

1,div+ = kbig
step,div + 1

33: kbig
2,div = kbig

1,div + kbig
step,div

34: end if
35: remove the constraint for big diversification;
36: num big div++;
37: until (execution time=time limit) or (new sol)
38: /* end of big diversification */
39: if execution time>time limit then
40: break
41: end if
42: else
43: /***** diversification *****/
44: add the tabu constraint for diversification;
45: set the solver parameters for diversification;
46: k1,div = kmin,div

47: k2,div = k1,div + kstep,div;
48: repeat
49: add the constraint for diversification with k1,div and k2,div;
50: if new sol then
51: current solution=solver solution
52: if current solution is better than best solution then
53: best solution=current solution
54: end if
55: else
56: k1,div+ = kstep,div + 1
57: k2,div = k1,div + kstep,div

58: end if
59: remove the constraint for diversification;
60: num div++;
61: until (execution time=time limit) or(new sol)
62: end if
63: /* now 1st level variables are fixed */
64: if execution time>time limit then
65: break
66: end if
67: /***** refining *****/
68: add the constraint for refining;



4.3. THE RESOLUTION METHOD 45

69: set the solver parameters for refining;
70: solve the model;
71: if no new solution found then
72: /* try refining with MIPEmphasis=1 */
73: set the solver MIPEmphasis=1;
74: if no new solution found then
75: current solution.status=solver.getStatus()
76: end if
77: end if
78: if new solution found then
79: current solution=solver solution;
80: if current solution is better than the best one then
81: best solution=current solution
82: end if
83: end if
84: if current solution is infeasible then
85: /* Solver has not found a solution because best solution (cut

upper/lower limit) was better than lower/upper bound */
86: remove the constraint for refining
87: /* skip to next diversification */
88: continue
89: end if
90: if there aren’t 2nd level variables then
91: /*no tight refining can be done*/
92: remove the refining constraint
93: continue;
94: end if
95: if execution time>time limit then
96: break
97: end if
98: /***** tight refining *****/
99: repeat
100: add the tight refining constraint;
101: set the solver parameters for tight refining;
102: if a solution better than the current one has been found then
103: current solution=solver solution;
104: ktight = kmin,tight

105: else
106: ktight+ = kstep,tight

107: end if
108: remove the tight refining constraint;
109: until (execution time=time limit) or (ktight > kmax,tight)
110: if current solution is better than the best one then



46 CHAPTER 4. DRT METHOD

111: best solution=current solution
112: end if
113: remove the tight refining constraint;
114: /* end of refining and tight refining */
115: if best solution is better of gap percent than the one of the previous di-

versification then
116: num div with no improv=0
117: else
118: num div with no improv++
119: end if
120: end while
121: output(best solution)

solve() denotes that we invoke the solver used as a black-box and the result
is stored in solver solution or in current solution. The keyword break as
usual tells that we have to exit from the current loop; on the other hand continue
forces to jump to the next cycle iteration.

Basically we can divide the pseudo-code in five parts: start search, big diver-
sification, diversification, refining and tight-refining.

1. (lines 2 to 13) search for a starting solution. If no solution can be found or
we reached an optimal one, exit;

2. (line 15) the condition for the algorithm termination: it is based on time
limitation and maximum number of big/small diversifications

3. (lines 16 to 38) perform the big diversification if no significant improvements
took place; this phase, very similar to the diversification, ends as soon as
when the first feasible solution is reached, checking the boolean variable
new_sol; the (big) diversification constraint is the 4.16

4. (lines 39 to 41) check the running time: quit if it is greater than the limit;

5. (lines 43 to 61) perform the diversification; as in the big diversification
phase;

6. (lines 43 to 61) perform the refining: once we have fixed the first level
variables we try to catch the optimal solution for this configuration adding
constraints like 4.14. If we can’t, we try to take a feasible solution setting
the MIPEmphasis2 parameter to 1. If there isn’t a feasible solution jump
to next cycle. Always keep track of the solution status;

2this step can be done only if the solver has a parameter with this function. Note that for
example the GLPK has not.



4.3. THE RESOLUTION METHOD 47

7. (lines 90 to 96) check if there are 2nd level variables: if is not so, tight-
refining can’t be done and so we jump to the next iteration. If we can
continue with next phase, check if time limit is reached;

8. (lines 98 to 112) perform tight-refining with an iterative procedure. The
tight-refining constraint is 4.15.

9. (lines 114 to 118) check if a significant improvement took place; if not,
increase the number of diversifications with no improvement for the big
diversification test.

Since the ending condition is based on the time limit we could not try all the
possible y configurations. We have to check this clause also after every phase to
avoid the reaching of an execution time too greater than the maximum allowed
one. Note that during the refining phase we set MIPEmphasis to 1 after no
feasible solution has been found since this value forces Cplex to generate as many
good intermediate feasible solutions as possible (see section 2.1.3). Every time we
perform a comparison between two solutions we have to check also the direction
of the objective function (i.e. maximize or minimize): in this way the algorithm
can be used for both cases.

4.3.3 The overall scheme

As we have noticed before, the DRT method can be applied only when 1st level
variables can be found. If it is not the case but we have however binary variables
(that go obviously to the 2nd level) we can perform the VNS method. If the
problem has no binary variables at all we have to rely on our MIP commercial
solver giving to it the whole model. The scheme surrounding the whole solution
process can be depicted like this:



48 CHAPTER 4. DRT METHOD

BUILD B

?
�

�
�

@
@

@
@

@
@

�
�

�

|B| = 0

?

N

-Y
SOLVER

BUILD L1

?

?

�
�

�

@
@

@
@

@
@

�
�

�

|L1| = 0 -Y
VNS

?

N

BUILD L2

?

DRT

Figure 4.2: The overall scheme.

4.3.4 The implementation

The algorithm has been implemented in C++ using the ILOG Cplex Concert
Technology 1.0 as described in section 2.1. The package comes as a set of files:

• DRT.h: the header with all variable definitions. There are also the input
and output file names definitions (see forward).

• DRTsolve.h: a set of routines for the DRT implementation. So we have
DRT_method, VNS_method and NO_NEIGH_method. The latter is the simple
application of Cplex to the whole problem when no binary variables are



4.4. APPLICATIONS AND DEVELOPMENTS 49

present. The synopsis for these routines is:

void DRT method(IloCplex& cplex, IloModel& model, char *FILE LEVEL1)
void VNS method(IloCplex& cplex, IloModel& model)
void NO NEIGH method(IloCplex& cplex, IloModel& model)

• split.h: contains the two methods for splitting variables. To switch from
the forced variables method to the big M one, we have just to tell to the
splitting routine what we want to use. Loosely speaking, the routine dec-
laration is

NumVarArray

split_var(IloEnv env,IloModel model,IloCplex cplex&,

NumVarArray variables,int type,char *file_first_lev);.

The type argument specifies the splitting method (1 = forecd variables,
2 = big M); the last parameter is optional and tells what is the file where
the user’s defined first level set is stored.

• input.cpp: read parameters for each method from the respective files.

The files where all parameters are written (read by input.cpp) are stored in the
DRT.exe directory. Their names are: _cplexpar_DRT.dat, _cplexpar_VNS.dat
and _cplexpar_NO_NEIGH.dat. By default, files _out.dat and _finalsol.dat

are created in the same directory. The first reports a log of the last run of the
algorithm and the second displays information about the solution found (objective
value, variables, time and so on). If we want to change this scenario we may
modify the settings in the DRT.h file.

4.4 Applications and developments

As we can see, there are several possible variants to the basic algorithm. For
example, starting form the one shown is section 4.3.1, we could modify the way
we define the increasing judgement criterium taking as the new reference solution
the best found in the last n iterations without improvements. Another extension
with the goal of minimizing the influence of wrong settings made by the user
could be an auto-tuning algorithm. The idea is that during the first m phases we
keep track of the elapsed time for example for a diversification to reach a certain
quality of the solution (say the relative gap from the best bound or others). We
calculate the average of these times and if it is less than the parameter given by
the user, we set it as the new value. Obviously there can be some troubles with
it. For example, a too low number of diversifications can occur due to the long
time they take to close the gap (which can be even too restrictive) and so no new



50 CHAPTER 4. DRT METHOD

setting can be done, or our choice for the bound gap can be a too pessimistic. So
this method could be more appropriated for problems with fast phases, closer to
the spirit of the DRT A fascinating work could be to try to relate the parameters
of the algorithm to some properties of different classes of problems. In this way
we could develop some pre-defined settings to achieve the best performance once
we know the nature of the problem at hand. For the splitting method, we could
try to refine the big M method adopting reference values which differ from a
simple average. Also we could perform a kind of sensitive analysis to find out
what are the variables to put to the 1st level or an analysis at relaxation time.

From the applications point of view, we could exploit the first level fixing
method to solve bilinear problems. They are MIP with constraints and objective
function which contain also expressions like∑

i∈I

∑
j∈J

yi · xj (4.21)

As we said, these kinds of models are usually solved with linearization. This
method is useful to exploit the power of MIP solvers like Cplex and to prove in a
easier way their optimality. On the other hand, this procedure can increase in a
dramatic way the number of constraints, leading to a more difficult problem. For
an example of linearization applied to a telecommunications network planning see
[?]. What we can do with our DRT is to choose the yi’s of a bilinear constraint
like 4.18 as the 1st level ones. So, for each configuration we have to solve a linear
problem. We haven’t added new constraints at all except the temporary one for
diversification, refining and tight-refining.



Chapter 5

Tests results

5.1 Instances

We have performed tests on three different problem classes. A detailed description
and formulation of each model is provided in appendix. Now we are just going
to give a brief introduction to these instances.

The first problem we deal with is the Facility Location Problem (FLP) in its
capacitated version which is a classical NP-hard problem in Operative Research.
A set of warehouses (or concentrators) have to provide some goods or services to
a given set of terminals (N): we want to decide where to place the warehouses
choosing between candidates sites (set M) minimizing the cost of the links be-
tween them and the terminals, satisfying capacity constraints. The decisions
variables are:

yj =
{

1 if a concentrator is installed at location j
0 otherwise

for all j ∈ M

xij =
{

1 if terminal i is assigned to a concentrator installed at location j
0 otherwise

for all i ∈ N , j ∈ M

The second problem concerns the planning of an UMTS network. The enti-
ties are BTS’s (which can be seen as the terminals of the FLP), CSS’s and LE’s
(both play the role of concentrators). We consider a certain number of potential
CSS and LE sites among which the planner has to choose those to be actually
activated. We consider a three level star-type UMTS architecture (star/star net-
work), defined by an upper layer made of active LE’s (chosen in the given set of
potential LE’s), a middle layer of active CSS’s (also chosen in the given set of
potential CSS’s), and a lower layer of the given BTS’s (each of which is required
to play the role of a leaf in the star-type structure. Since we have to satisfy

51



52 CHAPTER 5. TESTS RESULTS

technical constraints not all links are allowed. BTS’s can be connected either to
CSS’s or LE’s. Each activated LE plays the role of the root of a tree spanning
a different connected component. Moreover, the problem cannot be decomposed
in two independent subproblems consisting of assigning LE’s to CSS’s and CSS’s
to BTS’s, respectively, in that the choice of the active CSS’s and of their traffic
load creates a tight link between the two subproblems. Obviously, we need to
build up the minimum cost network respecting traffic requirements and technical
constraints. Again, the problem is NP-hard (note how it is close to the FLP).
The most important decision (binary) variables are:

yCSS−h
j =

{
1 if a CSS is installed at location j
0 otherwise

for h=1,2 (CSS of type simplex or complex respectively)

yLE
k =

{
1 if a LE is installed at location k
0 otherwise

xBTS−CSS
i,j =

{
1 if the BTS in location i is assigned to a CSS in location j
0 otherwise

xBTS−LE
i,k =

{
1 if the BTS in location i is assigned to a LE in location k
0 otherwise

xCSS−LE
i,k =

{
1 if the CSS in location i is assigned to a LE in location k
0 otherwise

The third problem is the QCL-C (Quadratic Capacity Concentrator Location
Problem with Complete Routing), another one very close to the classical FLP.
We need to build a two level network: we have the access network for terminals-
terminals links and backbone network for concentrators-concentrators connec-
tions. The goal is again to build up the minimum cost global network (access
plus backbone). Note that no assumptions on the nature of the two networks
are taken, so we can face different situations such as star/star or complete/star
configurations. This model (complete routing) encompasses them all. It is easy
to guess that again we are facing a NP-hard problem. The main decision vari-
ables in the formulation we consider (called QCL-C3, proposed by Ernst and
Krishnamoorthy in [?]) are:

yj =
{

1 if a concentrator is installed at location j
0 otherwise



5.1. INSTANCES 53

xi,j =
{

1 if the concentrator in location i is assigned to a the i-th terminal
0 otherwise

For each problem we considered different instances: in table 5.1 report the
name of each instance, a reference and some data to characterize the size of the
problem. For Yaman’s problems, we have the names on the form ft,N,M,Q, where
N is the number of nodes, M is the capacity of each concentrator and Q is the
traffic demand.



54 CHAPTER 5. TESTS RESULTS

NAME REF. num. rows num. cols |L1| |L2| best known

cap41 [?] 866 816 16 800 1040444.37
cap81 [?] 2575 1275 25 1250 838499.29
cap111 [?] 5100 2550 50 2500 826124.71

A [?] 473 334 10 308 10760529
B [?] 681 498 13 455 11619817
C [?] 809 614 12 562 12393173
D [?] 972 738 14 676 13376659
E [?] 1741 1316 20 1232 19734790
F [?] 2119 1628 23 1515 21950121
G [?] 2394 1836 24 1704 22971252
H [?] 2660 2046 26 1900 23977171
I [?] 3739 2946 30 2772 30088388
L [?] 4376 3406 33 3191 31096388
M [?] 4710 3706 34 3464 31977972
N [?] 4984 4002 36 3742 32833226
O [?] 8271 6650 50 6200 39182672

ft17101div2 [?] 867 5185 17 272 26274.5
ft17101div3 [?] 867 5185 17 272 18726.6
ft17101div4 [?] 867 5185 17 272 15520.8
ft17101div5 [?] 867 5185 17 272 13902.2∗

ft17101div6 [?] 867 5185 17 272 13035.7∗

ft17151div2 [?] 867 5185 17 272 23446.0
ft17151div3 [?] 867 5185 17 272 17313.5
ft17151div4 [?] 867 5185 17 272 14899.4∗

ft17151div5 [?] 867 5185 17 272 13690.7∗

ft17151div6 [?] 867 5185 17 272 12837.7∗

ft17152div3 [?] 867 5185 17 272 30671.0
ft17201div2 [?] 867 5185 17 272 21213.0
ft17201div3 [?] 867 5185 17 272 16416.5∗

ft17201div4 [?] 867 5185 17 272 14566.5∗

ft17201div5 [?] 867 5185 17 272 13661.8∗

ft17201div6 [?] 867 5185 17 272 12837.7∗

ft17201 [?] 867 5185 17 272 42453.2
ft17202div3 [?] 867 5185 17 272 27760.8

Table 5.1: Instances resume. The ∗ means proven optimal solution.

Other possible models for our method may be the ones related to the planning
of UMTS network from the point of view of quality and health requirements as
described in [?], or again the index selection problem in a database project.



5.2. COMPARING THE METHODS 55

5.2 Comparing the methods

We are going now to show two tables concerning the performance of the three
algorithms we have seen in relation of the UMTS network planning as described
in section ??. A pure Cplex application is provided too, as reference. We have
four classes of instances for the same problem, which differ for their size. For
each class, in the table we give the number of BTS, CSS and LE in the form
(num BTS,num CSS,num LE) and the objective function value (the minimum
one for each example is in bold face) calculated in ECU basing on the costs of
devices installation and links activation. We report some significant parameters;
for an explanation about Cplex settings see 2.1.3.

Parameters:

TABU SEARCH METHOD1:

• time limit: 6, 8, 10, 12 hours for classes 1, 2, 3 and 4 respectively

• Penalty cost for exploration: 2500

• Penalty cost for intensification: 500000

PURE CPLEX 7.0 METHOD:

• time limit (TiLim): 6, 8, 10, 12 hours for classes 1, 2, 3 and 4 respectively

• MIPEmphasis = 12

• EpAGap = 10−9

• EpGap = 10−9

• TreLim = 128 MB

VNS METHOD:

Global parameters

• time limit: 6, 8, 10, 12 hours for classes 1, 2, 3 and 4 respectively

• maximum number of diversifications = 1000

• memory limit = 128 MB

1in the implementation proposed in [?] Cplex is not used so all constraints and variables
management is handled by the programmer

2with this setting we have results better than with the zero one since the solver is forced to
generate as many feasible solution as possible during the generation of the branching tree and
so there is an high chance to fall in a solution which is better than with MIPEmphasis=0



56 CHAPTER 5. TESTS RESULTS

• NodeFileInd=1(save nodes on a file when the tree size exceeds the memory
limit)

Parameters for initial research

• TiLim = 60’

• NodeLim = 5000000 (not bounded)

• IntSolLim = 1

• MIPEmphasis = 1

Parameters for diversification:

• TiLim = 3’, 5’, 7’, 10’ for classes 1, 2, 3 and 4 respectively

• NodeLim = 5000000 (not bounded)

• MIPEmphasis = 0

• EpAGap = 10−9

• EpGap = 10−9

• CutUp = cost of current solution

• k′
min = 2

• k′
max = 6

• k′
step = 2

Parameters for intensification:

• TiLim = 30’

• NodeLim = 5000000 (not bounded)

• IntSolLim = 7

• MIPEmphasis = 1

• kmin = 50

• kmax = 200

• kstep = 50



5.2. COMPARING THE METHODS 57

DRT METHOD:

Global parameters

• time limit: 6, 8, 10, 12 hours for classes 1, 2, 3 and 4 respectively

• maximum number of diversifications = 1000

• memory limit = 128 MB

• NodeFileInd=1(save nodes on a file when the tree size exceeds the memory
limit)

Parameters for initial research

• TiLim = 60’

• NodeLim = 5000000 (not bounded)

• IntSolLim = 1

• MIPEmphasis = 1

Parameters for diversification:

• TiLim = 30’

• NodeLim = 5000000 (not bounded)

• IntSolLim = 7

• MIPEmphasis = 1

• kmin = 1

• kstep = 2

Parameters for refining:

• TiLim = 5’, 10’, 20’, 30’ for classes 1, 2, 3 and 4 respectively

• NodeLim = 5000000 (not bounded)

• MIPEmphasis = 0 (set to 1 if the attempt with the other setting fails)

• CutUp = cost of best solution at hand

Parameters for tight refining:

• TiLim = 3’



58 CHAPTER 5. TESTS RESULTS

• NodeLim = 5000000 (not bounded)

• MIPEmphasis = 0

• EpAGap = 10−9

• EpGap = 10−9

• CutUp = cost of current solution

• k′
min = 1

• k′
max = 4

The tests were performed on a PC with Pentium II cpu at 450 MHz with
128 MB ram and Microsoft Windows 98. The whole set of parameters is read
from a text file which must be placed on the same folder of the executable. The
user can easy modify every parameter changing this file. As we can see the DRT
method (developed for UMTS network planning) is always the best one except in
example C where however the difference is very small (see the percentage table
??). Due to its general nature we are encouraged from these results to test the
generalized version with the other instances.

(BTS,CSS,LE) DRT VNS Cplex TS
A(50,4,2) 10760529 10760529 10760529 10760529
B(55,5,3) 11619817 11619817 11619817 11619817
C(60,5,4) 12398907 12393173 12396436 12395078
D(65,6,4) 13376659 13376659 13376659 13445309
E(100,8,4) 19734790 19740675 19734790 20006714
F(105,9,5) 21950121 21951866 21952231 22151922
G(110,9,6) 22971252 22973105 22971543 23100774
H(115,10,6) 23977171 23979111 23996482 23999151
I(150,12,6) 30088388 30137934 30142363 30139211
L(155,13,7) 31096388 31137306 31098048 31152784
M(160,13,8) 31997972 32035223 32045632 32070411
N(165,14,8) 32833226 32856421 32866855 32896514
O(200,20,10) 39182672 39247134 39282420 39241845

Table 5.2: Comparisons between MIP’s algorithms.



5.2. COMPARING THE METHODS 59

VNS Cplex TS

problem δ δ % δ δ % δ δ %
A 0 0.00 0 0.00 0 0.00
B 0 0.00 0 0.00 0 0.00
C 5734 0.05 2471 0.02 3829 0.03
D 0 0.00 0 0.00 -68650 -0.51
E -5885 -0.03 0 0.00 -271924 -1.38
F -1745 -0.01 -2110 -0.01 -201801 -0.92
G -1853 -0.01 -291 0.00 -129522 -0.56
H -1940 -0.01 -19311 -0.08 -21980 -0.09
I -49546 -0.16 -53975 -0.18 -50823 -0.17
L -40918 -0.13 -1660 -0.01 -56396 -0.18
M -37251 -0.12 -47660 -0.15 -72439 -0.23
N -23195 -0.07 -33629 -0.10 -63288 -0.19
O -64462 -0.16 -99748 -0.25 -59173 -0.15

Table 5.3: comparisons of DRT with VNS, Cplex 7.0 and TS. We define δ :=
DRT obj − algo obj and δ(%) := δ · 100/DRT obj.



60 CHAPTER 5. TESTS RESULTS

5.3 Comparing the splitting algorithms

We have tested the two types of algorithms described in section 4.2. Table ??
and ?? provide, for each instance, the variables at first level found with the forced
variables method. Note that results are always the ones we expect. Computation
times are not relevant since this algorithm always takes from some cents to a few
seconds (at worst a couple of minutes).

INSTANCE L1 |L1| RESULT
cap41 yi ∀i = 1, . . . , 16 16 OK
cap81 yi ∀i = 1, . . . , 25 25 OK
cap111 yi ∀i = 1, . . . , 50 50 OK

A yCSS−h
i h = 1, 2 i = 0, . . . , 3 10 OK

yLE
k k = 0, . . . , 1

B yCSS−h
i h = 1, 2 i = 0, . . . , 4 13 OK

yLE
k k = 0, . . . , 2

C yCSS−h
i h = 1, 2 i = 0, . . . , 3 12 OK

yLE
k k = 0, . . . , 3

D yCSS−h
i h = 1, 2 i = 0, . . . , 4 14 OK

yLE
k k = 0, . . . , 3

E yCSS−h
i h = 1, 2 i = 0, . . . , 7 20 OK

yLE
k k = 0, . . . , 3

F yCSS−h
i h = 1, 2 i = 0, . . . , 8 23 OK

yLE
k k = 0, . . . , 4

G yCSS−h
i h = 1, 2 i = 0, . . . , 8 24 OK

yLE
k k = 0, . . . , 5

H yCSS−h
i h = 1, 2 i = 0, . . . , 9 26 OK

yLE
k k = 0, . . . , 5

I yCSS−h
i h = 1, 2 i = 0, . . . , 11 30 OK

yLE
k k = 0, . . . , 5

L yCSS−h
i h = 1, 2 i = 0, . . . , 12 33 OK

yLE
k k = 0, . . . , 6

M yCSS−h
i h = 1, 2 i = 0, . . . , 12 34 OK

yLE
k k = 0, . . . , 7

N yCSS−h
i h = 1, 2 i = 0, . . . , 13 36 OK

yLE
k k = 0, . . . , 7

O yCSS−h
i h = 1, 2 i = 0, . . . , 19 50 OK

yLE
k k = 0, . . . , 9

Table 5.4: Results of the splitting based on the forced variables method.



5.3. COMPARING THE SPLITTING ALGORITHMS 61

INSTANCE L1 |L1| RESULT
ft17101div2 yi ∀i = 1, . . . , 17 17 OK
ft17101div3 yi ∀i = 1, . . . , 17 17 OK
ft17101div4 yi ∀i = 1, . . . , 17 17 OK
ft17101div5 yi ∀i = 1, . . . , 17 17 OK
ft17101div6 yi ∀i = 1, . . . , 17 17 OK
ft17151div2 yi ∀i = 1, . . . , 17 17 OK
ft17151div3 yi ∀i = 1, . . . , 17 17 OK
ft17151div4 yi ∀i = 1, . . . , 17 17 OK
ft17151div5 yi ∀i = 1, . . . , 17 17 OK
ft17151div6 yi ∀i = 1, . . . , 17 17 OK
ft17152div3 yi ∀i = 1, . . . , 17 17 OK

ft17201 yi ∀i = 1, . . . , 17 17 OK
ft17201div2 yi ∀i = 1, . . . , 17 17 OK
ft17201div3 yi ∀i = 1, . . . , 17 17 OK
ft17201div4 yi ∀i = 1, . . . , 17 17 OK
ft17202div3 yi ∀i = 1, . . . , 17 17 OK

Table 5.5: Results of the splitting based on the forced variables method.

For the FLP we catch the fist level variables from the constraint

xij ≤ yj ∀i ∈ N, j ∈ M (5.1)

stating that a terminal can be assigned to a site only if there is an activated
concentrator. The variation of this constraint for the UMTS planning model
regards both LE’s and CSS’s since they all play the role of concentrators. So we
have:

n∑
i=1

TBTS
i xBTS−CSS

ij ≤
∑

h=1,2

TCSS−h
j yCSS−h

j ∀j = 1, . . . ,m (5.2)

or

n∑
i=1

xBTS−CSS
ij ≤

∑
h=1,2

NCSS−h
j yCSS−h

j ∀j = 1, . . . ,m (5.3)

or

n∑
i=1

eBTS
i xBTS−CSS

ij ≤
∑

h=1,2

ECSS−h
j yCSS−h

j ∀j = 1, . . . ,m (5.4)

as far as the yCSS−h
j concerns and

m∑
j=1

wCSS−LE
jk +

n∑
i=1

TBTS
i xBTS−LE

ik ≤ TLE
k yLE

k ∀k = 1, . . . , p (5.5)



62 CHAPTER 5. TESTS RESULTS

or

m∑
j=1

zCSS−LE
jk +

n∑
i=1

eBTS
i xBTS−LE

ik ≤ ELE
k yLE

k ∀k = 1, . . . , p (5.6)

for yLE
k .

The QCL-C counterpart is:

∑
i∈I

nixij +
∑

l∈I\{j}
(zlj + zjl) ≤ Myj ∀j ∈ I (5.7)

where ni and zjl are auxiliary variables on traffic demands used to linearize the
model.

The second method based on BIG M coefficients leads to results very variable
with the choice of percentage used to state if a coefficient is big M or not.

INSTANCE L∗
1 |L1| RESULT

A xCSS−LE
i,j i = 0, . . . , 3 j = 0, . . . , 2 32 EXCEED

B xCSS−LE
i,j i = 0, . . . , 4 j = 0, . . . , 2 28 EXCEED

C xCSS−LE
i,j i = 0, . . . , 4 j = 0, . . . , 3 37 EXCEED

xBTS−CSS
34,k k = 0, . . . , 4

D xCSS−LE
i,j i = 0, . . . , 5 j = 0, . . . , 3 38 EXCEED

E xCSS−LE
i,j i = 0, . . . , 7 j = 0, . . . , 3 52 EXCEED

F xCSS−LE
i,j i = 0, . . . , 8 j = 0, . . . , 4 68 EXCEED

G xCSS−LE
i,j i = 0, . . . , 8 j = 0, . . . , 5 78 EXCEED

H xCSS−LE
i,j i = 0, . . . , 9 j = 0, . . . , 5 86 EXCEED

I xCSS−LE
i,j i = 0, . . . , 11 j = 0, . . . , 5 102 EXCEED

L xCSS−LE
i,j i = 0, . . . , 12 j = 0, . . . , 6 124 EXCEED

M xCSS−LE
i,j i = 0, . . . , 12 j = 0, . . . , 7 138 EXCEED

N xCSS−LE
i,j i = 0, . . . , 13 j = 0, . . . , 7 148 EXCEED

O xCSS−LE
i,j i = 0, . . . , 19 j = 0, . . . , 9 250 EXCEED

Table 5.6: results of the splitting based on the big M method with bigMperc =
0.9.

*: the L1 set is made up by all variables reported in table ??. Here, for
practical reasons, we report just the new variables added by this method



5.3. COMPARING THE SPLITTING ALGORITHMS 63

INSTANCE L1 |L1| RESULT
ft17101div2 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17101div3 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17101div4 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17101div5 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17101div6 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17151div2 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17151div3 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17151div4 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17151div5 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17151div6 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17152div3 xi,j ∀i, j = 1, . . . , 17 289 EXCEED

ft17201 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17201div2 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17201div3 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17201div4 xi,j ∀i, j = 1, . . . , 17 289 EXCEED
ft17202div3 xi,j ∀i, j = 1, . . . , 17 289 EXCEED

Table 5.7: Results of the splitting based on the big M method with bigMperc =
0.9. Recall that xi,i is equivalent to yi.

For Polo’s instances (from A to O) yCSS−h
j ’s are derived from

n∑
i=1

TBTS
i xBTS−CSS

ij ≤
∑

h=1,2

TCSS−h
j yCSS−h

j (5.8)

or
n∑

i=1

xBTS−CSS
ij ≤

∑
h=1,2

NCSS−h
j yCSS−h

j (5.9)

or
n∑

i=1

eBTS
i xBTS−CSS

ij ≤
∑

h=1,2

ECSS−h
j yCSS−h

j (5.10)

where TBTS
i ∼ 10 while TCSS−h

j ∼ 100 and so TBTS
i � TCSS−h

j . On the other
hand, we catch yLE

k ’s from

m∑
j=1

wCSS−LE
jk +

n∑
i=1

TBTS
i xBTS−LE

ik ≤ TLE
k yLE

k (5.11)

or
m∑

j=1

zCSS−LE
jk +

n∑
i=1

eBTS
i xBTS−LE

ik ≤ ELE
k yLE

k (5.12)



64 CHAPTER 5. TESTS RESULTS

again,TBTS
i � TLE

k (TLE
k ∼ 1000, TBTS

i ∼ 10) and eBTS
i � ELE

k . Note that we
don’t perform any test about nature of all variables inside a constraint like we did
in the previous method, since there is no logical relationship between variables.
We just consider the size of their coefficients. Wrong variable splitting can be
obtained as we can see in table ?? from constraints like

zCSS−LE
jk ≤ Mjkx

CSS−LE
jk (5.13)

or

wCSS−LE
jk ≤ Fjkx

CSS−LE
jk (5.14)

because coefficients are on the order of 109. Changing bigMperc from 0.9 to 2.0
cuts them away.

For class 2 problems (Yaman and Labbé’s) the method leads to no significant
results since we don’t have great difference between coefficients and so all binary
variables are put at 1st level, even the ones regarding links of access network.
Even if we increase the bigMperc value we don’t get an improvement.

Finally, it is not surprising that both methods lead to correct results for class
1 problem. In fact, the forced variable constraint is at the base of FLP:

xij ≤ yj (5.15)

and in case of capacity limitation usually this value is very high (some hundreds)
while all other coefficients are 1 or 0.

5.4 Comparing the algorithms

First of all, we will compare GLPK with ILOG-Cplex 7.0. There aren’t particular
settings for the GLPK, except the time limit which is, as always, 3 hours (10800
seconds). For Cplex, we also set MIPEmphasis to 1, to force the solver to generate
as many feasible solutions as possible. The differences are expressed as:

• 4 := GLPK time− CPLEX time

• δ := GLPK obj − CPLEX obj

• δ% := δ
GLPK obj

· 100



5.4. COMPARING THE ALGORITHMS 65

FILE GLPK obj GLPK time (s) 4 δ δ (%)

ft17101div2 26614.6 10800 0 9.5 0.04
ft17101div3 19484.8 8051 -2749 149.1 0.77
ft17101div4 15654.5 8616 -2185 133.7 0.85
ft17151div2 23601.9 10800 0 -701.5 -2.97
ft17151div3 17580.3 4572 -6228 266.8 1.52
ft17151div4 14899.4 10800 5187 0.0 0.00
ft17151div6 12837.7 971 722 0.0 0.00
ft17152div3 32279.4 10800 0 734.8 2.28
ft17201div2 20480.7 10800 0 -1195.4 -5.84
ft17201div3 16662 10800 1377 245.5 1.47

Table 5.8: GLPK solver performances on a instances subset.

From a strictly quality and speed solution point of view, table 5.4.1 shows
that the GNU solver is quite good, approaching Cplex. However, the main blind
spot is the reliability. In fact, in some cases the model parser module doesn’t
manage to read the file properly or the numerical instability cause the solver
module to fail. Many errors have occurred with instances of class 2. These are
the main reasons why we will provide in the following sections results regarding
the DRT implementation based on the ILOG Cplex.

Now, we pass to the test of the main methods. The reference value is given
by the basic DRT implementation. We compare it with its variation, the DRT2,
with a pure DRT version without first level variables (so, in this case we don’t
use the scheme seen in figure ??), with the Local Branching and Cplex 7.0. The
main settings follow:



66 CHAPTER 5. TESTS RESULTS

Cplex 7.0 settings:

• time limit: 3 hours

• MIPEmphasis = 1 (emphasis on feasibility)

DRT settings: the DRT has been tested using basically the same parameters
seen in section 5.2 but we have changed:

• time limit: 3 hours

• maximum number of diversifications: 5

In this way we give priority to the search with fixed configurations of first level
variables since we use very long time for each refining or tight refining phase.

DRT2 settings:

• time limit: 3 hours

• maximum number of big diversifications: 4

• maximum number of diversifications without improvement: 5

• minimum gap of improvement: 5%

• time limit for big and small diversification: 10 min.

• time limit for refining: 5 min.

• time limit for tight refining: 3 min.

Local Branching settings:

• time limit: 3 hours

• time for neighborhood: 600 seconds

• emphasis: 1 (feasibility)

• k = 20

• heuristic yes (no for LocBra23)

3if heuristic is set to no algorithm enters in exact mode and doesn’t perform diversifications.



5.4. COMPARING THE ALGORITHMS 67

problem DRT Cplex LocBra LocBra2 DRT2 DRT(L1 = ∅)
A 10760529 10760984 10760529 10760529 10760529 10761424
B 11595231 11619817 11595038 11595038 11595231 11599598
C 12393173 12393173 12402144 12396570 12393173 12397113
D 13376204 13378018 13394693 13378152 13376204 13380362
E 19731006 19731735 19738110 19731497 19737006 19738132
F 21950121 21950121 21964673 21950775 21950121 21950121
G 22969378 22973372 23081822 22972861 22969666 22973771
H 23978221 23990620 24019075 23993010 23978331 24032049
I 30093168 30138793 30120059 30164210 30089580 30197225
L 31081092 31094535 32506306 31118151 31081804 31167321
M 31986285 32065697 32097378 32078994 31984753 32106332
N 32842527 32894205 34310477 32979278 32834623 32952467
O 39181447 39282420 40696120 39478615 39183489 39457778

ft17101div2 26640.0 26605.1 26289.2 26274.5 26447.6 26289.2
ft17101div3 19702.3 19335.7 18726.6 19973.4 19582.1 19147.4
ft17101div4 15520.8 15520.8 15520.8 15520.8 15520.8 15520.8
ft17101div5 13902.2 13902.2 13902.2 13902.2 13902.2 13902.2
ft17101div6 13035.7 13035.7 13035.7 13035.7 13035.7 13035.7
ft17151div2 25303.4 24303.4 24201.4 27323.6 25626.0 24724.8
ft17151div3 17313.5 17313.5 17465.0 17465.0 17313.5 17921.8
ft17151div4 14899.4 14899.4 14899.4 14899.4 14899.4 15520.8
ft17151div5 13690.7 13690.7 13690.7 13690.7 13690.7 13902.2
ft17151div6 12837.7 12837.7 12837.7 12837.7 12837.7 13035.7
ft17152div3 32042.7 31544.6 30671.0 31786.2 32827.6 32089.8
ft17201div2 21213.0 21676.1 22471.8 23765.9 22232.8 23219.2
ft17201div3 16416.5 16416.5 16538.4 16516.0 16416.5 16885.0
ft17201div4 14646.0 14566.5 14566.5 14566.5 14566.5 14646.0
ft17201div5 13661.8 13661.8 13661.8 13661.8 13661.8 13661.8
ft17201div6 12837.7 12837.7 12837.7 12837.7 12837.7 12837.7

ft17201 43317.6 43361.1 43241.2 43107.5 45153.7 43444.8
ft17202div3 27950.2 29491.3 29659.6 30668.0 28609.9 29519.0

Table 5.9: Objective function values for all considered algorithms.

Now, table ?? reports a comparison between DRT and other methods, recall-
ing that

• δ := DRT obj − algo obj

• δ(%) := δ·100
DRT obj

so, a negative value states that DRT is better than the current reference algo-
rithm.



68 CHAPTER 5. TESTS RESULTS

Cplex LocBra LocBra2 DRT2 DRT(L1 = ∅)
problem δ δ % δ δ % δ δ % δ δ % δ δ %

A -455 0.00 0 0.00 0 0.00 0 0.00 -895 -0.01

B -24586 -0.21 193 0.00 193 0.00 0 0.00 -4367 -0.04

C 0 0.00 -8971 -0.07 -3397 -0.03 0 0.00 -3940 -0.03

D -1814 -0.01 -18489 -0.14 -1948 -0.01 0 0.00 -4158 -0.03

E -729 0.00 -7104 -0.04 -491 0.00 6000 -0.03 -7126 -0.04

F 0 0.00 -14552 -0.07 -654 0.00 0 0.00 0 0.00

G -3994 -0.02 -112444 -0.49 -3483 -0.02 -288 0.00 -4393 -0.02

H -12399 -0.05 -40854 -0.17 -14789 -0.06 -110 0.00 -53828 -0.22

I -45625 -0.15 -26891 -0.09 -71042 -0.24 3588 0.01 -104057 -0.35

L -13443 -0.04 -1425214 -4.59 -37059 -0.12 -712 0.00 -86229 -0.28

M -79412 -0.25 -111093 -0.35 -92709 -0.29 1532 0.00 -120047 -0.38

N -51678 -0.16 -1467950 -4.47 -136751 -0.42 7904 0.02 -109940 -0.33

O -100973 -0.26 -1514673 -3.87 -297168 -0.76 -2042 -0.01 -276331 -0.71

ft17101div2 34.9 0.13 350.8 1.32 365.5 1.37 192.4 0.72 351.0 1.32

ft17101div3 366.6 1.86 975.7 4.95 -271.1 -1.38 120.2 0.61 555.0 2.82

ft17101div4 0.0 0.00 0.0 0.00 0.0 0.00 0.8 0.01 0.0 0.00

ft17101div5 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00

ft17101div6 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00

ft17151div2 1000.0 3.95 1102.0 4.35 -2020.2 -7.98 -322.6 -1.28 579.0 2.29

ft17151div3 0.0 0.00 -151.4 -0.87 -151.4 -0.87 0.0 0.00 -608.0 -3.51

ft17151div4 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 -621.0 -4.17

ft17151div5 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 -212.0 -1.54

ft17151div6 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 -198.0 -1.54

ft17152div3 498.1 1.55 1371.6 4.28 256.4 0.80 -785.0 -2.45 -47.0 -0.15

ft17201div2 -463.1 -2.18 -1258.8 -5.93 -2552.9 -12.03 -1019.8 -4.81 -2006.0 -9.46

ft17201div3 0.0 0.00 -121.9 -0.74 -99.4 -0.61 0.0 0.00 -468.0 -2.85

ft17201div4 79.5 0.54 79.5 0.54 79.5 0.54 79.5 0.54 0.0 0.00

ft17201div5 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00

ft17201div6 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00

ft17201 -43.5 -0.10 76.4 0.18 210.1 0.49 -1836.1 -4.24 -127.0 -0.29

ft17202div3 -1541.1 -5.51 -1709.4 -6.12 -2717.8 -9.72 -659.7 -2.36 -1569.0 -5.61

Table 5.10: Difference between DRT and other methods.

Figure 5.1: graphical representation of δ %. The upper plot concerns instances
A to O. The lower is about instances ft.



5.4. COMPARING THE ALGORITHMS 69

Figure 5.2: graphical comparison of algorithms. better means that the current
algorithm is better than DRT.

Figure ?? shows a graphical representation of the δ(%)’s, while the pie charts
of figure ?? provide a view of the percentage of cases in which DRT is better than
the other methods. It is clear that in most cases the DRT is better than or equal
to the compared algorithm, even if the differences are not so dramatic. The DRT2
doesn’t give a very significant improvement with respect to the basic DRT as we
could expect, since every time we perform a big diversification the algorithm needs
some complete diversification-refining-tight-refining cycles to reach a solution that
is qualitatively comparable with the one left before the big diversification. If we
don’t give to the DRT, the results are very bad: in this case the DRT method
turns to a 2-phases algorithm that is not a VNS-like. For the Local Branching,
we can see that the algorithm is more efficient when we use the heuristic option.
It is also quite clear that the DRT behaves better with instances provided by
Polo, while the trend for Yaman’s instances is very variable with the problem at
hand.

5.4.1 Two detailed examples

Finally, in figures ?? and ?? we show a graphical comparison between the three
main heuristic methods (DRT, DRT2 and Local Branching) solving two problems:
L and ft17201div2. Note that every time tight-refining or refining are performed
giving no new solution we don’t write them even if they use some computational
time. DRT and DRT2 present some dramatic excursions from a cycle to cycle,
especially in case of big diversification. Moreover, here we can concretely see
what we said before: after each big diversification the DRT2 needs some complete
cycles to find a solution which is comparable with the one of the previous big
diversification. So, the improvement is not so high as we could expect. Cplex and
DRT with no first level variables have a monotonically decreasing behavior. For
the second one, we can explain this phenomenon considering that now we perform
only two phases, with no diversification. Every refining (and tight-refining) is
done improving the previous solution and so we do not have excursions as we
can see in true heuristic algorithms. A very similar behavior can be seen for
Local Branching with exact option: as soon as the algorithm have to perform
the first diversification the heuristic procedure is left and an exact procedure is
called until the end of the given time. Otherwise, in the (true) Local Branching
plots we can clearly see the peaks which represent a diversification.



70 CHAPTER 5. TESTS RESULTS

Figure 5.3: Plots of the methods solving problem L.

Figure 5.4: Plots of the methods solving problem ft17201div2.



Chapter 6

Conclusions

In this work we have discussed a generic framework to solve large mixed integer
problems in an heuristic way. We have provided a totally automated procedure
which has the task to automatically split the binary variables set individuating
the variables to be fixed. The way this decision is taken has been deeply dis-
cussed as well. After that, the algorithm evolves investigating different subspaces
basing its way on the user’s settings. We have seen two ways of controlling this
evolution; the second one is based on the concept of past memory introduced by
the Tabu Search method. The whole procedure has been implemented in C++
with Cplex 7.0 and in C with the GLPK and provided as a software library. The
algorithm has been tested with good results on different instances mainly based
on telecommunications network planning. All these results are compared with
the reference commercial solver Cplex 7.0 and discussed. A comparison with the
GNU solver GLPK and with the local branching heuristic method are given too.
The global results let us state that our method is very efficient, nearly always
better than the concurrent.

We have seen how much the settings can drive the performances of our algo-
rithm. An interesting future development could be try to find out a method of
auto-tuning for at least the main important ones. Other ways of controlling the
algorithm from “inside”, such as the variation of the basic method provided, can
be developed as well. The application of the method to other classes of problems
could lead to emphasize the generality of this procedure.

71



72 CHAPTER 6. CONCLUSIONS



Appendix A

Test models

This section describe the models of the tests used in this work. They are all
related to telecommunication networks design since this problem is actually very
hot and many research efforts have been done to solve in an heuristic manner
problems that usually are very difficult, mainly for their very big size. The first
model we will study is a very classical one and it is at the base of all network
models: the uncapacitated facility location problem. Then we will face two kinds
of problems encountered in planning an UMTS network, the new mobile commu-
nication standard.

A.1 UFLP

The NP-hard problem UFLP (uncapacitated facility location problem) is a core
problem for the design of telecommunication networks so it will be discussed as
introduction to the topic. Given a set N of terminals and a set M of possible
locations for the service providers (also called concentrators), we have to determi-
nate the number and the location of these providers and the way to assign them
to the terminals. The goal is to minimize the cost for installing the concentrators
and for the terminals requests satisfaction. The model is:

minimize
∑
i∈N

∑
j∈M

cijxij +
∑
j∈M

Fjyj

subject to ∑
j∈M

xij = 1 ∀i ∈ N (A.1)

xij ≤ yj ∀i ∈ N, j ∈ M (A.2)

xij ∈ {0, 1} ∀i ∈ N, j ∈ M (A.3)

73



74 APPENDIX A. TEST MODELS

yj ∈ {0, 1} ∀j ∈ M (A.4)

yj =
{

1 if a concentrator is installed at location j
0 otherwise

for all j ∈ M

xij =
{

1 if terminal i is assigned to a concentrator installed at location j
0 otherwise

for all i ∈ N , j ∈ M . cij is the cost to connect terminal i to provider j, Fj is the
fixed cost to install a provider at the j-th site. Constraints ?? and ?? state that
each terminal can be assigned to exactly one concentrator and constraints ??
state that terminals can be assigned only to locations where a concentrator have
been installed. We could say that the y’s control the x’s. This is a very relevant
observation which will be exploited by the DRT method. Variations of this model
are the capacitated one (CFLP), the p-median problem where we fix the number
of y’s, and so on. Beasley provides an extensive collection of instances of these
problems in his OR library [?].

A.2 QCL-C

The QCL-C (Quadratic Capacity Concentrator Location Problem with Complete
Routing) is a problem very close to the CFLP and so it’s easy to show that
this is a NP-hard problem too. The goal is to build in an optimal way the
interconnection network between concentrators called backbone network and the
one between terminals and concentrators (the access network).

For our model we refer to the one suggested by Ernst and Krishnamoorthy
called QCL-C3 (see [?]), with O(n3) variables and O(n2) constraints (n is the
number of terminals). Let I denote the set of terminals, with |I| = n and K the
set of sites where concentrators can be installed |K| = m. Figure ?? illustrates a
possible configuration.

We define
A := {(j, l) : j, l ∈ I, j 6= l}

xij =
{

1 if terminal i is assigned to a concentrator installed at location j
0 otherwise

for all i, j ∈ I. xii stands for concentrators, that is xii = 1 if a concentrator is
installed at location i. zjl is the total amount of traffic on the arc (j, l) for all
(j, l) ∈ A. Bjl is the cost of routing a unit of traffic on the arc (j, l) if it belongs
to the backbone network, that is if both j and l are concentrators. cij are the



A.2. QCL-C 75

~
1

~
2

~
n

~y1 ~y2 r r r ~ym

� �CONCENTRATORS

r r r r

x1,1 xm,2 xm,n


 	
TERMINALS

Figure A.1: connections between concentrators and n terminals

cost to connect node i to node j. M is the capacity for each concentrator and
represents the upper bound for the total amount of traffic passing through the
concentrator. f i

jl is the flow of commodities originating at node i and travelling
along the arc (j, l), for all i ∈ I and (j, l) ∈ A. tij is the amount of traffic between
node i and node j and define

ni =
∑
m∈I

(tmi + tim)

So the model is:

minimize
∑
i∈I

∑
j∈I

cijxij +
∑

(j,l)∈A

Bjlzjl

subject to ∑
j∈I

xij = 1 ∀i ∈ I (A.5)

∑
l∈I

f i
jl −

∑
l∈I

f i
lj =

∑
m∈I

tim (xij − xmj) ∀i, j ∈ I (A.6)



76 APPENDIX A. TEST MODELS

zjl ≥
∑
i∈I

f i
jl ∀(j, l) ∈ A (A.7)

∑
i∈I

nixij +
∑

l∈I\{j}
(zlj + zjl) ≤ Mxjj ∀j ∈ I (A.8)

xij ∈ {0, 1} ∀i, j ∈ I (A.9)

zij ≥ 0 ∀(j, l) ∈ A (A.10)

f i
jl ≥ 0 ∀(j, l) ∈ A, i ∈ I (A.11)

A.3 UMTS network planning

The UMTS (standing for Universal Mobile Telecommunication System ) planning
is a very hot argument at this time. UMTS is the third generation European
standard for mobile telecommunications systems. Since the scope of this standard
is to provide to users an advanced service letting them to exchange large amount
of data in an efficient way, there are several technical constraints to be fulfilled.
There are several aspects we can face in a network planning: we are going to
consider its construction with respect to the nodes activation looking at the
capacities, the traffic amount and the type of each one. A model based on the
signal power control is discussed deeply in [?].

A mobile radio telephone system aims at ensuring secure communications
between mobile terminals and any other type of user device, either mobile or
fixed. A mobile customer should be reachable at any time and in any location
where the radio coverage is granted.

The connection among mobile terminals (i.e., the user’s handheld terminals)
and fixed radio base stations is obtained by means of radio waves. However, a
single antenna system cannot cover the whole service area. In fact, that choice
would require high irradiation power both from the fixed and the mobile stations,
with consequent possible damage due to the generated electromagnetic field.

The above limitations lead to the implementation of “cellular systems”, con-
stituted by several fixed radio base stations and related antennas systems. Each
single radio base station coverage area is called “cell” and it serves a small region
of variable size ranging from 10-100 meters (high user density inside business
buildings) to 1-20 kilometers (low user density areas in the country).

Every fixed radio base station, usually called Base Transceiver Station (BTS ),
is both transmitting and receiving signals on a variable number of frequencies.
Depending upon the type of system considered and the radio access scheme, each



A.3. UMTS NETWORK PLANNING 77

frequency (or carrier) permits the allocation of a variable number of channels; in
the GSM case, each frequency carries 8 channels.

Whenever a user moves from a cell to an adjacent one during a communi-
cation, a new channel is assigned inside the cell just entered. This feature is
commonly called handover. Covering the served region with several cells allows
for “frequency reuse”, i.e., for the use of the same frequency inside two or more
non- interfering cells.

The users’ mobility causes issues related to the user location detection and to
cell change, which are managed by equipment implementing the interface between
the BTS and the fixed network.

Third generation mobile telecommunication systems are currently in course
of standardization in Europe under the name of Universal Mobile Telecommuni-
cation System (UMTS ). The basic architecture of a UMTS network include the
following devices:

• Mobile Terminal (MT ) of different types (e.g., phone, fax, video, computer).

• Base Transceiver Station (BTS ) interfacing mobile users to the fixed net-
work; a BTS handles users’ access and channel assignment. Due to the
inherent flexibility featured by next generation BTS’s, different network
topologies can be undertaken: the BTS can be either directly connected to
the switching equipment (smart BTS) or linked to a BTS controller (CSS).

• Cell Site Switch (CSS ), which is a switch connected to several BTS’s on
one side and to a single Local Exchange (see below) on the other side; each
CSS is devoted to the management of local traffic inside its controlled area,
as well as to the connection of the controlled BTS’s to the Local Exchange.

• Local Exchange (LE ), which is a switch connecting the BTS’s to the net-
work, either directly or through CSS’s.

• Mobility and Service Data Point (MSDP), which is a data base where in-
formation about users is registered; it may be located either together with
an LE or with a CSS, according to a centralized or distributed connection
management.

• Mobility and Service Control Point (MSCP), which is a controller to manage
mobility; it can access the data base to read, write or erase information
about users, and is generally associated with LE’s and MSDP’s.

BTS’s are also called terminals while CSS’s and LE’s are called concentrators.
The network with BTS-CSS or BTS-LE links is known as access network and the
one with CSS-LE arcs is the backbone network. They both can be star or complete
network leading to different configurations with different associated problems.
The design of a UMTS network can be divide into three phases:



78 APPENDIX A. TEST MODELS

1. decide about number and locations of concentrators and the assignment of
terminals to these concentrators

2. design access network (terminals-concentrators)

3. design backbone network (concentrators-concentrators)

We now want to apply the DRT method to the project of a UMTS inter-
connection network having a multilevel star-type architecture (both access and
backbone network are star type). This is a difficult-to-solve (NP-hard) opti-
mization problem of crucial importance in the design of effective and low-cost
networks.

In the problem we consider, a certain number of potential CSS and LE sites
is given, among which the planner has to choose those to be actually activated.
We consider a three level star-type UMTS architecture, defined by an upper layer
made up of active LE’s (chosen in the given set of potential LE’s), a middle layer
made up of active CSS’s (also chosen in the given set of potential CSS’s), and
a lower layer made up of the given BTS’s (each of which is required to play the
role of a leaf in the star-type structure). The problem then consists of choosing
the CSS and LE to be activated, and the way to connect them to the BTS’s and
between each other, so as to produce a feasible three-level network of minimum
cost. Figure ?? depicts an example of star/star UMTS network with six LE’s, six
CSS’s and seventeen BTS’s. We have to choose what devices have to be activated
(gray ones) and the way they are interconnected.

Figure A.2: the star/star structure of UMTS network with a possible configura-
tion for the given devices

The variables we will use are the following:

yCSS−h
j =


1 if a CSS of h type is installed in location j assigned to

a concentrator installed at location j
0 otherwise

yLE
k =

{
1 if a LE is installed in location k
0 otherwise

xBTS−CSS
ij =


1 if a BTS in location i isassigned to

a CSS installed at location j
0 otherwise

xBTS−LE
ik =


1 if a BTS in location i isassigned to

a LE installed at location k
0 otherwise



A.3. UMTS NETWORK PLANNING 79

xCSS−LE
jk =


1 if a CSS in location j isassigned to

a LE installed at location k
0 otherwise

Additional integer non negative variables are:
zCSS−LE

jk which is the number of modules from a CSS in location j to a LE in
location k

wCSS−LE
jk which is the traffic flow between CSS in location j and a LE in

location k
The mathematical model is:

min
m∑

j=1

∑
h=1,2

fCSS−h
j yCSS−h

j +
p∑

k=1

fLE
k yLE

k +

+
n∑

i=1

m∑
j=1

(
cBTS−CSS
ij eBTS

i + fBTS−CSS
i

)
xBTS−CSS

ij +

+
n∑

i=1

p∑
k=1

(
cBTS−LE
ik eBTS

i + fBTS−LE
i

)
xBTS−LE

ik +
m∑

j=1

p∑
k=1

cCSS−LE
jk zCSS−LE

jk

subject to:

m∑
j=1

xBTS−CSS
ij +

p∑
k=1

xBTS−LE
ik = 1 ∀i = 1, . . . , n (A.12)

n∑
i=1

TBTS
i xBTS−CSS

ij ≤
∑

h=1,2

TCSS−h
j yCSS−h

j ∀j = 1, . . . ,m (A.13)

m∑
j=1

xBTS−CSS
ij ≤

∑
h=1,2

NCSS−h
j yCSS−h

j ∀j = 1, . . . ,m (A.14)

m∑
j=1

eBTS
i xBTS−CSS

ij ≤
∑

h=1,2

ECSS−h
j yCSS−h

j ∀j = 1, . . . ,m (A.15)

n∑
i=1

eBTS
i xBTS−CSS

ij ≤ Q
p∑

k=1

zCSS−LE
jk ∀j = 1, . . . ,m (A.16)

zCSS−LE
jk ≤ Mjkx

CSS−LE
jk ∀j = 1, ..,m ; k = 1, .., p(A.17)

m∑
j=1

wCSS−LE
jk +

n∑
i=1

TBTS
i xBTS−LE

ik ≤ TLE
k yLE

k ∀j = 1, . . . ,m (A.18)

n∑
i=1

TBTS
i xBTS−CSS

ij =
p∑

k=1

wCSS−LE
jk ∀j = 1, . . . ,m (A.19)

wCSS−LE
jk ≤ Fjkx

CSS−LE
jk ∀j = 1, ..,m ; k = 1, .., p(A.20)

m∑
j=1

zCSS−LE
jk +

n∑
i=1

eBTS
i xBTS−LE

ik ≤ ELE
k yLE

k ∀k = 1, . . . , p (A.21)



80 APPENDIX A. TEST MODELS

∑
h=1,2

yCSS−h
j ≤ 1 ∀j = 1, . . . ,m (A.22)

p∑
k=1

xCSS−LE
jk =

∑
h=1,2

yCSS−h
j ∀j = 1, . . . ,m (A.23)

xBTS−CSS
ij ≤

∑
h=1,2

yCSS−h
j ∀i = 1, .., n; j = 1, ..,m (A.24)

xBTS−LE
ik ≤ yLE

k ∀i = 1, .., n; k = 1, .., p (A.25)

xCSS−LE
jk ≤ yLE

k ∀j = 1, ..,m; k = 1, .., p (A.26)∑
h=1,2

yCSS−h
j ≤

p∑
k=1

zCSS−LE
jk ∀j = 1, . . . ,m (A.27)

p∑
k=1

yLE
k ≥ 1 (A.28)

Variables as follows:

yCSS−h
j ∈ {0, 1} ∀j = 1, ..,m; h = 1, 2

yLE
k ∈ {0, 1} ∀k = 1, . . . , p

xBTS−CSS
ij ∈ {0, 1} ∀i = 1, .., n; j = 1, ..,m

xBTS−LE
ik ∈ {0, 1} ∀i = 1, .., n; k = 1, .., p

xCSS−LE
ik ∈ {0, 1} ∀i = 1, .., n; k = 1, .., p

zCSS−LE
ik ∈ N ∀i = 1, .., n; k = 1, .., p

wCSS−LE
jk ≥ 0 ∀j = 1, ..,m; k = 1, .., p

Looking at the formulation it is quite clear that the most suitable variables for
the first level are the ones regarding concentrators. In fact they are binary and
in a very smaller number with respect to the BTS’s. Also while the terminals are
all activated, we can choose a subset of CSS’s and LE’s to be used and so we can
build different access networks for each fixed backbone one.

The central expression for the DRT method is the distance definition between
two solutions to build the neighborhoods.

4′(y, y∗) :=
∑

j∈Y ∗
CSS

1−
∑

h=1,2

(
yCSS−h∗

j yCSS−h
j

) + (A.29)

+
∑

k∈Y ∗
LE

(
1− yLE

k

)
+

∑
j /∈Y ∗

CSS

∑
h=1,2

yCSS−h
j +

∑
k/∈Y ∗

LE

yLE
k

where the * denotes the current configuration for a certain set of devices.



Appendix B

Algorithms settings

Now, we report the settings for all heuristic algorithms. DRT and DRT2 take
these parameters from a plain text file on the same format shown below. All
settings for Local Branching are given as arguments of the command line.

DRT settings

/*******************************************************************

cplexpar DRT.dat - general information on Cplex parameters for

DRT method. Setting of Cplex parameters in relation to the four

phases of DRT research (general, diversification, refining, tight ref)

******************************************************************/

Total time limit (hours) : 3

Maximum number of diversifications : 1000

# Global algorithm Cplex parameters

Tree memory limit : 128

Node storage file indicator : 1

# Parameters for initial general research

Time limit (minutes) : 60

Maximum number of nodes : 5000000

Precedence to optimality (0) or to feasibility (1) : 1

Which number of admissible solutions before stopping : 4

# Parameters for diversification

Time limit (minutes) : 30

Maximum number of nodes : 5000000

Minimum number of level 1 variables’ changes of status : 1

81



82 APPENDIX B. ALGORITHMS SETTINGS

Step increment : 2

# Parameters for refining

Time limit (minutes) : 5

Maximum number of nodes : 5000000

# Parameters for tight refining

Time limit (minutes) : 3

Maximum number of nodes : 5000000

Abs tolerance on gap between best solution and lower bound : 1e-009

Rel tolerance on gap between best solution and lower bound : 1e-009

Minimum number of level 2 variables’ changes of status : 1

Maximum number of level 2 variables’ changes of status : 4

Step increment : 2

DRT2 settings

/**********************************************************************

cplexpar DRT.dat - general information on Cplex parameters for DRT2

method. Setting of Cplex parameters in relation to the five phases

of DRT2 research (general, big-diversification, diversification,

refining, tight ref)

*********************************************************************

Total time limit (hours) : 3

Maximum number of diversifications : 10000

Maximum number of big diversifications : 4

# Parameters for big diversification

Maximum number of diversifications without improvement : 5

Minimum Gap of improvement (percentage 0-100) : 5

Minimum number of level 1 variables’ changes of status : 5

Step increment : 2

# Global algorithm Cplex parameters

Tree memory limit : 128

Node storage file indicator : 1

# Parameters for initial general research

Time limit (minutes) : 60

Maximum number of nodes : 5000000

Precedence to optimality (0) or to feasibility (1) : 1



83

Which number of admissible solutions before stopping : 4

# Parameters for big and small diversification

Time limit (minutes) : 10

Maximum number of nodes : 5000000

Minimum number of level 1 variables’ changes of status : 1

Step increment : 2

# Parameters for refining

Time limit (minutes) : 5

Maximum number of nodes : 5000000

# Parameters for tight refining

Time limit (minutes) : 3

Maximum number of nodes : 5000000

Abs tolerance on gap between best solution and lower bound : 1e-009

Rel tolerance on gap between best solution and lower bound : 1e-009

Minimum number of level 2 variables’ changes of status : 1

Maximum number of level 2 variables’ changes of status : 4

Step increment : 2

Local Branching settings

TimeLimit : 10800

time for Neighborhood : 600

emphasis: 0 (OPT)

presolve: 1 (yes)

heuristic frequency : 10

precision: 0

print MIP interval : 10

number of time intervals : 100

k size : 20

original: 0 (new version: new corresponds to the symmetric version

of the locbra cons.)

exact: 0/1 (1 exact, 0 heuristic in exact version, the code does not

perform diversifications i.e., dmax = 0)

video: 1 (YES)



84 APPENDIX B. ALGORITHMS SETTINGS

ILOG-Cplex 7.0 settings

TimeLimit : 10800

MipEmphasis : 1 (emphasis on feasibility)



Bibliography

[1] E. Amaldi, A. Capone, F. Malucelli. Planning UMTS Base Station Location:
Optimization Models with Power Control and Algorithms. Technical report,
University of Milano, 2002

[2] E. Balas Some thoughts on the developement of integer programming during
my research career. European Journal of Operational Research 141 pp. 1-7,
Rotterdam, 2001

[3] Beasley. OR-library. internet site: http://mscmga.ms.ic.ac.uk/info.html
2002

[4] C. Beccari. LATEXGuida a un sistema per l’editoria elettronica. Hoepli,
Milano, 1991

[5] R. E. Bixby et al. MIP: Theory and practice - Closing the gap. Technical
report, 2002.

[6] M. Dell’Amico, F. Maffioli, S. Martello. Annotated bibliographies in combi-
natorial optimization. Wiley Interscience, New York, 1997

[7] M. Fischetti, A. Lodi. Local branching. Technical report, University of
Padova, 2002

[8] M. Fischetti, G. Romanin Jacur, J. J. Salazar Gonzáles,. Optimization of
the interconnecting network of a UMTS radio mobile telephone system. ,
Technical report, University of Padova and Tenerife, 2001

[9] F. Glover, M. Laguna Tabu Search. Kluwer Academic Publisher, Boston,
Dordrecht, London, 1997

[10] GLPK internet site:http://www.gnu.org/directory/libs/glpk.html 2002

[11] GNU project GNU linear programming kit version 3.2.2. Reference manual.
Draft version october, 2002

[12] GNU project GNU linear programming kit version 3.2.2. Modeling language
GLPK/L version 3.2. Draft version june, 2002

85



86 BIBLIOGRAPHY

[13] ILOG S.A. ILOG Concert Technology 1.0 User’s Manual and Reference
Manual. ILOG, S.A., 2001 (http://www.ilog.com)

[14] ILOG S.A. ILOG Cplex 7.0 User’s Manual and Reference Manual. ILOG,
S.A., 2001 (http://www.ilog.com)

[15] A. Laspertini. Third-generation mobile telephone systems: Optimal design
of the interconnecting network. Master Dissertation, University of Padova,
Italy, 1997 (in Italian).

[16] S. B. Lippman. C++. Corso di programmazione. Addison-Wesley, Milano,
1996

[17] N. Mladenov́ıc, P. Hansen Variable Neighborhood Search. Computers and
Operations Research 24, pp. 1097-1100, 1997

[18] T. Oetiker, H. Partl, I. Hyna, E. Schlegl. The not so short introduction to
LATEX2ε version 3.7. 1999

[19] C. Polo. Algoritmi Euristici per il Progetto Ottimo di una Rete di Intercon-
nessione. Master Dissertation, University of Padova, Italy, 2002 (in Italian).

[20] H. Yaman Concentrator location in telecommunication network. Master
Dissertation, University of Bruxelles, 2002


