
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Dottorato di Ricerca in
Ingegneria dei Sistemi

XII Ciclo

Sede Amministrativa: Università di Bologna
Sedi Consorziate: Università di Firenze, Padova e Siena

Algorithms for

Two-Dimensional Bin Packing

and Assignment Problems

Andrea Lodi

Il Coordinatore I Tutori
Prof. Giovanni Marro Prof. Silvano Martello

Prof. Paolo Toth

AA. AA. 1996–1999

Contents

Acknowledgments v

List of figures viii

List of tables xi

I Algorithms for Two-Dimensional Bin Packing Problems 1

1 Outline of Part I 3

2 The Two-Dimensional Bin Packing Problem 5
2.1 Introduction . 5
2.2 Upper Bounds . 6

2.2.1 Strip packing . 6
2.2.2 Bin packing: two-phase algorithms . 7
2.2.3 Bin packing: one-phase algorithms . 9
2.2.4 Bin packing: non-shelf algorithms . 10
2.2.5 Computational experiments . 10

2.3 Lower Bounds . 12
2.4 Exact Algorithms . 14
2.5 Metaheuristics . 14
2.6 Variants and Extensions . 16

2.6.1 The Three-Dimensional Bin Packing Problem 17

3 Two-Dimensional Bin Packing: the 2BP|O|G case 19
3.1 Introduction . 19
3.2 Initial feasible solution . 20
3.3 Tabu search . 22
3.4 Computational results . 25

4 Two-Dimensional Bin Packing: the 2BP|R|G case 29
4.1 Introduction . 29
4.2 Greedy heuristics . 30
4.3 Tabu-Search . 33

4.3.1 Initialization and basic definitions . 34
4.3.2 First neighborhood . 34

i

ii CONTENTS

4.3.3 Second neighborhood . 35
4.3.4 Restart (third neighborhood) . 35

4.4 Computational experiments . 37

5 A Unified Tabu Search for 2BP|*|* 41
5.1 Introduction . 41
5.2 Basic definitions and algorithms . 43
5.3 New Heuristic Algorithms . 46

5.3.1 Oriented items, guillotine cutting (2BP|O|G) 46
5.3.2 Non-oriented items, guillotine cutting (2BP|R|G) 46
5.3.3 Oriented items, free cutting (2BP|O|F) 48
5.3.4 Non-oriented items, free cutting (2BP|R|F) 49

5.4 A Unified Tabu Search Framework . 51
5.5 Computational Experiments . 54

5.5.1 Results for deterministic algorithms 55
5.5.2 Results for tabu search . 58

6 Other Packing Problems 61
6.1 Tabu Search: the Three-Dimensional Case . 61

6.1.1 A New Heuristic Algorithm for 3BP 61
6.1.2 The Tabu Search in the 3D Case . 65
6.1.3 Computational Experiments . 65

6.2 2BP, Compatibility Graphs and Stable Sets 69
6.2.1 An O(n log n) Algorithm . 69
6.2.2 The 3BP Case . 73

6.3 Two-Dimensional Shelf Packing Problems . 77
6.3.1 Mathematical Models . 78
6.3.2 Computational Experiments . 80

II Algorithms for Assignment Problems 83

7 Preliminaries and Outline of Part II 85

8 The k-Cardinality Assignment Problem 87
8.1 Introduction . 87
8.2 Complete Matrices . 89
8.3 Sparse matrices . 89

8.3.1 Data structures . 90
8.3.2 Approximate solution . 91
8.3.3 Greedy approximate solutions . 91

8.4 Implementation . 92
8.4.1 Running the code . 93

8.5 Computational Experiments . 94

CONTENTS iii

9 EXploring Tabu Search: the CAP case 101
9.1 Introduction . 101
9.2 Mathematical model and complexity . 102
9.3 Lower bounds . 103
9.4 A Neighborhood . 105
9.5 Metaheuristic algorithms . 108
9.6 Computational experiments . 115
9.7 Conclusions and Future Research . 117

10 AP as Optimization Component for CP Constraints 121
10.1 Introduction . 121
10.2 Motivations and Background . 122
10.3 Global optimization constraints . 124

10.3.1 The Assignment Problem as optimization component 124
10.3.2 Mapping . 125
10.3.3 The Cost-Based Propagation . 126
10.3.4 Propagation Events . 127

10.4 Heuristics . 127
10.5 Computational Results on Different Problems 127

10.5.1 TSPs . 128
10.5.2 Timetabling Problems . 129
10.5.3 Scheduling with Set up times . 130
10.5.4 TSPTW . 131

10.6 Conclusions . 132

11 The Multiple Depot Vehicle Scheduling Problem 135
11.1 Introduction . 135
11.2 Models . 136
11.3 Path Elimination Constraints (PECs) . 138

11.3.1 PEC Separation Algorithms . 139
11.4 Lifted Path Inequalities (LPIs) . 141
11.5 A Branch-and-Cut Algorithm . 143

11.5.1 Lower Bound Computation . 143
11.5.2 Pricing . 145
11.5.3 Branching . 145
11.5.4 Upper Bound Computation . 146

11.6 Computational Experiments . 146
11.7 Conclusions . 153

12 Other Combinatorial Optimization Problems 155
12.1 Introduction . 155
12.2 The unconstrained Quadratic 0–1 Programming 155

12.2.1 Combining solutions methods . 156
12.2.2 Intensification algorithms . 157
12.2.3 An Evolutionary Heuristic (EH) . 159
12.2.4 Computational experiments . 161

12.3 The Data sets Reconstruction Problem . 165

iv CONTENTS

12.3.1 The biomedical applications . 167
12.3.2 Problem definition and modeling . 168
12.3.3 An exact algorithm for DRP . 170
12.3.4 A DP-based heuristic algorithm . 173
12.3.5 Computational results . 173
12.3.6 Conclusions . 175

Bibliography 178

Acknowledgments

There are many people to acknowledge and I decided to do that in a reasonable amount of
space.

First of all, my thanks go to my advisers, Silvano Martello and Paolo Toth, without whom
this work would not have been possible. They have been able to set up, during the years,
a research group in which an exciting scientific activity is performed in a really special and
friendly surrounding. I am indebted to all the members of this enlarged group. To Daniele
Vigo for his suggestions and his friendship, to Matteo Fischetti and Mauro Dell’Amico who
spent so much time with me, and to Alberto Caprara, who not only offered me hospitality
in his “office”, but patiently answered all my questions and doubts. Michele Monaci asks me
similar questions in these days. I thank him to force me to clarify my ideas.

I want to thank all the people who visited Bologna in these years, and in particular Juan
José Salazar and David Pisinger, for the interesting scientific discussions, and a few very nice
evenings.

Thanks to Professor Thomas M. Liebling for having invited me to Lausanne at the begin-
ning of the PhD, and for having always encouraged and followed my research activity.

Many thanks to all the co-authors of the work presented in this thesis, and to all the
undergraduate students I collaborated with, in particular to Matteo Porcù.

I don’t want to forget the people at DEIS and their work supporting the research activity.
Thanks for doing this so kindly.

Finally, I warmly want to thank my families.

Bologna, January 15, 2000
Andrea Lodi

v

vi ACKNOWLEDGMENTS

List of Figures

2.1 Shelf packing strategies. 7
2.2 First and second phase of algorithm HFF. 8
2.3 Algorithm FC. 9
2.4 Algorithm FFF. 10
2.5 Algorithm AD. 11
2.6 Average percentage deviations from lower bound: (a) Martello and Vigo in-

stances, Classes 1–4; (b) Berkey and Wang instances, Classes 5–10. 11
2.7 Worst-case of the continuous lower bound. 12
2.8 Lower bound L3: (a) items in I1, I2 and I3; (b) relaxed instance with reduced

items. 13
2.9 Average percentage deviations from lower bound: (a) Martello and Vigo in-

stances, Classes 1–4; (b) Berkey and Wang instances, Classes 5–10. 16
2.10 Compatibilities between algorithms and problems. 17

3.1 Example of the strip packing solution determined by algorithm IH. 21
3.2 Worst-case example for algorithm IH. 22

4.1 A shelf pattern produced by algorithm FCRG. 32
4.2 Guillotine-feasible cutting pattern for the solution of Figure ??. 32

5.1 Compatibilities between solutions and problems. 43
5.2 A two-dimensional bin packing instance with n = 7, and (i) strip packing

produced by FBSOG; (ii) finite bin solution found by FBSOG and FFFOG; (iii)
strip packing produced by KPOG (Section ??). 45

5.3 Solutions produced by Algorithm KPRG. 48
5.4 (i) two-dimensional bin packing instance with n = 12; (ii) solution found by

Algorithm ADOF. 50
5.5 Solution found by Algorithm TPRF. 51
5.6 Results of the tabu search for different values of kmax and Tlim on the instances

of Class 1 for 2BP|R|F (heuristic TPRF). 58

6.1 Algorithm HA: (a) layers obtained in Step 1.; (b) layers obtained in Step 2. 64

8.1 Data structures. 90
8.2 Density 5%, range [0, 105], rectangular instances. Average CPU time (in sec-

onds) as a function of the instance size. 95

vii

viii LIST OF FIGURES

8.3 Density 5%, range [0, 105], square instances. Average CPU time (in seconds)
as a function of the instance size. 95

9.1 Average value of the solutions obtained with algorithm GR (w.r.t. parameter
K). 109

9.2 The X -TS method. 114
9.3 Grand total of the best solution found. 116
9.4 Average errors (grand total). 117

11.1 A possible fractional point x∗ with x∗ij = 1/2 for each drawn arc. 142
11.2 Moving the fractional point x∗ towards the integer hull conv(MD − V SP). . 144
11.3 Instance 2-500-01: lower bound convergence at the root node for different

versions of the cutting plane generation. 153
11.4 Real-world instances: computing times in Digital Alpha 533 MHz seconds. . 153

12.1 Example of crossing-over phase, n = 12. 160
12.2 Example of reconstruction by linear interpolation of a 1D data set with n = 11

and k = 5. 167
12.3 Different scanning plans computed for scout image of femur F4: (a) radiological

(uniform) plan, (b) plan determined by heuristic H-DP, (c) optimal plan. . . 174

List of Tables

2.1 Number of instances, out of ten, solved to proved optimality. 15
2.2 3BP: number of instances, out of ten, solved to proved optimality. 18

3.1 Results on problem instances from the literature. Time limit of 100 CPU
seconds on a Silicon Graphics INDY R4000sc. 26

3.2 Results on the random problem instances proposed by Berkey and Wang. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R4000sc. 27

3.3 Results on the random problem instances proposed by Martello and Vigo. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R4000sc. 28

4.1 Results on problem instances from the literature and on four new real-world
instances arising in glass industry. Time limit of 100 CPU seconds on a Silicon
Graphics INDY R10000sc. 38

4.2 Results on the random problem instances proposed by Berkey and Wang. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R10000sc. 39

4.3 Results on the random problem instances proposed by Martello and Vigo. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R10000sc. 40

5.1 Deterministic algorithms: (heuristic solution value)/(lower bound). Random
problem instances proposed by Berkey and Wang. 56

5.2 Deterministic algorithms: (heuristic solution value)/(lower bound). Random
problem instances proposed by Martello and Vigo. 57

5.3 Tabu search with different inner heuristics: (tabu search solution value)/(lower
bound), CPU time in Silicon Graphics INDY R10000sc seconds. Random prob-
lem instances proposed by Berkey and Wang. 59

5.4 Tabu search with different inner heuristics: (tabu search solution value)/(lower
bound), CPU time in Silicon Graphics INDY R10000sc seconds. Random prob-
lem instances proposed by Martello and Vigo. 60

6.1 Random problem instances proposed by Martello, Pisinger and Vigo. n < 50,
time limit for Tabu Search of 30 CPU seconds on Digital Alpha 533 MHz,
average values over ten instances. 66

6.2 Random problem instances proposed by Martello, Pisinger and Vigo. n > 50,
time limit for Tabu Search of 180 CPU seconds on Digital Alpha 533 MHz,
average values over ten instances. 67

6.3 Random problem instances proposed by Martello, Pisinger and Vigo. Tabu
Search vs. Branch-and-Bound over the 1120 considered instances. 68

ix

x LIST OF TABLES

6.4 Random problem instances proposed by Martello, Pisinger and Vigo. Tabu
Search vs. Guided Local Search. 68

6.5 2BP random instances by Martello and Vigo (Classes 1-4), and by Berkey and
Wang (Classes 5-10). Comparison of lower bounds. 73

6.6 2SBP, random problem instances proposed by Martello and Vigo (Classes 1-4),
and by Berkey and Wang (Classes 5-10). 81

6.7 2SSP, strip packing adaptation of the random problem instances proposed by
Martello and Vigo (Classes 1-4), and by Berkey and Wang (Classes 5-10). . 82

8.1 Density 1%. Average computing times over 10 problems, Silicon Graphics
INDY R10000sc seconds. 96

8.2 Density 5%. Average computing times over 10 problems, Silicon Graphics
INDY R10000sc. 97

8.3 Density 10%. Average computing times over 10 problems, Silicon Graphics
INDY R10000sc. 98

8.4 Complete matrices. Average computing times over 10 problems, Silicon Graph-
ics INDY R10000sc. 99

9.1 Grand total for the four classes. 116
9.2 Sun Sparc Ultra 2 seconds, averages over 20 instances. 119

10.1 Results on small symmetric TSP instances. 128
10.2 Results on timetabling instances. 130
10.3 Results on a Scheduling Problem with setup times. 131
10.4 Results on rbg instances from Ascheuer, Fischetti and Grötschel [5]. 132

11.1 Randomly generated instances with m = 2; computing times are in Digital
Alpha 533 MHz seconds. 149

11.2 Randomly generated instances with m = 3; computing times are in Digital
Alpha 533 MHz seconds. 150

11.3 Randomly generated instances with m = 5; computing times are in Digital
Alpha 533 MHz seconds. 151

11.4 Randomly generated instances: average computing times over 10 instances;
CPU seconds on a Digital Alpha 533 MHz. 152

11.5 Randomly generated instances: different versions of the branch-and-cut algo-
rithm. Average computing times over 10 instances; CPU seconds on a Digital
Alpha 533 MHz. 152

12.1 Classes of QP problems. 161
12.2 Computational results on problems of classes a, b and c. Time limit of 1 CPU

second on a Silicon Graphics INDY R10000sc. 163
12.3 Computational results on problems of classes d, e and f, time limit of 1, 5 and

60 CPU seconds respectively on a Silicon Graphics INDY R10000sc. 164
12.4 Average time limits of the Tabu Search algorithms (Pentium 200 PC seconds)

and time limit of EH (Silicon Graphics INDY R10000sc seconds). 165
12.5 Test problems from 2D real-world scanning plan optimization instances. Com-

puting times in Silicon Graphics INDY R10000sc CPU seconds. 174

LIST OF TABLES xi

12.6 Randomly generated 2D-DRP test problems. Computing times in Silicon
Graphics INDY R10000sc CPU seconds. 176

12.7 Test problems from 1D-DRP real-world ECG signal compression instances.
Computing times in Silicon Graphics INDY R10000sc CPU seconds. 177

xii LIST OF TABLES

Part I

Algorithms for Two-Dimensional
Bin Packing Problems

1

Chapter 1

Outline of Part I

Informally speaking, the Two-Dimensional Bin Packing Problem, 2BP for short, is the prob-
lem of packing a finite set of “small” rectangles, called items, into the minimum number of
identical “large” rectangles, called bins, with the only (obvious) requirement that the items
are packed without overlapping.

The problem is the two-dimensional extension of the classic (One-Dimensional) Bin Pack-
ing Problem and is one of the most studied problem in the so called Cutting & Packing
category (see Dyckhoff, Scheithauer, and Terno [64] for an annotated bibliography on the
subject).

The great interest of 2BP is mainly due to the number of real-world applications in which
it arises, and depending on these applications, 2BP can be found in the literature with the
addition of different practical requirements which originate many interesting variants.

In Chapter 2 the state of the art on 2BP is presented, together with a discussion on its
main variants and extensions. The problem has been classically addressed through heuristic
techniques, whereas in the last five years both exact and metaheuristic (more precisely Tabu
Search) approaches have been proposed. In Chapter 2 the classical results and the recent
approaches are reviewed, whereas in Chapters 3, 4 and 5 the Tabu Search scheme is pre-
sented in detail. In particular, Chapter 3 contains the original Tabu Search algorithm whose
effectiveness is proved with computational experiments over the benchmark instances in the
literature. In Chapter 4 a slight extension of the original approach is proved to be effective
for the 2BP variant in which the items are allowed to rotate by 90◦. Finally in Chapter 5 the
evolution of the original Tabu Search is presented as a unified framework. This framework
can be applied without modifications to all variants of two-dimensional bin packing, and its
effectiveness is tested on the class of problems originated by two of the most common require-
ments: (i) the (already mentioned) orientation of the items and (ii) the guillotine cutting
(items must be obtained through a sequence of edge-to-edge cuts parallel to the edges of the
bin). These requirements generate the following class of 2BP problems:

2BP|O|G: the items are oriented (O), and guillotine cutting (G) is required;

2BP|R|G: the items may be rotated by 90◦ (R) and guillotine cutting is required;

2BP|O|F: the items are oriented and cutting is free (F);

2BP|R|F: the items may be rotated by 90◦ and cutting is free.

3

4 CHAPTER 1. OUTLINE OF PART I

The above chapters are presented in this thesis as self-contained entities because, during
the PhD years, some steps have been “fixed” into almost separate papers. The advantage
here is to find the overall research unified, with a logical view of the complete project and of
its evolution.

The last chapter of Part I is devoted to recent advances and future research in the Cutting
& Packing area. In particular, Chapter 6 addresses three different topics: in Section 6.1 the
Tabu Search method discussed in Chapters 3, 4 and 5 is applied to the Three-Dimensional
Bin Packing Problem, 3BP for short, showing once more its generality and effectiveness. In
Section 6.2 a new lower bound for 2BP (and its extension to 3BP) is presented, whereas in
Section 6.3 we consider some Cutting & Packing problems with the additional constraint that
the items must be packed into shelves, i.e., rows forming levels. Mathematical models for
these Shelf Packing problems are presented, and computationally tested.

Chapter 2

The Two-Dimensional Bin Packing
Problem

2.1 Introduction

In1 the (finite) two-dimensional bin packing problem (2BP) we are given a set of n rectangular
items j ∈ J = {1, . . . , n}, each having width wj and height hj , and an unlimited number of
finite identical rectangular bins, having width W and height H. The problem is to allocate,
without overlapping, all the items to the minimum number of bins, with their edges parallel
to those of the bins. It is assumed that the items have fixed orientation, i.e., they cannot be
rotated.

The problem has many industrial applications, especially in cutting (wood and glass in-
dustries) and packing (transportation and warehousing). Certain applications may require
additional constraints and/or assumptions, some of which are discussed in the final section
of this chapter.

The special case where wj = W (j = 1, . . . , n) is the famous one-dimensional bin packing
problem (1BP): partition n elements, each having an associated size hj , into the minimum
number of subsets so that the sum of the sizes in each subset does not exceed a given capacity
H. Since 1BP is known to be strongly NP-hard, the same holds for 2BP.

In this chapter we survey recent advances obtained for the two-dimensional bin packing
problem. Up to the mid-Nineties, almost all results in the literature concerned heuristic
algorithms. These are reviewed in the next section, together with more recent results. The
next sections are devoted to other results obtained in the last few years: lower bounds (Section
2.3), exact algorithms (Section 2.4) and metaheuristic approaches (Section 2.5). We conclude
by discussing relevant variants of the problem (Section 2.6). For many of the above techniques
we summarize the results of computational testings, illustrating their average effectiveness.
For some upper and lower bounds, worst-case results are also discussed.

Without loss of generality, we will assume throughout the chapter that all input data are
positive integers, and that wj ≤ W and hj ≤ H (j = 1, . . . , n).

1The results of this chapter appear in: A. Lodi, S. Martello, D. Vigo, “Recent Advances on Two-Dimensional
Bin Packing Problems”, Technical Report OR/99/2, DEIS - Università di Bologna,[110].

5

6 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

2.2 Upper Bounds

Most of the algorithms from the literature are of greedy type, and can be classified in two
families:

• one-phase algorithms directly pack the items into the finite bins;

• two-phase algorithms start by packing the items into a single strip, i.e., a bin having
width W and infinite height. In the second phase, the strip solution is used to construct
a packing into finite bins.

In addition, most of the approaches are shelf algorithms, i.e., the bin/strip packing is ob-
tained by placing the items, from left to right, in rows forming levels (shelves). The first shelf
is the bottom of the bin/strip, and subsequent shelves are produced by the horizontal line
coinciding with the top of the tallest item packed on the shelf below. Three classical strate-
gies for the shelf packing have been derived from famous algorithms for the one-dimensional
case. In each case, the items are initially sorted by nondecreasing height and packed in the
corresponding sequence. Let j denote the current item, and s the last created shelf:

• Next-Fit Decreasing Height (NFDH) strategy: item j is packed left justified on shelf s,
if it fits. Otherwise, a new shelf (s := s+1) is created, and j is packed left justified into
it;

• First-Fit Decreasing Height (FFDH) strategy: item j is packed left justified on the first
shelf where it fits, if any. If no shelf can accommodate j, a new shelf is initialized as in
NFDH;

• Best-Fit Decreasing Height (BFDH) strategy: item j is packed left justified on that
shelf, among those where it fits, for which the unused horizontal space is a minimum.
If no shelf can accommodate j, a new shelf is initialized as in NFDH.

The above strategies are illustrated through an example in Figure 2.1.
In what follows we assume, unless otherwise specified, that the items are initially sorted

by nonincreasing height.

2.2.1 Strip packing

Coffman, Garey, Johnson and Tarjan [43] analyzed NFDH and FFDH for the solution of the
two-dimensional strip packing problem, in which one is required to pack all the items into
a strip of minimum height, and determined their asymptotic worst-case behavior. Given a
minimization problem P and an approximation algorithm A, let A(I) and OPT (I) denote
the value produced by A and the optimal solution value, respectively, for an instance I of P .
Coffman, Garey, Johnson and Tarjan [43] proved that, if the heights are normalized so that
maxj{hj} = 1,

NFDH(I) ≤ 2 ·OPT (I) + 1(2.1)

and

FFDH(I) ≤ 17
10
·OPT (I) + 1(2.2)

2.2. UPPER BOUNDS 7

1
2

3 4

5 6

1
2

4
6

3 5

1
2

5 6

3 4

NFDH FFDH BFDH

Figure 2.1: Shelf packing strategies.

Both bounds are tight and, if the hj ’s are not normalized, only the additive term is affected.
Observe the similarity of (2.1) and (2.2) with famous results on the one-dimensional coun-
terparts of NFDH and FFDH (algorithms Next-Fit and First-Fit, respectively, see Johnson,
Demers, Ullman, Garey and Graham [98]).

Both algorithms can be implemented so as to require O(n log n) time, by using the appro-
priate data structures adopted for the one-dimensional case (see Johnson [97]).

Several other papers on the strip packing problem can be found in the literature: see,
e.g., Baker, Coffman and Rivest [7], Sleator [145], Brown [27], Golan [83], Baker, Brown and
Katseff [6], Baker and Schwarz [8], Høyland [95], Steinberg [146]. The algorithm of Baker,
Coffman and Rivest [7] is considered in Section 2.2.4, while the other results, which have not
been directly used for the finite bin case, are beyond the scope of this survey, and will not be
discussed here.

2.2.2 Bin packing: two-phase algorithms

A two-phase algorithm for the finite bin packing problem, called Hybrid First-Fit (HFF), was
proposed by Chung, Garey and Johnson [42]. In the first phase, a strip packing is obtained
through the FFDH strategy. Let H1,H2, . . . be the heights of the resulting shelves, and
observe that H1 ≥ H2 ≥ A finite bin packing solution is then obtained by heuristically
solving a one-dimensional bin packing problem (with item sizes Hi and bin capacity H)
through the First-Fit Decreasing algorithm: initialize bin 1 to pack shelf 1, and, for increasing
i = 2, . . ., pack the current shelf i into the lowest indexed bin where it fits, if any; if no bin
can accommodate i, initialize a new bin. An example is shown in Figure 2.2. Chung, Garey
and Johnson [42] proved that, if the heights are normalized to one,

HFF (I) ≤ 17
8
·OPT (I) + 5(2.3)

The bound is not proved to be tight: the worst example gives HFF (I) = 91
45 · (OPT (I)− 1).

Both phases can be implemented so as to require O(n log n) time.

8 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

1 3 1 3

2
5

8
7

9

4 6 2 5
8

7
9

4 6

H1

H2

H3

H4

Figure 2.2: First and second phase of algorithm HFF.

Berkey and Wang [23] proposed and experimentally evaluated a two-phase algorithm,
called Finite Best-Strip (FBS), which is a variation of HFF. The first phase is performed by
using the BFDH strategy. In the second phase, the one-dimensional bin packing problem is
solved through the Best-Fit Decreasing algorithm: pack the current shelf in that bin, among
those where it fits (if any), for which the unused vertical space is a minimum, or by initializing
a new bin. (For the sake of uniformity, Hybrid Best-Fit would be a more appropriate name
for this algorithm.)

Let us consider now another variation of HFF, in which the NFDH strategy is adopted
in the first phase, and the one-dimensional bin packing problem is solved through the Next-
Fit Decreasing algorithm: pack the current shelf in the current bin if it fits, or initialize a
new (current) bin otherwise. Due to the next-fit policy, this algorithm is equivalent to a
one-phase algorithm in which the current item is packed on the current shelf of the current
bin, if possible; otherwise, a new (current) shelf is initialized either in the current bin (if
enough vertical space is available), or in a new (current) bin. Frenk and Galambos [76]
analyzed the resulting algorithm, Hybrid Next-Fit (HNF), by characterizing its asymptotic
worst-case performance as a function of maxj{wj} and maxj{hj}. By assuming that the
heights and widths are normalized to one, the worst performance occurs for maxj{wj} > 1

2
and maxj{hj} > 1

2 , and gives:

HNF (I) ≤ 3.382 ·OPT (I) + 9(2.4)

The bound is tight.
The three algorithms above can be implemented so as to require O(n log n) time. The

next two algorithms have higher worst-case time complexities, although they are, on average,
very fast in practice and more effective.

Lodi, Martello and Vigo [107, 109] presented an approach (Floor-Ceiling, FC) which ex-
tends the way items are packed on the shelves. Denote the horizontal line defined by the top
(resp. bottom) edge of the tallest item packed on a shelf as the ceiling (resp. floor) of the

2.2. UPPER BOUNDS 9

1 2 3
4

58

7

6
¾

¾

ceiling

floor

Figure 2.3: Algorithm FC.

shelf. The previous algorithms pack the items, from left to right, with their bottom edge on
the shelf floor. Algorithm FC may, in addition, pack them, from right to left, with their top
edge on the shelf ceiling. The first item packed on a ceiling can only be one which cannot
be packed on the floor below. A possible floor-ceiling packing is shown in Figure 2.3. In the
first phase, the current item is packed, in order of preference: (i) on a ceiling (provided that
the requirement above is satisfied), according to a best-fit strategy; (ii) on a floor, according
to a best-fit strategy; (iii) on the floor of a new shelf. In the second phase, the shelves are
packed into finite bins, either through the Best-Fit Decreasing algorithm or by using an ex-
act algorithm for the one-dimensional bin packing problem, halted after a prefixed number
of iterations. The first phase can be implemented so as to require O(n3) time, while the
complexity of the second one obviously depends on the selected algorithm.

Another shelf packing strategy based on the exact solution of induced subproblems is
adopted in the Knapsack Packing (KP) algorithm proposed by Lodi, Martello and Vigo [109].
In the (binary) knapsack problem one has to select a subset of n elements, each having an
associated profit and weight, so that the total weight does not exceed a given capacity and
the total profit is a maximum. The first phase of algorithm KP packs one shelf at a time as
follows. The first (tallest) unpacked item, say j∗, initializes the shelf, which is then completed
by solving an associated knapsack problem instance over all the unpacked items, where: (i)
the knapsack capacity is W −wj∗ ; (ii) the weight of an item j is wj ; (iii) the profit of an item
j is its area wj hj . Finite bins are finally obtained as in algorithm FC. Algorithms KP (as
well as algorithm FC above) may require the solution of NP-hard subproblems, producing a
non-polynomial time complexity. In practice, however, the execution of the codes for the NP-
hard problems is always halted after a prefixed (small) number of iterations, and in almost
all cases, the optimal solution is obtained before the limit is reached (see the computational
experiments in [109] and in Section 2.2.5).

2.2.3 Bin packing: one-phase algorithms

Two one-phase algorithms were presented and experimentally evaluated by Berkey and Wang
[23].

Algorithm Finite Next-Fit (FNF) directly packs the items into finite bins exactly in the
way algorithm HNF of the previous section does. (Papers [23] and [76] appeared in the same
year.)

Algorithm Finite First-Fit (FFF) adopts instead the FFDH strategy. The current item
is packed on the lowest shelf of the first bin where it fits; if no shelf can accommodate it, a
new shelf is created either in the first suitable bin, or by initializing a new bin (if no bin has

10 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

1

5

3

6

2 4

7

8

Figure 2.4: Algorithm FFF.

enough vertical space available). An example of application of FFF is given in Figure 2.4.
Both algorithms can be implemented so as to require O(n log n) time.

2.2.4 Bin packing: non-shelf algorithms

We finally consider algorithms which do not pack the items by shelves. All the algorithms
discussed in the following are one-phase.

The main non-shelf strategy is known as Bottom-Left (BL), and consists in packing the
current item in the lowest possible position, left justified. Baker, Coffman and Rivest [7]
analyzed the worst-case performance of the resulting algorithm for the strip packing problem,
and proved that: (i) if no item ordering is used, BL may be arbitrarily bad; (ii) if the items
are ordered by nonincreasing width then BL(I) ≤ 3 ·OPT (I), and the bound is tight.

Berkey and Wang [23] proposed the BL approach for the finite bin case. Their Finite
Bottom-Left (FBL) algorithm initially sorts the items by nonincreasing width. The current
item is then packed in the lowest position of any initialized bin, left justified; if no bin can
allocate it, a new one is initialized. The computer implementation of algorithm BL was
studied by Chazelle [40], who gave a method for producing a packing in O(n2) time. The
same approach was adopted by Berkey and Wang [23].

Lodi, Martello and Vigo [109] proposed a different non-shelf approach, called Alternate
Directions (AD). The method is illustrated in Figure 2.5. The algorithm initializes L bins
(L being a lower bound on the optimal solution value, see Section 2.3) by packing on their
bottoms a subset of the items, following a best-fit decreasing policy (items 1, 2, 3, 7 and 9
in Figure 2.5, where it is assumed that L = 2). The remaining items are packed, one bin at
a time, into bands, alternatively from left to right and from right to left. As soon as no item
can be packed in either direction in the current bin, the next initialized bin or a new empty
bin (the third one in Figure 2.5, when item 11 is considered) becomes the current one. The
algorithm has O(n3) time complexity.

2.2.5 Computational experiments

In this section we summarize the outcome of a series of computational experiments aimed at
analyzing the average behavior of the main heuristic algorithms. The benchmark consists of
500 random instances, with n ∈ {20, 40, 60, 80, 100}. Ten different classes of instances were
used.

2.2. UPPER BOUNDS 11

11

12

93

6 5

10

7
2

1

8

4

Figure 2.5: Algorithm AD.

The first four classes were proposed by Martello and Vigo [119], and are based on the
generation of items of four different types:

type 1 : wj uniformly random in [23W,W], hj uniformly random in [1, 1
2H];

type 2 : wj uniformly random in [1, 1
2W], hj uniformly random in [23H,H];

type 3 : wj uniformly random in [12W,W], hj uniformly random in [12H, H];

type 4 : wj uniformly random in [1, 1
2W], hj uniformly random in [1, 1

2H].

Class k (k ∈ {1, 2, 3, 4}) is then obtained by generating an item of type k with probability 70%,
and of the remaining types with probability 10% each. The bin size is always W = H = 100.

The next six classes have been proposed by Berkey and Wang [23]:

Class 5 : W = H = 10, wj and hj uniformly random in [1, 10];

Class 6 : W = H = 30, wj and hj uniformly random in [1, 10];

Class 7 : W = H = 40, wj and hj uniformly random in [1, 35];

Class 8 : W = H = 100, wj and hj uniformly random in [1, 35];

Class 9 : W = H = 100, wj and hj uniformly random in [1, 100];

Class 10 : W = H = 300, wj and hj uniformly random in [1, 100].

For each class and value of n, ten instances have been generated. Figure 2.6 summarizes
the results, by giving, for each algorithm, the average percentage deviation of the heuristic
solution value from the best known lower bound value, with respect to the 200 instances of
Classes 1–4 (Figure 2.6 (a)) and to the 300 instances of Classes 5–10 (Figure 2.6 (b)).

The 500 instances, as well as the generator code, are available on the internet at the
WWW address http://www.or.deis.unibo.it/ORinstances/2BP/.

12 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

���

���
���

���

���

���

	��

��

���

���

�� �� ��

���

��� ��

����

���

����

����

���

	��

��

���

���

����

����

����

�� �� ��

���

��� ��

Figure 2.6: Average percentage deviations from lower bound: (a) Martello and Vigo instances,
Classes 1–4; (b) Berkey and Wang instances, Classes 5–10.

H
2

W
2

Figure 2.7: Worst-case of the continuous lower bound.

2.3 Lower Bounds

The simplest bound for 2BP is the Continuous Lower Bound

L0 =

⌈∑n
j=1 wjhj

WH

⌉

computable in linear time. Martello and Vigo [119] determined the absolute worst-case be-
havior of L0:

L0(I) ≥ 1
4
·OPT (I)

where L0(I) and OPT (I) denote the value produced by L0 and the optimal solution value,
respectively, for an instance I of P . The bound is tight, as shown by the example in Figure
2.7. The result holds even if rotation of the items (by any angle) is allowed.

A better bound was proposed by Martello and Vigo [119]. Given any integer value q,
1 ≤ q ≤ 1

2W , let

K1 = {j ∈ J : wj > W − q}(2.5)

2.3. LOWER BOUNDS 13

K2 = {j ∈ J : W − q ≥ wj >
1
2
W}(2.6)

K3 = {j ∈ J :
1
2
W ≥ wj ≥ q}(2.7)

and observe that no two items of K1 ∪ K2 may be packed side by side into a bin. Hence,
a lower bound LW

1 for the sub-instance given by the items in K1 ∪ K2 can be obtained by
using any lower bound for the 1BP instance defined by element sizes wj (j ∈ K1 ∪K2) and
capacity W (see Martello and Toth [118], Dell’Amico and Martello [57]). A lower bound for
the complete instance is then obtained by taking into account the items in K3, since none of
them may be packed besides an item of K1:

LW
2 (q) = LW

1 + max

{
0,

⌈∑
j∈K2∪K3

wjhj − (HLW
1 −∑

j∈K1
hj)W

WH

⌉}
(2.8)

A symmetric bound LH
2 (q) is clearly obtained by interchanging widths and heights. By

observing that both bounds are valid for any q, we have an overall lower bound:

L2 = max

(
max

1≤q≤ 1
2
W
{LW

2 (q)} , max
1≤q≤ 1

2
H
{LH

2 (q)}
)

(2.9)

It is shown in [119] that L2 dominates L0, and can be computed in O(n2) time.
Martello and Vigo [119] also proposed a computationally more expensive lower bound,

which in some cases improves on L2. Given any pair of integers (p, q), with 1 ≤ p ≤ 1
2H and

1 ≤ q ≤ 1
2W , define:

I1 = {j ∈ J : hj > H − p and wj > W − q}(2.10)
I2 = {j ∈ J \ I1 : hj > 1

2H and wj > 1
2W}(2.11)

I3 = {j ∈ J : 1
2H ≥ hj ≥ p and 1

2W ≥ wj ≥ q}(2.12)

(see Figure 2.8 (a)), and observe that: (i) I1 ∪ I2 is independent of (p, q); (ii) no two items
of I1 ∪ I2 may be packed into the same bin; (iii) no item of I3 fits into a bin containing an
item of I1. A valid lower bound can thus be computed by adding to |I1 ∪ I2| the minimum
number of bins needed for those items of I3 that cannot be packed into the bins used for the
items of I2. Such a bound can be determined by considering a relaxed instance where each
item i ∈ I3 has the minimum size, i.e., hi = p and wi = q. Given a bin containing an item j,
the maximum number of p× q items that can be packed into the bin is (see Figure 2.8 (b)):

m(j, p, q) =
⌊
H

p

⌋ ⌊
W − wj

q

⌋
+

⌊
W

q

⌋ ⌊
H − hj

p

⌋
−

⌊
H − hj

p

⌋ ⌊
W − wj

q

⌋
(2.13)

Hence, for any pair (p, q) a valid lower bound is

L3(p, q) = |I1 ∪ I2|+ max

0,

|I3| −

∑
j∈I2 m(j, p, q)⌊

H
p

⌋ ⌊
W
q

⌋

(2.14)

so an overall bound is
L3 = max

1≤p≤1
2H, 1≤q≤1

2W

{L3(p, q)}(2.15)

Lower bound L3 can be computed in O(n3) time. No dominance relation exists between L2

and L3.

14 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

-

6
item of I1

²²

items of I2

®

item of I3

²
p

1
2H

H − p

H

Wq 1
2W W − q

(a) (b)

j

Figure 2.8: Lower bound L3: (a) items in I1, I2 and I3; (b) relaxed instance with reduced
items.

2.4 Exact Algorithms

An enumerative approach for the exact solution of 2BP was presented by Martello and Vigo
[119]. The items are initially sorted in nonincreasing order of their area. A reduction pro-
cedure tries to determine the optimal packing of some bins, thus reducing the size of the
instance. A first incumbent solution, of value z∗, is then heuristically obtained.

The algorithm is based on a two-level branching scheme:

• outer branch-decision tree: at each decision node, an item is assigned to a bin without
specifying its actual position;

• inner branch-decision tree: a feasible packing (if any) for the items currently assigned
to a bin is determined, possibly through enumeration of all the possible patterns.

The outer branch-decision tree is searched in a depth-first way, making use of the lower
bounds described in the previous section. Whenever it is possible to establish that no more
unassigned items can be assigned to a given initialized bin, such a bin is closed: an initialized
and not closed bin is called active. At level k (k = 1, . . . , n), item k is assigned, in turn, to
all the active bins and, possibly, to a new one (if the total number of active and closed bins
is less than z∗ − 1).

The feasibility of the assignment of an item to a bin is first heuristically checked. A lower
bound L(I) is computed for the instance I defined by the items currently assigned to the
bin: if L(I) > 1, a backtracking follows. Otherwise, heuristic algorithms are applied to I:
if a feasible single-bin packing is found, the outer enumeration is resumed. If not, the inner
branching scheme enumerates all the possible ways to pack I into a bin through the left-most
downward strategy (see Hadjiconstantinou and Christofides [88]): at each level, the next item
is placed, in turn, into all positions where it has its left edge adjacent either to the right edge
of another item or to the left edge of the bin, and its bottom edge adjacent either to the top
edge of another item or to the bottom edge of the bin. As soon as a feasible packing is found
for all the items of I, the outer enumeration is resumed. If no such packing exists, an outer
backtracking is performed.

2.5. METAHEURISTICS 15

Whenever the current assignment is feasible, the possibility of closing the bin is checked
through lower bound computations.

Table 2.1 gives the results of computational experiments performed, with a Fortran 77
implementation, on the 500 instances described in Section 2.2.5. The entries give, for each
class and value of n, the number of instances (out of ten) solved to proved optimality within
a time limit of 300 CPU seconds on a PC Pentium 200 MHz.

Table 2.1: Number of instances, out of ten, solved to proved optimality.

Class
n 1 2 3 4 5 6 7 8 9 10 Total

20 10 10 10 10 10 10 9 10 10 10 99
40 8 7 10 9 10 10 10 10 10 5 89
60 8 7 10 2 7 4 7 7 8 10 70
80 7 3 10 – 3 10 – 10 – 10 53

100 7 6 8 – 1 10 – 10 1 2 45
Total 40 33 48 21 31 44 26 47 29 37 356

2.5 Metaheuristics

In recent years, metaheuristic techniques have become a popular tool for the approximate
solution of hard combinatorial optimization problems. (See Aarts and Lenstra [2] and Glover
and Laguna [82] for general introductions to the field.) Lodi, Martello and Vigo [107, 108, 109]
developed effective tabu search algorithms for 2BP and for some of the variants discussed in
the next section. We briefly describe here the unified tabu search framework given in [109],
whose main characteristic is the adoption of a search scheme and a neighborhood which are
independent of the specific packing problem to be solved. The framework can thus be used
for virtually any variant of 2BP, by simply changing the specific deterministic algorithm used
for evaluating the moves within the neighborhood search.

Given a current solution, the moves modify it by changing the packing of a subset S of
items, trying to empty a specified target bin. Let Si be the set of items currently packed into
bin i: the target bin t is the one minimizing, over all bins i, the function

ϕ(Si) = α

∑
j∈Si

wjhj

WH
− |Si|

n
(2.16)

(α is a pre-specified positive weight), which gives a measure of the easiness of emptying the
bin. It favors, in fact, target bins packing a small area and a relatively large number of items.

Once the target bin has been selected, subset S is defined so as to include one item, j, from
the target bin and the current contents of k other bins. The new packing for S is obtained by
executing an appropriate heuristic algorithm A on S. The value of parameter k, which defines
the size and the structure of the current neighborhood, is automatically updated during the
search.

If the move packs the items of S into k (or less) bins, i.e., item j has been removed from
the target bin, a new item is selected, a new set S is defined accordingly, and a new move is
performed. Otherwise S is changed by selecting a different set of k bins, or a different item

16 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

j from the target bin (if all possible configurations of k bins have been attempted for the
current j).

If the algorithm gets stuck, i.e., the target bin is not emptied, the neighborhood is enlarged
by increasing the value of k, up to a prefixed upper limit. There are a tabu list and a tabu
tenure for each value of k.

An initial incumbent solution is obtained by executing algorithm A on the complete in-
stance, while the initial tabu search solution consists of packing one item per bin. In special
situations, a move is followed by a diversification action. The execution is halted as soon as
a proven optimal solution is found, or a time limit is reached.

Figure 2.9 shows the impact of tabu search for three of the heuristics described in Section
2.2: notation TS(A) indicates that algorithm A is used within the tabu search. The figure
gives the average percentage deviations of the heuristic solution value (without and with tabu
search) from the best known lower bound value, with respect to the 200 instances of Classes
1–4 (Figure 2.9 (a)) and to the 300 instances of Classes 5–10 (Figure 2.9 (b)), as described
in Section 2.2.5. The tabu search was performed with a time limit of 60 seconds on a Silicon
Graphics INDY R10000sc (195 MHz).

����

���

����

���
���

���

��	

�	

�	�	

���	

�� ������ �� ������ �� ������
���

���

���

���

���

���

���

��	

��	

��	

��	

��	

�	

�� ������ �� ������ �� ������

���

Figure 2.9: Average percentage deviations from lower bound: (a) Martello and Vigo instances,
Classes 1–4; (b) Berkey and Wang instances, Classes 5–10.

2.6 Variants and Extensions

Two-dimensional bin packing problems occur in several real-world contexts, especially in
cutting and packing industries. As a consequence, a number of variants arises, according to
specific applications. In most cases the additional requirements concern orientation (the items
may either have a fixed orientation or they can be rotated by 90◦), and/or guillotine cutting
(it may or not be imposed that the items are obtained through a sequence of edge-to-edge
cuts parallel to the edges of the bin). For example, rotation is not allowed when the items are
articles to be paged in newspapers or are pieces to be cut from decorated or corrugated stock
units, whereas it is allowed in the cutting of plain materials and in most packing contexts.
The guillotine constraint is usually imposed by technological characteristics of the automated

2.6. VARIANTS AND EXTENSIONS 17

cutting machines, whereas it is generally not present in packing applications.
Lodi, Martello and Vigo [109] proposed the following typology for the four possible cases

produced by the above two requirements:

2BP|O|G: the items are oriented (O) and guillotine cutting (G) is required;

2BP|R|G: the items may be rotated by 90◦ (R) and guillotine cutting is required;

2BP|O|F: the items are oriented and cutting is free (F);

2BP|R|F: the items may be rotated by 90◦ and cutting is free.

(The problem considered so far is thus 2BP|O|F.) The following references are examples of
industrial applications involving the above variants. A problem of trim-loss minimization in
a crepe-rubber mill, studied by Schneider [143], induces subproblems of 2BP|O|G type; fuzzy
two-dimensional cutting stock problems arising in the steel industry, discussed by Vasko,
Wolf and Stott [148], are related to 2BP|R|G; the problem of optimally placing articles and
advertisements in newspapers and yellow pages, studied by Lagus, Karanta and Ylä-Jääski
[102], falls into the 2BP|O|F case; finally, several applications of 2BP|R|F are considered by
Bengtsson [21].

An algorithm for one of the variants may obviously guarantee solutions which are feasible
for others. The complete set of compatibilities between algorithms and problems is shown in
Figure 2.10, where AXY is an algorithm for 2BP|X|Y and an edge (AXY ,2BP|Q|T) indicates
that AXY produces solutions feasible for 2BP|Q|T . Most of the heuristics in Section 2.2 can
be modified so as to handle rotation and/or guillotine cutting, as discussed in Lodi, Martello
and Vigo [109]. It is also worth mentioning that all the shelf algorithms described in Section
2.2 directly produce guillotine packings, the only exception being FC. A variant of FC which
slightly modifies the way items are packed on the ceilings so as to preserve the guillotine
constraint, was presented by Lodi, Martello and Vigo [107].

2BP|O|G

2BP|R|G

2BP|O|F

2BP|R|FARF

AOF

ARG

AOG

Figure 2.10: Compatibilities between algorithms and problems.

We finally mention that other variants of the two-dimensional bin packing problem can
be found in the literature. For example, in guillotine cutting, an upper bound (usually two
or three) may be imposed on the number of stages (rounds of cuts having the same direction)
that are needed to obtain all the items: see, e.g., Hifi [94]. In certain practical applications

18 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

a secondary objective can also be of interest, namely the maximization of the unused area in
one bin, so as to produce a possibly large trim to be used later: see, e.g., Bengtsson [21] and
El-Bouri, Popplewell, Balakrishnan and Alfa [65] for 2BP|R|F.

2.6.1 The Three-Dimensional Bin Packing Problem

In the extension to the three-dimensional case, each item is a rectangular box having width
wj , height hj and depth dj , and the bins have width W , height H and depth D. The Three-
Dimensional Bin Packing Problem (3BP) is to allocate, without overlapping and without
rotation, all the items to the minimum number of bins, with their faces parallel to those of
the bins.

Martello, Pisinger and Vigo [116] proved that, for 3BP, the continuous lower bound,

⌈∑n
j=1 wjhjdj

WHD

⌉

has an asymptotic worst-case performance ratio equal to 1
8 . The result was generalized by

Dell’Amico [47], who showed that, for the k-dimensional bin packing problem, the continuous
lower bound has an asymptotic worst-case performance ratio equal to 1

2k .
Other lower bounds, partially based on extensions of those discussed in Section 2.3, as

well as an exact branch-and-bound approach, were also proposed in [116]. Table 2.2 gives the
results of computational experiments performed, with an ANSI-C language implementation
of the branch-and-bound algorithm, on nine classes of random instances: Classes 1–5 and 6–8
were obtained by generalizing the 2BP classes 1–4 and 5–10, respectively (see Section 2.2.5),
while Class 9 contains very difficult special instances. The entries give, for each class and
value of n, the number of instances (out of ten) solved to proved optimality within a time
limit of 1000 CPU seconds on a HP9000/C160 (160 MHz).

Table 2.2: 3BP: number of instances, out of ten, solved to proved optimality.

Class
n 1 2 3 4 5 6 7 8 9 Total

10 10 10 10 10 10 10 10 10 10 90
15 10 10 10 10 10 10 10 10 10 90
20 10 10 10 10 10 10 10 10 10 90
25 10 10 10 10 10 10 9 10 10 89
30 10 10 10 10 10 10 5 10 10 85
35 9 9 10 10 7 10 5 6 9 75
40 9 8 8 10 4 10 3 8 8 68
45 5 6 4 10 8 10 1 7 2 53
50 5 2 4 10 3 10 2 4 — 40
60 1 1 — 9 1 6 — 5 — 23
70 — — — 6 2 4 — 4 — 16
80 — — 1 4 — 4 — 2 — 11
90 — — — 2 — 7 — 1 — 10

Total 79 76 77 111 75 111 55 87 69 740

2.6. VARIANTS AND EXTENSIONS 19

In the Three-Dimensional Strip Packing Problem there is single bin having fixed width
and depth, and infinite height, and one is required to pack all the items within minimum
height. Worst-case results of approximation algorithms for this problem were presented by Li
and Cheng [104, 105] and by Miyazawa and Wakabayashi [121].

20 CHAPTER 2. THE TWO-DIMENSIONAL BIN PACKING PROBLEM

Chapter 3

Two-Dimensional Bin Packing: the
2BP|O|G case

3.1 Introduction

Given1 n rectangular items, each characterized by a height hj and a width wj (j = 1, . . . , n),
and an unlimited number of identical rectangular bins, each having height H and width W ,
the Oriented Two-Dimensional Bin Packing Problem (2BP) is to pack each item into a bin so
that no two items overlap and the number of required bins is minimized. We assume that the
items cannot be rotated. We also assume, without loss of generality, that all input data are
positive integers and that hj ≤ H, wj ≤ W (j = 1, . . . n). According to the typology given
by Dykhoff [62], the problem can be classified as 2/V/I/M.

The problem is known to be strongly NP-hard and finds many practical applications. For
example, in the glass industry and in the wood industry it is requested to cut rectangular
items in demand from standardized stock sheets by minimizing the trim loss, i.e., by using the
minimum number of stock sheets. According to the specific application, the items in demand
may have a prefixed orientation (e.g., in the cutting of corrugated iron) or may be rotated
(usually by 90◦). As previously stated, this chapter deals with the oriented case in which no
item rotation is allowed. In cutting applications it is frequently required that the resulting
patterns are guillotine-cuttable, i.e., that the items can be obtained through a sequence of
edge-to-edge cuts parallel to the edges of the bin: as will be pointed out later, the algorithms
we propose satisfy such constraint.

Approximation algorithms for 2BP have been given by Chung, Garey and Johnson [42],
Berkey and Wang [23] and Frenk and Galambos [76], whereas Bengtsson [21] and El-Bouri
et al. [65] considered the case with 90◦ rotation of the items. An exact branch-and-bound
approach for 2BP has been developed by Martello and Vigo [119]. Surveys on packing prob-
lems can be found in Dyckhoff and Finke [63] and Dowsland and Dowsland [60], while an
annotated bibliography has recently been presented by Dyckhoff, Scheithauer and Terno [64].

This chapter presents a tabu search approach to 2BP. The algorithm is initialized with the
solution obtained by using a simple and fast heuristic which proved to be an excellent starting
point for the subsequent search. In Section 3.2 we describe this heuristic and discuss its worst

1The results of this chapter appear in: A. Lodi, S. Martello, D. Vigo, “Approximation Algorithms for the
Oriented Two-Dimensional Bin Packing Problem”, European Journal of Operational Research 112, 158–166,
1999, [108].

21

22 CHAPTER 3. TWO-DIMENSIONAL BIN PACKING: THE 2BP|O|G CASE

case performance. In Section 3.3 we define the neighborhoods used and give the relevant
details of the tabu search algorithm. The results of extensive computational experiments are
given in Section 3.4.

3.2 Initial feasible solution

In this section we describe and analyze a simple heuristic used to initialize the tabu search
algorithm. Although its absolute worst case performance is poor and the solutions it produces
require, on average, a high number of bins, it has experimentally proved to provide a very
good starting point for the subsequent tabu search. Indeed, better starting solutions (e.g.,
those provided by algorithms FFF and FBS, see Section 3.3) proved to be much harder to
modify through our tabu search. On the other hand, starting with trivial solutions typically
increases the number of iterations needed to obtain good local optima.

The algorithm is based on a technique developed by Martello and Vigo [119] for proving
the worst-case performance of the continuous lower bound for 2BP. We start by packing all
the items into a strip having height H and infinite width: the strip is then cut so as to
produce a feasible 2BP solution. Let (x, y) be a coordinate system with the origin in the
bottom left corner of the strip. For each item j we define an attribute class(j) = min{r :
hj ≥ H

2r+1 , r integer}: observe that any horizontal unit of strip containing 2r items of class
r has at least half of its area occupied by such items. Hence we define the set of admissible
vertical coordinates for any item of class r as V (r) = { t

2r H : t = 0, 1, . . . , 2r−1}, and we pack
the items according to nonincreasing class, at admissible vertical coordinates in such a way
that the total occupied area before a current horizontal coordinate x is no less than xH/2.
The resulting strip is then subdivided into slices of width W and, for each slice, a feasible
packing requiring one or two bins is determined. The algorithm can be outlined as follows.
Set X contains the horizontal coordinates, greater than x, corresponding to right edges of
already packed items.

Algorithm IH
0. for j := 1 to n do

if hj < H then class(j) := dlog2(H/hj)e − 1
else class(j) := 0;

sort (and renumber) the items by nondecreasing class(j) values;
x := 0;
X := ;

1. for j := 1 to n do
begin

if all admissible vertical coordinates at x are occupied then
begin

x := min{x : x ∈ X};
X := X \ {x}

end;
place item j with its bottom left corner in (x, y), where y is the lowest
unoccupied admissible vertical coordinate of V (class(j)), at x;
X := X ∪ {x + wj}

3.2. INITIAL FEASIBLE SOLUTION 23

end;

2. k := bx/W c (comment : observe that no item can terminate after (k + 2)W);
subdivide the strip into k + 2 slices of width W , starting from the origin;
for i := 1 to k do

begin
pack the items entirely contained in slice i, if any, into a new bin;
pack the items crossing the right boundary of slice i, if any, into a new bin

end;
pack the items terminating after x, if any, into a new bin;
pack the remaining items of slice k + 1, if any, into a new bin

end.

Figure 3.1 gives an example of packing obtained at the end of Step 1. (After renumbering,
we have [class(j)] = [0, 1, 1, 1, 2, 2, 2, 2, 2, 3]; observe that ties may be broken arbitrarily.) At
Step 2 we have k = 2: two bins are then introduced for slice 1 (with contents {1} and {2, 3}),
two for slice 2 (with contents {4, 5} and {6, 7}), one for {9, 10} and one for {8}.

W¾ - W W W¾ ¾ ¾- - -

0

H

3
4H

1
4H

x

6

1
2H

y

x

1

2

3 4

5

6

7

8

9

10
-

Y

Figure 3.1: Example of the strip packing solution determined by algorithm IH.

It is easily seen that algorithm IH can be implemented so as to run in O(n log n) time.
Indeed, by using a heap for storing set X, the operations involving set X at each iteration of
the for loop in Step 1 may be performed in O(log n) time. On the other hand, whenever an
item is placed in (x, y), the next unoccupied admissible vertical coordinate at x (if any) can
be easily determined in constant time.

It is also clear that the patterns produced by IH are guillotine-cuttable. The items can
indeed be obtained through the following recursive operations. Let H̃ be the height of the
current strip: obtain each item j having hj ≥ H̃/2 through a vertical edge-to-edge cut,
possibly followed by an horizontal edge-to-edge cut; subdivide the remaining part of the strip
into two strips of height H̃/2 through an horizontal edge-to-edge cut, and so on, recursively.

24 CHAPTER 3. TWO-DIMENSIONAL BIN PACKING: THE 2BP|O|G CASE

Given any instance I of a minimization problem P , let z(I) be the value of the optimal
solution to I, and U(I) the value provided by a heuristic algorithm U . The worst-case
performance ratio of U is defined as the smallest real number ρ such that

U(I)
z(I)

≤ ρ for all instances I of P .

Theorem 3.1. The worst-case performance ratio of algorithm IH is 4.

Proof. Let z∗ denote the optimal number of bins and z the number of bins produced by
IH. It has been proved in [119] that for any instance of 2BP we have z ≤ 4LB, where LB
is a lower bound on z∗. Hence z ≤ 4z∗. To prove that this ratio is tight it is sufficient to
consider an instance with n = 6, h1 = H/2, w1 = W/2 + 1, h2 = h3 = h4 = h5 = h6 = H/4,
w2 = w3 = W/2, w4 = w6 = W/2 − 1, w5 = W . The strip packing solution determined by
algorithm IH is shown in Figure 3.2(a): we then obtain four bins containing, respectively,
{1}, {2, 3}, {5, 6} and {4}. The optimal single bin solution is shown in Figure 3.2(b). 2

0

H

1
2H

xW 2W

6
y

x

-

(a) (b)

1

3

2

5

4 6
1

2 3

5

4

6

Figure 3.2: Worst-case example for algorithm IH.

The worst-case performance of IH is thus quite poor. Chung, Garey and Johnson [42]
presented a hybrid algorithm, HFF, whose solution value satisfies HFF (I)/z(I) < 17

8 +5/z(I).
This performance is better than that of IH for any instance I with z(I) ≥ 3. However, as
previously mentioned, the structure of the solutions provided by IH experimentally proved to
be particularly suited for the tabu search initialization.

3.3 Tabu search

The algorithm starts by computing a lower bound LB as described in Martello and Vigo [119]
and by applying two simple heuristics, called FFF (Finite First-Fit) and FBS (Finite Best
Strip), described in Berkey and Wang [23].

3.3. TABU SEARCH 25

The FFF heuristic initially sorts the items by nonincreasing height and then iteratively
packs each of them into the first initialized bin in which it fits, or into a new bin if no such
bin exists.

The FBS heuristic initially sorts the items by nonincreasing height and consists of two
phases. First the items are packed into an infinite height strip using a best-fit algorithm
to select the level for each item: the resulting strip packing is made up of “shelves”, each
corresponding to a different level, having width equal to the strip width and a different
height. In the second phase the shelves are packed into finite bins using the well-known best-
fit heuristic for the one-dimensional bin packing problem (see, Johnson, Demers, Ullman,
Garey and Graham [98]). Algorithms FFF and FBS may be implemented to run in O(n2)
and O(n log n) time, respectively. It is known that both FFF and FBS produce patterns that
satisfy the guillotine constraint.

Let UB denote the value of the best heuristic solution found among those given by FFF
and FBS. If UB > LB the tabu search algorithm is initialized with the solution produced by
algorithm IH. The search is based on a main loop where, at each iteration, one of two possible
neighborhoods is explored. Let z denote the number of bins used in the current solution. The
algorithm accepts moves that either decrease z or re-distribute items among the z bins, while
moves increasing z are never accepted. As soon as no acceptable move is possible, a restart
is performed.

Both neighborhoods consist of moves involving the items of a particular bin, which is
called the weakest bin and is defined as follows. Let Si denote the set of items that, in the
current solution, are packed into bin i (i = 1, . . . , z). The weakest bin is then defined as the
one which minimizes the quantity

ϕ(i) = α

∑
j∈Si

hjwj

HW
− |Si|

n
(3.1)

that gives an estimate of the difficulty of emptying bin i (α is a prefixed nonnegative param-
eter). At each iteration we consider an item j currently packed into the weakest bin b and
we try to remove j from b: the first neighborhood tries to directly pack j into a different bin,
while the second neighborhood tries to re-combine the items of two different bins so that one
of them can accomodate j. The core of the algorithm can be outlined as follows:

determine the weakest bin b;
while a stopping criterion is not satisfied do

begin
repeat

perform the next move according to the first neighborhood;
if Sb = then determine the new weakest bin b

until no move is possible;
repeat

perform the best move according to the second neighborhood;
determine the new weakest bin b̄

until b 6= b̄;
b := b̄

end

Given a subset of items S, let FBS(S) denote the number of H × W bins used by
algorithm FBS for packing all items of S. Both neighborhoods use FBS for re-combining

26 CHAPTER 3. TWO-DIMENSIONAL BIN PACKING: THE 2BP|O|G CASE

subsets of items (note indeed that determining the optimal packing of a single bin is already
an NP-hard problem).

The first neighborhood is obtained by determining the weakest bin b and by considering,
in turn, each non-tabu item j currently packed into b: FBS({j} ∪ Si) is then iteratively
computed for bins i 6= b. As soon as a bin i∗ is found for which FBS({j} ∪ Si∗) = 1, item j
is moved to this bin, it is inserted in the first tabu-list, and the next item of b is considered.
An aspiration criterion is used: if b contains a single item, then the search is performed even
if this item is tabu, since the possible move would improve z. Whenever the weakest bin
becomes empty, the new weakest bin is determined and the search continues with the first
neighborhood. As soon as no move is possible, the search explores the second neighborhood.
The first tabu list, which stores the indices of recently moved items, is preserved for the next
exploration of the first neighborhood.

The second tabu list contains scores given by the total area of a subset of items representing
a possible move. Also the second neighborhood considers, in turn, items j currently packed
into the weakest bin b. For each of these j and for each pair of bins h and k, (h, k 6= b), set
S = {j} ∪ Sh ∪ Sk is defined, and FBS(S) is computed. Four cases may occur:

a. FBS(S) = 1, i.e., z is decreased by one or two units: the move is immediately performed
and the exploration is resumed from the first neighborhood;

b. FBS(S) = 2, i.e., item j can be removed from bin b: the move is immediately performed.
Two subcases are then possible:

b.1. |Sb| = 0, i.e., the move has decreased z by one: the exploration is resumed from
the first neighborhood;

b.2. |Sb| > 0: the new weakest bin b is determined among b, h, and k. The search
continues with the second neighborhood if b ≡ b, or with the first neighborhood,
otherwise;

c. FBS(S) = 3: let T be the set of items packed by FBS into the bin with minimum ϕ(i)
among the three resulting bins. Two subcases are possible:

c.1. FBS(T ∪ (Sb \ {j})) > 1: the move would increase z, hence it is not accepted;
c.2. FBS(T ∪ (Sb \ {j})) = 1: a score, defined by the ϕ value of the bin that packs the

items in T ∪ (Sb \ {j}), is assigned to the move. If this score is not tabu, the best
acceptable move not improving z is possibly updated;

d. FBS(S) > 3: the move is not accepted since it would increase z.

At the end of the exploration the best non-improving acceptable move (if any) is performed,
its score is stored in the second tabu list, and the search continues with the first neighborhood.
For both tabu lists we used static tabu tenures of length τ1 and τ2, respectively.

The stopping criteria adopted are quite standard. The search terminates if (i) a fea-
sible solution of value LB is determined, or (ii) a prefixed maximum number of iterations is
attained, or (iii) a prefixed time limit is reached.

The algorithm also includes restart actions. If no acceptable move is found, or if the
incumbent solution value z was not improved during the last µ moves, we modify the incum-
bent solution as follows. We renumber the bins so that ϕ(i) ≥ ϕ(i + 1) for all i and execute

3.4. COMPUTATIONAL RESULTS 27

algorithm IH on the items of
bz/2c⋃

i=1

Si, adding to the obtained solution the incumbent packings

of bins bz/2c+ 1, . . . , z. The resulting solution is then used to re-start the search.

We finally observe that the algorithm starts with a solution produced by IH (hence
guillotine-cuttable) and modifies it through FBS, thus the resulting patterns satisfy the guil-
lotine constraint.

3.4 Computational results

The tabu search algorithm was coded in FORTRAN 77 and run on a Silicon Graphics INDY
R4000sc 100Mhz on test instances from the literature. The values we used for the parameters
of the tabu search algorithm are α = 5.0, τ1 = 3, τ2 = 5, µ = 50.

Given any instance of 2BP, by interchanging H with W and hj with wj (j = 1, . . . , n), we
obtain an equivalent instance for which, however, a heuristic algorithm can produce a different
solution. Hence, for each instance, we executed both the initial upper bound computation
and the tabu search twice, getting the best solution: an overall limit of 100 CPU seconds was
assigned for the solution of each instance (50 seconds per execution).

Table 3.1 gives the results obtained on instances from the literature with up to 120 items.
Problems beng1–beng8 are the instances used in Bengtsson [21] for the variant of 2BP where
90◦ rotation of the items is allowed. The remaining problems are instances proposed in the
literature for other two-dimensional cutting problems and transformed into 2BP instances by
using the relative bin and item sizes. In particular problems cgcut1–cgcut3 are described
in Christofides and Whitlock [41], while problems gcut1–gcut13 and ngcut1–ngcut12 are
described in Beasley [17] and [18], respectively. Problems beng1–beng8 and ngcut1–ngcut12
were originally proposed to test algorithms not satisfying the guillotine constraint.

For each problem the table gives the problem name, the number of items, the values of LB,
FFF , FBS and TS (tabu search solution) and the computing time, expressed in seconds,
required by the tabu search. An asterisk indicates the instances where TS is optimal (the
values of the optimal solutions were taken from [119]).

In Table 3.2 we present the results for six classes of instances randomly generated as in
Berkey and Wang [23]. Each class is characterized by a different size of the bins and by the
ranges in which the item sizes were uniformly randomly generated. The first three columns
give the intervals in which the sizes of the items were uniformly randomly generated, the
(fixed) bin sizes and the number of items. The values in each row are referred to ten random
problem instances. We give the average ratios of FFF , FBS and TS with respect to LB, and
the average tabu search computing time (expressed in seconds). The last column (≤ B&B)
gives the number of instances in which TS was at least equal to the solution value obtained
by a branch-and-bound algorithm for the exact solution of the problem, presented in [119];
since the execution of such algorithm was interrupted after 300 CPU seconds, the solutions
it provided were not necessarily optimal.

Table 3.3 examines new randomly generated instances described in [119], having a different
mix of items. Four types of items were considered, each defined by different intervals in which
the sizes were randomly generated (see Table 3.3). Each class is characterized by a different
percentage of items generated for each type. The table gives, for each pair of size intervals,
the percentage of items that were uniformly randomly generated in such interval (the bin size

28 CHAPTER 3. TWO-DIMENSIONAL BIN PACKING: THE 2BP|O|G CASE

Table 3.1: Results on problem instances from the literature. Time limit of 100 CPU seconds
on a Silicon Graphics INDY R4000sc.

Name n LB FFF FBS TS time
beng1 20 4 4 4 4 * 0.01
beng2 40 6 7 7 7 100.02
beng3 60 9 10 9 9 * 0.01
beng4 80 11 12 12 12 100.06
beng5 100 14 16 15 14 * 0.01
beng6 40 2 2 2 2 * 0.01
beng7 80 3 3 3 3 * 0.01
beng8 120 5 5 5 5 * 0.01

cgcut1 16 2 2 2 2 * 0.01
cgcut2 23 2 3 3 2 * 0.01
cgcut3 62 23 26 26 23 * 0.01

gcut1 10 4 5 5 5 * 100.02
gcut2 20 6 7 7 6 * 50.11
gcut3 30 8 9 8 8 * 0.01
gcut4 50 13 15 15 14 * 100.03
gcut5 10 3 4 4 4 100.02
gcut6 20 6 8 8 7 * 100.02
gcut7 30 10 12 12 12 100.01
gcut8 50 12 15 14 14 100.03
gcut9 10 3 3 3 3 * 0.01
gcut10 20 7 8 8 8 100.03
gcut11 30 8 10 10 9 * 100.03
gcut12 50 16 17 17 16 * 23.56
gcut13 32 2 2 2 2 * 0.01

ngcut1 10 2 3 3 3 * 100.02
ngcut2 17 3 4 4 4 * 100.02
ngcut3 21 3 4 4 4 100.02
ngcut4 7 2 2 2 2 * 0.01
ngcut5 14 3 4 4 3 * 0.01
ngcut6 15 2 3 3 3 * 100.02
ngcut7 8 1 2 2 1 * 0.01
ngcut8 13 2 2 2 2 * 0.01
ngcut9 18 3 4 4 4 100.02
ngcut10 13 3 3 3 3 * 0.01
ngcut11 15 2 3 3 3 100.02
ngcut12 22 3 4 4 4 100.02

3.4. COMPUTATIONAL RESULTS 29

was always 100 × 100), the number of items, plus the same information as in Table 3.2. In
this case too the values in each row are referred to ten random problem instances.

Table 3.2: Results on the random problem instances proposed by Berkey and Wang. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R4000sc.

items bins n FFF/LB FBS/LB TS/LB time ≤ B&B
20 1.165 1.136 1.061 40.01 10
40 1.122 1.090 1.072 85.13 8

[1, 10]× [1, 10] 10×10 60 1.096 1.074 1.047 90.03 9
80 1.083 1.060 1.030 67.89 8

100 1.074 1.061 1.035 96.92 7
20 1.100 1.100 1.100 0.01 9
40 1.100 1.100 1.100 0.01 10

[1, 10]× [1, 10] 30×30 60 1.150 1.150 1.150 30.00 10
80 1.067 1.067 1.033 15.00 10

100 1.058 1.058 1.033 10.00 10
20 1.197 1.177 1.177 80.01 7
40 1.177 1.136 1.110 90.01 8

[1, 35]× [1, 35] 40×40 60 1.138 1.106 1.078 80.13 7
80 1.131 1.099 1.073 90.02 8

100 1.123 1.091 1.072 100.04 7
20 1.000 1.000 1.000 0.01 10
40 1.100 1.100 1.100 0.01 10

[1, 35]× [1, 35] 100×100 60 1.200 1.200 1.200 40.00 10
80 1.100 1.100 1.100 30.01 10

100 1.100 1.100 1.067 20.00 10
20 1.140 1.140 1.106 60.01 9
40 1.105 1.105 1.087 80.01 6

[1, 100]× [1, 100] 100×100 60 1.111 1.099 1.062 91.29 8
80 1.119 1.089 1.060 92.22 6

100 1.121 1.091 1.070 97.64 6
20 1.000 1.000 1.000 0.01 10
40 1.400 1.400 1.400 0.01 10

[1, 100]× [1, 100] 300×300 60 1.100 1.100 1.050 10.00 10
80 1.000 1.000 1.000 0.01 10

100 1.133 1.100 1.100 30.00 10

The results of Tables 1–3 show a very good behaviour of the proposed tabu search algo-
rithm. The TS/LB ratios are considerably lower than the FFF/LB and FBS/LB ratios
(remind that algorithms FFF and FBS are classical and effective methods from the litera-
ture). Also the comparison with the branch-and-bound approach is satisfactory. For 26 out
of 36 instances from the literature the exact solution was obtained, while for 90% of the ran-
domly generated instances of Tables 3.2 and 3.3 the tabu search approach attained the same
performance, in terms of solution quality, as a branch-and-bound algorithm.

30 CHAPTER 3. TWO-DIMENSIONAL BIN PACKING: THE 2BP|O|G CASE

Table 3.3: Results on the random problem instances proposed by Martello and Vigo. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R4000sc.

hj ∈ [1, H
2

] [2
3
H, H] [H

2
, H] [1, H

2
]

wj ∈ [2
3
W, W] [1, W

2
] [W

2
, W] [1, W

2
] n FFF/LB FBS/LB TS/LB time ≤ B&B

20 1.098 1.098 1.062 30.09 9
40 1.107 1.107 1.070 70.01 7

70% 10% 10% 10% 60 1.077 1.077 1.044 64.91 9
80 1.073 1.058 1.041 91.95 10

100 1.045 1.041 1.030 73.79 9

20 1.173 1.157 1.078 40.01 9
40 1.093 1.084 1.022 30.69 10

10% 70% 10% 10% 60 1.062 1.062 1.025 46.72 10
80 1.067 1.063 1.028 71.42 8

100 1.062 1.062 1.030 83.75 10

20 1.014 1.007 1.000 0.01 10
40 1.022 1.019 1.014 40.01 10

10% 10% 70% 10% 60 1.018 1.016 1.009 40.04 10
80 1.020 1.016 1.014 80.07 10

100 1.018 1.015 1.009 50.03 10

20 1.137 1.137 1.137 50.01 7
40 1.145 1.089 1.075 50.01 9

10% 10% 10% 70% 60 1.146 1.119 1.084 80.17 9
80 1.147 1.131 1.088 96.15 9

100 1.137 1.104 1.073 100.09 10

Chapter 4

Two-Dimensional Bin Packing: the
2BP|R|G case

4.1 Introduction

In1 two-dimensional geometrical packing problems we are given a set of n rectangular items,
each characterized by width wj and height hj (j = 1, . . . , n), which must be cut from standard-
ized stock items. Two main versions of the problem have been considered in the literature:
strip packing and bin packing. In the Two-Dimensional Strip Packing Problem we have a
unique stock item (strip) having width W and infinite height: the objective is to determine
a cutting pattern that provides all the items, such that the height to which the strip is filled
is minimized. In the Two-Dimensional Bin Packing Problem we have an unlimited number
of identical rectangular stock items (bins) having width W and height H: the objective is to
determine cutting patterns that provide all the items, such that the total number of required
bins is minimized.

Both problems are strongly NP-hard, as can be easily seen by transformation from the
well-known (one-dimensional) Bin Packing Problem, in which a set of n positive values wj

has to be partitioned into the minimum number of subsets so that the total value in each
subset does not exceed a given bin capacity W .

Two-dimensional packing problems have a number of important applications in industrial
cutting (of glass, wood, textiles, paper, ...), and in logistics and transportation (packing on
floors, shelves, truck beds, ...). According to specific applications, for both versions of the
problem several variants are possible. For example, the items may have fixed orientation,
i.e., they cannot be rotated, or rotation (usually by 90 degrees) may be allowed. Moreover,
in cutting problems it is frequently required that the patterns be such that the items can
be obtained by sequential edge-to-edge cuts parallel to the edges of the bin or of the strip
(guillotine cutting).

In this chapter we consider the two-dimensional bin packing problem, with 90 degrees
rotation allowed and guillotine cutting constraint: the problem will be denoted by 2BP|R|G.
A practical situation where this type of problem is relevant arises in the glass industry: the

1The results of this chapter appear in: A. Lodi, S. Martello, D. Vigo, “Neighborhood Search Algorithm for
the Guillotine Non-Oriented Two-Dimensional Bin Packing Problem”, in S. Voss, S. Martello, I.H. Osman, C.
Roucairol, Eds., Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer
Academic Publishers, Boston, 1998, 125–139, [107].

31

32 CHAPTER 4. TWO-DIMENSIONAL BIN PACKING: THE 2BP|R|G CASE

cutting machines can only operate in guillotine mode, and the orientation of the items in a
pattern is inessential (if the glass is not decorated). Real world numerical instances of this
type of problem are included in the computational experiments of Section 4.4.

Two-dimensional packing problems received considerable attention in the literature, al-
though, to our knowledge, no work has been devoted explicitly to 2BP|R|G. For the two-
dimensional bin packing problem in the case where no rotation is allowed and the guillotine
constraint is not imposed, Martello and Vigo [119] presented lower bounds and an exact
branch-and-bound algorithm, while Chung, Garey and Johnson [42] and Frenk and Galam-
bos [76] gave approximation algorithms with worst case analysis. Berkey and Wang [23] and
Lodi, Martello and Vigo [108] proposed heuristic algorithms for the variant in which rotation
is not allowed but the guillotine constraint is satisfied. Bengtsson [21] and El-Bouri, Pop-
plewell, Balakrishnan and Alfa [65] gave heuristic algorithms for the case where rotation is
allowed but the guillotine constraint is not imposed. Approximation algorithms for the two-
dimensional strip packing problem were studied by Baker, Coffman and Rivest [7], Coffman,
Garey, Johnson and Tarjan [43], Bartholdi, Vande Vate and Zhang [16], Coffman and Shor
[44] and Golan [83]. An annotated bibliography on the cutting and packing area has been
presented by Dyckhoff, Scheithauer and Terno ([64]).

In Section 4.2 we show how some classical greedy algorithms given in the literature for
the case where no rotation is allowed can be adapted to our problem; in addition, an original
heuristic algorithm is presented. In Section 4.3 we give a tabu search approach to 2BP|R|G,
obtained by improving the basic scheme used in [108] and by incorporating original features.
An extensive computational testing is presented in Section 4.4, showing the effectiveness of
the proposed algorithms.

We assume in the following, without loss of generality, that all input data are positive
integers satisfying min{wj , hj} ≤ min{W,H} and max{wj , hj} ≤ max{W,H} for j = 1, . . . , n.

4.2 Greedy heuristics

Berkey and Wang [23] experimentally compared simple and effective algorithms, satisfying
the guillotine constraint, for the case where no rotation is allowed: good average results were
obtained by the algorithms called FFF and FBS. Both algorithms start by sorting the items
according to nonincreasing height, and pack the items in rows forming levels (shelves). The
first shelf is the bottom of a bin. Pieces are packed from left to right with their bottoms at
the selected level. When a new level is needed, it is created along the horizontal line which
coincides with the top of the first (i.e., tallest) item packed in the lower level.

In the Finite First Fit (FFF) algorithm the bins are directly stratified into shelves. The
next item j is packed left-justified into the lower level of the first bin where it fits. If no shelf
can accommodate j, then a new level is created in the first suitable bin. If no bin has enough
vertical space for a new level accommodating j, then a new bin is created and initialized with
j.

The Finite Best Strip (FBS) algorithm works in two phases. First, a strip of width W and
infinite height is stratified into shelves according to the following strategy. The next item j
is packed into the feasible shelf having the minimum residual horizontal space; if no shelf can
accommodate j a new shelf is created. Let h1, . . . , hm be the heights of the resulting shelves.
In the second phase, the shelves are combined into finite bins using the well-known Best-Fit
Decreasing algorithm for a one-dimensional bin packing instance consisting of the m values

4.2. GREEDY HEURISTICS 33

hj with bin capacity H.
As previously mentioned, FFF and FBS produce patterns satisfying the guillotine con-

straint: a sequence of horizontal cuts separates the shelves and, for each shelf, a sequence
of vertical and horizontal cuts produces the items. We have modified such algorithms so as
to handle the 90 degrees item rotations: we call these modified versions FFFRG and FBSRG.
We assume, without loss of generality, that W ≥ H; we will say that an item is packed hori-
zontally (resp. vertically) if its longest (resp. shortest) edge is parallel to the bottom of the
shelf.

Both modified algorithms start by sorting the items according to nonincreasing value of
the shortest edge. Algorithm FFFRG is like FFF, with the following extensions:

(i) an item that initializes a shelf is always horizontally packed, so as to keep as low as
possible the vertical occupancy of the corresponding bin;

(ii) when an item is packed into an existing shelf, if both orientations are feasible then the
vertical one is selected, so as to keep as low as possible the horizontal occupancy of the
shelf.

Analogously, the extension of FBS to FBSRG is obtained by modifying the evaluation of a
possible placement: if both orientations of the item are feasible then the vertical one is used,
so as to maximize the probability of additional packings on the shelf.

We now introduce a new heuristic for 2BP|R|G, which works as FBSRG, in two phases
but differs from it in the way the items are packed into the shelves. A shelf is initialized by
placing an item with its left edge touching the left edge of the strip, into the lowest admissible
position: we call floor (resp. ceiling) of the shelf the horizontal line touched by the bottom
(resp. top) edge of such item. Algorithms FFFRG and FBSRG pack the items exclusively
on the floor. Our algorithm Floor-Ceiling (FCRG), instead, packs the items into the shelves
either with their bottom edge touching the floor or with their top edge touching the ceiling,
in such a way that guillotine cutting of the items allocated to the shelves is possible. On the
floor the items are packed from left to right, while on the ceiling they are packed from right
to left in an attempt to fill the space over the lowest items packed on the floor. A item packed
on the floor has always its left edge touching the right edge of another item packed on the
floor, while items packed on the ceiling may be separated by empty spaces in order to allow
guillotine packing.

The right-end of the shelf coincides with the right edge of the strip, while its left-end is the
right edge of the rightmost item packed on the floor and such that the vertical space between
the top edge of the item and the ceiling is too small to allocate any of the items that are not
yet packed. Figure 4.1 illustrates the definitions and properties above.

We say that an item is floor-feasible for a given shelf if there is room for packing it (in
either orientation) on the floor, at the right of the rightmost item already packed on the floor.
A shelf is called ceiling-initialized if there are items packed on its ceiling. Ceiling initialization
is always performed by packing an item that is not floor-feasible: the item is packed with
its right edge touching the right edge of the strip (see item number 5 in Figure 4.1), in an
orientation chosen according to rules given below.

A item is ceiling-feasible for a given shelf if either it can initialize the ceiling (see above)
or it can be packed on the ceiling, in either orientation, to the left of the items already packed
on the ceiling and in such a way that guillotine cutting is possible. To this end, first observe

34 CHAPTER 4. TWO-DIMENSIONAL BIN PACKING: THE 2BP|R|G CASE

1 2 3
4

58

7

6
¾

¾
66

left-end right-end

ceiling

floor

Figure 4.1: A shelf pattern produced by algorithm FCRG.

that a series of horizontal edge-to-edge cuts along the ceilings separates the shelves. Given a
shelf:

(i) a series of vertical cuts obviously separates the items packed on the floor;

(ii) when an item j∗ initializes the ceiling there is a horizontal cut C∗ along its lower edge
and extending from the right edge of the strip to the vertical cut C that separates (see
(i)) the leftmost item packed on the floor which occupies an horizontal strip portion in
common with j∗: hence no further item will be packed so as to cross C∗;

(iii) each item packed on the ceiling to the left of C is placed in the rightmost position where
it fits without crossing any line extending the vertical edge of an item packed on the
floor (see Figure 4.2).

1 2 3 4

8

7

6

C3 C4 C5 = C

C6 = C∗

C2

C1

5 = j∗

Figure 4.2: Guillotine-feasible cutting pattern for the solution of Figure 4.1.

The algorithm can thus be outlined as follows. (The term “best”, used to select the shelf,
will be defined later.)

Algorithm FCRG

1. sort and renumber the items according to nonincreasing value of the
shortest edge;

4.3. TABU-SEARCH 35

2. for j := 1 to n do
if j is ceiling-feasible for some shelf then

pack j on the ceiling of the best shelf
else

if j is floor-feasible for some shelf then
pack j on the floor of the best shelf

else
initialize a new shelf by horizontally packing j;

3. use a Best-Fit Decreasing 1-dimensional bin packing algorithm to pack the
resulting shelves into finite bins.

(Note that, once the ceiling has been initialized, we always prefer ceiling packings, since a good
filling of the upper portions of the shelves tends to delay the initialization of new shelves).

When both orientations are feasible, the item is always packed in the orientation which
favors the possibility of future packings within the considered shelf. To this end, for ceil-
ing placements we always select the vertical orientation, since this maximizes the residual
horizontal space in the upper part of the shelf. For floor placements, a strategy depending
on the current status of the shelf is adopted: if the shelf is ceiling-initialized, the vertical
orientation is selected, since this maximizes the residual horizontal space in the lower part of
the shelf; otherwise, the horizontal orientation is selected, thus increasing the possibility of
future ceiling placements.

In order to decide which is the best shelf, we use a score defined by the residual horizontal
space that would be left by such placing. More precisely, for a floor (resp. ceiling) placing the
score is the distance between the right (resp. left) edge of the item and the right-end (resp.
left-end) of the shelf: the best solution is then the one corresponding to the minimum score,
in the spirit of the best-fit rule for the 1-dimensional bin packing problem.

4.3 Tabu-Search

In this section we present a tabu search approach algorithm for 2BP|R|G. The reader is
referred to [82] for a general introduction to tabu search and to basic definitions.

Our algorithm combines the strategy adopted in [108] (based on a main loop where, at
each iteration, two neighborhoods are explored) and an original restart policy (that can be
viewed as a third neighborhood). The general structure of the algorithm is outlined below,
while a detailed description of the various components is given in the following sections.

Algorithm TS
1. initialize the tabu lists to empty and determine a starting feasible solution;
2. select a bin b;

comment: first neighborhood;
for each non-tabu item j currently packed into b do

try to move j to a different bin i∗;
comment: the tabu list stores the recently moved items;

if bin b is empty then go to 2
else

begin

36 CHAPTER 4. TWO-DIMENSIONAL BIN PACKING: THE 2BP|R|G CASE

3. comment: second neighborhood;
for each item j currently packed into b do

try to re-combine the contents of two bins h,k (6= b) so that one of them
can accommodate j, and associate a score with such move;

if restart conditions do not apply then
perform the non-tabu move with the highest score, store such score
in the second tabu list and go to 2

else
if stopping conditions do not apply then

4. perform a restart action and go to 1
end.

In the next sections we describe in detail the various steps of algorithm TS.

4.3.1 Initialization and basic definitions

The algorithm starts by applying the heuristics of the previous section and computing the
continuous lower bound

LB =

⌈∑n
j=1 wjhj

WH

⌉
(4.1)

Let UB denote the value of the best heuristic solution found. If UB > LB the tabu search
algorithm is initialized with the solution produced by algorithm FCRG. Let z denote the
number of bins used in the current solution. The algorithm accepts moves that either decrease
z or re-distribute items among the z bins; moves increasing z are never accepted. Restart
strategies are provided in order to have diversification and intensification during the search
(see below). The search terminates if a feasible solution of value LB is determined, or if a
prefixed maximum number of iterations (or a time limit) is reached.

Both neighborhoods consist of moves involving the items of a particular bin, which is
called the weakest bin and is defined as follows. Let Si denote the set of items that, in the
current solution, are packed into bin i (i = 1, . . . , z). The weakest bin is then defined as the
one which minimizes the quantity

ϕ(i) = α

∑
j∈Si

wjhj

WH
− |Si|

n
(4.2)

that gives an estimate of the difficulty of emptying bin i: a weak bin packs a small fraction
of the available area (first term) using a relatively high number of items (second term); α is
a prefixed nonnegative parameter measuring the relative weight of the two terms. Given a
subset of items S, let FCRG(S) denote the number of W ×H bins used by algorithm FCRG

to pack all the items of S.

4.3.2 First neighborhood

Let b be either the weakest bin determined through (4.2), or, in case of restart (see Section
4.3.4), a bin received on input. In the first neighborhood we consider, in turn, each non-tabu
item j ∈ Sb and we compute FCRG({j} ∪ Si) for all bins i 6= b: whenever a bin i∗ is found
for which FCRG({j} ∪ Si∗) = 1, item j is moved into bin i∗, it is inserted into tabu-list T1,

4.3. TABU-SEARCH 37

and the next item of b is considered. The following aspiration criterion is adopted: if |Sb| = 1
then the search is performed even if item j is tabu, since the possible move would improve z.
When a series of moves empties the weakest bin, z is decreased by one, the new weakest bin
is determined and the search continues.

As soon as no move is possible, the search explores the second neighborhood. Tabu list
T1, which stores the recently moved items, is preserved for the next exploration of the first
neighborhood.

4.3.3 Second neighborhood

In the second neighborhood, for each item j ∈ Sb and for each pair of bins h and k (h, k 6= b),
we compute FC = FCRG({j} ∪ Sh ∪ Sk). Four cases may occur:

• if FC = 1 then z may be decreased by one or two units, so the move is immediately
performed and the exploration is resumed from the first neighborhood;

• if FC = 2 then item j is removed from bin b and two subcases are considered:

– if |Sb| = 0 then z is decreased by one and the exploration is resumed from the first
neighborhood;

– if |Sb| > 0 then the new weakest bin b is determined among b, h, and k and the
search continues with the second neighborhood if b ≡ b, or with the first neighbor-
hood, otherwise;

• if FC = 3 then let Q be the set of items packed by FCRG into the bin with minimum
ϕ(i) among the three resulting bins: we compute FC = FCRG(Q ∪ (Sb \ {j})) and
consider two subcases:

– if FC > 1 then the move is not accepted since it would increase z;

– if FC = 1 then we assign to the move a score defined by the ϕ value of the resulting
packing of the items in Q∪ (Sb \ {j}): if this score is not tabu, the best acceptable
move not improving z is possibly updated;

• if FC > 3 then the move is rejected since it would increase z.

At the end of the exploration the best non-improving acceptable move (if any) is per-
formed, its score is stored in the tabu list T2, and the search continues with the first neigh-
borhood. For both tabu lists we used static tabu tenures of length τ1 and τ2, respectively.

4.3.4 Restart (third neighborhood)

The algorithm performs three different types of restart actions (denoted by R1, R2 and R3)
obtained through a combination of diversification and intensification strategies. Some of these
actions imply to fix a bin, i.e., to continue the search over a reduced instance obtained by
removing the items currently packed into the fixed bins and assuming that the corresponding
patterns constitute an imposed partial solution:

• R1: let b be the current weakest bin, define b through ϕ(b) = min{ϕ(i) : ϕ(i) ≥ ϕ(b), i 6=
b} (see 3.1) and restart from the first neighborhood giving b on input;

38 CHAPTER 4. TWO-DIMENSIONAL BIN PACKING: THE 2BP|R|G CASE

• R2: let P be the set of items currently packed into the bz/2c less weak non fixed bins
(i.e., non fixed bins which, in the current solution, have the highest ϕ values), re-pack
each item of P into a separate bin and restart from the first neighborhood. In this way
the current solution is increased by |P | − bz/2c;

• R3: let b̃ be the less weak non fixed bin, fix it and perform a restart of type R2.

These restart actions are performed in two different situations (called S1 and S2), arising
at the end of the exploration of the second neighborhood:

• S1 = no acceptable move was found, i.e., some of the moves are tabu and the others
would produce an increase of the value of z;

• S2 = z was not improved during the last µ moves.

In other words, the term ”restart conditions” in the if statement of Step 3 of algorithm TS
means: S1 or S2.

The restart action of Step 4 is executed as follows. Let f be the number of currently fixed
bins and r be the number of restarts of type R1 recently performed. Initially, f and r take
value 0; t denotes the computing time spent so far; R and T are prefixed parameters:

. . .
4. if S1 and r < R then

perform a restart of type R1 and set r := r + 1
else

begin
set r := 0;
if t < T then

perform a restart of type R2
else

if f < bz/2c then
set f := f + 1 and perform a restart of type R3

else
reinsert into the instance all the items packed into the fixed bins,
set f := 0 and perform a restart of type R2

end;
. . .

The restart of type R1 can be seen as a combination of intensification and diversification,
that of type R2 as a pure diversification and that of type R3 as an evolution of R2 obtained
by adding an intensification strategy. In particular, we follow the idea that after T time units
the current solution is becoming more and more well-structured, so we try to speed up to the
convergence to a local optimum.

The fixing strategy adopted in the restart of type R3 can be seen both as the definition of
a third neighborhood (fixed bins are tabu) and as a cooling strategy according to a simulated
annealing approach (in some sense we decrease the probability that bad moves are accepted).

4.4. COMPUTATIONAL EXPERIMENTS 39

4.4 Computational experiments

We coded the tabu search algorithm in FORTRAN 77 and run it on a Silicon Graphics INDY
R10000sc 195Mhz on test instances from the literature. We assigned for the solution of each
instance a time limit L of 100 CPU seconds.

We selected, through a series of preliminary tests, the following values for the parameters:
α = 5.0, τ1 = 3, τ2 = 5, R = 5, T = L/5 and µ = 50.

Table 4.1 gives the results obtained on single instances involving up to 164 items. Problems
beng1–beng8 are the instances of Bengtsson [21]. The remaining problems are instances
proposed in the literature for other two-dimensional cutting problems and transformed into
2BP|R|G instances by using the relative bin and item sizes (if the demand of an item j is
dj , we consider dj different items with height hj and width wj): problems cgcut1–cgcut3
are described in Christofides and Whitlock [41], while problems gcut1–gcut13 and ngcut1–
ngcut12 are described in Beasley [17] and [18], respectively. In the last four lines of Table
4.1 we report the results with four new instances, glass1–glass4, of a real-world 2BP|R|G
problem arising in a glass factory (the instances are available on request from the first author).

For each problem the table gives the problem name, the number of items, the value of
LB, the value of the best solution found by FFFRG and FBSRG (indicated in tables with
UBF), the value of the solution found by FCRG, the value TS found from tabu search and
the computing time, expressed in seconds, required by the tabu search. An asterisk indicates
the instances for which it could be proved that the solution found by tabu search is optimal
(by comparison with LB and other lower bounds studied in Dell’Amico, Martello and Vigo
[56]).

In Table 4.2 we present the results for six classes of instances randomly generated as in
Berkey and Wang [23]. Each class is characterized by a different size of the bins and by the
ranges in which the item dimensions were uniformly randomly generated. The table gives the
intervals in which the sizes of the items were uniformly randomly generated, the (fixed) bin
sizes, the number of items, the average ratios of the solutions obtained by greedy heuristics
and by TS with respect to the value of LB, the average tabu search computing time, expressed
in seconds, and the number of instances for which it can be proved that the solution found by
tabu search is optimal. The entries in each row are average values computed over ten random
problem instances.

In Table 4.3 we consider randomly generated instances described in [119] having a different
mix of items. Four types of items were considered, each defined by different intervals in which
the sizes were uniformly randomly generated (see Table 4.3). Each class is characterized by
a different percentage of items generated for each type. The table gives, for each pair of size
intervals, the percentage of items that were uniformly randomly generated in such interval
(the bin size is always 100× 100), plus the same information as in Table 4.2.

Tables 4.1, 4.2 and 4.3 show a satisfactory behavior both of the new heuristic and of the
tabu search algorithm. With only a few exceptions (four times over a total of 540 instances),
the solution found by FCRG dominates the best solution found by FFFRG and FBSRG. The
tabu search algorithm finds in many cases the optimal solution or a solution of value close
to that of the lower bound. For the third class of Table 4.3 the high value of the ratios are
only due to a very poor behavior of the continuous lower bound: indeed the solutions found
are often optimal (see the last column) or very close to the optimum (as could be proved by
comparison with the improved lower bounds presented in [56]).

The effectiveness of the tabu search approach is due to the efficient combination of the

40 CHAPTER 4. TWO-DIMENSIONAL BIN PACKING: THE 2BP|R|G CASE

Table 4.1: Results on problem instances from the literature and on four new real-world
instances arising in glass industry. Time limit of 100 CPU seconds on a Silicon Graphics
INDY R10000sc.

Name n LB UBF FCRG TS time
beng1 20 3 4 4 4 100.01
beng2 40 6 7 7 7 100.01
beng3 60 9 9 9 9 * 0.01
beng4 80 11 12 12 11 * 3.70
beng5 100 14 14 14 14 * 0.01
beng6 40 2 2 2 2 * 0.01
beng7 80 3 3 3 3 * 0.01
beng8 120 5 5 5 5 * 0.01

cgcut1 16 2 2 2 2 * 0.01
cgcut2 23 2 3 2 2 * 0.01
cgcut3 62 16 23 24 24 100.01

gcut1 10 4 4 4 4 * 100.01
gcut2 20 5 7 7 7 100.01
gcut3 30 7 9 9 8 100.01
gcut4 50 12 15 15 14 100.01
gcut5 10 3 3 3 3 * 0.01
gcut6 20 5 8 8 8 100.01
gcut7 30 9 11 11 11 100.01
gcut8 50 12 14 14 14 100.02
gcut9 10 3 3 3 3 * 0.01
gcut10 20 6 8 8 8 100.01
gcut11 30 7 10 10 9 100.01
gcut12 50 13 17 17 16 100.01
gcut13 32 2 2 2 2 * 0.01

ngcut1 10 2 3 3 3 100.01
ngcut2 17 3 4 4 4 100.01
ngcut3 21 3 4 4 4 100.01
ngcut4 7 2 2 2 2 * 0.01
ngcut5 14 3 4 4 4 100.01
ngcut6 15 2 3 3 3 100.01
ngcut7 8 1 1 1 1 * 0.01
ngcut8 13 2 2 2 2 * 0.01
ngcut9 18 3 4 4 4 100.01
ngcut10 13 2 3 3 3 0.01
ngcut11 15 2 3 3 3 100.01
ngcut12 22 3 4 4 4 100.01

glass1 82 8 9 9 8 * 3.75
glass2 112 11 13 13 12 100.02
glass3 146 15 19 18 17 100.07
glass4 164 9 11 11 11 100.28

4.4. COMPUTATIONAL EXPERIMENTS 41

Table 4.2: Results on the random problem instances proposed by Berkey and Wang. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R10000sc.

items bins n UBF

LB
FCRG

LB
TS
LB time #opt

20 1.06 1.06 1.06 40.00 6
40 1.12 1.11 1.09 70.41 3

[1, 10]× [1, 10] 10×10 60 1.10 1.10 1.09 92.76 1
80 1.10 1.10 1.08 91.08 1

100 1.08 1.07 1.05 72.31 0
20 1.00 1.00 1.00 0.01 10
40 1.10 1.10 1.10 0.01 9

[1, 10]× [1, 10] 30×30 60 1.10 1.05 1.05 10.00 9
80 1.07 1.03 1.03 10.00 9

100 1.03 1.03 1.03 10.00 9
20 1.25 1.22 1.16 50.02 5
40 1.21 1.21 1.20 100.01 0

[1, 35]× [1, 35] 40×40 60 1.18 1.20 1.12 100.02 0
80 1.16 1.16 1.11 100.03 0

100 1.16 1.15 1.11 99.29 0
20 1.00 1.00 1.00 0.01 10
40 1.10 1.00 1.00 0.01 10

[1, 35]× [1, 35] 100×100 60 1.10 1.10 1.10 20.01 8
80 1.10 1.10 1.10 30.00 7

100 1.07 1.07 1.07 20.01 8
20 1.12 1.12 1.11 30.00 7
40 1.18 1.17 1.17 70.01 3

[1, 100]× [1, 100] 100×100 60 1.16 1.16 1.14 100.02 0
80 1.15 1.16 1.15 100.03 0

100 1.13 1.13 1.10 100.04 0
20 1.00 1.00 1.00 0.01 10
40 1.40 1.40 1.40 0.01 6

[1, 100]× [1, 100] 300×300 60 1.05 1.05 1.05 10.00 9
80 1.00 1.00 1.00 0.01 10

100 1.07 1.07 1.07 20.01 8

42 CHAPTER 4. TWO-DIMENSIONAL BIN PACKING: THE 2BP|R|G CASE

Table 4.3: Results on the random problem instances proposed by Martello and Vigo. Time
limit of 100 CPU seconds on a Silicon Graphics INDY R10000sc.

hj ∈ [1, H
2] [23H,H] [H

2 ,H] [1, H
2]

wj ∈ [23W,W] [1, W
2] [W

2 ,W] [1, W
2] n UBF

LB
FCRG

LB
TS
LB time #opt

20 1.19 1.19 1.17 80.01 2
40 1.17 1.17 1.17 100.02 0

70% 10% 10% 10% 60 1.18 1.18 1.16 100.04 0
80 1.17 1.17 1.16 100.06 0

100 1.17 1.17 1.16 100.07 0
20 1.17 1.17 1.17 62.05 3
40 1.19 1.19 1.19 100.02 0

10% 70% 10% 10% 60 1.18 1.18 1.17 100.03 0
80 1.16 1.16 1.15 100.07 0

100 1.17 1.17 1.17 100.07 0
20 1.52 1.52 1.52 0.01 10
40 1.52 1.52 1.52 30.01 7

10% 10% 70% 10% 60 1.58 1.58 1.58 30.01 7
80 1.54 1.54 1.54 50.04 5

100 1.54 1.54 1.54 50.02 5
20 1.15 1.15 1.15 40.00 6
40 1.09 1.09 1.06 40.03 6

10% 10% 10% 70% 60 1.09 1.09 1.07 63.89 4
80 1.07 1.06 1.06 80.03 2

100 1.07 1.07 1.06 89.36 1

strategies described in Section 4.3. In particular, preliminary experiments to test the rele-
vance of each component of TS showed that the absence of the second or third neighborhood
dramatically decreases the performance of the algorithm. The absence of the first neighbor-
hood, instead, is not dramatic since its moves can be performed by the second neighborhood.
However, in this case the main effect is a considerable reduction of the speed of the algorithm.
We also tried to use the algorithm as a greedy combination of local searches (i.e., with empty
tabu lists) but the results were not competitive with those of TS.

The values we adopted for the parameters (see above) turned out to be robust with
respect to all our computational experiments. In order to evaluate the sensitivity of the
results with respect to changes of these values, we also tried to individually modify the
used values by ±20%. These experiments showed, e.g., that it is convenient to always have
τ1 < τ2 and, in particular, the chosen value for τ1 (τ1 = 3) has to be considered as an upper
bound in order to guarantee an efficient exploration of the first neighborhood. Anyway, as
usual in metaheuristics, the goal of tuning is to provide at each step a sufficiently effective
intensification before any diversification. Hence, the more sensitive parameters are those
providing the re-start actions and our suggestion, if a problem with different characteristics
is given, is to modify the parameters in order to identify such border between intensification
and diversification.

Chapter 5

A Unified Tabu Search for 2BP|*|*

5.1 Introduction

Informally1 speaking, a two-dimensional bin packing problem (2BP) consists of allocating,
without overlapping, a given set of “small” rectangles (items) to a minimum number of “large”
identical rectangles (bins). In general, it is additionally required that the items are packed with
their edges parallel to those of the bins. This basic problem has many real-world applications:
cutting of standardized stock units in wood or glass industries, packing on shelves or truck
beds in transportation and warehousing, paging of articles in newspapers, to mention just a
few.

According to the specific application, several variants can arise, but in most cases the
additional requirements are the following:

1) Orientation. The items may either have a fixed orientation or they can be rotated (by
90◦).

2) Guillotine cuts. It may or not be imposed that the items are obtained through a
sequence of edge-to-edge cuts parallel to the edges of the bin.

The guillotine constraint is frequently present in cutting problems, due to technological char-
acteristics of automated cutting machines, whereas it is generally not imposed in packing
applications. Rotation is not allowed in newspaper paging or when the items to be cut are
decorated or corrugated, whereas orientation is free in the case of plain materials and in most
packing contexts.

In this chapter we propose a simple typology for the class of bin packing problems defined
by the four cases arising from the above two requirements. For each case, we present a new
effective heuristic algorithm. We then introduce a unified metaheuristic framework for the
whole class, which is adapted to a specific problem by simply changing the heuristic used to
explore the neighborhood.

Formally, we have n items, and each item j is defined by a width wj and a height hj

(j = 1, . . . , n). An unlimited number of identical bins is available, each having width W
and height H. We want to pack all items into the minimum number of bins, in such a way

1The results of this chapter appear in: A. Lodi, S. Martello, D. Vigo, “Heuristic and Meta-Heuristic
Approaches for a Class of Two-Dimensional Bin Packing Problems”, INFORMS Journal on Computing 11,
345–357, 1999, [109].

43

44 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

that no two items overlap and the edges of the items are parallel to those of the bins. We
assume, without loss of generality, that all input data are positive integers. We consider four
problems:

2BP|O|G: the items are oriented (O), i.e., they cannot be rotated, and guillotine cutting
(G) is required;

2BP|R|G: the items may be rotated by 90◦ (R) and guillotine cutting is required;

2BP|O|F: the items are oriented and cutting is free (F);

2BP|R|F: the items may be rotated by 90◦ and cutting is free.

Although not all four variants are equally relevant in industrial contexts, a number of spe-
cific applications can be found in the bin packing or cutting stock literature. For example,
2BP|O|G has to be solved in the crepe-rubber cutting described by Schneider [143]; 2BP|R|G
is related to the cutting stock problems arising in the steel industry, discussed by Vasko, Wolf
and Stott [148]; 2BP|O|F models the problem of placing advertisements and other material
in newspapers and yellow pages, studied by Lagus, Karanta and Yld-Jddski [102]; several
applications of 2BP|R|F are mentioned by Bengtsson [21]. In the following, an asterisk will
be used to denote both variants of a specific field. In order to ensure feasibility, we assume ,
without loss of generality, that:

i) hj ≤ H and wj ≤ W (j = 1, . . . , n) for 2BP|O|∗;
ii) min{wj , hj} ≤ min{W,H} and max{wj , hj} ≤ max{W,H} (j = 1, . . . n) for 2BP|R|∗.

In the well-known one-dimensional bin packing problem (1BP) one is required to partition n
given elements having associated values h1, . . . , hn into the minimum number of subsets so
that the sum of the values in each subset does not exceed a prefixed capacity H. Given any
instance of this problem, consider the instance of the two-dimensional bin packing problem
defined by n items j having height hj and width wj = 1 (j = 1, . . . , n), with bin height H
and bin width W = 1. It is then clear that any of the four variants described above will solve
the one-dimensional instance. It follows that our problems are strongly NP-hard, since it is
known that the one-dimensional bin packing problem is such.

It is worth mentioning that most of the two-dimensional bin packing problems considered
in the literature fall into the above cases. Theoretical contributions usually concern 2BP|O|F:
Chung, Garey and Johnson [42], and Frenk and Galambos [76] have proposed upper bounds
with asymptotic worst-case performance guarantee, whereas Martello and Vigo [119] have
analyzed lower bounds and presented an exact branch-and-bound approach. The remaining
literature is mostly devoted to applications and heuristics concerning one of the four cases.
For 2BP|O|F, Berkey and Wang [23] have presented extensions of classical one-dimensional
bin packing heuristics. Other heuristics have been proposed by Bengtsson [21] and El-Bouri,
Popplewell, Balakrishnan and Alfa [65] for 2BP|R|F, by Lodi, Martello and Vigo [107] for
2BP|R|G, by Lodi, Martello and Vigo [108] for 2BP|O|G. The reader is also referred to
Dyckhoff and Finke [63] and Dowsland and Dowsland [60] for general surveys on packing
problems, and to Dyckhoff, Scheithauer and Terno [64] for an annotated bibliography.

We finally observe that Dyckhoff [62] has proposed a typology for cutting and packing
problems, which is not however adequate in the present context, since all four problems we
treat are classified there as 2/V/I/M.

5.2. BASIC DEFINITIONS AND ALGORITHMS 45

In the next section we give basic definitions and briefly review relevant algorithms from
the literature. In Section 5.3 we present a new heuristic algorithm for each of the four variants
of 2BP. In Section 5.4 we introduce a general tabu search scheme which can virtually be used
for the solution of any 2BP. The average performance of both heuristic and metaheuristic
approaches is experimentally evaluated in Section 5.5.

5.2 Basic definitions and algorithms

Throughout this chapter, we denote an algorithm as AXY , where A is the algorithm’s name,
whereas X ∈ {O, R} and Y ∈ {G, F} indicate the specific problem solved by A. It is worth
mentioning that an algorithm for one of the four problems we consider may produce feasible
solutions for other problems too. For example, an algorithm AOG always produces solutions
which are feasible for all four problems, whereas an algorithm ARF may only be used for
2BP|R|F. The complete set of compatibilities between solutions and problems is depicted
in the graph of Figure 5.1: an arc (vi, vj) implies that a solution feasible for the variant
associated with vertex vi is also feasible for the variant associated with vertex vj .

-

R? ?-

2BP|R|G

2BP|R|F2BP|O|F

2BP|O|G

Figure 5.1: Compatibilities between solutions and problems.

Several heuristic algorithms from the literature obtain a feasible solution by packing the
items in rows forming levels, called shelves (see Coffman, Garey, Johnson and Tarjan [43]).
The first shelf of a bin coincides with its bottom; new shelves within the same bin are created
along the horizontal line which coincides with the top of the tallest item packed on the highest
shelf.

In many cases (see Chung, Garey and Johnson [42]) the solution is obtained in two phases,
the first of which consists in solving an associated problem, known as the Two-Dimensional
Strip Packing Problem. In this case one is given a single open-ended bin of width W and
infinite height (strip), and the objective is to pack all the items such that the height to which
the strip is filled is minimized. In the second phase the packed strip is subdivided into finite
bins of height H. The strip packing is usually obtained through a shelf algorithm, so it is
clear that the second phase consists in solving a one-dimensional bin packing problem in
which each shelf is viewed as an element having value h̃j (j = 1, . . .) equal to the height of
the tallest item it contains.

The first approach of this type has been proposed and analyzed (from the worst-case
behavior point of view) by Chung, Garey and Johnson [42]. Effective heuristics have then been
derived by Berkey and Wang [23] for 2BP|O|G. Two of their algorithms, FBSOGand FFFOG,
will be frequently referred to throughout the chapter, and are briefly described hereafter.
Both initially sort the items by nonincreasing height.

46 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

Algorithm Finite Best Strip (FBSOG) starts by packing the strip according to a best-fit
decreasing policy: if the current item does not fit into any existing shelf, then a new shelf
is initialized for it; otherwise the current item is packed onto the shelf which minimizes the
residual horizontal space. In the second phase the resulting shelves are packed into finite
bins using the best-fit decreasing one-dimensional bin packing heuristic: the next (highest)
shelf is packed into the bin which minimizes the residual vertical capacity, or into a new
one, if no bin can accommodate it. The algorithm can be implemented so as to have time
complexity O(n log n). As an example, consider the instance shown in Figure 5.2: the strip
packing produced in the first phase is depicted in Figure 5.2 (i), and the corresponding finite
bin solution is given in Figure 5.2 (ii).

Algorithm Finite First Fit (FFFOG) directly packs the items into finite bins (skipping
the strip packing phase), according to a first-fit decreasing policy: the current item is packed
into the first bin which can accommodate it, or on the bottom of a new one, if no such
bin exists; in the former case the item is packed onto the first (lowest) existing shelf which
can accommodate it, or by initializing a new one if no such shelf exists. The algorithm has
time complexity O(n2). For the instance in Figure 5.2, algorithm FFFOG produces the same
solution as FBSOG.

It is easily seen that both algorithms above produce guillotine packings. A sequence of
horizontal cuts separates the shelves. For each shelf, a vertical cut produces the leftmost
item packed onto it, and a series of pairs (vertical cut, horizontal cut) produces the remaining
items.

Lodi, Martello and Vigo [107] have considered adaptations of FBSOG and FFFOG to the
case where rotation is allowed. We will say that an item is in horizontal (resp. vertical)
orientation if its longest (resp. shortest) edge is parallel to the bottom of the bin or the
strip. Both algorithms, denoted by FBSRG and FFFRG in the following, start by sorting the
items according to nonincreasing value of their shortest edge, and by horizontally orienting
them. Their iterative phase differs from that of FBSOG and FFFOG in two aspects: (a) when
the current item initializes a new shelf, it is always packed horizontally, so as to minimize
the height of the shelf; (b) when an existing shelf is considered for possible packing of the
current item, if both orientations are feasible, then the vertical one is always considered, so
as to favour future packings onto the same shelf. A different evolution of the two-phase shelf
algorithms is the following approach proposed by Lodi, Martello and Vigo [107] for 2BP|R|G.

Algorithm Floor-Ceiling (FCRG) initially sorts the items by nonincreasing value of their
shortest edge, and horizontally orients them. The main peculiarity is in the way the strip
shelves are packed in the first phase. The algorithms described so far place the items, from left
to right, with their bottom edge on the bottom line of the shelf (floor). Algorithm FCRG may,
in addition, place items, from right to left, with their top edge on the shelf ceiling (i.e., the
horizontal line defined by the top edge of the tallest item packed in the shelf). Whenever an
item is packed: (i) the rotated placing is also evaluated; (ii) the guillotine constraint is checked
and the item placing is possibly modified accordingly. In the second phase, the shelves are
packed into finite bins using an exact algorithm for the one-dimensional bin packing problem.

Note that the floor-ceiling approach allows for immediate adaptations to the three remain-
ing problems:

FCRF: drop step (ii);

FCOG: initially sort the items according to nonincreasing height, and drop step (i);

5.2. BASIC DEFINITIONS AND ALGORITHMS 47

65
4

3
1

2

7

H

W

1 2

5

1 2

5

3

6

3

6

74

7

4

1
3

4
2

5

6

7

(i) (ii) (iii)

Figure 5.2: A two-dimensional bin packing instance with n = 7, and (i) strip packing produced
by FBSOG; (ii) finite bin solution found by FBSOG and FFFOG; (iii) strip packing produced
by KPOG (Section 5.3.1).

FCOF: initially sort the items by nonincreasing height, and drop both steps (i) and (ii).

The computational experiments of Section 5.5.1 prove that the floor-ceiling algorithms
outperform, on average, the other approaches from the literature. Better specific algorithms
are introduced in the next sections.

We finally observe that the floor-ceiling algorithms above, as well as some of the new
algorithms presented in the following sections, require the solution of NP-hard problems,
hence their time complexity is non-polynomial. In practice, however, we always halted the
execution of the codes for the NP-hard problems after a prefixed (small) number of iterations.
The computational experiments showed that, in almost all cases, the optimal solution was
obtained before the limit was reached.

48 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

5.3 New Heuristic Algorithms

In this section we introduce new heuristic algorithms for each of the four variants of the
two-dimensional bin packing problem. The algorithms for 2BP| ∗ |G are directly derived from
the shelf approaches, by introducing a new way for packing the items on the shelves. The
algorithms for 2BP| ∗ |F are instead based on completely different ideas.

5.3.1 Oriented items, guillotine cutting (2BP|O|G)

In Section 5.2 we have seen algorithms FFFOG and FBSOG by Berkey and Wang [23], and the
floor-ceiling algorithm FCOG. In the present section we introduce a new two-phase algorithm
in which the shelf packings are determined by solving a series of knapsack problems. In the
0-1 knapsack problem (KP01) one is given n elements, each having an associated profit pj and
cost cj (j = 1, . . . , n), and a capacity q. The problem is to select a subset of elements whose
total cost does not exceed q, and whose total profit is a maximum.

The proposed algorithm, denoted by KPOG, at each iteration of the strip packing phase,
initializes a new shelf with the tallest unpacked item, say j∗. The shelf packing is then
completed by solving an instance of KP01 having an element for each unpacked item j, with
profit pj = wjhj and cost cj = wj , and capacity q = W −wj∗ . The algorithm can be outlined
as follows.

algorithm KPOG:
sort the items according to nonincreasing hj values;
comment: Phase 1;
repeat

open a new shelf in the strip by packing the first unpacked item;
solve the KP01 instance associated with the shelf;
pack the selected items onto the shelf

until all items are packed;
let h̃1, . . . , h̃s be the heights of the resulting shelves;
comment: Phase 2;
determine a finite bin solution by solving the 1BP instance having s elements,
with associated values h̃1, . . . , h̃s, and capacity H

end.

Consider again the example in Figure 5.2: the strip packing produced by KPOG is given
in Figure 5.2 (iii); the resulting finite bin solution clearly packs the first two shelves in two
bins, and the two remaining shelves in a third bin.

It is easily seen that the solutions produced by KPOG always fulfil the guillotine con-
straint. As previously mentioned, an efficient implementation was obtained by halting the
non-polynomial routines for the KP01 and 1BP instances after a prefixed (small) number of
iterations.

5.3.2 Non-oriented items, guillotine cutting (2BP|R|G)

For this problem, we have already seen in Section 5.2 the adaptations FFFRG and FBSRG

of the Berkey and Wang [23] algorithms, and the floor-ceiling algorithm FCRG by Lodi,

5.3. NEW HEURISTIC ALGORITHMS 49

Martello and Vigo [107]. We next describe a new effective algorithm, obtained by extending
the knapsack-based approach introduced in the previous section.

The following variations to KPOG are introduced in order to exploit the possibility of rotat-
ing the items. The items are initially sorted according to nonincreasing value of their shortest
edge, and horizontally oriented: this orientation is always used for the shelf initializations (as
in algorithm FCRG).

For each shelf, say of height h∗, the instance of KP01 includes all unpacked items, either
in vertical orientation, if no item size exceeds h∗, or in horizontal orientation, otherwise. Note
that the profit associated with each item is independent of the orientation, while the cost is
reduced whenever the vertical orientation is chosen. Therefore, this strategy ensures that the
optimal solution value of the resulting KP01 instance, i.e., the total area packed in the strip,
is maximum over the feasible item orientations.

Once a feasible finite bin solution has been obtained from the resulting shelves, as in
KPOG, an alternative solution is determined as follows. An instance of 2BP|O|G is built,
which has a pseudo-item for each of the previous shelves, with sizes given by the height of
the shelf and by the horizontal space actually used in it; for this pseudo-item, the vertical
orientation is chosen whenever possible, i.e., if its longest edge does not exceed the finite bin
height. Algorithm KPOG is then executed for the resulting instance, and the best of the two
final solutions is selected. The overall algorithm follows.

algorithm KPRG:
sort the items by nonincreasing min{wj , hj} values, and horizontally orient them;
comment: Phase 1;
repeat

open a new shelf in the strip by horizontally packing the first unpacked item;
appropriately orient each unpacked item;
solve the resulting KP01 instance, and pack the selected items

until all items are packed;
let w̃i and h̃i (i = 1, . . . , s) be the sizes of the s resulting shelves;
comment: Phase 2;
determine a finite bin solution by solving the associated 1BP instance;
let z1 be the solution value obtained for the 2BP|R|G instance;
comment: Phase 3;
define s pseudo-items having sizes w̃i, h̃i (i = 1, . . . , s);
vertically orient each pseudo-item i such that max{w̃i, h̃i} ≤ H;
execute algorithm KPOG for the 2BP|O|G instance induced by the pseudo-items;
let z2 be the resulting solution value, and set z := min{z1, z2}

end.

Once again consider the example in Figure 5.2, but interpret it as an instance of 2BP|R|G.
The items are sorted by KPRG as (3, 4, 1, 2, 5, 6, 7), with items 1 and 2 rotated by 90◦.
Figure 5.3 shows the solution found by each phase of KPRG. Note that the solution at the end
of Phase 2 still requires three bins, while the rotation of pseudo-items in Phase 3 produces
an optimal two-bin solution.

As to the time complexity of KPRG, the same considerations made for KPOG obviously
apply.

50 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

3 7

4
5

1

2 6 2 6 2 6

4
5

4
5

3 7 3
1

7

1

Phase 1 Phase 2 Phase 3

Figure 5.3: Solutions produced by Algorithm KPRG.

5.3.3 Oriented items, free cutting (2BP|O|F)

To our knowledge, no specific heuristic for this case has been presented in the literature. In
Section 5.2 we introduced the extension, FCOF, of the floor-ceiling approach. In this section
we propose a new effective heuristic, which no longer uses shelves, but exploits the feasibility
of non-guillotine patterns by packing the items into the bins in alternate directions, i.e., from
left to right, then from right to left in the lowest possible position, and so on.

More precisely, the Alternate Directions (ADOF) algorithm starts by sorting the items
according to nonincreasing heights, and by computing a lower bound L on the optimal solution
value. (A trivial bound is of course the continuous lower bound L0 = d∑n

j=1 wjhj/(WH)e;
better bounds can be found in Martello and Vigo [119].) Then, L bins are initialized by
packing on their bottoms a subset of the items, following a best-fit decreasing policy. The
remaining items are packed into bands according to the current direction associated with the
bin. Namely, if the direction is “from left to right” (resp. “from right to left”): (i) the first
item of the band is packed with its left (resp. right) edge touching the left (resp. right) edge of
the bin, in the lowest possible position; (ii) each subsequent item is packed with its left (resp.
right) edge touching the right (resp. left) edge of the previous item in the band, in the lowest
possible position. Observe that the items packed (from left to right) by the initialization step
constitute the first band of each bin. The direction associated with all the bins after this step
is then “from right to left”. In the iterative part of the algorithm, for each bin, we scan all
the unpacked items, possibly packing them in the current direction, and changing direction
when no further item can be packed in the current band. As soon as no item can be packed
in either direction, we move to the next bin, or we initialize a new empty bin. The algorithm

5.3. NEW HEURISTIC ALGORITHMS 51

can be formally stated as follows.

algorithm ADOF:
sort the items according to nonincreasing hj values;
comment: Phase 1;
compute a lower bound L on the optimal solution value, and open L empty bins;
for j := 1 to n do

if item j can be packed on the bottom of some bin then
pack j, left justified, on the bottom of the bin whose residual horizontal

space is a minimum;
comment: Phase 2;
i := 0;
repeat

i := i + 1, right to left := true, n fail := 0;
repeat

let j be the first unpacked item which can be packed in bin i
according to the current value of right to left, if any;
if j = nil then

n fail := n fail + 1, right to left := not right to left
else

pack j into bin i according to right to left, n fail := 0;
until n fail = 2

until all items are packed
end.

As an example, consider the instance of 12 items shown in Figure 5.4 (i). The bin sizes
are W = 10 and H = 8, and the item sizes are: w1 = 4, h1 = 6; w2 = h2 = 4; w3 = 8, h3 = 3;
w4 = w5 = w6 = 4, h4 = h5 = h6 = 3; w7 = 1, h7 = 3; w8 = 6, h8 = 2; w9 = 2, h9 = 2;
w10 = w11 = 9, h10 = h11 = 2; w12 = 3, h12 = 1. Lower bound L0 gives value 2. Figure
5.4 (ii) shows the solution found by ADOF. In Phase 1, items 1, 2, 3, 7 and 9 are packed.
In Phase 2, a band is added to the first bin (items {4, 8}), and two to the second one (items
{5, 6} and {10}). The third bin is then opened, and packs the remaining items, in two bands.
Note that the pattern obtained in the first bin is not guillotine cuttable.

Algorithm ADOF can be implemented so as to run in O(n3) time. Indeed, the heaviest
of the lower bounds described by Martello and Vigo [119] requires O(n3) time. The main
repeat-until loop considers O(n) bins, and, for each of them, O(n) items are examined in the
inner loop. For each item, its possible packing can be evaluated in O(n) time, since: (i) the
horizontal coordinate at which the item can be placed is unique (see above); (ii) the lowest
possible vertical coordinate can be determined in O(n) time by checking the interaction of
the item with at most O(n) items currently packed in the bin.

5.3.4 Non-oriented items, free cutting (2BP|R|F)

We have already seen in Section 5.2 the adaptation, FCRF, of the floor-ceiling approach.
In addition, algorithm ADOF of the previous section can easily be adapted to exploit the
possibility of rotating the items. The best computational results were however obtained by
the following completely different approach.

52 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

1
2

3 4,5,6 7
8 9 10,11

12

11

12

93

6 5

10

7
2

1

8

4

(i)

(ii)

W

H

Figure 5.4: (i) two-dimensional bin packing instance with n = 12; (ii) solution found by
Algorithm ADOF.

The algorithm, called Touching Perimeter (TPRF), starts by sorting the items according to
nonincreasing area (breaking ties by nonincreasing min{wj , hj} values), and by horizontally
orienting them. A lower bound L on the optimal solution value is then computed, and L
empty bins are initialized. (The continuous lower bound L0 defined in the previous section is
obviously valid for 2BP|R|F as well; better bounds are proposed by Dell’Amico, Martello and
Vigo [56].) The algorithm packs one item at a time, either in an existing bin, or by initializing
a new one. The first item packed in a bin is always placed in the bottom-left corner. Each
subsequent item is packed in a so-called normal position (see Christofides and Whitlock [41]),
i.e., with its bottom edge touching either the bottom of the bin or the top edge of another
item, and with its left edge touching either the left edge of the bin or the right edge of another
item.

The choice of the bin and of the packing position is done by evaluating a score, defined as
the percentage of the item perimeter which touches the bin and other items already packed.
This strategy favours patterns where the packed items do not “trap” small areas, which may
be hard to use for further placements. For each candidate packing position, the score is
evaluated twice, for the two item orientations (if both are feasible), and the highest value is
selected. Score ties are broken by choosing the bin having the maximum packed area. The
overall algorithm is as follows.

algorithm TPRF:
sort the items by nonincreasing wjhj values, and horizontally orient them;
comment: Phase 1;
compute a lower bound L on the optimal solution value, and open L empty bins;
comment: Phase 2;
for j := 1 to n do

score := 0;
for each normal packing position in an open bin do

let score1 and score2 be the scores associated with the two orientations;

5.4. A UNIFIED TABU SEARCH FRAMEWORK 53

score := max{score, score1, score2}
end for;
if score > 0 then

pack item j in the bin, position and orientation corresponding to score
else

open a new bin, and horizontally pack item j into it
end for

end.

Consider again the example in Figure 5.4, but interpret it as an instance of 2BP|R|F. The
items are sorted by TPRF as (1, 3, 10, 11, 2, 4, 5, 6, 8, 9, 7, 12), with items 1 and 7 rotated
by 90◦. Figure 5.5 shows the solution found by TPRF. Note that the pattern in the second
bin is not guillotine cuttable.

1 2

10

11

7

5

9
12

8

6

4

3

Figure 5.5: Solution found by Algorithm TPRF.

The iterative part of the algorithm requires O(n3) time since, for each item, the number
of normal positions is O(n) and, for each position, the touching perimeter is computed in
O(n) time.

5.4 A Unified Tabu Search Framework

A metaheuristic approach is an attractive way for guiding the operations of a subordinate
heuristic in order to obtain high-quality solutions to a difficult combinatorial optimization
problem. Among the different metaheuristic techniques, tabu search recently proved to be
particularly effective for two-dimensional bin packing problems (see, e.g., Lodi, Martello and
Vigo [107, 108]). The reader is referred to Aarts and Lenstra [2] and to Glover and Laguna [82]
for an introduction to metaheuristic and tabu search algorithms. In this section we introduce a
general tabu search scheme which can virtually be used for the solution of any two-dimensional
finite bin packing problem by simply changing the subordinate inner heuristic.

The main feature of our approach is the use of a unified parametric neighborhood, whose
size and structure are dynamically varied during the search. The scheme and the neighborhood
are independent of the specific problem to be solved. The peculiarities of the problem are
taken into account only in the choice of a specific deterministic algorithm to be used, within
the neighborhood search, for the evaluation of the moves. In the following, we will denote
by A such an algorithm, and by A(S) the solution value it produces when applied to the
(sub)instance of 2BP induced by item set S. In Section 5.5.2, the effectiveness of the proposed
scheme is computationally evaluated, on the four packing problems we are considering, using
for A the four heuristics introduced in the previous section, and algorithms FBSOG and FBSRG

described in Section 5.2.

54 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

Given a current solution, the neighborhood is searched through moves which consist in
modifying the solution by changing the packing of a subset of items S, in an attempt to empty
a specific target bin. To this end, subset S always includes one item, j, from the target bin
and the current contents of k other bins. The new packing for S is obtained by executing
algorithm A on S. In this way, parameter k defines the size and the structure of the current
neighborhood. Its value is automatically increased or decreased during the search, and the
algorithm maintains k distinct tabu lists. The target bin is selected as the one which is more
likely to be emptied by the moves. We adopted the same policy used in the specialized tabu
search algorithms presented by Lodi, Martello and Vigo [107, 108], i.e., the target bin t is
determined as the one minimizing, over all current bins i, the filling function

ϕ(Si) = α

∑
j∈Si

wjhj

WH
− |Si|

n
(5.1)

where Si denotes the set of items currently packed into bin i, and α is a pre-specified positive
weight (equal to 20 in our computational experiments). The resulting choice favours the
selection of target bins packing a small area, breaking ties by bins packing a relatively large
number of items.

The overall algorithm, 2BP TABU, is formally stated below. An initial incumbent solution
is obtained by executing algorithm A on the complete instance, while the initial tabu search
solution consists of packing one item per bin. At each iteration, a target bin is selected,
and a sequence of moves, each performed within a procedure SEARCH, tries to empty it.
Procedure SEARCH also updates the value of parameter k and, in special situations, may
impose performing diversification actions (to be discussed later). The execution is halted as
soon as a proven optimal solution is found, or a time limit is reached.

algorithm 2BP TABU:
z∗ := A({1, . . . , n}) (comment: incumbent solution value);
compute a lower bound L on the optimal solution value;
if z∗ = L then stop;
initialize all tabu lists to empty;
pack each item into a separate bin;
z := n (comment: tabu search solution value);
while time limit is not reached do

determine the target bin t;
diversify := false; k := 1;
while diversify = false and z∗ > L do

kin := k;
call SEARCH(t,k,diversify,z);
z∗ := min{z∗, z};
if k ≤ kin then determine the new target bin t

end while;
if z∗ = L then stop else perform a diversification action

end while
end.

Given the target bin t, procedure SEARCH explores the neighborhood defined by the
current value of parameter k. For each item j in bin t we evaluate the candidate moves by

5.4. A UNIFIED TABU SEARCH FRAMEWORK 55

executing algorithm A on the subinstances induced by all possible sets S defined by j and by
all k-tuples of other bins. In two special situations the move is immediately performed, and
the control returns to the main algorithm: (i) when a move decreases the current number of
used bins; (ii) when a non-tabu move removes j from t by packing the subinstance in exactly
k bins. In addition, in these cases, the neighborhood is changed by decreasing the current
value of parameter k by one unit.

When neither (i) nor (ii) apply, a penalty is associated with the move. The penalty is
infinity if the move is tabu, or if algorithm A used at least two extra bins (i.e., A(S) > k +1),
or if k = 1. Otherwise, the penalty is computed as follows. We determine, among the k + 1
bins produced by A, the one, say t̄, which minimizes the filling function, and execute algorithm
A on the subinstance induced by the items in bin t̄ plus the residual items in the target bin.
If a single bin solution is obtained, the penalty of the overall move is set to the minimum
among the filling function values computed for the k+1 resulting bins; otherwise, the penalty
is set to infinity.

When the neighborhood has been entirely searched without detecting case (i) or (ii) above,
the move having the minimum finite penalty (if any) is performed and the control returns to
2BP TABU. If, instead, the minimum penalty is infinity, i.e., no acceptable move has been
found, the neighborhood is changed by increasing the current value of parameter k by one
unit, or, if k already reached a maximum prefixed value kmax, by imposing a diversification
action. The overall procedure can be outlined as follows.

procedure SEARCH(t,k,diversify,z);
penalty∗ := +∞;
for each j ∈ St do

for each k-tuple K of bins not including t do
S := {j} ∪ (

⋃
i∈K Si);

penalty := +∞;
case

A(S) < k:
execute the move and update the current solution value z;
k := max{1, k − 1};
return;

A(S) = k:
if the move is not tabu or St ≡ {j} then

execute the move and update the current solution value z;
if St ≡ {j} then k := max{1, k − 1};
return

end if;
A(S) = k + 1 and k > 1:

let I be the set of k + 1 bins used by A;
t̄ := arg mini∈I{ϕ(Si)}, T := (St \ {j}) ∪ St̄;
if A(T) = 1 and the move is not tabu then

penalty := min{ϕ(T), mini∈I\{t̄}{ϕ(Si)}}
end case;
penalty∗ := min{penalty∗, penalty};

end for;
end for;

56 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

if penalty∗ 6= +∞ then execute the move corresponding to penalty∗

else if k = kmax then diversify := true else k := k + 1
return.

The diversification actions and the tabu lists remain to be described. The algorithm
performs two kinds of diversification, controlled by a counter d, initially set to one. Whenever
a diversification is imposed, d is increased by one and the target bin is determined as the one
having the d-th smallest value of the filling function. If however d > z or d = dmax (where
dmax is a prefixed limit) a stronger diversification is performed, namely: (i) the bz/2c bins
with smaller value of the filling function are removed from the tabu search solution; (ii) a
new solution is obtained by packing alone in a separate bin each item currently packed into
a removed bin; (iii) all tabu lists are reset to empty, and the value of d is reset to one.

As previously mentioned, there are a tabu list and a tabu tenure τk (k = 1, . . . , kmax)
for each neighborhood. For k > 1, each list stores the penalty∗ values corresponding to the
last τk moves performed, in the corresponding neighborhood, on exit from the two for-each
loops of SEARCH. For k = 1 instead, since the first and third case of SEARCH can never
occur, the moves are only performed when the second case occurs, i.e., without computing a
penalty. Hence, the tabu list stores the values of the filling function, ϕ(S), corresponding to
the last τ1 sets S for which a move has been performed. The attributes stored in the tabu
lists are real values, considerably varying with the solutions, see (5.1), so this choice is likely
to prevent short-term cycling through moves.

5.5 Computational Experiments

All the algorithms presented in Section 5.3 and the tabu search framework were coded in
FORTRAN 77 and run on a Silicon Graphics INDY R10000sc 195Mhz on test instances
from the literature. The solutions of the 1BP and KP01 instances, needed by some of the
deterministic algorithms, were obtained, respectively, through FORTRAN codes MTP (with
a limit of 300 backtrackings) and MT1 (with a limit of 500 backtrackings) included in the
diskette accompanying the book by Martello and Toth [118].

We considered ten classes of randomly generated problems. The first six classes have been
proposed by Berkey and Wang [23]:

Class 5 : wj and hj uniformly random in [1,10], W = H = 10;

Class 6 : wj and hj uniformly random in [1,10], W = H = 30;

Class 7 : wj and hj uniformly random in [1,35], W = H = 40;

Class 8 : wj and hj uniformly random in [1,35], W = H = 100;

Class 9 : wj and hj uniformly random in [1,100], W = H = 100;

Class 10 :wj and hj uniformly random in [1,100], W = H = 300.

In each of the above classes, all the item sizes are generated in the same interval. Martello
and Vigo [119] have proposed the following classes, where a more realistic situation is consid-
ered. The items are classified into four types:

5.5. COMPUTATIONAL EXPERIMENTS 57

Type 1 : wj uniformly random in [23W,W], hj uniformly random in [1, 1
2H];

Type 2 : wj uniformly random in [1, 1
2W], hj uniformly random in [23H, H];

Type 3 : wj uniformly random in [12W,W], hj uniformly random in [12H,H];

Type 4 : wj uniformly random in [1, 1
2W], hj uniformly random in [1, 1

2H].

The bin sizes are W = H = 100 for all classes, while the items are as follows:

Class 1 : type 1 with probability 70%, type 2, 3, 4 with probability 10% each;

Class 2 : type 2 with probability 70%, type 1, 3, 4 with probability 10% each;

Class 3 : type 3 with probability 70%, type 1, 2, 4 with probability 10% each;

Class 4 : type 4 with probability 70%, type 1, 2, 3 with probability 10% each.

For each class2, we considered five values of n: 20, 40, 60, 80, 100. For each class and value
of n, ten instances were generated. In the following two sections we present the computational
results obtained for the deterministic algorithms and for the tabu search approach.

Worth is mentioning that test instances where the items sizes are drawn from uniform
distributions are usually quite easy to solve for the one-dimensional bin packing problem
(see, e.g., Martello and Toth [118], Ch. 8). This is however not true for the two-dimensional
case. For example, an effective branch-and-bound algorithm for 2BP|O|F (see Martello and
Vigo [119]) was not able to solve about one third of the 500 instances described above. Even
small size instances are far from being trivial: fifteen percent of the instances with n = 40
were not solved to optimality.

5.5.1 Results for deterministic algorithms

The results are presented in Tables 5.1 and 5.2. The first two columns give the class and
the value of n. The next two pairs of columns refer to the algorithms by Berkey and Wang
[23], and give the results for 2BP|O|∗ and 2BP|R|∗, respectively: the algorithms are the
original ones in [23] (FFFOG and FBSOG) and the variants allowing item rotation described
in Section 5.2 (FFFRG and FBSRG). The following four pairs of columns refer to the four
problems considered: for each problem we give the results obtained by the corresponding
variant of the floor-ceiling approach described in Section 5.2 and by the specific heuristic in
Section 5.3.

For each algorithm, the entries report the average ratio (heuristic solution value)/(lower
bound), computed over the ten generated instances. For 2BP|O|∗ we used the lower bound
by Martello and Vigo [119], and for 2BP|R|∗ the bound by Dell’Amico, Martello and Vigo
[56]. For each class, the final line gives the average over all values of n. We do not give the
CPU times, as they are negligible (never exceeding 0.5 seconds).

By considering, for each class, the average values computed over all values of n, we see
that the new algorithms proposed in the present chapter outperform, in general, all the other
heuristics from the literature. For all cases where this does not happen, the best is the floor-
ceiling approach. The most difficult problems, with average errors exceeding 10%, turn out
to belong to Classes 7, 9 and 10 for all problem types, to Classes 1 and 2 for 2BP|R|∗, and
to Class 4 for 2BP|O|∗.

2Due to historical reason Classes 5-10 are considered before Classes 1-4, despite to the numeration which
is according to Chapter 2.

58 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

Table 5.1: Deterministic algorithms: (heuristic solution value)/(lower bound). Random prob-
lem instances proposed by Berkey and Wang.

Berkey and Wang Lodi, Martello and Vigo

2BP|O|∗ 2BP|R|∗ 2BP|O|G 2BP|R|G 2BP|O|F 2BP|R|F
Class n FFFOG

LB
FBSOG

LB
FFFRG

LB
FBSRG

LB
FCOG

LB
KPOG

LB
FCRG

LB
KPRG

LB
FCOF

LB
ADOF

LB
FCRF

LB
TPRF

LB

20 1.17 1.14 1.09 1.06 1.14 1.13 1.06 1.06 1.12 1.12 1.06 1.05

40 1.12 1.09 1.10 1.08 1.09 1.10 1.08 1.07 1.08 1.09 1.08 1.06

5 60 1.10 1.07 1.12 1.09 1.07 1.07 1.09 1.07 1.07 1.07 1.09 1.05

80 1.08 1.06 1.10 1.09 1.06 1.06 1.09 1.08 1.06 1.06 1.09 1.06

100 1.07 1.06 1.08 1.08 1.06 1.05 1.07 1.05 1.06 1.05 1.07 1.03

Average 1.108 1.084 1.098 1.080 1.084 1.082 1.078 1.066 1.078 1.078 1.078 1.050

20 1.10 1.10 1.00 1.00 1.10 1.00 1.00 1.00 1.10 1.00 1.00 1.00

40 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

6 60 1.15 1.15 1.10 1.10 1.15 1.15 1.05 1.15 1.10 1.10 1.05 1.00

80 1.07 1.07 1.07 1.07 1.07 1.07 1.03 1.07 1.07 1.07 1.03 1.07

100 1.06 1.06 1.03 1.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.00

Average 1.096 1.096 1.060 1.066 1.090 1.070 1.042 1.070 1.080 1.060 1.042 1.034

20 1.20 1.18 1.20 1.20 1.18 1.18 1.18 1.12 1.18 1.20 1.18 1.06

40 1.18 1.14 1.21 1.16 1.14 1.15 1.16 1.16 1.14 1.15 1.16 1.11

7 60 1.14 1.11 1.20 1.18 1.11 1.12 1.19 1.12 1.11 1.13 1.19 1.11

80 1.13 1.10 1.20 1.15 1.10 1.10 1.15 1.12 1.10 1.10 1.15 1.10

100 1.12 1.09 1.16 1.14 1.09 1.09 1.13 1.10 1.09 1.09 1.13 1.08

Average 1.154 1.124 1.194 1.166 1.124 1.128 1.162 1.124 1.124 1.134 1.162 1.092

20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

40 1.10 1.10 1.10 1.10 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00

8 60 1.20 1.20 1.10 1.10 1.10 1.20 1.10 1.10 1.10 1.15 1.10 1.10

80 1.10 1.10 1.10 1.10 1.10 1.13 1.10 1.10 1.10 1.10 1.10 1.07

100 1.10 1.10 1.07 1.07 1.10 1.10 1.07 1.07 1.10 1.03 1.07 1.03

Average 1.100 1.100 1.074 1.074 1.060 1.106 1.054 1.054 1.060 1.056 1.054 1.040

20 1.14 1.14 1.08 1.08 1.14 1.13 1.08 1.08 1.14 1.14 1.08 1.06

40 1.11 1.11 1.14 1.12 1.11 1.09 1.10 1.11 1.11 1.11 1.10 1.11

9 60 1.11 1.10 1.13 1.11 1.10 1.10 1.11 1.11 1.10 1.10 1.11 1.08

80 1.12 1.09 1.13 1.10 1.09 1.09 1.11 1.10 1.09 1.09 1.11 1.08

100 1.12 1.09 1.13 1.10 1.09 1.09 1.10 1.09 1.09 1.09 1.10 1.08

Average 1.120 1.106 1.122 1.102 1.106 1.100 1.100 1.098 1.106 1.106 1.100 1.082

20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

40 1.40 1.40 1.40 1.40 1.40 1.50 1.40 1.40 1.40 1.40 1.40 1.40

10 60 1.10 1.10 1.05 1.05 1.10 1.10 1.05 1.05 1.10 1.05 1.05 1.05

80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.13 1.10 1.10 1.07 1.10 1.10 1.07 1.10 1.10 1.07 1.07 1.07

Average 1.126 1.120 1.110 1.104 1.120 1.140 1.104 1.110 1.120 1.104 1.104 1.104

5.5. COMPUTATIONAL EXPERIMENTS 59

As to the percentage errors, it is also noteworthy that they are computed with respect to a
lower bound value, hence they give a pessimistic estimate of the actual quality of the heuristic
solution. According to our experience, the gap between lower bound and exact solution can be
quite large. Consider for example the instances of 2BP|O|F, for which the branch-and-bound
algorithm by Martello and Vigo [119] is available: the average errors computed by using the
best available solution (not always optimal) are 1.035, 1.050, 1.005, 1.034, 1.040, 1.000, 1.062,
1.000, 1.049, and 1.000, respectively for Classes 1 to 10, i.e., about one third, on average, of
those reported in the tables.

Table 5.2: Deterministic algorithms: (heuristic solution value)/(lower bound). Random prob-
lem instances proposed by Martello and Vigo.

Berkey and Wang Lodi, Martello and Vigo

2BP|O|∗ 2BP|R|∗ 2BP|O|G 2BP|R|G 2BP|O|F 2BP|R|F
Class n FFFOG

LB
FBSOG

LB
FFFRG

LB
FBSRG

LB
FCOG

LB
KPOG

LB
FCRG

LB
KPRG

LB
FCOF

LB
ADOF

LB
FCRF

LB
TPRF

LB

20 1.10 1.10 1.19 1.19 1.10 1.10 1.19 1.17 1.08 1.10 1.19 1.13

40 1.11 1.11 1.17 1.17 1.11 1.07 1.17 1.17 1.09 1.10 1.17 1.10

1 60 1.08 1.08 1.18 1.18 1.08 1.06 1.18 1.16 1.07 1.07 1.18 1.12

80 1.07 1.06 1.19 1.17 1.06 1.06 1.17 1.17 1.06 1.06 1.17 1.11

100 1.04 1.04 1.17 1.17 1.04 1.04 1.17 1.16 1.04 1.04 1.17 1.11

Average 1.080 1.078 1.180 1.176 1.078 1.066 1.176 1.166 1.068 1.074 1.176 1.114

20 1.17 1.16 1.18 1.16 1.16 1.12 1.16 1.16 1.16 1.13 1.16 1.16

40 1.09 1.08 1.19 1.19 1.08 1.07 1.19 1.19 1.07 1.08 1.19 1.16

2 60 1.06 1.06 1.18 1.18 1.06 1.06 1.18 1.18 1.06 1.06 1.18 1.11

80 1.07 1.06 1.17 1.16 1.06 1.05 1.16 1.15 1.06 1.06 1.16 1.11

100 1.06 1.06 1.17 1.17 1.06 1.04 1.17 1.17 1.06 1.06 1.17 1.12

Average 1.090 1.084 1.178 1.172 1.084 1.068 1.172 1.170 1.082 1.078 1.172 1.132

20 1.01 1.01 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.01 1.00 1.01

40 1.02 1.02 1.01 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.01 1.02

3 60 1.02 1.02 1.01 1.01 1.02 1.01 1.01 1.01 1.02 1.02 1.01 1.01

80 1.02 1.02 1.01 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.01 1.01

100 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Average 1.018 1.016 1.008 1.008 1.016 1.014 1.008 1.008 1.016 1.016 1.008 1.012

20 1.14 1.14 1.15 1.15 1.14 1.16 1.15 1.12 1.14 1.10 1.15 1.20

40 1.14 1.09 1.09 1.09 1.09 1.10 1.09 1.09 1.09 1.09 1.09 1.08

4 60 1.15 1.12 1.11 1.09 1.10 1.10 1.09 1.08 1.08 1.11 1.09 1.09

80 1.15 1.13 1.09 1.07 1.12 1.12 1.06 1.06 1.11 1.10 1.06 1.06

100 1.14 1.10 1.07 1.07 1.10 1.08 1.07 1.05 1.09 1.10 1.07 1.06

Average 1.144 1.116 1.102 1.094 1.110 1.112 1.092 1.080 1.102 1.100 1.092 1.098

The use of lower bounds in the algorithms’ evaluation needs an additional observation.
Since the same instances are solved with different constraints, one could expect a dominance
between the algorithms. Indeed, an algorithm for a less constrained variant produces, on
average, better solutions in terms of number of bins. This does not always appear in the
average ratios reported in the tables, due to the fact that we use different lower bounds for
the four problems. The phenomenon is more evident if one considers the absolute solution
values: for example, the total number of bins (over the 500 solved instances) is 7480, 7297,
7487 and 7184 for KPOG, KPRG, ADOF and TPRF, respectively. The slight anomaly in the

60 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

behavior KPOG and ADOF disappears when the algorithms are used within tabu search: the
total number of bins becomes then 7433, 7101, 7373 and 7100, respectively.

We finally note that, quite surprisingly, the average ratios for algorithms FCRG and FCRF

are identical. Indeed, they always produced solutions using the same number of bins. How-
ever, in 164 out of 500 instances the packing patterns were actually different, and those
produced by FCRF were not guillotine cuttable.

5.5.2 Results for tabu search

The tabu search approach was implemented in a straightforward way from its description in
Section 5.4, i.e., with no additional tailoring or adaptation to the particular problem variant,
but the call to the specific inner heuristic algorithm (denoted by A in the pseudo-code). The
resulting code is quite compact, consisting of just 500 FORTRAN statements. Tables 5.3 and
5.4 present the results it gives, for the four problem variants, when different inner heuristics
are invoked.

38

40

43

44

39

45

47

48

39

42

46

47

37

39

41

43

45

47

49

30 60 120 180

Time limit (Silicon Graphics INDY R10000sc seconds)

N
. o

f
be

st
 s

ol
ut

io
ns

 f
ou

nd
 (

50
 in

st
an

ce
s) kmax = 3

kmax = 4

kmax = 2

Figure 5.6: Results of the tabu search for different values of kmax and Tlim on the instances
of Class 1 for 2BP|R|F (heuristic TPRF).

Good values for the parameters described in Section 5.4 were experimentally determined
as: α = 20 (see equation 5.1), dmax = 50 (maximum value of the differentiation counter d),
τk = 3 for all k (tabu tenure). As for kmax (maximum number of distinct tabu lists), we per-
formed experiments with values from 1 to 4, using different time limits: Tlim = 30, 60, 120, 180
CPU seconds. The outcome was as follows: (i) for kmax = 1 the results were always poor,
very seldom improving the starting solution; (ii) for kmax = 2 the results were quite good
with Tlim = 30, slightly improving with higher time limits; (iii) for kmax = 3 and Tlim = 30
the results were slightly worse than for kmax = 2, considerably improved with Tlim = 60, and
very marginally improved with higher time limits; (iv) for kmax = 4 we had practically no
improvement with respect to kmax = 3. Hence, we adopted the best tradeoff, i.e., kmax = 3
and Tlim = 60. As an example, we report in Figure 5.6 the results obtained on the fifty
instances of 2BP|R|F for Class 1, which turned out to be quite sensitive to the parameter
variations.

5.5. COMPUTATIONAL EXPERIMENTS 61

Table 5.3: Tabu search with different inner heuristics: (tabu search solution value)/(lower
bound), CPU time in Silicon Graphics INDY R10000sc seconds. Random problem instances
proposed by Berkey and Wang.

Berkey and Wang Lodi, Martello and Vigo

2BP|O|∗ : 2BP|R|∗ : 2BP|O|G: 2BP|R|G: 2BP|O|F: 2BP|R|F:

heur. FBSOG heur. FBSRG heur. KPOG heur. KPRG heur. ADOF heur. TPRF

Class n TS
LB

time TS
LB

time TS
LB

time TS
LB

time TS
LB

time TS
LB

time

20 1.09 36.00 1.06 24.00 1.11 42.00 1.03 12.39 1.06 24.00 1.05 18.00

40 1.08 54.00 1.06 45.90 1.08 54.17 1.05 36.06 1.06 36.11 1.04 30.02

5 60 1.05 54.05 1.08 54.24 1.05 54.07 1.05 38.60 1.04 48.93 1.04 34.00

80 1.04 44.18 1.07 55.44 1.04 42.32 1.07 54.59 1.05 48.17 1.06 48.08

100 1.04 60.37 1.05 60.24 1.05 60.19 1.04 55.65 1.04 60.81 1.03 47.92

Average 1.060 49.72 1.064 47.96 1.066 50.55 1.048 39.46 1.050 43.60 1.044 35.60

20 1.10 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

40 1.10 0.01 1.10 0.01 1.10 0.01 1.10 0.01 1.10 0.01 1.10 0.01

6 60 1.15 0.02 1.10 0.01 1.15 0.06 1.15 0.06 1.10 0.09 1.00 0.01

80 1.07 12.00 1.07 12.00 1.07 12.00 1.03 6.24 1.07 12.00 1.03 6.10

100 1.06 12.00 1.03 6.03 1.03 6.00 1.03 6.00 1.03 6.00 1.00 0.01

Average 1.096 4.80 1.060 3.61 1.070 3.61 1.062 2.46 1.060 3.62 1.026 1.22

20 1.18 48.00 1.12 30.00 1.18 48.00 1.09 24.00 1.20 54.00 1.06 18.00

40 1.12 60.00 1.15 60.00 1.12 60.00 1.11 48.19 1.11 54.02 1.09 42.17

7 60 1.08 48.03 1.11 60.02 1.07 49.48 1.10 60.02 1.05 45.67 1.08 54.15

80 1.07 54.03 1.12 60.03 1.08 57.24 1.07 60.05 1.08 54.31 1.07 60.07

100 1.09 60.10 1.10 60.11 1.09 60.09 1.08 60.19 1.09 60.10 1.07 60.18

Average 1.108 54.03 1.120 54.03 1.108 54.96 1.090 50.49 1.106 53.62 1.074 46.91

20 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

40 1.10 0.01 1.10 0.01 1.10 0.01 1.00 0.01 1.00 0.01 1.00 0.01

8 60 1.20 0.03 1.10 0.01 1.20 0.09 1.10 0.04 1.15 0.14 1.10 0.09

80 1.10 18.00 1.10 18.00 1.10 18.06 1.03 6.28 1.10 18.00 1.07 12.00

100 1.10 18.00 1.07 12.00 1.10 18.00 1.03 6.10 1.03 6.00 1.03 6.00

Average 1.100 7.21 1.074 6.00 1.100 7.23 1.032 2.48 1.056 4.83 1.040 3.62

20 1.13 42.00 1.06 18.00 1.13 42.00 1.04 12.01 1.11 36.02 1.04 12.01

40 1.09 48.00 1.10 42.00 1.09 48.00 1.07 42.01 1.04 27.07 1.07 42.00

9 60 1.06 55.59 1.09 60.01 1.07 58.26 1.07 48.72 1.06 56.77 1.06 45.23

80 1.06 60.05 1.10 60.05 1.08 60.07 1.08 54.60 1.06 56.18 1.07 54.14

100 1.08 60.14 1.10 60.12 1.09 60.17 1.07 60.26 1.08 60.34 1.07 60.12

Average 1.084 53.16 1.090 48.04 1.092 53.70 1.066 43.52 1.070 47.28 1.062 42.70

20 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

40 1.40 0.01 1.40 0.01 1.50 0.02 1.40 0.02 1.40 0.03 1.40 0.03

10 60 1.10 0.01 1.05 0.01 1.10 0.05 1.05 0.02 1.05 0.04 1.05 0.05

80 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

100 1.10 18.00 1.07 12.00 1.10 18.00 1.07 12.11 1.07 12.00 1.07 12.00

Average 1.120 3.60 1.104 2.40 1.140 3.61 1.104 2.43 1.104 2.41 1.104 2.42

62 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

Table 5.4: Tabu search with different inner heuristics: (tabu search solution value)/(lower
bound), CPU time in Silicon Graphics INDY R10000sc seconds. Random problem instances
proposed by Martello and Vigo.

Berkey and Wang Lodi, Martello and Vigo

2BP|O|∗ : 2BP|R|∗ : 2BP|O|G: 2BP|R|G: 2BP|O|F: 2BP|R|F:

heur. FBSOG heur. FBSRG heur. KPOG heur. KPRG heur. ADOF heur. TPRF

Class n TS
LB

time TS
LB

time TS
LB

time TS
LB

time TS
LB

time TS
LB

time

20 1.08 24.01 1.15 42.06 1.08 24.00 1.11 30.00 1.04 12.02 1.11 30.00

40 1.07 42.06 1.17 60.00 1.07 42.00 1.07 44.97 1.06 37.01 1.08 48.06

1 60 1.05 36.68 1.16 60.01 1.05 36.49 1.06 54.30 1.05 36.44 1.06 59.45

80 1.05 60.08 1.17 60.06 1.05 60.09 1.08 60.20 1.04 54.52 1.10 60.12

100 1.03 48.40 1.16 60.18 1.04 49.31 1.07 60.71 1.03 47.43 1.08 60.36

Average 1.056 42.25 1.162 56.46 1.058 42.38 1.078 50.04 1.044 37.48 1.086 51.60

20 1.12 36.00 1.16 42.00 1.12 36.00 1.10 30.04 1.06 18.04 1.10 30.01

40 1.04 25.34 1.19 60.00 1.04 24.68 1.08 51.22 1.03 18.72 1.10 54.22

2 60 1.03 30.90 1.17 60.04 1.03 30.61 1.07 48.41 1.02 20.99 1.07 56.17

80 1.03 44.02 1.16 60.13 1.03 45.87 1.08 60.23 1.02 37.95 1.08 60.11

100 1.04 54.36 1.17 60.18 1.04 54.22 1.08 60.48 1.04 52.66 1.09 60.14

Average 1.052 38.12 1.170 56.47 1.052 38.28 1.082 50.08 1.034 29.67 1.088 52.13

20 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.06

40 1.01 24.01 1.01 18.00 1.01 24.02 1.01 18.02 1.01 24.05 1.01 18.85

3 60 1.01 24.09 1.01 18.14 1.01 24.15 1.01 18.10 1.01 24.26 1.01 18.03

80 1.02 54.44 1.01 30.24 1.01 48.61 1.01 30.52 1.01 54.31 1.01 30.51

100 1.01 31.97 1.01 30.68 1.01 30.60 1.01 30.93 1.01 34.11 1.01 36.86

Average 1.010 26.90 1.008 19.41 1.008 25.48 1.008 19.51 1.008 27.35 1.008 20.86

20 1.14 24.00 1.12 6.00 1.14 24.00 1.12 6.00 1.10 12.00 1.12 6.01

40 1.09 36.00 1.07 32.32 1.09 36.03 1.08 30.87 1.06 25.18 1.06 24.01

4 60 1.08 48.03 1.07 40.44 1.08 48.05 1.07 36.73 1.07 42.13 1.06 30.44

80 1.10 60.02 1.06 48.03 1.10 60.02 1.06 45.68 1.06 47.30 1.05 39.04

100 1.08 60.10 1.06 54.57 1.07 60.13 1.05 42.28 1.08 60.10 1.05 43.38

Average 1.098 45.63 1.076 36.27 1.096 45.65 1.076 32.31 1.074 37.34 1.068 28.58

The computational results are presented in Tables 5.3 and 5.4. As in the previous section,
the first two columns give the class and the value of n. The next pairs of columns refer to
algorithms FBSOG (Berkey and Wang [23]), FBSRG (Section 5.2), and to the four heuristics
in Section 5.3, when used within the tabu search. For each algorithm the entries give the
average ratio (tabu search solution value)/(lower bound), computed over the ten generated
instances, and the average CPU time. In this case too, for each class, the final line gives the
average over all values of n.

The results are satisfactory. By considering, for each class, the average values computed
over all values of n, we can observe that the tabu search generally improves the initial de-
terministic solution produced by the inner heuristic, with almost all exceptions occurring for
Classes 6, 8 and 10. This is not surprising since, for the instances in these classes, depending
on the value of n, it is either very easy or very hard to prove the optimality of a presumably
optimal heuristic solution. Consider for example Class 6, for which the average area of an
item is 30.25, hence, on average, 29.75 items are packed in each bin: for n = 20, 40, 80 and

5.5. COMPUTATIONAL EXPERIMENTS 63

100 it is then easy to find an optimal solution using one, two, three and four bins, respectively,
while for n = 60 it is very difficult to find a feasible solution using two bins (if any).

In this case, too, the percentage errors could be much smaller if computed with respect
to the optimal solution values. For the instances of 2BP|O|F, the average errors computed
by using the best available solution (not always optimal) are 1.004, 1.004, 1.000, 1.008, 1.009,
1.000, 1.035, 1.000, 1.014 and 1.000, , respectively for Classes 1 to 10, i.e., about one eighth,
on average, of those in the tables.

The computational results presented in this section show that tabu search is effective in all
cases, regardless of the inner deterministic algorithm used in the search. This proves, for 2BP,
the quality of a unified tabu search approach, capable to further improve the performance of
effective deterministic heuristics.

64 CHAPTER 5. A UNIFIED TABU SEARCH FOR 2BP|*|*

Chapter 6

Other Packing Problems

6.1 Tabu Search: the Three-Dimensional Case

The Three-Dimensional Bin Packing Problem (3BP), already defined in Section 2.6.1, is the
direct extension of 2BP (and, obviously, of BPP) to higher dimensional space. In 3BP the
items and the bins are rectangular boxes, and the objective is always to orthogonally pack
the items in the minimum number of bins without overlapping.

The main goal of this section is to show how the Tabu Search scheme discussed in the
previous chapters, and presented for a wide set of two-dimensional packing problems, can be
applied without substantial changes, and with satisfactory results, also to packing problems
in three dimensions.

In order to use the presented Tabu Search metaheuristic we obviously need a subor-
dinate heuristic (recall the discussion of Section 5.4) to obtain the partial solutions which
are combined by the Tabu Search. In Section 6.1.1 a new heuristic algorithm for 3BP is
presented, whereas in Section 6.1.2 the very slight adaptation of the Tabu Search to the
three-dimensional case is discussed together with the final set of parameters used in the com-
putational experiments. Finally, Section 6.1.3 presents the computational results on the set
of instances proposed by Martello, Pisinger and Vigo [116]. The heuristic and metaheuristic
approaches are compared with both the heuristic and exact algorithms in [116].

6.1.1 A New Heuristic Algorithm for 3BP

In this section we introduce a new heuristic algorithm for 3BP called Height first-Area second
(HA). Algorithm HA packs one item at a time into layers, i.e., three-dimensional shelves in
which (i) the height of the layer is defined by the height of the tallest item packed into it; (ii)
all the items are packed with their basis on the floor of the layer. Thus, in order to obtain
an “effective” packing into layers one must solve two main problems: packing in the same
layer items with similar height (vertical component), and the two-dimensional problem on
the basis of the layer (2BP component). Algorithm HA works by taking into account at the
same time these two problems. However, it generates two possibly different solutions, say z1

and z2, depending on which component has been considered with “major emphasis”.
As algorithm HA packs one item at a time, it is easy to see that a simple way to emphasize

a component with respect to the other is to consider the items with a suitable order. In
particular, sorting the items according to nonincreasing height values emphasizes the vertical
packing since it tries to create layers in which the items have similar heights. On the other

65

66 CHAPTER 6. OTHER PACKING PROBLEMS

hand, sorting the items by nonincreasing values of wjdj is crucial to obtain good packing on
the floor of the layers (see Section 5.3.4).

The packing strategy of algorithm HA is obtained by adapting the policy used for algo-
rithm TPRF (see Section 5.3.4, with a first difference that in 3BP case the rotation of the
items’ basis is not allowed). In particular, given an item j, a score is computed for each
normal packing position h on the basis of each layer t (score = 0 if j cannot be packed in
position h on the basis of t), and the packing position with maximum score is selected. The
score is computed by taking into account three different factors: (i) the percentage of the
perimeter of the basis of j touching the edges of the basis of t or the edges of items already
packed into t; (ii) the percentage of the area of the basis of t already packed, and (iii) the
relative difference between the height of t and the height of j. Let Ht indicate the height
of layer t, St be the set of items currently packed into t, and TP (t, St, j, h) the “touching
perimeter”: then the score of the packing of item j into layer t in the normal position h is
computed as

scoret
jh = τ

TP (t, St, j, h)
2wj + 2dj

+ µ

∑
l∈St

wldl

WD
− (1− τ − µ)

Ht − hj

Ht
(6.1)

where τ and µ are prefixed real values such that τ, µ ∈ [0, 1], and τ + µ ≤ 1.
Again, the three terms in (6.1) measure the effectiveness of one packing with respect

to vertical and 2BP components, and are considered with different weights: the values of
parameters τ and µ change depending on which component of 3BP is emphasized.

Note that the third term of (6.1) is positive if Ht > hj , whereas is negative if Ht < hj . In
the first case, layer t is said to be feasible for item j, whereas in the second case t is infeasible
for j. Anyway, it is sometimes allowed to pack item j into layer t even if t is infeasible (to be
discussed later), and in those cases the term is computed as absolute value, and the height of
layer t is updated as Ht = hj .

In the following we will separately present the two Steps of algorithm HA in which solu-
tions z1 and z2 are obtained.

Step 1. For the first solution, the items are partitioned into clusters, each characterized by a
different height. In particular, after a preliminary sorting by nonincreasing height values, the
first item j (the tallest one) defines the first cluster with height hj , and each of the following
items with height hi within a prefixed range (hi ≥ βhj , where β ∈ [0, 1]) belongs to the
cluster. The tallest item s for which hs < βhj defines a new cluster with height equal to hs,
and so on. As soon as the instance has been partitioned, the items in each cluster are sorted
by nonincreasing values of wjdj and re-numbered.

After these ordering phase, the items are packed one at a time into the open layers (an
open layer does not necessarily have items packed into), in the normal packing position (if
any) with maximum score. Among these layers the feasible ones are preferred, hence only
in the case where no feasible layer can accommodate one item, say j, infeasible layers are
considered (if any). A new layer with height equal to hj is opened if neither feasible nor
infeasible layer can accommodate item j, and j is packed left-justified into the new layer.
A finite bin packing solution is finally obtained by packing the layers into the bins using an
exact algorithm for the 1BP instance in which each layer t defines an item of height Ht, and
the size of the bin is H.

The overall step 1. is as follow.

6.1. TABU SEARCH: THE THREE-DIMENSIONAL CASE 67

algorithm HA, step 1:
sort the items, define the clusters, sort and re-number the items in each cluster;
for j := 1 to n do

score := 0;
for each normal packing position h in an open feasible layer t do

compute the corresponding score scoret
jh;

score := max{score, scoret
jh}

end for;
if score > 0 then

pack item j in the layer and position corresponding to score
else

for each normal packing position h in an open infeasible layer t do
compute the corresponding score scoret

jh;
score := max{score, scoret

jh}
end for;
if score > 0 then

pack item j in the layer and position corresponding to score,
and update the height of the layer

else
open a new layer with height hj , and pack item j into it

end for
let H1, . . . , Hg be the heights of the resulting g layers;
determine a finite bin solution z1 by solving the 1BP instance having g elements,
with associated values H1, . . . , Hg, and capacity H

end.

(Note that in Step 1. no layer is opened without packing one item into it.)
Preliminary experiments suggested for parameter τ and µ the values τ = 0.3 and µ = 0.7

which have been used in the computational testing of Section 6.1.3. This choice implies that
the third term of (6.1) is not taken into account: the vertical component has been already
emphasized through the use of the mentioned partition into clusters. Finally, the partition
into cluster is guided by parameter β = 0.75.

Step 2. For the second solution, the items are directly sorted and re-numbered by nonin-
creasing values of wjdj . As mentioned, this ordering policy emphasizes the 2BP component.
Anyway, the vertical component of 3BP is carefully considered by opening g empty layers
with “suggested” heights H1, . . . , Hg, i.e., the heights of the layers originating z1.

A part of the above differences (the initial sorting and the g empty open layers), Step 1.
and Step 2. work exactly in the same way. Note that, even if the ordering by nonincreasing
area could generate layers with items of very different heights, this is, in general, avoided by
the score computation. In fact, due to the presence of empty but already open layers and to
the third term of (6.1), the packing of an item j into a layer t such that Ht À hj (or Ht ¿ hj)
has smaller score than the packing of j into an empty layer with more closer height. Hence,
the values of parameters τ and µ are updated in Step 2., and, for the computational testing
of Section 6.1.3, we selected τ = 0.2 and µ = 0.3 (thus weighting the third term of (6.1) as
0.5).

Finally, consider the 1BP instance defined at the end of Step 2., whose solution is the

68 CHAPTER 6. OTHER PACKING PROBLEMS

finite bin packing solution of value z2. It is obvious that a preliminary step checking if some
of the layers remained empty is needed, and in that case, they are eliminated.

The overall solution of algorithm HA is z = min{z1, z2}. An example showing the effec-
tiveness of performing Step 2. after Step 1. is the following.

Example
We are given a small instance with n = 5: W = H = D = 10, w1 = 4, h1 = d1 = 10,
w2 = 5, h2 = 9, d2 = 6, w3 = 6, h3 = 7, d3 = 6, w4 = h4 = d4 = 5, and w5 = 6, h5 = 1, d5 = 10.
The items are already sorted by nonincreasing height values, and, by considering β = 1, each
item defines a cluster, and the packing into layers obtained by Step 1. of algorithm HA is
depicted in Figure 6.1(a).

(a): Algorithm HA, Step 1.

(b): Algorithm HA, Step 2.

1
2 3 4

5

1
3 2 4

5

Figure 6.1: Algorithm HA: (a) layers obtained in Step 1.; (b) layers obtained in Step 2.

Otherwise, in Step 2. the items are sorted by nonincreasing values of wjdj , the new order is:
5, 1, 3, 2, 4, and the packing is depicted in Figure 6.1(b).
It is easy to see that the layers of Figure 6.1(a) define a solution z1 = 3, whereas z2 = 2.2

In both steps a 1BP instance is generated, thus requiring the solution of an NP-hard
problem. This solution is however obtained by halting a non-polynomial routine after a
prefixed (small) number of iterations.

The last remark concerns an obvious extension of algorithm HA. The above steps can be
easily applied by considering in turn the width and the depth instead of the height. In this
way we obtain three different solutions composed by layers, and we select the best one with
respect to the number of used bins. In Section 6.1.3 algorithm HA is applied using this rule.

6.1. TABU SEARCH: THE THREE-DIMENSIONAL CASE 69

6.1.2 The Tabu Search in the 3D Case

The adaptation needed by the Tabu Search framework presented in Section 5.4 to work in the
three-dimensional case is not heavy. In particular, we adapted the concept of filling function
by extending equation (5.1) to take into account also the third dimension, i.e., the depth.
Hence, for each bin i in a 3BP solution, the new filling function is defined by

ϕ(Si) = α

∑
j∈Si

wjhjdj

WHD
− |Si|

n
(6.2)

where again Si denotes the set of items currently packed into bin i, and α is a prefixed positive
parameter.

The overall scheme of the algorithm is the same presented in Section 5.4 and can be
summarized as follows. We consider an incumbent solution obtained by performing algorithm
HA on the instance, a lower bound on the optimal solution value, and an initial naive solution
in which each item is packed into a separate bin. Then, the iterative part of the algorithm is
started and the idea is to define subsets of the instance to run the subordinate heuristic on, in
an attempt of re-packing the corresponding items in a smaller number of bins, and emptying
the bin with the smallest value of the filling function. The definition of these subsets is the
core of the method, and it is automatically performed following the guideline described in
procedure SEARCH of Section 5.4: in particular, the size of the subset (defined as the number
of bins involved) is parametrically updated depending on the results of the previous iterations.

The algorithm performs in a very similar way in the two- and three-dimensional case.
The main difference is due to the extension of the filling function: the addition of the third
dimension results in a splitting of the ϕ value of the moves, thus the tuning of the parameters
leads to very different values.

The computational testing reported in the next section was performed with kmax = 4,
α = 1.5, and with tabu tenure τk = 12 (k = 1, . . . , kmax). By comparing these values with
those used for the two-dimensional case, it is clear that the aim was to have more frequent
updatings of the neighborhood size (k value), thus obtaining a balanced search strategy. The
only situation in which the value of k could originally be increased was the case where no
feasible move was found. This rule was powerful (together with the chosen set of values
for the parameters) in two dimensions, whereas in the three-dimensional case even the new
values of the parameters are not enough and a shortcut to obtain the increasing of k has been
introduced. As soon as ` calls to procedure SEARCH have been performed with the same k
value without improving the incumbent solution, k is increased by one if k < kmax; otherwise,
a diversification action is performed. (This is the only difference introduced in the code of
the Tabu Search, and we used ` = 2 ∗ n in the computational testing.)

A final remark concerns parameter dmax. The value of 50 chosen in Section 5.5.2 denoted
the preference of using the soft diversification (changing of the target bin) whenever possible,
instead of the strong one in which the current packing is partially destroyed. This was justified
by the fact that the number of diversification actions was naturally high, which is not the
case in three dimensions. In the computational testing of the next section we set dmax = 2.

6.1.3 Computational Experiments

The algorithms of the two previous sections were coded in FORTRAN 77 and run on a Digital
Alpha 533 MHz. The heuristic algorithm of Section 6.1.1 solves 1BP instances through the
FORTRAN code MTP by Martello and Toth [118] with a limit of 1000 backtrackings. The

70 CHAPTER 6. OTHER PACKING PROBLEMS

algorithms have been tested on eight classes of instances proposed by Martello, Pisinger
and Vigo [116], and we compare the results with both heuristic codes dfirst3 heuristic
and mcut3 heuristic (H1 and H2 in Tables 6.1 and 6.2, respectively), and the exact code
binpack3D (BB in tables) of Martello, Pisinger and Vigo [115].

Table 6.1: Random problem instances proposed by Martello, Pisinger and Vigo. n < 50, time
limit for Tabu Search of 30 CPU seconds on Digital Alpha 533 MHz, average values over ten
instances.

n Class H1
V

H2
V

HA
V

TS
V

BB
V

n Class H1
V

H2
V

HA
V

TS
V

BB
V

1 1.14 1.00 1.08 1.05 1.00 1 1.07 1.03 1.00 1.00 1.00

2 1.13 1.00 1.00 1.00 1.00 2 1.15 1.00 1.05 1.03 1.00

3 1.03 1.00 1.00 1.00 1.00 3 1.09 1.00 1.02 1.02 1.00

4 1.00 1.00 1.00 1.00 1.00 4 1.02 1.01 1.00 1.00 1.00

10 5 1.15 1.00 1.00 1.00 1.00 15 5 1.15 1.07 1.03 1.00 1.00

6 1.13 1.00 1.05 1.05 1.00 6 1.13 1.02 1.00 1.00 1.00

7 1.33 1.05 1.05 1.05 1.00 7 1.47 1.10 1.18 1.18 1.00

8 1.22 1.00 1.10 1.05 1.00 8 1.22 1.07 1.05 1.05 1.00

Average 1.14 1.01 1.04 1.03 1.00 Average 1.16 1.04 1.04 1.03 1.00

1 1.12 1.03 1.00 1.00 1.00 1 1.13 1.02 1.03 1.00 1.00

2 1.04 1.00 1.02 1.00 1.00 2 1.17 1.05 1.06 1.03 1.00

3 1.10 1.04 1.02 1.00 1.00 3 1.09 1.05 1.03 1.00 1.00

4 1.02 1.00 1.00 1.00 1.00 4 1.02 1.01 1.00 1.00 1.00

20 5 1.25 1.05 1.08 1.08 1.00 25 5 1.21 1.06 1.05 1.03 1.00

6 1.12 1.03 1.00 1.00 1.00 6 1.15 1.04 1.02 1.00 1.00

7 1.35 1.05 1.08 1.03 1.00 7 1.46 1.10 1.07 1.07 1.07

8 1.09 1.00 1.00 1.00 1.00 8 1.27 1.06 1.04 1.03 1.00

Average 1.14 1.03 1.02 1.01 1.00 Average 1.19 1.05 1.04 1.02 1.01

1 1.12 1.03 1.01 1.00 1.00 1 1.20 1.09 1.07 1.01 1.00

2 1.17 1.05 1.04 1.00 1.00 2 1.11 1.03 1.03 1.01 1.00

3 1.10 1.01 1.03 1.02 1.00 3 1.14 1.03 1.03 1.00 1.00

4 1.01 1.01 1.00 1.00 1.00 4 1.01 1.01 1.00 1.00 1.00

30 5 1.19 1.04 1.02 1.02 1.00 35 5 1.24 1.09 1.08 1.02 1.09

6 1.18 1.04 1.03 1.00 1.00 6 1.21 1.10 1.07 1.05 1.00

7 1.56 1.18 1.20 1.12 1.13 7 1.49 1.26 1.20 1.13 1.19

8 1.21 1.05 1.04 1.00 1.00 8 1.35 1.20 1.09 1.08 1.16

Average 1.19 1.05 1.05 1.02 1.02 Average 1.22 1.10 1.07 1.04 1.05

1 1.17 1.09 1.07 1.01 1.01 1 1.17 1.11 1.07 1.03 1.06

2 1.15 1.07 1.07 1.03 1.03 2 1.16 1.07 1.07 1.04 1.04

3 1.13 1.08 1.04 1.02 1.02 3 1.17 1.10 1.10 1.05 1.05

4 1.02 1.00 1.00 1.00 1.00 4 1.02 1.00 1.00 1.00 1.00

40 5 1.37 1.24 1.17 1.13 1.19 45 5 1.24 1.13 1.06 1.05 1.09

6 1.17 1.10 1.07 1.01 1.00 6 1.18 1.12 1.08 1.02 1.00

7 1.60 1.30 1.26 1.17 1.29 7 1.69 1.45 1.37 1.30 1.42

8 1.30 1.17 1.10 1.06 1.02 8 1.32 1.18 1.13 1.06 1.06

Average 1.24 1.13 1.10 1.05 1.07 Average 1.24 1.15 1.11 1.07 1.09

As mentioned in Section 2.6.1 the instances are generalizations of the 2BP instances of
Martello and Vigo [119] (Classes 1–5), and Berkey and Wang [23] (Classes 6–8)1.

For each class a set of 140 instances were solved, ten for each value of n ∈ {10, 15, 20, 25, 30,
35, 40, 45, 50, 60, 70, 80, 90, 100}, and in Tables 6.1 and 6.2, for each algorithm, we report the

1Class 9 in [116] has not been considered here due to the special structure of the instances: algorithms
producing packing into layers (like HA) cannot find good solutions because the items are obtained by cutting
the complete bin with non-guillotine cuts.

6.1. TABU SEARCH: THE THREE-DIMENSIONAL CASE 71

Table 6.2: Random problem instances proposed by Martello, Pisinger and Vigo. n > 50, time
limit for Tabu Search of 180 CPU seconds on Digital Alpha 533 MHz, average values over ten
instances.

n Class H1
V

H2
V

HA
V

TS
V

BB
V

n Class H1
V

H2
V

HA
V

TS
V

BB
V

1 1.19 1.14 1.08 1.04 1.06 1 1.26 1.15 1.14 1.07 1.10

2 1.25 1.14 1.11 1.08 1.08 2 1.21 1.15 1.11 1.06 1.09

3 1.20 1.14 1.11 1.05 1.07 3 1.22 1.14 1.12 1.08 1.09

4 1.02 1.01 1.00 1.00 1.00 4 1.02 1.02 1.01 1.01 1.01

50 5 1.34 1.28 1.13 1.11 1.24 60 5 1.45 1.31 1.25 1.17 1.31

6 1.20 1.12 1.07 1.01 1.00 6 1.15 1.13 1.06 1.01 1.00

7 1.49 1.32 1.27 1.17 1.28 7 1.56 1.41 1.28 1.20 1.38

8 1.40 1.29 1.21 1.13 1.24 8 1.25 1.17 1.10 1.04 1.09

Average 1.26 1.18 1.12 1.07 1.12 Average 1.26 1.18 1.13 1.08 1.13

1 1.24 1.15 1.13 1.08 1.11 1 1.19 1.17 1.12 1.07 1.09

2 1.22 1.15 1.11 1.06 1.09 2 1.19 1.15 1.12 1.07 1.10

3 1.22 1.16 1.13 1.08 1.11 3 1.17 1.13 1.09 1.06 1.09

4 1.05 1.02 1.02 1.02 1.02 4 1.03 1.03 1.02 1.02 1.02

70 5 1.30 1.27 1.16 1.12 1.25 80 5 1.36 1.33 1.18 1.12 1.33

6 1.22 1.20 1.11 1.05 1.05 6 1.20 1.20 1.11 1.06 1.08

7 1.65 1.47 1.33 1.25 1.46 7 1.45 1.39 1.24 1.18 1.38

8 1.36 1.27 1.15 1.09 1.17 8 1.36 1.34 1.19 1.15 1.25

Average 1.28 1.21 1.14 1.10 1.16 Average 1.24 1.22 1.13 1.09 1.17

1 1.18 1.14 1.10 1.06 1.09 1 1.19 1.14 1.10 1.07 1.09

2 1.18 1.14 1.11 1.07 1.09 2 1.19 1.16 1.12 1.08 1.10

3 1.17 1.15 1.11 1.07 1.09 3 1.17 1.14 1.10 1.05 1.10

4 1.04 1.04 1.03 1.03 1.03 4 1.05 1.04 1.02 1.02 1.03

90 5 1.32 1.34 1.20 1.14 1.30 100 5 1.37 1.40 1.22 1.17 1.36

6 1.15 1.18 1.06 1.02 1.02 6 1.25 1.26 1.14 1.09 1.10

7 1.49 1.46 1.29 1.19 1.45 7 1.46 1.41 1.23 1.16 1.41

8 1.35 1.32 1.20 1.15 1.24 8 1.23 1.25 1.14 1.09 1.16

Average 1.24 1.22 1.14 1.09 1.16 Average 1.24 1.22 1.13 1.09 1.17

average ratio (solution value)/V , where V is the optimal solution value if known, or the
highest lower bound value (from [116]) otherwise.

Table 6.1 contains the results for the instances with n < 50, and the Tabu Search is
considered with a time limit of 30 CPU seconds, whereas, as mentioned in Section 2.6.1, the
branch-and-bound algorithm received a time limit of 1000 CPU seconds on a HP9000/C160
(160 MHz). (The computing times of algorithm HA, as well as the ones of dfirst3 heuristic
and mcut3 heuristic, are negligible, and are not reported here.) These results show a satis-
factory behavior of HA with respect to dfirst3 heuristic and mcut3 heuristic: although
HA could only obtain solutions composed by layers (thus solving a 3BP more constrained
problem), it is always better, on average, than the other heuristics (mcut3 heuristic does
not pack into layers), but for the case n = 10. In addition, the Tabu Search approach is
effective in improving the solution of HA, and this improvement becomes very important for
n > 25, thus leading to solutions better, on average, than the ones obtained by branch-and-
bound2. This behavior is confirmed and emphasized by the results of Table 6.2 for n between
50 and 100, for which the time limit for TS was 180 CPU seconds.

2Note that the tabu search solutions are composed by layers due to the inner heuristic, but, since HA is
applied to subsets of items, then these layers possibly have different orientations in different bins. Hence, some
of the 3BP optimal solutions cannot be obtained by TS.

72 CHAPTER 6. OTHER PACKING PROBLEMS

Finally, in Table 6.3 we report some aggregated results clarifying the behavior of the Tabu
Search. In particular, for each value of n we give four entries: the number of times the Tabu
Search obtains a solution at least as good as the branch-and-bound (TS ≤ BB in Table
6.3), the number of times the solution of the Tabu Search is strictly better than the one of
the branch-and-bound (TS < BB), the number of times the Tabu Search finds the optimal
solution (TS opt); and the number of times the solution of the Tabu Search is better than
the one of the branch-and-bound, and it is proved to be optimal (TS close).

Table 6.3: Random problem instances proposed by Martello, Pisinger and Vigo. Tabu Search
vs. Branch-and-Bound over the 1120 considered instances.

n 10 15 20 25 30 35 40 45 50 60 70 80 90 100 Total Percent
TS ≤ BB 76 73 77 75 77 74 77 76 79 79 77 78 79 78 1075 95.98%
TS < BB 0 0 0 1 1 10 8 13 21 30 38 41 44 48 255 22.77%

TS opt 76 73 77 74 74 66 61 51 43 30 21 15 15 9 685 61.16%
TS close 0 0 0 0 1 3 1 2 4 4 4 5 3 4 31 2.77%

Very recently Færø, Pisinger and Zachariasen [66] proposed a new metaheuristic ap-
proach for 3BP based on the Guided Local Search method [149]. The idea is to iteratively
solve constraint satisfaction problems in order to improve a starting solution obtained by
mcut3 heuristic.

The preliminary results of computational experiments on some of the previous instances
are reported in Table 6.4.

Table 6.4: Random problem instances proposed by Martello, Pisinger and Vigo. Tabu Search
vs. Guided Local Search.

n Class LB BB GLS TS

1 12.50 13.60 13.40 13.40
4 28.70 29.40 29.40 29.40

50 5 7.30 9.20 8.30 8.40
6 8.70 9.80 9.80 9.90
7 6.30 8.10 7.40 7.50
8 8.00 10.10 9.20 9.30
1 25.10 27.30 26.70 26.60
4 57.60 59.10 59.00 59.00

100 5 12.90 17.50 15.10 15.00
6 17.50 19.40 19.10 19.10
7 10.90 15.30 12.40 12.50
8 17.50 20.20 18.90 18.90

We consider experiments with n ∈ {50, 100}, for classes 1, 4, 5, 6, 7, and 8 above, and
we compare our Tabu Search (TS in Table 6.4) with the best known lower bound (LB), the
Guided Local Search method (GLS), and with the branch-and-bound in [115] (BB). Each
entry in the table gives the average number of bins over ten instances. The same time limit

6.2. 2BP, COMPATIBILITY GRAPHS AND STABLE SETS 73

of 1,000 CPU seconds was given to TS and GLS on very similar machines, Digital Alpha 533
MHz. and Digital workstation 500au 500 Mhz., respectively.

Although again the solutions obtained by TS, due to HA, are composed by layers, the
results show an effective behavior. In fact, TS and GLS find the same solution in 113 out of
the 120 instances, 5 times GLS is better than TS (4 for n = 50, and 1 for n = 100), whereas
2 times TS is better than GLS (for n = 100).

6.2 2BP, Compatibility Graphs and Stable Sets

Given any 2BP instance I it is straightforward to define the associated compatibility undirected
Graph G = (V,E). Formally, for each item j ∈ I (j = 1, . . . , n), we define a node j ∈ V , and
for each pair of items i, j ∈ I (hence i, j ∈ V), (i, j) ∈ E if and only if:

wi + wj ≤ W or hi + hj ≤ H(6.3)

where W and H are the weight and height of the bin. Two items for which (6.3) holds are
said to be compatible, i.e., they can be packed into the same bin (otherwise they are said to
incompatible).

A simple observation is that the cardinality of each stable set of G defines a valid lower
bound for 2BP. Then, the best of these lower bounds can be obtained by computing the
Maximum Cardinality Stable Set Problem (or Maximum Stable Set Problem, MSSP for short)
which is NP-hard for general graphs (see, Garey and Johnson [78]).

MSSP is known to be polynomially solvable for perfect graphs [86], and Hammer and
Mahadev [92] showed that bithreshold graphs are (strongly) perfect and gave a polynomial
time algorithm to solve the problem with time complexity O(n2). It is quite easy to see that
2BP compatibility graphs are bithreshold, hence MSSP is polynomial also for these graphs.

In the next section, we propose an algorithm which is able to solve MSSP with time
complexity O(n log n) for 2BP compatibility graphs.

6.2.1 An O(n log n) Algorithm

The algorithm presented in this section is based on the partition of the items of any instance
I of 2BP into four sets:

• set M is such that wi > 1
2W and hi > 1

2H ∀i ∈ M ;

• set MW is such that wi > 1
2W and hi ≤ 1

2H ∀i ∈ MW ;

• set MH is such that wi ≤ 1
2W and hi > 1

2H ∀i ∈ MH;

• set N is such that wi ≤ 1
2W and hi ≤ 1

2H ∀i ∈ N .

(Obviously, M
⋃

MW
⋃

MH
⋃

N defines the overall set of the items of any instance I.)

Proposition 6.1. Given any instance of 2BP, and the associated compatibility graph G =
(V, E), the maximum stable set G has cardinality |M |+ c, with c ∈ {0, 1, 2}.

Proof. Since M is by definition a stable set, we immediately have c ≥ 0. Note that there can-
not exist three pairwise incompatible items in MW

⋃
MH

⋃
N . In fact, an item in MW can

74 CHAPTER 6. OTHER PACKING PROBLEMS

be incompatible only with items in MH, but two items in MH are obviously compatible, and
vice-versa. In addition, no item in N is incompatible either with items in MW

⋃
MH

⋃
N .

It follows that at most two items in MW
⋃

MH
⋃

N can belong to the maximum stable set,
and since a stable set of cardinality |M | is already defined without these items, then c can be
at most equal to 2. 2

The above proposition suggests the algorithm called 2BP Stable (2BP St) to detect the
maximum stable set on 2BP compatibility graphs. From the proof of Proposition 6.1. it is
clear that the case |M |+2 has to be tested by searching for a pair (i, j) with i ∈ MW, j ∈ MH
such that:

(i) i, j are incompatible;

(ii) i, k are incompatible and j, k are incompatible ∀k ∈ M .

In order to find such a pair, we define the subset S1 ⊆ MW (resp. S2 ⊆ MH) of the
items i such that hi + ht > H (resp. wi + ws > W), where t = arg mink∈M hk (resp.
s = arg mink∈M wk). Only the items in S1 and S2 may belong to the pair (if any). Before
giving the overall algorithm we need three additional observations:

1. the initial partition of the items can be done in O(n) time, and, without additional
effort, we can store wmin = mink∈M wk, hmin = mink∈M hk, w2min = mink∈M\{s}wk and
h2min = mink∈M\{t} hk for set M , and hmax = maxk∈MW hk and wmax = maxk∈MH wk

for sets MW and MH, respectively;

2. once sets S1 and S2are defined, the case |M | + 2 is reduced to the problem of finding
two incompatible items in S1

⋃
S2, which can be done by procedure CHECK INC (to

be discussed later);

3. a possible way to obtain a stable set of cardinality |M |+ 1 is to remove one item from
M and add a pair (i, j) of the above type, and the only two items which one can in turn
try to remove are s and t. It is easy to see that if item s (resp. t) is removed, a subset
S′2 (resp. S′1) can be defined by using w2min (resp. h2min) instead of wmin (resp. hmin),
and we obtain a problem of the same type as the one described by 2. above for the set
S1

⋃
S′2 (resp. S′1

⋃
S2).

The other way is, instead, to add a single item which can belong to MW , MH or N
(see, algorithm 2BP S below).

Then, by indicating the maximum stable set by SS, algorithm 2BP S is the following.

algorithm 2BP S:
partition the items into the sets M , MW , MH, N and
store the values s, t, wmin, hmin, w2min, h2min, hmax, and wmax;
comment: case |M |+ 2;
INC := false;
define sets S1 ⊆ MW , and S2 ⊆ MH;
call CHECK INC(S1

⋃
S2,H,W ,INC,k,`);

if INC = true then
begin

6.2. 2BP, COMPATIBILITY GRAPHS AND STABLE SETS 75

SS := M
⋃{k}⋃{`};

stop
end

comment: case |M |+ 1, subcase 1.;
define set S′1;
call CHECK INC(S′1

⋃
S2,H,W ,INC,k,`);

if INC = true then
begin

SS := M \ {t}⋃{k}⋃{`};
stop

end
else

begin
define set S′2;
call CHECK INC(S1

⋃
S′2,H,W ,INC,k,`);

if INC = true then
begin

SS := M \ {s}⋃{k}⋃{`};
stop

end
end

comment: case |M |+ 1, subcase 2.;
if wmax + wmin > W then

begin
SS := M

⋃{arg maxk∈MH wk};
stop

end
if hmax + hmin > H then

begin
SS := M

⋃{arg maxk∈MW hk};
stop

end
comment: case |M |+ 1, subcase 3.;
for each k ∈ N do

begin
if wk + ws > W and hk + ht > H then

begin
SS := M

⋃{k};
stop

end
end

comment: case |M |;
SS := M

end.

The complexity of algorithm 2BP S strongly depends on procedure CHECK INC. As men-
tioned above, the initial partition is done in O(n) time, whereas subcase 2. is tested in

76 CHAPTER 6. OTHER PACKING PROBLEMS

constant time, and subcase 3. requires O(n). An obvious way of testing incompatibility for
the pairs of items in a set requires O(n2) time, but by using an appropriate data structure
this can be done in O(n log n), thus determining the overall complexity of 2BP S. In partic-
ular, procedure CHECK INC is an adaptation of procedure CHECK INCOMPATIBILITY
proposed by Caprara and Toth [32] to test the incompatibility of all the items in a set in the
two-dimensional vector packing context.

Procedure CHECK INC receives as input a set S of items (with the corresponding w and
h values), and the bin dimensions W and H, and gives as output a flag INC which is true if
two items in S are incompatible, and, in such a case, the indices (in the original set) of these
two items. The procedure is based on a simple observation and on an ordered data structure
D. The observation is that given a pair of items i, j ∈ MW (or i, j ∈ MH), if wi ≤ wj

and hi ≤ hj , then item j dominates item i, i.e., each item k incompatible with i is obviously
incompatible with j. The data structure, D contains the subset C ⊆ S of the non-dominated
items of S. Initially, D contains the first element of S, and the items are iteratively added
by preserving D ordered by decreasing values of w and by increasing values of h.

Thus, the procedure CHECK INC is as follows:

procedure CHECK INC(S,W ,H,INC,k,`);
begin

insert the first item j ∈ S in D;
S := S \ {j};
for each j ∈ S do
begin

find the item s in D such that ws is minimum and ws > W − wj ;
let s := 0 if no such item exists;
if s 6= 0 and hs + hj > H then
begin

INC := true;
k := j;
let ` be the index of item s in the original set;
return

end
comment: item j is compatible with all the previous items: update D;
find the first item s in D such that ws < wj ;
find the last item p in D such that wp ≥ wj ;
let s := 0 and p := 0 if the corresponding items do not exist;
if p 6= 0 and hp < hj then
begin

if s 6= 0 and hs > hj then insert item j in D;
else

if s = 0 then insert item j in D;
else

begin
delete item s;
insert item j in D

end
end

6.2. 2BP, COMPATIBILITY GRAPHS AND STABLE SETS 77

else if p = 0 then insert item j in D;
end

end.

The implementation of D by means of red-black trees, see, e.g., [45], requires O(log k) time
both for searching for the first element s with ws not greater than a given threshold, and for
inserting/deleting an element, where k is the number of elements stored. Since the number
of searches, insertions and deletions during the procedure is O(n), the overall complexity is
O(n log n), and the same holds for the overall algorithm 2BP S for which testing the incom-
patibility of the items in a set is the bottleneck.

Theorem 6.1. MSSP for 2BP compatibility graphs can be solved in O(n log n) time.

Proof. It follows from the above discussion. 2

An idea of the performance of the above bound is given by the results of Table 6.5. We
consider the 500 instances already introduced in Chapter 2 (and used in the others), and
we compare the new lower bound (Lst in Table 6.5), with the continuous lower bound (L0),
and the lower bounds L1, L2, and L3 proposed by Martello and Vigo [119]. For each class
we report in Table 6.5 the average value (over the 50 instances of the class) of the ratio of
each lower bound over the best known upper bound (UB) computed with the constructive
heuristics of Chapter 5.

Table 6.5: 2BP random instances by Martello and Vigo (Classes 1-4), and by Berkey and
Wang (Classes 5-10). Comparison of lower bounds.

Class L0
UB

L1
UB

L2
UB

L3
UB

Lst

UB

1 0.85 0.92 0.95 0.85 0.42
2 0.83 0.90 0.94 0.83 0.41
3 0.65 0.99 0.99 0.96 0.99
4 0.90 0.91 0.92 0.90 0.73
5 0.90 0.91 0.94 0.90 0.80
6 0.97 0.97 0.97 0.97 0.49
7 0.85 0.89 0.90 0.86 0.81
8 0.97 0.97 0.97 0.97 0.51
9 0.84 0.90 0.92 0.85 0.85

10 0.94 0.94 0.94 0.94 0.53

Not surprisingly, Lst is quite poor for all the considered classes, with the exception of
Class 3 for which it has the best performances. In fact, for this class Lst obtains the highest
value in 48 cases over 50 (instead of the 38 of both L1 and L2 which have anyway the same
ratios). This behavior is due to the structure of the instances in this class for which wj is
uniformly random in [12W,W] and hj uniformly random in [12H, H] with a probability of 70%.

78 CHAPTER 6. OTHER PACKING PROBLEMS

6.2.2 The 3BP Case

The same discussion of Section 6.2 for 2BP can be repeated for three-dimensional bin packing
by the obvious substitution of the compatibility test (6.3) with the following one:

di + dj ≤ D or wi + wj ≤ W or hi + hj ≤ H(6.4)

where i, j are a pair of items, thus a pair of nodes of the compatibility graph G = (V, E).
Again, (i, j) ∈ E iff (6.4) holds.

Also for 3BP, it is useful to partition the set of items. In particular, we obtain eight
different sets:

• set M such that di > 1
2D and wi > 1

2W and hi > 1
2H ∀i ∈ M ;

• set DW such that di > 1
2D and wi > 1

2W and hi ≤ 1
2H ∀i ∈ DW ;

• set DH such that di > 1
2D and wi ≤ 1

2W and hi > 1
2H ∀i ∈ DH;

• set WH such that di ≤ 1
2D and wi > 1

2W and hi > 1
2H ∀i ∈ WH;

• set MD such that di > 1
2D and wi ≤ 1

2W and hi ≤ 1
2H ∀i ∈ MD;

• set MW such that di ≤ 1
2D and wi > 1

2W and hi ≤ 1
2H ∀i ∈ MW ;

• set MH such that di ≤ 1
2D and wi ≤ 1

2W and hi > 1
2H ∀i ∈ MH;

• set N such that di ≤ 1
2D and wi ≤ 1

2W and hi ≤ 1
2H ∀i ∈ N .

Not surprisingly, Proposition 6.1. can be extended to 3BP. Formally, the following proposition
holds.

Proposition 6.2. Given any instance of 3BP, and the associated compatibility graph G =
(V, E), the maximum stable set G has cardinality |M |+ c, with c ∈ {0, 1, 2, 3}.

Proof. The fact that c ≥ 0 is obvious because M is a stable set by construction. Consider
now set R = V \M : no subset T ⊆ R of cardinality four (or more) exists such that each pair
of items in T is incompatible. Take set DW . Any item i ∈ DW could be incompatible with
items in sets DH, WH and MH, but any item j ∈ MH is obviously compatible with any
item k ∈ DH because both wj , wk ≤ 1

2W . The same holds for sets DH and WH, whereas
any item in set MD could be incompatible only with an item in set WH (as MW with DH,
and MH with DW). It follows that at most three items in R can belong to the maximum
stable set, whose cardinality is therefore at most |M |+ 3. 2

We propose in the following an algorithm, which we call 3BP Stable (3BP S), for finding
the maximum stable set in the 3BP context. By denoting again the stable set as SS, and
by initializing it as SS = M , the algorithm exploits the proposition above, and needs to test
three cases with a large number of subcases:

1. case |M |+3: it can be obtained only by adding to set SS a triple (i, j, k) of incompatible
items such that i ∈ DW , j ∈ DH, and k ∈ WH, and pairwise incompatible with all
the items in SS;

2. case |M |+ 2: it can be obtained in two ways:

6.2. 2BP, COMPATIBILITY GRAPHS AND STABLE SETS 79

(a) by removing an item of SS, and adding a triple as in case 1 above;

(b) by adding a pair of items to M ;

3. case |M |+ 1: it can be obtained in three ways:

(a) by removing a pair of items of SS, and adding a triple as in case 1 above;

(b) by removing an item of SS, and adding a pair as in case (2b) above;

(c) by adding a single item to SS.

(It will be clear in the following that several subsubcases correspond to each of these subcases.)
As mentioned in Section 6.2.1, the initial partition can be done in O(n) time, and, without

additional effort, we are able to store the following information:

• for set M : r = arg mink∈M dk, dmin = mink∈M dk, s = arg mink∈M wk, wmin =
mink∈M wk, t = arg mink∈M hk, hmin = mink∈M hk, r′ = arg mink∈M\{r} dk, d2min =
mink∈M\{r} dk, s′ = arg mink∈M\{s}wk, w2min = mink∈M\{s}wk, t′ = arg mink∈M\{t} hk,
h2min = mink∈M\{t} hk, d3min = mink∈M\{r,r′} dk, w3min = mink∈M\{s,s′}wk, and
h3min = mink∈M\{t,t′} hk;

• for set DW : hmax = maxk∈DW hk;

• for set DH: wmax = maxk∈DH wk;

• for set WH: dmax = maxk∈WH dk.

In addition, we need to define the sets of type S corresponding to the ones of Section
6.2.1. In particular:

• S1 ⊆ DW such that hi + ht > H ∀i ∈ S1;

• S2 ⊆ DH such that wi + ws > W ∀i ∈ S2;

• S3 ⊆ WH such that di + dr > D ∀i ∈ S3;

• S′1 ⊆ DW such that hi + ht′ > H ∀i ∈ S′1;

• S′2 ⊆ DH such that wi + ws′ > W ∀i ∈ S′2;

• S′3 ⊆ WH such that di + dr′ > D ∀i ∈ S′3;

• S′′1 ⊆ DW such that hi + h3min > H ∀i ∈ S′′1 ;

• S′′2 ⊆ DH such that wi + w3min > W ∀i ∈ S′′2 ;

• S′′3 ⊆ WH such that di + d3min > D ∀i ∈ S′′3 ;

• S4 ⊆ MD such that hi + ht > H and wi + ws > W ∀i ∈ S4;

• S5 ⊆ MW such that hi + ht > H and di + dr > D ∀i ∈ S5;

• S6 ⊆ MH such that wi + ws > W and di + dr > D ∀i ∈ S6;

• S̄′4 ⊆ MD such that hi + ht′ > H and wi + ws > W ∀i ∈ S̄′4;

80 CHAPTER 6. OTHER PACKING PROBLEMS

• S̃′4 ⊆ MD such that hi + ht > H and wi + ws′ > W ∀i ∈ S̃′4;

• S̄′5 ⊆ MW such that hi + ht′ > H and di + dr > D ∀i ∈ S̄′5;

• S̃′5 ⊆ MW such that hi + ht > H and di + dr′ > D ∀i ∈ S̃′5;

• S̄′6 ⊆ MH such that wi + ws′ > W and di + dr > D ∀i ∈ S̄′6;

• S̃′6 ⊆ MH such that wi + ws > W and di + dr′ > D ∀i ∈ S̃′6.

Finally, we discuss in detail the cases above and in particular at least one of the subcases (or
subsubcases).

Case 1 The problem consists in finding a triple in the set S1
⋃

S2
⋃

S3. It can be trivially
solved in O(n3) time by simply trying each triple.

Case 2a The problem can be reduced to the previous one by removing item t from SS and
testing the set S′1

⋃
S2

⋃
S3, or item s and testing the set S1

⋃
S′2

⋃
S3, or item r and testing

the set S1
⋃

S2
⋃

S′3.

Case 2b We define set S1
⋃

S2. Since any item in this set is incompatible on the third dimen-
sion (the depth) both with the other items in the set and with any item in SS, the problem
is to find a pair of incompatible items in the set, and can be solved in O(n log n) time by
procedure CHECK INC. The same holds for sets S1

⋃
S3 and S2

⋃
S3. Other sets for which

the problem consists in finding a pair of incompatible items are S1
⋃

S6, S2
⋃

S5 and S3
⋃

S4:
for these sets, however, it is not possible to apply CHECK INC because the three dimensions
have to be tested. A trivial way of performing these tests requires O(n2) time (two nested
loops).

Case 3a The problem is again the computation of a triple. The corresponding set is
S′′1

⋃
S2

⋃
S3 and items t and t′ are removed from SS. The same holds for five other sets:

S′1
⋃

S′2
⋃

S3, S1
⋃

S′′2
⋃

S3, S1
⋃

S′2
⋃

S′3, S′1
⋃

S2
⋃

S′3, and S1
⋃

S2
⋃

S′′3 .

Case 3b This is the case where we remove an item from SS and we add a pair. The items that
can be removed are again r, s, or t, and the following subcases arise. By removing r, we clearly
define S′3, hence we have to test S′3

⋃
S1, S′3

⋃
S2, and S′3

⋃
S4. In addition, we also define S̃′5

and S̃′6, hence we need to test S̃′5
⋃

S2 and S̃′6
⋃

S1. As for Case 2b, some of these sets, namely
S′3

⋃
S1 and S′3

⋃
S2, can be tested through CHECK INC in O(n log n) time, whereas for the

remaining ones O(n2) time is required. For the sake of completeness, these are the remaining
ten subcases: S′2

⋃
S1, S′2

⋃
S3, S′2

⋃
S5, S̃′4

⋃
S3, and S̄′6

⋃
S1 (corresponding to the removing

of s), and S′1
⋃

S2, S′1
⋃

S3, S′1
⋃

S6, S̄′4
⋃

S3, and S̄′5
⋃

S2 (corresponding to the removing of t).

Case 3c We have seven subsubcases. For set DW we simply test in constant time con-
dition hmax + hmin > H (and analogously for DH and WH). For any item i ∈ MD
we test conditions hi + hmin > H and wi + wmin > W (and analogously for MW and
MH) with an overall complexity of O(n). Finally, for any item i ∈ N we test conditions
hi + hmin > H and wi + wmin > W and di + dmin > D, again in O(n) time.

6.3. TWO-DIMENSIONAL SHELF PACKING PROBLEMS 81

We do not report the overall algorithm but the idea is quite simple. Algorithm 3BP S
tests one at a time each of the described cases, and stops as soon as in one of these it is able
to improve the initial stable set SS = M . It is easy to see that by exploring the cases in
this order no additional improvement is possible. The actual bottleneck of the computation
is the recognition of a triple, which determines the overall time complexity of 3BP SP which
is O(n3).

Theorem 6.2. MSSP for 3BP compatibility graphs can be solved in O(n3) time.

Proof. It follows from the above discussion. 2

6.3 Two-Dimensional Shelf Packing Problems

In two-dimensional packing problems one is given a set of n rectangular items, each having
width wj and height hj (j = 1, . . . , n), and the object is to orthogonally allocate them, without
overlapping, to rectangular containers by minimizing the unused space. It is assumed that
the items have fixed orientation, i.e., they cannot be rotated. Two main specific problems are
considered in the literature:

• the two-dimensional bin packing problem (2BP), where an infinite number of identical
finite containers (bins), having width W and height H, is available, and the object is to
minimize the number of bins used.

• the two-dimensional strip packing problem (2SP), where a single container (strip), having
width W and infinite height, is available, and the object is to minimize the height to
which the strip is used.

These problems have industrial applications in cutting and packing contexts. The reader
is referred to Lodi, Martello and Vigo [110] for a recent survey on two-dimensional packing,
and to Dyckhoff, Scheithauer and Terno [64] for an annotated bibliography on cutting and
packing.

Both 2BP and 2SP can be viewed as generalizations of the one-dimensional bin packing
problem (1BP), where n elements, having size wj (j = 1, . . . , n), have to be partitioned into
the minimum number of subsets so that the sum of the sizes in each subset does not exceed
a given capacity W . It is known that 1BP is strongly NP-hard. Given any instance of 1BP,
we can construct both an equivalent instance of 2BP, by defining hj = H for j = 1, . . . , n,
and an equivalent instance of 2SP, by defining hj = 1 for j = 1, . . . , n. It follows that 2BP
and 2SP are strongly NP-hard.

Most of the approximation algorithms for 2BP and 2SP (see, e.g., Coffman, Garey, John-
son and Tarjan [43], Chung, Garey and Johnson [42], Berkey and Wang [23] Frenk and Galam-
bos [76], Lodi, Martello and Vigo [109]) find a bin/strip solution by packing the items, from
left to right, in rows forming levels (shelves). The first shelf is the bottom of the bin/strip,
and subsequent shelves are created on the horizontal line coinciding with the top of the tallest
item packed on the shelf below. This kind of packing has also practical relevance: in most
cutting applications it is required that the patterns are such that the items can be obtained
through a sequence of edge-to-edge cuts parallel to the edges of the bin (guillotine cuts), and
it is easily seen that shelf packings fulfil this constraint.

82 CHAPTER 6. OTHER PACKING PROBLEMS

In this section we consider 2BP and 2SP with the additional constraint that the items
are packed by shelves. We denote the resulting problems as two-dimensional shelf bin/strip
packing problem (2SBP/2SSP).

To our knowledge, the mathematical models presented in the literature for two-dimensional
cutting and packing problems (see, e.g., Beasley [18], Hadjiconstantinou and Christofides [89]
Hifi [94]), are all based on a discrete representation of the geometrical space and the ex-
plicit use of coordinates at which items may be allocated. As a consequence these models
require a huge, non-polynomial, number of binary variables, such as, for example, xipq = 1 iff
item i is placed with its bottom left corner at coordinate (p, q) (i = 1, . . . , n, p = 1, . . . ,W ,
q = 1, . . . , H. In the next sections we show that the shelf restriction can be exploited so as to
obtain mathematical models involving a polynomial number of variables. The quality of the
models is evaluated through computational experiments.

We assume in the following that all input data are positive integers.

6.3.1 Mathematical Models

We start with a couple of simple observations, which will allow to obtain a more compact
formulation. For any optimal shelf solution there exists an equivalent solution in which

(i) the first (leftmost) item packed in each shelf is the tallest item in the shelf;

(ii) the first (bottom) shelf packed in each bin/strip is the tallest shelf in the bin/strip.

Hence we will consider only solutions satisfying these conditions. If an item is the first in a
shelf, we will say that it initializes the shelf; similarly, if a shelf is the first in a bin/strip, we
will say that it initializes the bin/strip. We will also assume that

(iii) the items are sorted so that h1 ≥ h2 ≥ . . . ≥ hn.

Let us first consider the two-dimensional shelf bin packing problem 2SBP. Our model uses four
sets of variables: the first two sets refer to the packing of items into shelves, the remaining two
to the packing of shelves into bins. The model assumes that n potential shelves are available,
each associated with a different item i which initializes it, hence having the corresponding
height hi. The first decision variable is thus

yi =

{
1 if item i initializes shelf i
0 otherwise

(i = 1, . . . , n)(6.5)

and observe that, by (i) and (iii) above, only items j satisfying j > i may be packed in shelf
i (if this shelf is actually used). Therefore the item packing is modeled by

xij =

{
1 if item j is packed into shelf i
0 otherwise

(i = 1, . . . , n− 1; j > i)(6.6)

Similarly, we assume that n potential bins are available, each associated with a potential shelf
k which initializes it. The third decision variable is thus

qk =

{
1 if shelf k initializes bin k
0 otherwise

(k = 1, . . . , n)(6.7)

6.3. TWO-DIMENSIONAL SHELF PACKING PROBLEMS 83

and observe that, by (ii) and (iii) above, only shelves i satisfying i > k may be allocated to
bin k (if this bin is actually used). Therefore the shelf packing is modeled by

zki =

{
1 if shelf i is allocated to bin k
0 otherwise

(k = 1, . . . , n− 1; i > k)(6.8)

The model follows:

min
n∑

k=1

qk(6.9)

subject to
j−1∑

i=1

xij + yj = 1 (j = 1, . . . , n)(6.10)

n∑

j=i+1

wjxij ≤ (W − wi)yi (i = 1, . . . , n− 1)(6.11)

i−1∑

k=1

zki + qi = yi (i = 1, . . . , n)(6.12)

n∑

i=k+1

hizki ≤ (H − hk)qk (k = 1, . . . , n− 1)(6.13)

yi ∈ {0, 1} (i = 1, . . . , n)(6.14)

xij ∈ {0, 1} (i = 1, . . . , n− 1; j > i)(6.15)

qk ∈ {0, 1} (k = 1, . . . , n)(6.16)

zki ∈ {0, 1} (k = 1, . . . , n− 1; i > k)(6.17)

The objective function (6.9) minimizes the number of bins used. Equations (6.10) impose
that each item is packed exactly once, either by initializing a shelf or in a shelf initialized by
a preceding (taller) item. Equations (6.11) impose the width constraint to each used shelf.
Equations (6.12) impose that each used shelf is allocated exactly once, either by initializing
a bin or in a bin initialized by a preceding (taller) shelf. Finally, equations (6.13) impose the
height constraint to each used bin.

A couple of observations can be done on this model. First, from (6.10) and (6.12) we
immediately have y1 = q1 = 1. Second, an equivalent model could replace variables yi

(i = 1, . . . , n) with xii (i = 1, . . . , n), and variables qk (k = 1, . . . , n) with zkk (k = 1, . . . , n).
In both cases we feel that the given model has to be preferred for the sake of clarity.

It is easy to derive from (6.9)–(6.17) a mathematical model for the two-dimensional shelf
strip packing problem 2SSP. Indeed, it is enough to introduce the appropriate objective
function, and to drop all variables and constraints related to the packing of the shelves into
the bins. We get

84 CHAPTER 6. OTHER PACKING PROBLEMS

min
n∑

i=1

hiyi(6.18)

subject to (6.10), (6.11), (6.14), (6.15)

6.3.2 Computational Experiments

In this section the models of 2SBP and 2SSP are evaluated by using the branch-and-bound
of Cplex 6.5 on the set of 500 two-dimensional instances already used in many points of this
thesis. In particular, in the 2SSP case we consider only the width of the given bin to adapt
each instance to be of strip packing type (thus obtaining a strip of width W and infinite
height).

In Table 6.6 we consider the 2SBP on the four classes of instances proposed by Martello
and Vigo [119] (Classes 1-4), and on the six classes proposed by Berkey and Wang [23] (Classes
5-10).

For each class and for each value of n ∈ {20, 40, 60, 80, 100} we report for the continuous
lower bound (L0, computed as usual as d∑n

i=1 wihi/(WH)e, and obviously also valid for 2SBP)
and for the continuous relaxation of the model (Lc) the average ratios (lower bound/best
known solution), computed over ten instances (the best known solution is indicated as UB
and is obtained by the branch-and-bound). In addition, we give the average computing times
on a Digital Alpha 533 MHz of the standard branch-and-bound of Cplex 6.5, the number of
problems solved to optimality within the time limit of 300 CPU seconds, and the average
number of branch-and-bound nodes.

The behavior of the model is satisfactory: the performance of its continuous relaxation is
better than that of the simple bound L0 in all the 500 instances, and we are able to solve to
optimality more than 80 % of the problems, by the standard branch-and-bound of Cplex 6.5
within a time limit of 300 CPU seconds (Digital Alpha 533 MHz.).

The same information is finally given for 2SSP in Table 6.7. In this case the continuous
lower bound (L0) is computed as d∑n

i=1 wihi/W e.
In this case too the proposed model obtains satisfactory results. In particular, we are able

to solve to optimality 65 % of the 500 instances (always using the standard branch-and-bound
of Cplex 6.5, and with a time limit of 300 CPU seconds). However, the behavior is much
more dependent on the class of problems considered.

6.3. TWO-DIMENSIONAL SHELF PACKING PROBLEMS 85

Table 6.6: 2SBP, random problem instances proposed by Martello and Vigo (Classes 1-4),
and by Berkey and Wang (Classes 5-10).

Class n L0
UB

Lc
UB

T imeB&B Solved Nodes

20 0.83 0.87 0.13 10 8.9
40 0.84 0.86 1.79 10 44.8

1 60 0.87 0.87 30.35 10 606.7
80 0.84 0.85 120.24 7 1682.8

100 0.85 0.85 186.60 5 1101.1
20 0.79 0.82 0.13 10 7.7
40 0.84 0.86 5.05 10 158.4

2 60 0.86 0.87 51.62 9 997.4
80 0.84 0.85 200.41 4 2010.8

100 0.84 0.84 222.41 3 1073.0
20 0.66 0.66 0.01 10 1.0
40 0.65 0.66 0.07 10 1.6

3 60 0.63 0.64 0.12 10 1.0
80 0.64 0.65 0.23 10 1.0

100 0.65 0.65 0.38 10 1.0
20 0.84 0.93 0.41 10 5.7
40 0.90 0.93 13.54 10 206.6

4 60 0.87 0.92 130.37 6 1073.2
80 0.89 0.90 193.98 5 865.5

100 0.88 0.89 278.74 1 366.7
20 0.88 0.88 0.11 10 2.8
40 0.88 0.89 1.33 10 30.5

5 60 0.91 0.91 2.98 10 20.7
80 0.91 0.91 11.01 10 132.0

100 0.94 0.94 59.15 10 496.3
20 1.00 1.00 0.23 10 13.3
40 0.95 1.00 3.52 10 76.4

6 60 0.90 0.90 63.15 9 1566.5
80 0.90 0.90 155.70 7 2076.4

100 0.88 0.88 194.94 5 1458.3
20 0.83 0.83 0.21 10 1.0
40 0.84 0.86 2.87 10 21.6

7 60 0.90 0.91 36.78 10 279.8
80 0.88 0.88 52.06 9 437.9

100 0.88 0.89 207.85 4 484.3
20 1.00 1.00 0.25 10 13.1
40 0.95 0.95 3.90 10 60.0

8 60 0.83 0.90 126.24 7 2322.8
80 0.80 0.83 188.68 5 2245.2

100 0.87 0.87 174.74 5 1236.9
20 0.81 0.83 0.17 10 1.0
40 0.82 0.85 2.61 10 43.0

9 60 0.86 0.87 16.99 10 152.5
80 0.86 0.86 33.70 10 318.2

100 0.88 0.89 203.12 5 747.6
20 1.00 1.00 0.18 10 10.6
40 0.80 0.95 3.66 10 43.9

10 60 0.87 0.87 102.44 7 1726.2
80 0.93 0.93 115.10 7 1222.1

100 0.81 0.81 199.40 4 1327.7

86 CHAPTER 6. OTHER PACKING PROBLEMS

Table 6.7: 2SSP, strip packing adaptation of the random problem instances proposed by
Martello and Vigo (Classes 1-4), and by Berkey and Wang (Classes 5-10).

Class n L0
UB

Lc
UB

TimeB&B Solved Nodes

20 0.82 0.86 0.01 10 2.0
40 0.83 0.85 0.05 10 7.1

1 60 0.85 0.86 0.42 10 38.7
80 0.85 0.86 0.63 10 45.0

100 0.86 0.87 0.81 10 39.6
20 0.87 0.90 17.40 10 9188.6
40 0.92 0.93 166.08 5 14064.2

2 60 0.93 0.94 300.06 0 11535.0
80 0.94 0.94 300.10 0 6363.5

100 0.94 0.95 300.17 0 3827.1
20 0.80 0.82 0.01 10 1.6
40 0.80 0.81 0.03 10 2.1

3 60 0.79 0.80 0.06 10 2.0
80 0.80 0.80 0.12 10 1.5

100 0.82 0.82 0.33 10 7.9
20 0.85 0.88 0.87 10 218.3
40 0.89 0.92 33.68 10 2765.6

4 60 0.91 0.92 220.51 5 9865.6
80 0.92 0.93 239.66 3 5531.2

100 0.93 0.94 300.13 0 3514.4
20 0.88 0.91 0.09 10 34.0
40 0.91 0.92 1.09 10 265.4

5 60 0.92 0.93 31.17 9 5461.6
80 0.93 0.93 31.43 9 7522.7

100 0.96 0.96 91.05 8 5601.7
20 0.81 0.89 0.74 10 193.8
40 0.89 0.91 220.06 4 35329.0

6 60 0.91 0.92 300.04 0 20581.5
80 0.92 0.93 300.07 0 15579.2

100 0.93 0.93 300.11 0 11971.1
20 0.84 0.88 0.14 10 31.2
40 0.88 0.89 2.41 10 245.5

7 60 0.90 0.91 33.98 9 1265.9
80 0.90 0.91 10.75 10 378.1

100 0.92 0.92 144.97 6 2891.6
20 0.79 0.89 0.87 10 112.8
40 0.87 0.91 167.25 6 17464.2

8 60 0.89 0.91 300.05 0 14235.7
80 0.90 0.91 300.10 0 7711.6

100 0.90 0.91 300.13 0 5783.4
20 0.84 0.87 0.11 10 16.8
40 0.87 0.88 0.97 10 75.6

9 60 0.89 0.90 12.42 10 761.3
80 0.89 0.90 23.57 10 1231.2

100 0.92 0.93 136.12 6 2658.1
20 0.77 0.88 0.88 10 120.2
40 0.86 0.90 197.56 4 21029.3

10 60 0.88 0.91 300.04 0 11562.9
80 0.89 0.91 300.08 0 8007.6

100 0.89 0.90 300.13 0 5630.5

Part II

Algorithms for Assignment
Problems

87

Chapter 7

Preliminaries and Outline of Part II

The well-known Linear Assignment Problem (AP) (see [55] for an annotated bibliography)
states as follows. Given a square cost matrix cij of order n, the problem is to assign to each
row a different column, and vice-versa in order to minimize the total sum of the row-column
assignment costs.

This problem can be seen as the Minimum Cost Perfect Matching problem on bipartite
graphs. Let G = (V ∪T, A) be a bipartite graph where V and T are the vertex sets such that
|V | = |T | = n, A = {(i, j)|i ∈ V, j ∈ T} is the arc set, and cij is the cost of arc (i, j) ∈ A.
Then, the minimum cost perfect matching in G is to select n arcs in A for which no two
arcs share a vertex and the sum of the corresponding costs is a minimum. Vertex i ∈ V
corresponds to row i and vertex j ∈ T to column j, thus the optimal solution of matching
gives the solution to the AP in which, if arc (i, j) ∈ A is selected, row i is assigned to column
j.

A classic Integer Linear Programming (ILP) formulation for the AP is:

Z(AP) = min
∑

i∈V

∑

j∈T

cij xij(7.1)

subject to ∑

i∈V

xij = 1, j ∈ T(7.2)

∑

j∈T

xij = 1, i ∈ V(7.3)

xij ∈ {0, 1} i ∈ V, j ∈ T(7.4)

where xij = 1 if and only if row i is assigned to column j in the optimal solution. Constraints
(7.2) (resp. (7.3)) assure that each row (resp. column) is assigned to exactly one column
(resp. row).

Alternatively, AP can also be defined on a digraph (of n vertices) as the graph theory
problem of finding a set of disjoint sub-tours such that all the vertices in the digraph are
visited and the sum of the costs of selected arcs is a minimum. Through this point of view
constraints (7.2) and (7.3) impose in-degree and out-degree of each vertex equal to one.

It is well-known that, since the constraint matrix of AP is totally unimodular, the prob-
lem is polynomially solvable. Thus, an (integer) optimal solution of AP can be obtained by
applying any linear programming algorithm to the continuous relaxation of the above model.

89

90 CHAPTER 7. PRELIMINARIES AND OUTLINE OF PART II

However, AP can be solved through special purpose algorithms, as for example the Hungarian
Algorithm (see, Lawler [103]) with time complexity O(n3).

The great interest of the AP for combinatorial optimization is due to several reasons. The
problem itself models real-world applications arising in a number of different domains like
scheduling, location and routing, just to mention a few. In addition, many other problems,
with both theoretical and practical relevance, contain AP as a subproblem (e.g., the most
famous one is the Travelling Salesman Problem), thus solving AP provides a bound for the
solution of such problems. Finally, AP is strictly related to linear programming, thus being
a perfect “playground” to apply basic concepts like LP duality and many others.

Many of the projects I have been involved in during the PhD period have the assignment
problem as a common denominator:

• In Chapter 8, we consider a generalization of AP, called k-Cardinality Assignment Prob-
lem, in which only a subset (with cardinality equal to k) of the rows has to be assigned.
For this problem specialized algorithms and the corresponding computer implementa-
tions are presented.

• In Chapter 9, a new tabu search framework, called eXploring Tabu Search, is presented,
and its effectiveness is computationally tested on another generalization of AP obtained
by replacing the objective function (7.1) with a cumulative function (thus the name
Cumulative Assignment Problem, CAP).

• In Chapter 10, AP is used as a bound in Constraint Programming (CP). In particular,
the Hungarian algorithm is integrated into two CP global constraints (IlcAllDiff and
IlcPath), thus adding to the constraints an optimization component. CP global con-
straints usually prune the solution space by feasibility reasoning, whereas the addition
of AP allows also a pruning based on costs. The mechanism is perfectly general, and AP
is used as an example, again very clever. In addition, the bound inside the constraint
is used as a black box by the user (which is an important feature for CP).

• In Chapter 11, a branch-and-cut algorithm for the Multiple Depot Vehicle Scheduling
Problem is presented. The initial lower bound, as well as the pricing strategy require
the iterative solution of a third generalization of AP, called Transportation Problem, in
which some of the vertices have in-degree and out-degree higher than one (see, equations
(7.2)-(7.3)).

Finally, Chapter 12 presents algorithms for a pair of problems which belong to the wide
category of assignment problems even if they are not directly related to the Linear Assignment
Problem. In particular, a metahueristic algorithm for the unconstrained Quadratic 0–1 Pro-
gramming (QP) is considered, whereas exact and heuristic approaches have been developed
for the Data sets Reconstruction Problem (DRP).

Both QP and DRP can be seen as graph theory problems, and they have been included in
this thesis because the algorithmic components are common to the ones used in other chapters
for different problems, thus representing an interesting appendix to prove the effectiveness of
these ideas.

Chapter 8

The k-Cardinality Assignment
Problem

8.1 Introduction

A1 well-known problem in telecommunications is the Satellite-Switched Time-Division Multi-
ple Access (SS/TDMA) time slot assignment problem (see, e.g., Prins [134], Jain, Werth and
Browne [96]). We are given m transmitting stations and n receiving stations, interconnected
by a geostationary satellite through an on-board k×k switch (k ≤ min(m,n)), and an integer
m × n traffic matrix W = [wij], where wij is the time needed for the transmission from sta-
tion i to station j. The problem is to determine a sequence of switching configurations which
allow all transmissions to be performed in minimum total time, under the constraint that no
preemption of a transmission occurs. A switching configuration is an m × n 0-1 matrix X`

having exactly k ones, with no two in the same row or column. Matrix X` is associated with
a transmission time slot of duration t` = maxij{X`

ijwij}. The objective is thus to determine
an integer τ and X` (` = 1, . . . , τ) so that

∑τ
`=1 t` is a minimum. The problem is known to be

NP-hard. Several heuristic algorithms (see, e.g., Pomalaza-Ráez [133] and Dell’Amico, Maffi-
oli and Trubian [53]) determine, at each iteration, a switching configuration which minimizes
the sum of the selected transmission times. In the following we consider efficient algorithms
for exactly solving this local problem.

Given an integer m×n cost matrix W and an integer k (k ≤ min(m,n)), the k–Cardinality
Assignment Problem (k-AP) is to select k rows and k columns of W and to assign each
selected row to exactly one selected column, so that the sum of the costs of the assignment is
a minimum. Let xij (i = 1, . . . ,m, j = 1, . . . , n) be a binary variable taking the value 1 if and
only if row i is assigned to column j. The problem can then be formulated as the following
integer linear program:

z = min
m∑

i=1

n∑

j=1

wijxij(8.1)

n∑

j=1

xij ≤ 1, (i = 1, . . . , m)(8.2)

1The results in this chapter appear in: M. Dell’Amico, A. Lodi, S. Martello, “Efficient Algorithms and
Codes for k-Cardinality Assignment Problems”, Technical Report OR/97/7, DEIS - Università di Bologna,
Discrete Applied Mathematics to appear, [51].

91

92 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

m∑

i=1

xij ≤ 1, (j = 1, . . . , n)(8.3)

m∑

i=1

n∑

j=1

xij = k(8.4)

xij ∈ {0, 1} (i = 1, . . . , m, j = 1, . . . , n)(8.5)

In the special case where m = n = k, k-AP reduces to the well-known Assignment Problem
(AP). (In this case the ‘≤’ sign in equations (8.2) and (8.3) can be replaced by the ‘=’ sign,
and equation (8.4) can be dropped.)

It has been shown by Dell’Amico and Martello [54] that the constraint matrix of k-AP is
totally unimodular, hence the polyhedron defined by the continuous relaxation of (8.1)–(8.5)
has integral vertices. Thus the optimal solution to the problem can be obtained in polynomial
time through linear programming.

It is well known that AP is to find the minimum cost basis of the intersection of two
partition matroids, hence k-AP is the optimum basis of the intersection of two matroids
truncated to k. Since the two-matroid intersection algorithm runs in polynomial time, we
know that k-AP is polynomial even for real valued cost matrices. This also gives a possible
dual algorithm for k-AP: start with an empty solution (no row assigned) and apply for k times
a shortest augmenting path technique (see, e.g., Lawler [103]) obtaining, at each iteration, a
solution in which one more row is assigned. Another possible approach consists in solving a
min-cost flow problem on an appropriate network (see Section 8.5).

In addition to the SS/TDMA context, k-AP has immediate applications in assigning
workers to machines when there are multiple alternatives and only a subset of workers and
machines has to be assigned. Although extensive literature exists on AP and related problems
(surveys can be found, e.g., in Martello and Toth [117], Ahuja, Magnanti and Orlin [3],
Dell’Amico and Martello [55]), to our knowledge the only specific result on k-AP has been
presented by Dell’Amico and Martello [54].

The algorithm in [54] was developed for solving instances in which matrix W is complete.
In this chapter we consider the case where W is sparse, i.e., many entries are empty, or,
equivalently, they have infinite cost. The sparse case is relevant for applications. Consider,
e.g., the SS/TDA time slot assignment previously discussed: it is clear that, in general, a
transmitting station will not send messages to all receiving stations, so we can expect that
real-world traffic matrices are sparse.

In the sparse case the problem is more conveniently formulated through the following
graph theory model. Let G = (U ∪ V,A) be a bipartite digraph where U = {1, . . . ,m} and
V = {1, . . . , n} are the two vertex sets and A ⊆ U×V is the arc set: A = {(i, j) : wij < +∞}.
Let wij be the weight of an arc (i, j) ∈ A. We want to select k arcs of A such that no two
arcs share a common vertex and the sum of the costs of the selected arcs is a minimum.

In the following we assume, without loss of generality, that wij ≥ 0 ∀ (i, j) ∈ A. Since
k-AP does not change if we swap sets U and V , we also assume, without loss of generality,
that m ≤ n.

The problem in which the objective is to maximize the cost of the assignment, is solved
by k-AP if each cost whl ((h, l) ∈ A) is replaced by the non-negative quantity w̃hl =
max(i,j)∈A{wij} − whl.

The aim of this article is to provide a specialized algorithm, and the corresponding com-
puter code, for the exact solution of k-AP.

8.2. COMPLETE MATRICES 93

8.2 Complete Matrices

The main phases of the approach in [54] are a heuristic preprocessing and an exact primal
algorithm. Preprocessing finds a partial optimal solution, determines sets of rows and columns
which must be assigned in an optimal solution and reduces the cost matrix. The partial
solution is then heuristically completed, and the primal algorithm determines the optimum
through a series of alternating paths.

The preprocessing phase can be summarized as follows.

Step 0. For each row i determine the first, second and third smallest cost in the row (ρi, ρ
′
i, ρ

′′
i ,

respectively) and let c(i), c′(i), c′′(i) be the corresponding columns. For each column j
determine the first, second and third smallest cost in the column (γj , γ

′
j , γ

′′
j , respectively)

and let r(j), r′(j), r′′(j) be the corresponding rows. Reorder the columns of W by
nondecreasing γj values, and the rows by nondecreasing ρi values.

Step 1. Determine a value g1 ≤ k, as high as possible, such that a partial optimal solution
in which g1 rows are assigned can be heuristically determined. This is obtained through
a heuristic algorithm which, for increasing values of j, assigns row r(j) to column j if
this row is currently unassigned; if instead row r(j) is already assigned, under certain
conditions the algorithm assigns column j+1 instead of j (and then proceeds to column
j + 2) or assigns the current column j to row r′(j) instead of r(j). If g1 = k then
terminate (the solution is optimal); otherwise, execute a greedy heuristic to determine
an approximate solution of cardinality k and let UB1 be the corresponding value.

Step 2. Repeat Step 1 over the transposed cost matrix. Let g2 and UB2 be the values
obtained.

Step 3. UB := min(UB1, UB2); g := max(g1, g2).

Step 4. Starting from the partial optimal solution of cardinality g, determine a set R of rows
and a set C of columns that must be selected in an optimal solution to k-AP. Compute
a lower bound LB on the optimal solution value.

Step 5. If UB > LB then reduce the instance by determining pairs (i, j) for which xij must
assume the value zero.

The overall time complexity of the above preprocessing phase is O(mn + kn log n).
Once Step 5 has been executed, the primal phase starts with the k × k submatrix of W

induced by the sets of rows and columns selected in the heuristic solution of value UB, and
exactly solves an AP over this matrix. Then m + n− 2k iterations are performed by adding
to the current submatrix one row or column of W at a time, and by re-optimizing the current
solution through alternating paths on a particular digraph induced by the submatrix.

8.3 Sparse matrices

In this section we discuss the most relevant features of the algorithm for the sparse case.

94 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

8.3.1 Data structures

Let µ be the number of entries with finite cost. We store matrix W through a forward star (see
Figure 8.1(a)) consisting of an array, F first, of m + 1 pointers, and two arrays, F head and
F cost, of µ elements each. The entries of row i, and the corresponding columns, are stored in
F cost and F head, in locations F first(i), . . . , F first(i + 1)− 1 (with F first(1) = 1 and
F first(m + 1) = µ + 1). Since the algorithm needs to scan W both by row and by column,
we duplicate the information into a backward star, similarly defined by arrays B first (of
n + 1 pointers), B tail and B cost, storing the entries of column j, and the corresponding
rows, in locations B first(j), . . . , B first(j + 1)− 1.

In the primal phase a local matrix W is initialized to the k × k submatrix of W ob-
tained from preprocessing, and iteratively enlarged by addition of a row or a column. Let
row(i) (resp. col(j)) denote the row (resp. column) of W corresponding to row i (resp.
column j) of W . Matrix W is stored through a modified forward star. In this case we
have two arrays, F head and F cost, of length µ, and two arrays, F first and F last, of
m pointers each. For each row i currently in W : (a) the elements of the current columns,
and the corresponding current column indices, are stored in F cost and F head, in loca-
tions F first(i), . . . , F last(i); (b) locations F last(i) + 1, . . . , F first(i) + L − 1 (where
L = F first(row(i) + 1) − F first(row(i)) denotes the number of elements in row row(i)
of W) are left empty for future insertions. The backward star for W is similarly defined by
arrays B tail, B cost, B first and B last. Figure 8.1(b) shows the structures for a 2 × 2
submatrix W of W .

11 6
7 2 5 3

W 10
8 1

9 12 13

W 2 3
1

row 2 4

col 2 5

F first 1 3 7 8 10 13
F head 3 4 1 2 4 5 6 3 5 1 2 5
F cost 11 6 7 2 5 3 10 8 1 9 12 13

B first 1 3 5 7 9 12 13
B tail 2 5 2 5 1 4 1 2 2 4 5 3
B cost 7 9 2 12 11 8 6 5 3 1 13 10

(a) Input matrix.

F first 1 5
F last 2 5
F head 1 2 2
F cost 2 3 1

B first 1 3
B last 1 4
B tail 1 1 2
B cost 2 3 1

(b) Local matrix.

Figure 8.1: Data structures.

8.3. SPARSE MATRICES 95

8.3.2 Approximate solution

All computations needed by the preprocessing of Section 8.2 were efficiently implemented
through the data structures described in the previous section, but the greedy solution of Step
1 (and 2) required a specific approach. Indeed, due to sparsity, in some cases a solution of
cardinality k does not exist at all. Even if k-cardinality assignments exist, in many cases
the procedure adopted for the complete case proved to be highly inefficient in finding one.
For the same reason, a second greedy approach was needed at Step 3. These approaches are
discussed in Section 8.3.3.

In certain cases the execution of the greedy algorithms can be replaced by the follow-
ing transformation which provides a method to determine a k-cardinality assignment, or to
prove that no such assignment exists. Let us consider the bipartite digraph G = (U ∪ V, A)
introduced in Section 8.1, and define a digraph G′ = ({s} ∪ {s} ∪ U ∪ V ∪ {t}, A′), where
A′ = A ∪ {(s, s)} ∪ {(s, i) : i ∈ U} ∪ {(j, t) : j ∈ V }. Now assign unit capacity to all arcs of
A′ except (s, s), for which the capacity is set to k, and send the maximum flow ϑ from s to
t. It is clear that this will either provide a k-cardinality assignment or prove that no such
assignment is possible. If ϑ < k, we know that no solution to k-AP exists. If ϑ = k, the arcs
of A carrying flow provide a k-cardinality assignment, which is suboptimal since the arc costs
have been disregarded.

Computational experiments proved that the above approach is only efficient when the
instance is very sparse, i.e., |A| ≤ 0.01 mn, and k > 0.9 m. For different cases, much better
performance was obtained through the following greedy approaches.

8.3.3 Greedy approximate solutions

We recall that at steps 1 and 2 of the preprocessing phase described in Section 8.2 we have
partial optimal solutions of cardinality g1 and g2, respectively. Starting from one of these
solutions, the following algorithm tries to obtain an approximate solution of cardinality k by
using the information computed at Step 0 (the first, second and third smallest cost in each
row and column). In a first phase (steps a. and b. below) we try to compute the solution
using only first minima. If this fails, we try using second and third minima (step c.). Param-
eter gh can be either g1 or g2.

Algorithm GREEDY(gh):

a. gh := gh;
find the first unassigned row, i, such that column c(i) is unassigned and set ρ̃ := ρi

(ρ̃ := +∞ if no such row);
find the first unassigned column, j, such that row r(j) is unassigned and set γ̃ := γj

(γ̃ := +∞ if no such column);

b. while gh < k and (ρ̃ 6= +∞ or γ̃ 6= +∞) do
gh := gh + 1;
if ρ̃ ≤ γ̃ then

assign row i to column c(i);
find the next unassigned row, i, such that column c(i) is unassigned
and set ρ̃ := ρi (ρ̃ := +∞ if no such row);

else

96 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

assign column j to row r(j);
find the next unassigned column, j, such that row r(j) is unassigned
and set γ̃ := γj (γ̃ := +∞ if no such column)

endif
endwhile;

c. if gh < k then
execute steps similar to a. and b. above, but looking, at each search,
for the first or next row i (resp. column j) such that column c′(i) or c′′(i)
(resp. row r′(j) or r′′(j)) is unassigned, and setting
ρ̃ := ρ′(i) if c′(i) is unassigned, or ρ̃ := ρ′′(i) otherwise
(resp. γ̃ := γ′(j) if r′(j) is unassigned, or γ̃ := γ′′(j) otherwise).

d. if gh = k then UBh := solution value else UBh := +∞;
return gh and UBh.

Since it is possible that both g1 and g2 are less than k, Step 3 of Section 8.2 was modified
so as to have in any case an approximate solution of cardinality k, either through elements
other than the first three minima, or, if this fails, through dummy elements. The resulting
Step 3 is as follows.

Step 3. UB := min(UB1, UB2); g := max(g1, g2); g := max(g1, g2);
if g = k then go to Step 4;
for each unassigned column j do

if ∃ wij such that i is unassigned then
assign row i to column j, update UB and set g := g + 1;
if g = k then go to Step 4

endif;
while g < k do

let i be the first unassigned row and j the first unassigned column;
add to W a dummy element wij = M (a very large value);
assign row i to column j, update UB and set g := g + 1

endwhile.

8.4 Implementation

The overall algorithm for sparse matrices was coded in Fortran 77.
The approximate solution of Section 8.3.2 was obtained using the FORTRAN implemen-

tation of the Dinic [59] algorithm proposed by Goldfarb and Grigoriadis [85].
The AP solution needed at the beginning of the primal phase was determined through

a modified version of the Jonker and Volgenant [99] code SPJV for the sparse assignment
problem. The original Pascal code was translated into FORTRAN and modified so as to:
(i) handle our data structure for the current matrix W (see Section 8.3.1); (ii) manage the
particular case arising when the new Step 3 (see Section 8.3.3) adds dummy elements to the
cost matrix. These elements are not explicitly inserted in the data structure but implicitly
considered by associating a flag to the rows having fictitious assignment.

The alternating paths needed, at each iteration of the primal phase, to re-optimize the
current solution have been determined through the classical Dijkstra algorithm, implemented

8.4. IMPLEMENTATION 97

with a binary heap for the node labels. Two shortest path routines were coded: RHEAP (resp.
CHEAP) starts from a given row (resp. column) and uses the forward (resp. backward) data
structure of Section 8.3.1. Both routines implicitly consider the possible dummy elements
(see above).

The overall structure of the algorithm is the following.

Algorithm SKAP:
if |A| ≤ 0.01 mn and k > 0.9 m then

execute the Dinic algorithm (Section 8.3.2) and set LB := −1;
if the resulting flow is less than k then return “no solution”

else
perform the sparse version of Steps 0–2 of preprocessing (Section 8.2);
execute the new Step 3 (Section 8.3.3) and let UB denote the resulting value;
execute the sparse version of Step 4 and let LB denote the lower bound value;
if UB = LB then return the solution else reduce the instance (Step 5)

endif;
initialize the data structure for matrix W (Section 8.3.1);
execute the modified SPJV code for AP and let UB denote the solution value;
if UB = LB then return the solution;
for i := 1 to m− k do

add a row to W and re-optimize by executing RHEAP;
add a column to W and re-optimize by executing CHEAP;

endfor;
for i := 1 to n−m do

add a column to W and re-optimize by executing CHEAP;
if the solution includes dummy elements then return “no solution”
else return the solution.

8.4.1 Running the code

The algorithm was implemented as a FORTRAN 77 subroutine, called SKAP. The whole
subroutine is completely self-contained and communication with it is achieved solely through
the parameter list. The subroutine can be invoked with the statement

CALL SKAP(M,N,F_FIRST,F_COST,F_HEAD,B_FIRST,B_COST,B_TAIL,K,
+ OPT,Z,ROW,COL,U,V,MU,F_COST2,B_COST2,F_HEAD2,B_TAIL2)

The input parameters are:

M, N = number of rows and columns (m,n);

F FIRST, F COST, F HEAD = forward star data structure (see Section 8.3.1): these arrays
must be dimensioned at least at m + 1, |A| and |A|, respectively;

B FIRST, B COST, B TAIL = backward star data structure (see Section 8.3.1): these arrays
must be dimensioned at least at n + 1, |A| and |A|, respectively;

K = cardinality of the required solution;

The output parameters are:

98 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

OPT = return status: value 0 if the instance is infeasible; value 1 otherwise;

Z = optimal solution value;

ROW = the set of elements in the solution is {(ROW(j),j): ROW(j) > 0, j = 1, ..., N}: this
array must be dimensioned at least at n;

COL = the set of entries in the solution is {(i,COL(i)): COL(i) > 0, i = 1, ..., M}: this
array must be dimensioned at least at m;

Local arrays U, V (dimensioned at least at m and n, respectively) and scalar MU are
internally used to store the dual variables (see, Dell’Amico and Martello [54]); local arrays
F COST2, F HEAD2, B COST2 and B TAIL2 are internally used to store the restricted matrix
(see Section 8.3.1), and must be dimensioned at least at |A|.

8.5 Computational Experiments

Algorithm SKAP was computationally tested on a Silicon Graphics Indy R10000sc 195 MHz.
We compared its performance with the following indirect approach. Consider digraph

G′ = ({s} ∪ {s} ∪ U ∪ V ∪ {t}, A′) introduced in Section 8.3.2, and assign cost wij to each
arc (i, j) ∈ A, and zero cost to the remaining arcs. It is then clear that sending a min-cost
s− t flow of value k on this network will give the optimal solution to the corresponding k-AP.
This approach was implemented by using two different codes for min-cost flow. The first
one is the FORTRAN code RELAXT IV of Bertsekas and Tseng, see [24], called RLXT in
the sequel, and the second one is the C code CS2 developed by Cherkassky and Goldberg,
see [84]. Parameter CRASH of RELAXT IV was set to one, since preliminary computational
experiments showed that this value produces much smaller computing times for our instances.

Test problems were obtained by randomly generating the costs wij from the uniform
distributions [0, 102] and [0, 105]. This kind of generation is often encountered in the literature
for the evaluation of algorithms for AP.

For increasing values of m and n (up to 3000) and various degrees of density (1%, 5% and
10%), ten instances were generated and solved for different values of k (ranging from 20

100m

to
⌊

99
100m

⌋
).

Density d% means that the instance was generated as follows. For each pair (i, j), we first
generate a uniformly random value r in [0, 1): if r ≤ d then the entry is added to the instance
by generating its value wij in the considered range; otherwise the next pair is considered. In
order to ensure consistency with the values of m and n, we then consider each row i and, if
it has no entry, we uniformly randomly generate a column j and a value wij . The same is
finally done for columns.

Tables 8.1 to 8.3 show the results for sparse instances. In each block, each entry in the
first six lines gives the average CPU time computed over ten random instances, while the last
line gives the average over all k values considered. The results show that the best of the two
min-cost flow approaches is faster than SKAP for some of the easy instances of Table 8.1,
while both are clearly slower for all the remaining instances.

More specifically, for the 1% density (Table 8.1) RLXT is faster than SKAP in range
[0, 102] for m and n less than 3000, while CS2 is faster than SKAP in range [0, 105] for
500 ≤ m ≤ 1000 and 1000 ≤ n ≤ 2000. It should be noted, however, that SKAP solves all
these instances in less than one second on average, and that it is less sensitive to the cost
range.

8.5. COMPUTATIONAL EXPERIMENTS 99

For the 5% instances (Table 8.2), SKAP is always the fastest code. For large values of m
and n it is two-three times faster than its best competitor. This trend is confirmed by Table
8.3 (10% density), where, for large instances, the CPU times of SKAP are about one order of
magnitude smaller than the others.

In Table 8.4 we consider complete matrices and compare the previous approaches and
the specialized algorithm PRML, developed, for dense k-APs, by Dell’Amico and Martello
[54]. The results show that SKAP is clearly superior to both min-cost flow approaches. In
addition, in many cases, it is even faster than the specialized code. This is probably due to
the new heuristic algorithm embedded in SKAP.

Tables 8.1-8.4 also give information about the relative efficiency of codes RELAXT IV
and CS2, when used on our type of instances. It is quite evident that the two codes are
sensitive to the cost range: RELAXT IV is clearly faster than CS2 for range [0, 102], while
the opposite holds for range [0, 105].

Finally, Figures 8.2 and 8.3 show the behavior of the average CPU time requested by
SKAP, for each value of k, as a function of the instance size. We consider the case of range
[0, 105] and 5% density, separately for rectangular and square instances. The functions show
that SKAP has, for fixed k value, a regular behavior. There is instead no regular dependence
of the CPU times on the value of k: small values produce easy instances, while the most
difficult instances are encountered for k around 80

100m or 90
100m.

0

0.5

1

1.5

2

2.5

3

3.5

250-500 500-1000 1000-2000 1500-3000

20

50

80

90

95

99

Figure 8.2: Density 5%, range [0, 105], rectangular instances. Average CPU time (in seconds)
as a function of the instance size.

100 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

Table 8.1: Density 1%. Average computing times over 10 problems, Silicon Graphics INDY
R10000sc seconds.

range [0, 102] range [0, 105]
m n k 100

m
RLXT CS2 SKAP RLXT CS2 SKAP

20 0.018 0.029 0.005 0.031 0.038 0.008
50 0.020 0.029 0.032 0.053 0.038 0.037
80 0.024 0.031 0.039 0.071 0.043 0.035

250 500 90 0.023 0.030 0.039 0.067 0.042 0.038
95 0.027 0.034 0.037 0.081 0.041 0.037
99 0.023 0.031 0.041 0.068 0.045 0.039

Average 0.023 0.031 0.032 0.062 0.041 0.032
20 0.033 0.049 0.056 0.082 0.062 0.063
50 0.054 0.056 0.061 0.155 0.064 0.068
80 0.070 0.057 0.078 0.218 0.068 0.087

500 500 90 0.067 0.055 0.077 0.197 0.073 0.088
95 0.076 0.058 0.073 0.165 0.074 0.077
99 0.084 0.061 0.050 0.152 0.078 0.052

Average 0.064 0.056 0.066 0.162 0.070 0.073
20 0.045 0.090 0.029 0.189 0.120 0.061
50 0.059 0.096 0.115 0.171 0.110 0.126
80 0.075 0.095 0.118 0.227 0.125 0.141

500 1000 90 0.077 0.097 0.131 0.316 0.120 0.164
95 0.072 0.100 0.182 0.364 0.122 0.202
99 0.077 0.099 0.153 0.326 0.123 0.159

Average 0.068 0.096 0.121 0.266 0.120 0.142
20 0.089 0.156 0.231 0.358 0.204 0.231
50 0.178 0.171 0.227 0.605 0.205 0.256
80 0.200 0.181 0.294 0.987 0.219 0.351

1000 1000 90 0.199 0.188 0.271 1.109 0.232 0.326
95 0.218 0.200 0.239 0.875 0.229 0.300
99 0.237 0.217 0.142 0.796 0.244 0.202

Average 0.187 0.186 0.234 0.788 0.222 0.278
20 0.191 0.399 0.323 1.695 0.489 0.448
50 0.196 0.430 0.446 0.911 0.489 0.471
80 0.330 0.435 0.455 1.344 0.497 0.571

1000 2000 90 0.257 0.439 0.519 1.530 0.511 0.683
95 0.270 0.461 0.735 1.688 0.506 0.779
99 0.249 0.454 0.612 1.831 0.493 0.615

Average 0.249 0.436 0.515 1.500 0.498 0.595
20 0.477 1.015 0.905 2.485 1.190 0.913
50 0.599 1.047 0.858 3.264 1.234 1.029
80 0.867 1.203 1.078 7.862 1.315 1.620

2000 2000 90 0.876 1.256 1.007 6.087 1.405 1.435
95 0.883 1.333 0.895 5.828 1.432 1.312
99 0.900 1.427 0.503 4.274 1.547 0.893

Average 0.767 1.214 0.874 4.967 1.354 1.200
20 0.928 1.078 0.038 7.412 1.410 1.026
50 0.795 1.271 0.996 3.714 1.511 1.077
80 0.613 1.307 0.983 1.723 1.490 1.262

1500 3000 90 0.754 1.370 1.112 2.656 1.560 1.673
95 0.752 1.363 1.476 3.448 1.570 1.853
99 0.663 1.340 1.252 2.803 1.551 1.420

Average 0.751 1.288 0.976 3.626 1.515 1.385
20 1.088 2.476 0.069 7.119 2.941 2.083
50 1.431 2.743 2.012 5.509 3.220 2.387
80 2.826 3.064 2.543 28.727 3.397 3.926

3000 3000 90 2.239 3.207 2.328 13.689 3.594 3.428
95 2.160 3.438 1.975 14.763 3.766 3.034
99 2.096 3.656 1.194 17.572 3.950 1.973

Average 1.973 3.097 1.687 14.563 3.478 2.805

8.5. COMPUTATIONAL EXPERIMENTS 101

Table 8.2: Density 5%. Average computing times over 10 problems, Silicon Graphics INDY
R10000sc.

range [0, 102] range [0, 105]
m n k 100

m
RLXT CS2 SKAP RLXT CS2 SKAP

20 0.035 0.076 0.005 0.168 0.091 0.022
50 0.034 0.080 0.032 0.089 0.093 0.039
80 0.040 0.082 0.042 0.080 0.107 0.051

250 500 90 0.035 0.075 0.049 0.155 0.092 0.053
95 0.040 0.080 0.049 0.102 0.107 0.057
99 0.043 0.077 0.043 0.072 0.093 0.049

Average 0.038 0.078 0.037 0.111 0.097 0.045
20 0.054 0.145 0.048 0.225 0.176 0.070
50 0.063 0.147 0.078 0.176 0.186 0.088
80 0.098 0.155 0.101 0.560 0.193 0.122

500 500 90 0.111 0.168 0.107 0.489 0.199 0.125
95 0.114 0.170 0.093 0.497 0.204 0.108
99 0.114 0.176 0.066 0.388 0.211 0.085

Average 0.092 0.160 0.082 0.389 0.195 0.100
20 0.176 0.358 0.016 1.376 0.450 0.099
50 0.165 0.405 0.137 0.721 0.501 0.144
80 0.165 0.419 0.153 0.419 0.508 0.200

500 1000 90 0.170 0.432 0.168 0.326 0.499 0.237
95 0.172 0.424 0.180 0.302 0.502 0.223
99 0.171 0.435 0.173 0.320 0.488 0.198

Average 0.170 0.412 0.138 0.577 0.491 0.184
20 0.175 0.928 0.028 1.360 1.135 0.263
50 0.296 1.035 0.267 1.213 1.230 0.339
80 0.529 1.126 0.365 4.883 1.285 0.584

1000 1000 90 0.583 1.165 0.389 3.024 1.315 0.572
95 0.586 1.215 0.361 4.574 1.365 0.486
99 0.611 1.257 0.274 3.728 1.428 0.357

Average 0.463 1.121 0.281 3.130 1.293 0.434
20 1.044 2.161 0.045 9.425 2.560 0.524
50 0.735 2.430 0.052 4.206 2.862 0.549
80 0.994 2.700 0.582 2.404 3.065 0.840

1000 2000 90 1.068 2.752 0.621 1.841 3.070 1.042
95 0.970 2.772 0.667 1.519 2.981 1.011
99 0.912 2.652 0.675 1.900 2.918 0.830

Average 0.954 2.578 0.440 3.549 2.909 0.799
20 1.914 4.775 0.085 6.455 5.419 1.054
50 2.115 5.460 0.173 4.212 6.062 1.483
80 2.676 6.048 1.502 33.195 6.475 3.074

2000 2000 90 3.624 6.334 1.778 29.435 6.662 2.648
95 3.661 6.598 1.646 35.922 6.759 2.261
99 3.132 6.943 1.237 36.167 7.402 1.671

Average 2.854 6.026 1.070 24.231 6.463 2.032
20 3.296 5.459 0.099 29.304 6.607 1.184
50 1.406 5.958 0.098 13.933 7.282 1.249
80 3.062 6.531 1.296 6.015 7.462 2.213

1500 3000 90 2.207 6.898 1.383 4.832 7.594 2.997
95 2.529 6.932 1.488 4.720 7.447 2.763
99 2.345 6.613 1.488 5.935 7.179 2.097

Average 2.474 6.399 0.975 10.790 7.262 2.084
20 9.503 11.850 0.171 14.187 13.428 2.395
50 3.867 12.669 0.175 9.093 13.938 3.710
80 12.990 15.402 3.757 74.084 16.270 8.534

3000 3000 90 12.098 15.735 4.696 94.893 16.925 7.384
95 10.224 16.366 4.446 96.993 17.938 5.911
99 7.818 17.444 3.581 105.391 19.175 4.629

Average 9.417 14.911 2.804 65.774 16.279 5.427

102 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

Table 8.3: Density 10%. Average computing times over 10 problems, Silicon Graphics INDY
R10000sc.

range [0, 102] range [0, 105]
m n k 100

m
RLXT CS2 SKAP RLXT CS2 SKAP

20 0.062 0.126 0.006 0.479 0.157 0.027
50 0.062 0.140 0.044 0.243 0.172 0.045
80 0.074 0.147 0.049 0.123 0.170 0.058

250 500 90 0.071 0.141 0.062 0.103 0.166 0.069
95 0.065 0.144 0.061 0.105 0.170 0.066
99 0.066 0.150 0.062 0.118 0.171 0.064

Average 0.067 0.141 0.047 0.195 0.168 0.055
20 0.069 0.338 0.011 0.380 0.421 0.065
50 0.109 0.372 0.080 0.719 0.442 0.098
80 0.180 0.380 0.129 1.194 0.450 0.183

500 500 90 0.207 0.393 0.133 1.099 0.464 0.175
95 0.211 0.414 0.130 1.104 0.476 0.166
99 0.219 0.423 0.097 0.794 0.478 0.124

Average 0.166 0.387 0.097 0.882 0.455 0.135
20 0.362 0.848 0.027 3.299 1.068 0.116
50 0.267 0.932 0.022 1.587 1.166 0.163
80 0.399 1.029 0.168 0.894 1.188 0.236

500 1000 90 0.365 1.045 0.210 0.692 1.202 0.321
95 0.356 1.039 0.222 0.550 1.209 0.313
99 0.347 1.030 0.237 0.488 1.167 0.259

Average 0.349 0.987 0.148 1.252 1.167 0.235
20 0.491 1.951 0.037 2.177 2.335 0.303
50 0.642 2.155 0.069 2.122 2.548 0.382
80 0.892 2.503 0.474 9.234 2.722 0.843

1000 1000 90 1.085 2.578 0.569 8.973 2.789 0.817
95 1.218 2.546 0.546 8.413 2.869 0.767
99 1.107 2.748 0.436 6.904 3.049 0.577

Average 0.906 2.414 0.355 6.304 2.719 0.615
20 1.980 4.610 0.070 25.197 5.472 0.501
50 1.009 4.933 0.080 7.292 5.796 0.639
80 1.898 5.400 0.583 4.349 5.962 0.996

1000 2000 90 1.840 5.559 0.760 4.198 5.948 1.630
95 1.596 5.518 0.839 4.648 5.832 1.587
99 1.671 5.397 0.872 3.666 5.745 1.191

Average 1.666 5.236 0.534 8.225 5.793 1.091
20 6.281 9.746 0.133 9.597 10.952 1.216
50 2.105 10.495 0.149 7.715 11.145 1.670
80 6.176 12.512 2.019 46.621 12.472 4.882

2000 2000 90 7.773 12.580 3.071 66.271 13.377 4.491
95 8.017 13.426 2.624 49.976 13.855 3.745
99 5.773 14.087 2.317 67.158 14.363 2.762

Average 6.021 12.141 1.719 41.223 12.694 3.128
20 5.124 11.413 0.155 54.703 12.920 1.232
50 3.890 12.410 0.161 20.098 13.715 1.427
80 7.012 13.495 0.168 12.327 14.986 2.510

1500 3000 90 4.381 13.674 1.491 9.505 14.774 4.529
95 5.027 14.092 1.880 14.312 14.470 4.390
99 4.666 13.821 1.957 14.103 14.433 3.168

Average 5.017 13.151 0.969 20.841 14.216 2.876
20 27.022 24.249 0.290 18.440 26.891 2.789
50 10.271 25.223 0.312 14.506 26.967 3.907
80 15.036 28.650 5.850 117.946 29.787 13.780

3000 3000 90 73.373 31.067 10.134 141.552 33.177 12.530
95 25.598 34.414 11.014 137.860 35.357 10.124
99 19.422 34.894 7.139 158.249 36.366 7.952

Average 28.454 29.750 5.790 98.092 31.424 8.514

8.5. COMPUTATIONAL EXPERIMENTS 103

Table 8.4: Complete matrices. Average computing times over 10 problems, Silicon Graphics
INDY R10000sc.

range [0, 102] range [0, 105]
m n k 100

m RLXT CS2 PRML SKAP RLXT CS2 PRML SKAP
20 0.263 2.323 0.029 0.032 5.838 2.577 0.043 0.063
50 0.347 2.431 0.040 0.039 2.594 2.806 0.117 0.128
80 0.403 2.543 0.046 0.041 2.279 2.846 0.212 0.145

250 500 90 0.482 2.585 0.049 0.052 2.678 2.905 0.297 0.175
95 0.498 2.645 0.122 0.119 2.782 2.811 0.386 0.182
99 0.503 2.693 0.132 0.136 2.777 2.938 0.457 0.243

Average 0.416 2.537 0.070 0.070 3.158 2.814 0.252 0.156
20 1.255 5.042 0.074 0.068 2.923 5.370 0.131 0.221
50 1.224 5.197 0.083 0.076 4.087 5.549 0.295 0.278
80 1.451 5.424 0.262 0.253 16.758 6.003 0.860 0.609

500 500 90 1.958 5.528 0.281 0.730 16.187 6.044 1.186 1.116
95 2.732 5.876 0.292 0.775 17.136 6.631 1.318 1.062
99 2.691 6.195 0.347 0.784 17.211 6.764 1.458 0.904

Average 1.885 5.544 0.223 0.448 12.384 6.060 0.875 0.698

0

1

2

3

4

5

6

7

8

9

500-500 1000-1000 2000-2000 3000-3000

20

50

80

90

95

99

Figure 8.3: Density 5%, range [0, 105], square instances. Average CPU time (in seconds) as
a function of the instance size.

104 CHAPTER 8. THE K-CARDINALITY ASSIGNMENT PROBLEM

Chapter 9

EXploring Tabu Search: the CAP
case

9.1 Introduction

Any1 problem in combinatorial optimization can be described by a pair (S, f) where S is a
finite set of feasible solutions and f : S → R is a given objective function. The goal is to
find the solution s∗ ∈ S which minimizes (or maximizes) the objective function over S. It is
well known that the computational complexity of a combinatorial problem can change when
we maintain the solutions set S, but we change the objective function. One of the simplest
examples of such behavior is given by the problem of finding a spanning tree of a graph.
If f is linear, then the problem is equivalent to finding a base of a single matroid, so it is
solvable in polynomial time with a greedy algorithm (see e.g. Lawler [103]). However if we
adopt different objective functions we often have NP-complete problems (see e.g. Camerimi,
Galbiati and Maffioli, 1980; Dell’Amico, Labbé and Maffioli [49]). When the problem is a
two matroid intersection, i.e. S contains all common subsets of two matroids, we can still
solve the problem in polynomial time. A classic example of two matroids intersection is the
Linear Assignment Problem (AP) which consists of finding n elements of a given n × n cost
matrix C = [cij], such that no two elements belong to the same row or column, and the sum
of the elements chosen is a minimum. (Several polynomial time algorithms for solving AP
have been given in the last thirty years, see e.g. Dell’Amico and Martello, [55].)

In this chapter we consider a generalization of AP obtained by replacing its linear objective
function with a cumulative function. The resulting problem, called Cumulative Assignment
Problem (CAP), is NP-complete and no specific technique has been proposed before now to
solve it. To be more specific, let a be an n dimensional vector of penalties. CAP asks for
an assignment of each row to exactly one column and for an ordering of the elements of C
involved, such that the scalar product of a times the ordered vector of the chosen elements of
C is minimized.

An immediate application of CAP is the following. We associate to each row i of matrix
C an operator and to each column j a job. The value cij is the time spent by operator i to
perform job j. Moreover, each penalty ai (i = 1, . . . , n) is the cost of operator i for one time
unit. Using these definitions, CAP is to determine the assignment of each operator to a job

1The results of this chapter appear in: M. Dell’Amico, A. Lodi, F. Maffioli, “Solution of the cumulative
assignment problem with a well-structured tabu search method”, Journal of Heuristics 5, 123–143, 1999, [50].

105

106 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

in such a way that the cost paid to perform all the jobs is minimized. CAP is also interesting
since it is a relaxation of more general problems as the Delivery Man Problem (Fischetti,
Laporte and Martello [67]). Lastly CAP is a special case of the Three-Dimensional Axial
Assignment Problem (see, e.g. Balas and Saltzman [9]).

In this chapter we study the solution of CAP by means of metaheuristic techniques. We
consider a Multistart heuristic, a Simulated Annealing algorithm and a new well-structured
Tabu Search approach that we have called the eXploring Tabu Search (X -TS). The new
method is described in detail and the effect of each of the strategies adopted is studied by
means of extensive computational experiments. A preliminary version of X -TS has been
used with success in Dell’Amico and Maffioli [52]; Dell’Amico and Trubian [58]; Dell’Amico,
Maffioli and Trubian [53].

In Section 9.2 we give a mathematical model of CAP , we discuss its complexity status
and overview results from the literature on related problems. In Section 9.3 we present lower
bounds on the optimal solution value. Section 9.4 is devoted to introducing the neighborhood
we have used for all the metaheuristic algorithms, and to presenting an efficient implemen-
tation of the exploration of the neighborhood. In Section 9.5 we introduce the metaheuristic
techniques we adopted and, in particular, we describe the X -TS approach. Extensive compu-
tational results are presented in Section 9.6, whilst the last section summarizes the work and
suggests some interesting directions for future research.

9.2 Mathematical model and complexity

Let C be an integer square cost matrix with n rows and columns, and let a be an n dimensional
integer vector of penalties. Without loss of generality we will assume that

a1 ≥ a2 ≥ . . . ≥ an.(9.1)

CAP asks for two permutations of the integers 1, 2, . . . , n, say φ and ξ, which minimize

z(φ, ξ) =
n∑

k=1

akcφ(k),ξ(φ(k)).(9.2)

Permutation ξ defines the assignment of each row to a column, whereas permutation φ gives
the ordering of the elements chosen.

Observe that if we are given the “assignment” permutation ξ, then the optimal ordering φ
is obtained by associating to the smallest ci,ξ(i) element the largest penalty, then associating
to the second smallest element the second largest penalty, and so on, i.e.

φ(k) = argkmin{ci,ξ(i), i = 1, . . . , n} k = 1, . . . , n,(9.3)

where argkmin denotes the argument of the k-th smallest element.
If we define the boolean variables

xijk =

1 if row i is assigned to column j
and cij is the k-th element chosen

0 otherwise
i, j, k = 1, . . . , n

9.3. LOWER BOUNDS 107

then we can give the following linear programming model for CAP :

(CAP) min z =
n∑

k=1

n∑

i=1

n∑

j=1

akcijxijk(9.4)

n∑

k=1

n∑

j=1

xijk = 1 i = 1, . . . , n,(9.5)

n∑

k=1

n∑

i=1

xijk = 1 j = 1, . . . , n,(9.6)

n∑

i=1

n∑

j=1

xijk = 1 k = 1, . . . , n,(9.7)

xijk ∈ {0, 1} i, j, k = 1, . . . , n.(9.8)

Equations (9.5) and (9.6) are the classic “row” and “column” constraints of AP (for each fixed
k value), whereas (9.7) impose that exactly one element of C is assigned to each ordering
position k. Observe that (9.4)–(9.8) define a special case of the Three-Dimensional Axial
Assignment Problem (3AP) which is given by the same constraints and by the more general
objective function

min z =
n∑

k=1

n∑

i=1

n∑

j=1

dijkxijk

3AP is well known to be NP-hard and many of its special cases remain NP-hard too. For ex-
ample Garey and Johnson [78] have shown that 3AP is NP-hard even if the costs dijk can only
assume two distinct values. Another interesting special case is 3AP with decomposable costs
(D3AP) in which dijk = αiβjγk where α, β and γ are n dimensional vectors of nonnegative
numbers. Burkard, Rudolf and Woeginger [29] have shown that also 3DAP is NP-hard.

It is immediately seen that CAP is more general than D3AP. Indeed, any instance of D3AP
can be polinomially transformed into an equivalent instance of CAP by setting ak = γk, for
k = 1, . . . , n and cij = αiβj for i, j = 1, . . . , n, thus proving CAP to be NP-hard.

3AP has been attacked with implicit enumeration methods (Pierskalla [132]; Burkard and
Rudolf [28]) and with cutting plane techniques (Balas and Saltzman [9, 10]; Qi, Balas and
Gwan [136]). The most effective method is a cutting plane algorithm which solves instances
with up to 28 rows and columns in about 2.000 seconds on a Sequent Hydra multiprocessor.
It seems therefore to be quite unlikely that the general techniques developed for the exact
solution of 3AP can solve large instances of CAP , and hence heuristic techniques are needed
to obtain good solutions within reasonable running times.

9.3 Lower bounds

In this section we describe lower bounding procedures from the literature and our adaptation
to CAP of a Lagrangean bound developed for 3AP.

The first two lower bounds for CAP have been introduced by Haas [87] and consist of
relaxations by constraints elimination.

The first lower bound LE1 considers two problems obtained from CAP by removing,
respectively, constraints (9.5) and (9.7), and constraints (9.6) and (9.7). In the first case the
elements of matrix C chosen are the minima of each column, whereas in the second case the

108 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

elements are the minima of each row. The lower bound value is given by the maximum of the
two solution values.

The second lower bound LE2 is obtained with a reformulation of the problem. We first
define the “differences” of the penalties

dk = ak − ak+1, k = 1, . . . , n

where an+1 = 0. Then we define the n matrices Ck = [ck
ij] with ck

ij = dkcij , for k = 1, . . . , n

and we ask for an assignment of exactly k elements from each matrix Ck, with the additional
constraint that if an element (i, j) is chosen in matrix Ck it must be chosen also in the next
matrices C l with l > k. More formally:

(CAP ′) min
n∑

k=1

n∑

i=1

n∑

j=1

ck
ijxijk(9.9)

n∑

j=1

xijk ≤ 1 i, k = 1, . . . , n,(9.10)

n∑

i=1

xijk ≤ 1 j, k = 1, . . . , n,(9.11)

n∑

i=1

n∑

j=1

xijk = k k = 1, . . . , n,(9.12)

xijk − xijl ≤ 0 i, j = 1, . . . , n, 1 ≤ k < l ≤ n(9.13)
xijk ∈ {0, 1} i, j, k = 1, . . . , n.(9.14)

Constraints (9.10) and (9.11) ensure that at most one element from each row and column
is chosen from each matrix Ck. Equations (9.12) impose that exactly k elements be chosen
from each matrix Ck, whereas (9.13) impose that the elements chosen in a matrix must also
be chosen in all the following matrices.

Note that due to constraints (9.12) and (9.13) exactly one element is chosen for the first
time from each matrix Ck, whereas the other k−1 elements have been chosen in the previous
matrices. Moreover from the definition of the differences dk, the element chosen for the first
time in the k-th matrix “cumulates” the penalties dk, dk+1, . . . , dn. But

∑n
h=k dh = ak, so

choosing a new element from a matrix is equivalent to defining its ordering in the permutation
φ (see (9.3)). Looking at this model, the meaning of the attribute “cumulative” given to our
problem is clear.

Lower bound LE2 is obtained by eliminating constraints (9.13), thus the problem separates
into n independent assignment problems with cardinalities 1, 2, . . . , n. Each AP with fixed
cardinality k (with k ≤ n) has been efficiently solved with the procedure of Dell’Amico and
Martello [54].

Another effective lower bound can be obtained by adapting to CAP the Lagrangean bound
proposed by Balas and Saltzman [10], for 3AP. This bound is obtained by embedding in a
Lagrangean fashion constraints (8.4) in the objective function. Applying this technique to
CAP we obtain the following:

LCAP(λ) = min
n∑

k=1

n∑

i=1

n∑

j=1

akcijxijk +
n∑

k=1

λk(1−
n∑

i=1

n∑

j=1

xijk)(9.15)

9.4. A NEIGHBORHOOD 109

subject to (9.5), (9.6) and (9.8). Observing that the above objective function can be rewritten
as

LCAP(λ) =
n∑

k=1

n∑

i=1

n∑

j=1

(akcij − λk)xijk +
n∑

k=1

λk,(9.16)

one can see that the optimal solution to LCAP(λ) can be obtained by solving a linear assign-
ment on the reduced costs cij = mink{akcij − λk}, for i, j = 1, . . . , n.

The Lagrangean dual LAG = maxλ LCAP(λ) is then solved with the modified subgradient
technique introduced by Camerini, Fratta and Maffioli [30].

Our computational experiments with these three lower bounds show that bounds LE1 and
LE2 give better results than LAG only when few iterations of the subgradient optimization
are allowed. Since our final aim is to use the better lower bound value only to evaluate
the quality of the solutions obtained with the heuristic algorithms, we therefore gave LAG
a large time limit (one hour of CPU time on a Sun Sparc Ultra 2 workstation) so that the
subgradient optimization converged, in almost all cases, to its maximum. With this time limit
LAG always turned out to be the winner versus LE1 and LE2. Therefore the comparisons
of Section 9.6 are made with the lower bound value computed by LAG. (We do not report
our computational experiments with the three lower bounding procedures, since we are only
interested in the final lower bound value and not in studying the relative performances of the
three methods, when the time limit changes.)

9.4 A Neighborhood

In this section we introduce and discuss one of the basic elements, common to the metaheuris-
tic methods: the neighborhood.

A metaheuristic algorithm is a strategy based on a local search (LS). Any LS presupposes
the definition of a neighborhood function, N : S → 2|S|, i.e. a mapping of the solution space
which associates with each solution s ∈ S a subset N (s) ⊂ S. The LS method starts with
a solution s, moves to an adjacent solution s′ ∈ N (s), then defines s = s′ and iterates the
process until a given stopping criterion holds. Roughly speaking, the various metaheuristics
differ in the choice of the neighborhood and in the strategy used to select the next solutions.

We are interested in studying the effect of different strategies, when the same neighbor-
hood is used. Therefore we need a ‘good’ neighborhood and an efficient procedure for its
exploration, which can be used for all the metaheuristics we consider.

One of the problems in the design of an algorithm based on LS is the trade-off between the
width of the neighborhood and the time used for its exploration. The larger a neighborhood,
the more accurate the search, for a single iteration, but the longer the time spent in the
exploration. Both the accuracy of the search and the total number of iterations help in finding
good solutions, therefore one has to determine a suitable compromise between accuracy and
speed. In order to have both the above advantages we adopted a wide neighborhood, but we
carefully studied the implementation of its exploration, so that the resulting code is fast.

More precisely, let ξ = (ξ(i), . . . , ξ(n)) be the permutation defining the current assignment.
Since any permutation defines a unique solution of CAP , let us call ξ a “solution”. Given
two integers i, j with 1 ≤ i < j ≤ n we can define a new permutation ξ′ by swapping ξ(i) with
ξ(j), i.e. setting ξ′(i) = ξ(j), ξ′(j) = ξ(i) and ξ′(l) = ξ(l) for l 6= i, l 6= j. Our neighborhood
N (ξ) consists of all the permutations generated with all the possible choices of pair i, j.

110 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

The value of the given solution ξ can be computed in O(n log n) time by reordering the
elements cl,ξ(l) (l = 1, . . . , n) by nondecreasing weights and defining φ(l) = l for l = 1, . . . , n.
The next solution values can be computed in O(n) time, since only two elements are changed,
at each iteration. Each neighborhood contains O(n2) different solutions, thus exploring N
with a standard implementation requires O(n3) computational time. But this is a very long
time, for any effective heuristic algorithm, so we need to speed up the exploration with an
improved implementation. In particular we describe how to reduce the time required to
compute each solution value, from O(n) to O(log n).

When a swap is performed the assignments (i, ξ(i)) and (j, ξ(j)) are removed from the
current solution and the two new assignments (i, ξ(j)) and (j, ξ(i)) are added to the solution.
This determines the substitution of two values from the set A = {cl,ξ(l), l = 1, . . . , n} of the
assigned elements with two new values. Let us store the elements of A into an n-dimensional
vector e such that

ek ≤ ek+1, k = 1, . . . , n− 1(9.17)

Then the value of the current solution is obtained with the scalar product ea (recall that the
penalties vector a is ordered according to (9.1)). Let out be the smallest index of an element
of e which contains the value Mo = max(ci,ξ(i), cj,ξ(j)) and let in be the smallest index of an
element of e such that ein > M i = max(ci,ξ(j), cj,ξ(i)) (see Example 1 below). The indices
out and in can be identified in O(log n) with a binary search. We now consider the variation
of the solution obtained by removing the element with value Mo and adding the element of
value M i. We call e′ the resulting vector, reordered by nondecreasing values. According to
the relative positions of in and out several cases arise: we describe in detail only the case
in < out; the other cases are similar and a complete description of them could be rather
boring.

The new partial solution value can be efficiently computed by observing that: (a) e′k = ek

for k = 1, . . . , in − 1 and for k = out + 1, . . . , n; (b) the elements ein, . . . , eout−1 are shifted
one position right when M i is inserted, i.e. e′k+1 = ek for k = in, . . . , out − 1; (c) e′in = M i.
Therefore if z denotes the current solution value, then the new partial solution assumes value:

zp = z −
out∑

k=in

ekak +
out−1∑

k=in

ekak+1 + M iain(9.18)

Let us define the vectors:

σk =
k∑

l=1

elal k = 1, . . . , n

σ̂k =
k∑

l=1

elal+1 k = 1, . . . , n− 1

then
∑out

k=in ekak = (σout − σin−1) and
∑out−1

k=in ekak+1 = (σ̂out−1 − σ̂in−1). Thus if we have
already stored σ and σ̂ the computation of (9.18) can be done in constant time.

Example 1. Let us consider an instance with n = 10, penalties a =(25,22,19,13,10,8,6,4,1,0)
and the vector of the values currently assigned being e = (1, 5, 9, 10, 13, 15, 16, 17, 22, 26).
The current solution value is z = 872. Assume that a swap removes the values 9 and 17, and
adds the new values 11 and 14. Our implementation first identifies the indices out (= 8) and

9.4. A NEIGHBORHOOD 111

in (= 6) associated with the two values Mo (= 17) and M i (= 14). Vector e′ is obtained by re-
moving value 17, by shifting e6 and e7 one position right, and by inserting the value 14 into e′6.

1 2 3 4 5 6 7 8 9 10
e = (1 5 9 10 13 15 16 17 22 26)

↘ ↘
e′ = (1 5 9 10 13 15 16 22 26)

⇑
14

Using vectors σ and σ̂ (9.18) becomes

zp = z − (σ8 + σ5) + (σ̂7 − σ̂5) + M iain

= 872− (850− 566) + (592− 438) + 112 = 854 2

Applying a procedure similar to the above, we can compute the complete value of the new
solution ξ′, by determining the change of zp due to the other two elements involved in the
swap: mo = min(ci,ξ(i), cj,ξ(j)) and mi = min(ci,ξ(j), cj,ξ(i))). We need to consider the vector e′

and to find the smallest index out′ such that e′out′ = mo and the smallest index in′ such that
e′in′ > mi. Using a straightforward implementation one could determine the two indices in
O(n) time, by defining and scanning vector e′, but we can speed up the search by avoiding the
explicit definition of e′. Let us consider first in′: since mi ≤ M i, then in′ ∈ {1, . . . , in}. But
in this interval e′ and e coincide, so we can search the required value in e instead than in e′.
The definition of out′ is a little more complicated. If mo ≤ M i, then we can search again the
required value in e1, . . . , ein−1, (which coincides with e′1, . . . , e′in−1). Otherwise (mo > M i)
we know that mo ∈ {ein, . . . , eout−1}, but these elements should be stored in e′ one position
righter than in e. Hence we can simply search mo in e (instead than in e′) and define out′ as
the index of the element we found, plus one.

Lastly, to compute the complete solution value we should define the final vector e′′ obtained
from e′ by removing the element of value mo, by inserting the element of value mi and by
shifting the elements between in′ and out′. Once again we want to avoid the explicit definition
of e′′, so we need to know the exact positioning of the elements of e in e′′. If out′ ≤ in then
the elements of e with indices between in′ and out′ − 1 are shifted one position to the right
when e′′ is defined. Hence the final value z can be computed efficiently using vectors σ and
σ̂. If otherwise out′ > in then the elements of e with indices between positions in and out′

should be shifted two positions right to obtain vector e′′. Therefore to compute z efficiently
we need to define a new vector σ in which a value el is associated with the penalty al+2, i.e.

σk =
k∑

l=1

elal+2 k = 1, . . . , n− 2

Summarizing, the computational time required to explore a neighborhood is as follows.
We need O(n log n) time to compute the value of the starting solution ξ and to define the
vectors σ, σ̂, σ and other similar vectors needed for the cases we have not described explicitly.
Then for each solution in N (ξ) we need O(log n) to identify the indices in and out and a
constant time to compute the value zp of the partial solution. Then we need again O(log n)
to define in′ and out′ and a constant time to compute the value of the complete solution ξ′.
We have thus proved the following theorem.

112 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

Theorem 9.1. Neighborhood N can be explored in O(n2 log n) time.

A further reduction of the average computing time was obtained by applying several simple
criteria which, in many cases, allow one to determine if a solution is not improving with respect
to the current best solution of the neighborhood, without computing the exact solution value.

9.5 Metaheuristic algorithms

We considered three metaheuristic methods based on local search: Multi-Start algorithm, a
Simulated Annealing algorithm and an implementation of the Tabu Search method, called
eXploring Tabu Search. As already observed, we will use the neighborhood described in the
previous section for all the algorithms we consider. According to the general description
of an algorithm based on local search, given at the beginning of Section 9.4, it remains to
present only the search strategy adopted for each method (see e.g. Aarts and Lenstra [2] for
a comprehensive description of the different metaheuristic algorithms).

0.1. Multi-Start

A Multi-Start algorithm basically consists of two nested loops. At each iteration of the
external loop we simply generate a random feasible solution, which is improved by the opera-
tions performed in the internal loop. Given a current solution s at each iteration of the inner
loop, the best solution s′ ∈ N (s) is selected. If z(s′) < z(s) then we set s = s′ and we start
a new iteration of the internal loop, otherwise a local optimum has been found and the inner
loop terminates. The most common criteria used to stop the algorithm consist of giving a
global time limit, or of fixing the number of iterations of the external loop. The algorithm
returns the best solution identified during the search.

The procedure we used to generate the random feasible solutions is an implementation of
a greedy randomized (GR) algorithm. We start by ordering the entries of the cost matrix C by
non-decreasing values, then we build a feasible solution by performing n times the following
operations. At each iteration we enlarge a current partial solution by adding a pair (i, j)
such that both row i and column j are not assigned in the partial solution. More specifically,
given a parameter K > 0, the pair to be added is randomly selected among the K pairs with
smallest cij which can be feasibly added to the partial solution. If K = 1 this method is
a pure (deterministic) greedy algorithm, otherwise it is a randomized method in which the
effect of the randomization on the final solution is evident to the extent that the value of
K increases. It is well known that the average value of the solutions obtained with a GR
algorithm first decreases when K increases, but after a small threshold value it grows rapidly
with K. We performed preliminary computational experiments by generating an instance of
Class A (see Section 9.6) with n = 200 and solving this instance 1000 times with algorithm
GR, with parameter K set to 2,3,5,6,8 and 10, respectively. In Figure 9.1 we report, for each
value of K, the average solution values over the 1000 runs. According to the results of these
experiments we set the value of K to five.

0.2. Simulated annealing

The Simulated Annealing method (SA) we implemented starts with a random feasible solu-
tion s, generated with procedure GR, and iteratively applies the following steps:

9.5. METAHEURISTIC ALGORITHMS 113

-

6

2.4 ∗ 103

2.5 ∗ 103

2.6 ∗ 103

z

2 3 4 5 6 7 8 9 10 K

+
+

+
+

+

+

Figure 9.1: Average value of the solutions obtained with algorithm GR (w.r.t. parameter K).

1) randomly select a solution s′ ∈ N (s)
2) if z(s′) ≤ z(s) then set s = s′

else set s = s′ with probability e(z(s)−z(s′))/temp

where temp is the current temperature.
The overall algorithm starts by setting the value of temp to an initial temperature Tstart.

Then it repeats the above two steps a number NITER(n) of times, depending on the size
of the problem, and decreases the temperature with the geometric cooling schedule: temp =
α · temp (α < 1). When the temperature descends below a minimum value Tend it sets again
temp = Tstart and continues as above until a time limit is reached. (See e.g. Aarts, Korst
and Laarhoven [1] for a complete description of the SA method.)

In our experiments we defined NITER(n) = 300n and set α to 0.95. The starting and
ending values of the temperature were determined through a preprocessing phase which gen-
erates 100 random solutions and, for each of them, performs 100 random swaps. During this
phase we compute the minimum and maximum difference in cost, say δ and ∆, respectively,
between two adjacent solutions. The value Tstart is set to −∆/ ln(0.90) whilst the value Tend

is set to −δ/ ln(0.01). This implies that if temp = Tstart (resp. temp = Tend), during step 2 a
solution s′ whose value is equal to z(s) + ∆ (resp. z(s) + δ) is accepted with probability 90%
(resp. 1%).

0.3. The eXploring Tabu Search

In this section we describe a general structured method for implementing a Tabu Search
algorithm (TS). In particular we introduce a combination of strategies from the Tabu Search
framework (see e.g. Laguna and Glover [101] and Glover and Laguna [82]) which leads to
a new method that we have called the eXploring Tabu Search (X -TS). The reason for the
choice of this name will be explained later.

An ideal beginning level Tabu Search method starts with a feasible solution s ∈ S and, at
each iteration, it substitutes s with the best solution s′ ∈ N (s) that has not been visited in

114 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

a previous iteration. The new solution can have an objective function value smaller, equal to
or larger than the current solution. In practice it is not possible to store all the information
describing all the visited solutions, so we try to recognize a solution using only some attributes,
i.e. partial information on the structure of the solution. These attributes are stored in a finite
length list and a solution ŝ ∈ N (s) is said to be tabu, i.e. it is not considered as a possible
candidate for the next iteration, if its attributes are in the list. The search terminates when
a given time limit expires.

A common theme of tabu search is to join the beginning level TS with an intermediate
term intensification strategy and a longer term diversification strategy, to create an iterated
multi-level approach. In spite of this theme, many implementations are limited to the begin-
ning level component of TS. Our X -TS provides a specific and highly effective pattern of a
more advanced multi-level design, which we demonstrate to be dramatically superior to the
beginning level TS component by itself.

Before going into the details of the X -TS strategies we must describe our implementation
of the beginning level TS. Let ξ and ξ′ be, respectively, the permutations defining the current
solution and the solution selected in N (ξ). Moreover, let i and j be the row indices of the
elements involved in the swap which transforms ξ into ξ′. When we have moved to ξ′, the
attributes we use to identify solution ξ are the two pairs (i, ξ(i)) and (j, ξ(j)). In the following
iterations we consider tabu a solution which tries to assign again row i to column ξ(i) or row
j to column ξ(j). The attributes are stored in a simple FIFO list of length `: when a new
solution is selected the two attributes of the new solution are added on the top of the list and
the two oldest attributes are removed, if the list length exceeded `. We also apply a simple
aspiration criterion which removes the tabu status of a solution if the solution value is smaller
than the current best solution value.

We are now ready to introduce the specific strategies we have adopted. We use a multi-
level approach consisting of three intensification and/or diversification tools which operate
on areas of the solution space growing with the level. The first level tool operates in the
neighborhood of the current solution. The second level tool operates on a local area which is
close to the trajectory in the solution space, followed during the search. The third level tool
operates on the whole solution space. The first tool consists of a tabu list management, the
second one is a proximate good solutions management, whilst the third is a global restarting
strategy.

Tabu list management

This tool is an implementation of a strategy known as dynamic updating of the tabu list
length. The main idea is to emphasize the intrinsic behavior of the TS method. Indeed TS is a
so-called “hill climbing” method, i.e. it descends into a “valley” to find a local minimum, then
it climbs one of the faces of the same valley trying to reach a different minimum, placed in
another valley. The tabu tenure `, i.e. the length of the tabu list (or the number of iterations
a solution maintains its tabu status) is initialized to a given value start tenure and is modified
according to the evolution of the search. The aim is to intensify the search when we think
we are close to a local minimum, and to accelerate the diversification when we are escaping
from an already visited minimum.

The intensification is obtained by shortening the tabu tenure, i.e. allowing more solutions
to be considered candidate for the next step. On the contrary the diversification is obtained
by increasing the value `, which avoids removing the attributes of the recent solutions from the

9.5. METAHEURISTIC ALGORITHMS 115

tabu list. More specifically, let us call improving phase a set of ∆imp consecutive iterations
which lower the objective function value. If we detect an improving phase, then the search
is certainly going toward a local minimum, so we reduce the tabu tenure. In particular we
use the following updating which guarantees that the tabu tenure remains greater than a
reasonable minimum:

` = max(`− 1,
1
2
start tenure).

Now let us consider the case in which the current solution is a local minimum and we start
to climb a face of the valley. If the tabu tenure does not change, and the climbing is long
enough, then after ` iterations the attributes of the local minimum are forgotten and there
is the possibility of the search returning toward the already visited minimum. To avoid this,
it is important that before ` iterations are performed we increase the value ` so that we do
not forget the attributes of the local minimum. An effective choice is to increase the tabu
tenure before ` climbing iterations have been performed, so providing that also the attributes
of few solutions visited just before descending into the minimum remain in the list. Let us
call worsening phase a set of ∆wor < ` consecutive iterations in which the objective function
value does not improve. If a worsening phase is detected, then it is enough to increase the
tabu tenure by one, in order to recall the attributes of the minimum and of the last `−∆wor
solutions visited before reaching the minimum. In practice, we adopt the following updating:

` = min(` + 1,
3
2
start tenure),

which limits the tabu tenure, so that the tabu status does not become too binding.
Preliminary computational experiments were used to fix the value of start tenure to 15

and the values of ∆imp and ∆wor to 3. The same parameters were used for all the remaining
experiments, presented in Section 9.6.

Proximate good solutions management

This is an implementation of another tool from the TS framework which is often neglected:
a long term memory which enables the algorithm to learn from its evolution.

The basic idea of this tool is to store some good solutions which have been analyzed, but
not visited, during the evolution of the algorithm. These solutions are used, under certain
conditions, to continue the search. When we have recourse to one of such solutions, then we
jump from the current solution s to a new one which is not in N (s), but is in a promising
region close to the trajectory in the solution space followed by the algorithm up to the current
iteration. Hence the method implements both an intensification of the search into regions
analyzed, but not completely explored, and a diversification from the current solution.

We implemented this tool as follows. We used a fixed length list called Second to store l
high quality solutions which were analyzed during the search, but whose value was only the
second best value in their neighborhood. At each iteration, when we determine, as well as the
best solution s′ ∈ N (s), also the second best solution s′′ ∈ N (s), then we add s′′ to Second,
either if we have already stored less than l solutions or if there exists a solution ŝ ∈ Second
such that z(s′′) < z(ŝ). Note that owing to our implementation not all the solutions in a
neighborhood are examined, so it may happen that we compute completely only one solution
and none is added to Second.

Instead of using a solution of the current neighborhood, we resort to a solution from
Second, when the behavior of the search indicates that a great effort would be necessary to

116 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

find an improving solution, if we continue the search from the current neighborhood. We use
three conditions to try to detect the above situation:

1. the tabu status prevents all the solutions in the current neighborhood from being used;

2. the current objective function value has not been improved in the last MC iterations;

3. in the last MB iterations there was no improving of the global best solution.

If one of the three above conditions holds, we remove from Second the solution s∗ with
the best objective function value and we continue the search from it. Note that we obtain a
correct working of the algorithm only if we can restore the conditions present when s∗ was
added to Second. To do this we need to store in Second, within each solution, also a copy of
the tabu list and of the other parameters driving the search.

The meaning of the first condition is obvious, but some explanations are necessary for
the other two conditions. The value MC involves using a solution from Second when the
algorithm is climbing a very deep and high face, or when it is exploring a flat region. In
both cases the last local optimum remains the best local solution for many iterations: using
a solution from Second, we accelerate the search by jumping into a new region. This jump
is a diversification from the current solution, but it is also an intensification of the search in
the local area, since the solutions stored in Second are not too far from the current solution,
(they were found along the path leading to the current solution).

From a set of few preliminary experiments we have seen that the value 15 is adequate for
MC, for the instances we tested, but a slight growing with n is also useful. Hence we adopted
the final formula MC = d15 + 7 ln(n/100)e.

The value MB is used to detect situations in which the exploration of the current area
seems not to be fruitful in determining the global optimum. In this case we need to have
a complete but fast exploration of the area. This is achieved with a further recourse to a
solution from Second, so that we increase the intensification, but we also draw the search
toward a restart from a completely new solution (see below the subsection on the global
restarting). Thus the parameter MB reduces the time needed to explore the local area, by
inducing further intensification, but also reduces the time between two strong diversification
points. For the above reasons the value of MB must not be too small. With preliminary com-
putational experiments we chose to set MB = 500 for the smallest instances tested (n = 50)
and MB = 800 for larger instances.

Global restarting strategy

The aim of the previous two tools is to optimize the ratio accuracy/speed in the exploration
of a local area in the solution space.

When we are confident enough that no better solution can be found in the current local
area, we must move to a new and not yet explored local area. To do this we generate a new
starting solution and we re-initialize the search from this new point. This method determines
a jump into a new area, so giving a strong diversification.

To apply this tool we obviously need a procedure which generates a different feasible
solution at each run. Moreover, it would be most advisable if the procedure is able to define
solutions which are “uniformly” distributed in the solution space. In general it is not too
difficult to write a procedure satisfying the first requirement, but it is much more difficult
to satisfy the second one. In this implementation we used procedure GR to generate the

9.5. METAHEURISTIC ALGORITHMS 117

solutions. This is a randomized method which gives different solutions for different runs, with
a sufficiently large probability. However this algorithm does not guarantee any uniformity in
the distribution of the solutions. The study of greedy algorithms satisfying the two above
requirements is a challenge for future research in the metaheuristic area.

The X -TS method restarts the search when there is some evidence that the search in
the current local area is no longer profitable. In particular, we adopted the three following
inexact criteria to detect such situations: (a) the conditions adopted for the second level tool
indicate that it is necessary to use a solution from Second, but the list is empty; (b) the
value of the best solution found after I iterations from the last global restart is p percent
larger than the value of the global best solution; (c) the second level tool has been used for
SL consecutive times without improving the best solution from the last restart, or from the
beginning. Criterion (a) is an obvious extension of the considerations which define the use of
the second level tool; criterion (b) is useful to detect situations in which the last randomly
generated solution (after a restart) belongs to a local area with no good solutions; criterion
(c) is introduced to avoid fury in the search inside a single local area.

The flow chart of Figure 9.2 sketches the X -TS method.
The sets of parameters used for criteria (b) and (c) are as follows. Parameter I is adap-

tively set to 0.1dn/100e times the number of iterations performed from the starting of the
algorithm to the first recourse to a global restart. The percentage value p is initially set to
0.05n for instances with ‘small’ values of the starting solution (less than 107), and to 0.1 for
the other instances. The value of p is increased of one third of its initial value whenever
criterion (b) is applied twice consecutively. The value of the last parameter SL is a little
more sensitive to the instance. We set SL = 5 for all instances, except for that of Class C
with n ≤ 100, (see below Section 9.6) where we set SL = 10.

Why the name ?

Most of the metaheuristic and evolutionary methods owe their name to the resemblance
of their behavior with some natural phenomenon. This is also true for X -TS, but the phe-
nomenon it tries to imitate is the way of operating of an expert human, in a particular field.
Suppose you are a famous explorer whose main activity is to go to some lost-land to look for
ancient treasures. In particular, suppose you are interested in finding a treasure hidden in a
very large and intricate jungle. You can use all modern equipment (like helicopters, radios,
etc.), but the nature of the environment makes them almost ineffective. For example you
can take the helicopter and fly over the jungle, but it is so thick and intricate that nothing
can be seen beneath the trees. So you can only choose a point on the map and descend to
the ground from the helicopter with a rope. Then you can look around this point and if you
find some interesting trace or piece of evidence, you can follow this trace and repeat your
observation from the new position. Suppose you continue with this method until you see no
interesting trace around your last position. Now you take your radio and call the helicopter
that picks you up and delivers you to a new random position. This is exactly the behavior of
a Multi-Start approach.

This explorer uses the technology, but not his brain. Indeed, he makes no effort to learn
from his previous explorations. A more skilled explorer, instead, uses short and long term
memory to drive the search. In order to obtain the maximum information from his walk
on the ground and to avoid walking round in circles, he tries to remember the places where
he has already passed by storing in his memory some peculiar aspects of the various places

118 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

I

?
z∗ := +∞; z∗curr := +∞

?
randomly generate a solution s;

Iter := 1; cnt := 0; z∗curr := +∞; Second := ∅;

?
z(s) < z∗curr

?
no

yes
¾z∗curr := z(s); cnt := 0;

-

z(s) < z∗

?
no

yes
¾z∗ := z(s); s∗ := s;

-

time limit?

?
no

yes
¾stop

find the best non-tabu solution s′ ∈ N (s);
find the best non-tabu solution s′′ ∈ N (s) \ {s′};

?

s := s′;
Push(Second, s′′)
Iter := Iter + 1;

Update tabu list with s′

¾

s′ = ∅ or
z∗curr has not been improved in the last MC iterations or

z∗ has not been improved in the last MB iterations ?

6

no

?
yes

Second = ∅ or
(z∗curr > z∗(1 + p/100) and Iter > I) or

cnt ≥ SL ?

?
no

yes

-

s := Pop(Second);
cnt := cnt + 1;

Iter := Iter + 1;

¾

Figure 9.2: The X -TS method.

9.6. COMPUTATIONAL EXPERIMENTS 119

visited. So he moves from one point to an adjacent one, even if the second is no better
than the first. This is the behavior of a beginning level explorer. A more advanced explorer
recognizes exceptional interesting situations: for example, a series of consecutive traces. In
this case he moves to a new point even if some aspects of the place are similar to those of
places already visited. This can be seen as an intensification of the search, into a region close
to the current position, obtained by discarding some old tabu status. If, instead, he does not
see interesting traces for a certain time interval, then he becomes more cautious and tries to
recall all the previously visited places, so that he certainly moves toward new places. This is a
local diversification technique. But any explorer with a long experience also knows that if he
is in a given point of the jungle and, looking around, he sees more than one interesting trace,
then the best local trace does not always lead to the best find. Therefore he tries to recall
good traces that he has seen during his walk, but has not followed. When the search fails to
give interesting results for a long time, then he returns to the path at the point in which he
recalls the first good unexplored trace, and continues the search in this new direction. This
is an intensification of the search in the local area, but it is also a diversification from the
current situation. Lastly, if the walk does not give good results for a long time he calls the
helicopter and moves to a new area. These three ways of approaching the search are the
three-level tools of our X -TS method.

9.6 Computational experiments

We have implemented and tested the lower bounds of Section 9.3 and the approximating
algorithms of Section 9.5. More precisely we have coded in C language the Multi-Start
algorithm (MS), the Simulated Annealing (SA) and four different Tabu Search algorithms.
The first algorithm, called TS, is the beginning level tabu search. The second algorithm,
denoted with TS1, is an improved version of TS obtained using the first level tool, algorithm
TS2 is obtained from TS1 by adding the second level tool, and X -TS is the complete algorithm
which uses all the three-level tools. With these four implementations we aim to study the effect
of each strategy on the final performances of the tabu search method. The computational
experiments were performed on a Sun Sparc Ultra 2 workstation running under Unix System
V 4.0.

To test the algorithms, we generated and solved 320 random instances from four different
classes. The instances of Class A are obtained by randomly generating the costs [cij] and the
penalties ak, in the interval [0, 100]. The instances of Classes B, C and D are obtained by
using, respectively, the intervals [0, 1000], [50, 100] and [500, 1000]. The number of rows and
columns was set to 50, 100, 150 and 200. For each pair (n,Class) 20 random instances were
generated and solved. We gave all the algorithms the same time limit: 4n seconds.

The columns of the tables corresponding to the heuristic algorithms give: (i) the average
percentage error ∆% between the solution value and the lower bound value (i.e. ∆% =
100(upper bound value - LB) / LB); (ii) the number of times the procedure has found the
best solution, among those generated by the heuristic algorithms (bst).

In Table 9.1 we report, for each value of n, the averages over the 80 instances generated
from the four classes. The total number of best solutions found by the beginning level tabu
search TS (see Figure 9.3) is more than double that of MS and SA.

This value strictly increases when we add the first, the second and the third level tool. In
particular, X -TS obtains more than twice best solutions than TS. The average percentage

120 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

Table 9.1: Grand total for the four classes.

MS SA TS TS1 TS2 X -TS
n ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst
50 1.236 7 0.231 28 0.255 29 0.100 41 0.083 53 0.068 52

100 5.478 1 1.251 1 0.649 19 0.360 20 0.369 35 0.315 34
150 15.198 7 3.496 0 1.266 14 1.255 11 1.091 29 1.083 30
200 31.677 15 5.424 0 3.425 9 2.124 16 1.986 27 2.060 34

gr.tot 13.397 30 2.601 29 1.399 71 0.960 88 0.882 144 0.881 150
Sun Sparc Ultra 2 seconds, averages over 80 instances.

50

100

150

MS SA TS TS1 TS2 X -TS

30 29

71

88

144 150

Figure 9.3: Grand total of the best solution found.

error also decreases when we go from TS to X -TS (see Figure 9.4). The error of SA, instead,
is two times that of TS, while the error of MS is one order of magnitude larger. However,
looking at the disaggregate data of Table reftab:2 we can see that the performances of MS
change significantly with the class of instances and are not always bad. For class A it has very
poor performances (only one best solution and errors up to two orders of magnitude larger
than that of the other algorithms), but for the large instances of class D it performs very well
and is slightly better than X -TS (for n = 200 the average error of MS is 0.287 versus the
average error of X -TSwhich is 0.290).

Lastly it is worth noting that the performances of the tabu search improve at each addition
of a tool, but the most significant changes are due to the first two tools. The situation is
quite different when we consider other problems. For example in the equicut problem (see
Dell’Amico and Maffioli [52]; Dell’Amico and Trubian [58]) the most important tools are
the first and the third (tabu list management and global restarting strategy), while in the

9.7. CONCLUSIONS AND FUTURE RESEARCH 121

50

100

150

MS SA TS TS1 TS2 X -TS

13.397%

2.601%

1.399%

0.960% 0.882% 0.881%

Figure 9.4: Average errors (grand total).

SS/TDMA problem considered in Dell’Amico, Maffioli and Trubian [53], the importance
of the second tool (proximate good solutions management) and of the global restarting is
comparable.

From these studies it seems that the tabu list management is a “basic” tool which should
be used extensively in all tabu search algorithms. Instead the rules to determine when we have
to use the second and the third tool are the object of a parameter tuning. Up to now we have
no theory which helps to find these rules, therefore preliminary computational experiments
are the only method we can apply to define rules and parameters. In the next section we
propose some questions and research direction which should be considered to improve the use
of long term memory and restarting strategies.

9.7 Conclusions and Future Research

We have considered an NP-complete problem which is obtained by substituting the objective
function of the classic linear assignment problem with a cumulative function. We have re-
viewed the relevant results of the literature and we have proposed a study of metaheuristic
algorithms for solving the problem. In particular, we have carefully developed a procedure
to explore a neighborhood function and have used this procedure to obtain different meta-
heuristic algorithms using different strategies with zero memory, local memory or long term
memory. Lastly we have described a general meta-strategy using three tools from the tabu
search framework. The resulting algorithm, called X -TS, is a general well-structured tabu
search approach. The computational results show that the systematic use of strategies based
on long time memory helps towards improving dramatically the performances of a beginning
level tabu search and that X -TS is very effective as against other metaheuristic approaches.

We also observed that the rules and the parameters which determine the recourse to the
second and third tools must be defined with preliminary computational experiments. The

122 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

second level tool is a pure long term memory management, whilst the third one is a restarting
procedure. Also the third tool can be considered a long term memory-based approach if we
are able to drive the generation of new solutions far from the already visited areas. As already
pointed out in the previous section, we believe that the study of procedures to generate feasible
solutions which uniformly span the space of the solutions is a very important challenge in
the theory of metaheuristic algorithms. But other questions arise. In particular, the use of
long term memory would be much more effective if we know the mapping MN : S → S
which associates with each solution s ∈ S the local minimum ŝ ∈ S that we would find
by applying a pure local search to s, with a certain neighborhood function N . We believe
that the study of properties of this mapping is a second very important challenge for future
research. An attempt to solve this problem is given in Glover [79] where a structured method
to combine previously visited solutions is proposed. A third point that should be considered
for improving the theory of metaheuristic algorithms is how one can efficiently store the
different local minima corresponding to already visited solutions and how one can efficiently
check if the mapping of a given solution s corresponds to an already visited solution.

9.7. CONCLUSIONS AND FUTURE RESEARCH 123

Table 9.2: Sun Sparc Ultra 2 seconds, averages over 20 instances.

MS SA TS TS1 TS2 X -TS
Class n ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst

50 3.070 1 0.070 16 0.479 13 0.039 19 0.129 18 0.025 20
A 100 15.651 0 2.534 1 1.598 4 0.486 7 0.703 7 0.486 11

150 50.055 0 8.688 0 3.277 3 2.981 7 2.706 7 2.693 5
200 111.452 0 15.601 0 11.115 1 6.052 7 5.461 11 5.719 9
tot 45.057 1 6.723 17 4.117 21 2.390 40 2.250 43 2.231 45

Class n ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst
50 1.511 3 0.285 10 0.285 10 0.040 19 0.032 19 0.060 18

B 100 5.603 0 1.408 0 0.364 8 0.355 9 0.280 9 0.280 9
150 10.092 0 4.121 0 1.019 8 1.382 2 1.094 6 1.091 7
200 14.668 0 5.040 0 1.886 6 1.785 6 1.887 8 1.962 8
tot 7.969 3 2.714 10 0.889 32 0.891 36 0.823 42 0.848 42

Class n ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst
50 0.186 2 0.324 0 0.119 5 0.134 3 0.096 7 0.106 6

C 100 0.367 0 0.523 0 0.319 6 0.284 3 0.257 8 0.255 6
150 0.356 2 0.572 0 0.410 1 0.305 1 0.271 11 0.274 10
200 0.301 4 0.458 0 0.366 1 0.306 3 0.292 4 0.268 10
tot 0.303 8 0.469 0 0.303 13 0.257 10 0.229 30 0.226 32

Class n ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst ∆% bst
50 0.178 1 0.245 2 0.138 1 0.187 0 0.076 9 0.080 8

D 100 0.292 1 0.539 0 0.315 1 0.314 1 0.237 11 0.239 8
150 0.289 5 0.604 0 0.358 2 0.353 1 0.294 5 0.275 8
200 0.287 11 0.596 0 0.334 1 0.354 0 0.302 4 0.290 7
tot 0.262 18 0.496 2 0.286 5 0.302 2 0.227 29 0.221 31

124 CHAPTER 9. EXPLORING TABU SEARCH: THE CAP CASE

Chapter 10

AP as Optimization Component for
CP Constraints

10.1 Introduction

Finite1 Domain Constraint Programming (CP) has been recognized as a powerful tool for
modelling and solving combinatorial optimization problems. CP tools provide global con-
straints offering concise and declarative modelling capabilities together with efficient and
powerful domain filtering algorithms. These algorithms remove combinations of values which
cannot appear in any consistent solution.

When coping with optimization problems, an objective function f is defined on problem
variables. With no loss of generality, we restrict our discussion to minimization problems.
CP systems usually implement a Branch and Bound algorithm to find an optimal solution.
The idea is to solve a set of satisfiability problems (i.e., a feasible solution is found if it
exists), leading to successively better solutions. In particular, each time a feasible solution s∗

is found (whose cost is f(s∗)), a constraint f(x) < f(s∗) is added to each subproblem in the
remaining search tree. The purpose of the added constraint, called upper bounding constraint,
is to remove portions of the search space which cannot lead to better solutions than the best
one found so far. The problem with this approach is twofold: (i) only the upper bounding
constraint is used to reduce the domain of the objective function; (ii) in general, the link
between the variable representing the objective function and problem decision variables is
quite poor and does not produce effective domain filtering.

As concerns the first point, previous works have been proposed that compute also lower
bounds on the objective function by (possibly optimally) solving relaxed problems [22], [35],
[141], [144].

Concerning the second point, two notable works by Caseau and Laburthe ([36] and [37])
embed in optimization constraints lower bounds from Operations Research and define a regret
function used as heuristic information. Here we propose a further step in the integration of
OR technology in CP, by using well known OR techniques, i.e., lower bound calculation
and reduced cost fixing [124], for cost-based propagation. We embed in global constraints
an optimization component, representing a proper relaxation of the constraint itself. This

1The results of this chapter appear in: F. Focacci, A. Lodi, M. Milano, “Cost-based Domain Filtering”, in
J. Jaffar, Ed., Principle and Practice of Constraint Programming - CP’99, LNCS 1713, Springer-Verlag, Berlin
Heidelberg, 1999, 189–203, [71].

125

126 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

component provides three information: (i) the optimal solution of the relaxed problem, (ii)
the optimal value of this solution representing a lower bound on the original problem objective
function, and (iii) a gradient function grad(V, v) which returns, for each possible couple
variable-value (V, v), an optimistic evaluation of the additional cost to be paid if v is assigned
to V . The gradient function extends and refines the notion of regret used in [36] and [37]. We
exploit these pieces of information both for propagation purposes and for guiding the search.

We have implemented this approach on two global constraints in ILOG Solver [135]: a
constraint of difference and a path constraint. The optimization component used in both con-
straints embeds the Hungarian Algorithm [34] for solving Assignment Problem (AP) which is
a relaxation of the problem represented by the path constraint and exactly the same problem
as the one modelled by the constraint of difference. The Hungarian Algorithm provides the
optimal solution of the AP, its cost and the gradient function in terms of reduced costs ma-
trix. Reduced costs provide a significant information allowing to perform cost-based domain
filtering, and to guide the search as heuristics. In general however, any relaxation can be used,
e.g., a LP relaxation or a spanning tree (spanning forest) for the path constraint, provided
that it produces the information needed (i.e., the lower bound and reduced costs).

We have used the resulting constraints to solve Timetabling Problems, Travelling Salesman
Problems and Scheduling Problems with setup times (where the path constraint has been
interpreted and adapted to be a multi-resource transition time constraint). By using the cost-
based domain filtering technique in global constraint, we achieve a significant computational
speedup with respect to traditional CP approaches: in fact, we can optimally solve (and
prove optimality for) problems which are one order of magnitude greater than those solved
by pure CP approaches. Also, comparisons with related literature describing other OR-based
hybrid techniques show that integrating cost-based reduction rules in global constraints gets
unarguable advantages.

10.2 Motivations and Background

In this section, we present the main motivation of this chapter. We start from the general
framework, Branch & Infer, proposed by Bockmayr and Kasper [26], which unifies and sub-
sumes Integer Linear Programming (ILP) and Constraint Programming (CP). In a constraint
language, the authors recognize two kind of constraints: primitive and non primitive ones.
Roughly speaking, primitive constraints are those which are easily handled by the constraint
solver, while non primitive ones are those for which it does not exist a (complete) method for
satisfiability, entailment and optimization running in polynomial time. Thus, the purpose
of a computation in a constraint-based system is to infer primitive constraints p from non
primitive ones c.

As mentioned, when solving optimization problems, CP systems usually perform the
branch and bound method. In particular, each time a feasible solution s∗ is found (whose cost
is f(s∗)), a constraint f(x) < f(s∗) is added to each subproblem in the remaining search tree.
The purpose of the added upper bounding constraint is to remove portions of the search tree
which cannot lead to better solution than the best one found so far. Two are the main limi-
tations of this approach: (i) we do not have good information on the problem lower bound,
and consequently, on the quality of the solutions found; (ii) the relation between the cost of
the solution and the problem variables is in general not very tight, in the sense that is usually
represented by a non primitive constraints.

10.2. MOTIVATIONS AND BACKGROUND 127

Many works have been proposed in order to solve the first problem by computing a lower
bound on the problem, thus obtaining in CP a behavior similar to the OR branch and bound
technique. In global constraints, for example, a lower bound is computed on the basis of
variable bounds involved in the constraint itself, see for instance [144]. Alternatively, Linear
Programming (LP) [127] can be used for this purpose as done for example in [22], [35], [141].

The second problem arises from the fact that in classical CP systems primitive constraints
are the following:

Prim = {X ≤ u,X ≥ b,X 6= v, X = Y, integral(X)}

where X and Y are variables, u, v, b are constants. All other constraints are non primitive.
The branch and bound a-la CP would be very effective if the upper bounding constraint would
be a primitive constraint. Unfortunately, in general, while the term f(s∗) is indeed a constant,
the function f(x) is in general not efficiently handled by the underlying solver.

For example, in scheduling problems, the objective function may be the makespan which
is computed as the maxi∈Task{Sti + di} where Sti is a variable representing the start time of
Task i and di its duration. In matching, timetabling and travelling salesman problems, each
variable assignment is associated with a cost (or a penalty), the objective function is the sum
of the assignment costs. In these cases, the function f representing the objective function
makes the upper bounding constraint a non primitive one.

The general idea we propose is to infer primitive constraints on the basis of information
on costs. We use optimization components within global constraints representing a proper
relaxation of the problem (or exactly the same problem) represented by the global constraint
itself. The optimization component provides the optimal solution of the relaxed problem, its
value and a gradient function computing the cost to be added to the optimal solution for each
variable-value assignment. In this section, we provide an intuition on how this information is
exploited. In section 10.3 we formally explain the proposed technique.

With no loss of generality, we consider here as optimization component a Linear Program
(LP) representing a (continuous) linear relaxation of the constraint itself. The optimal
solution of the relaxed problem can be used as heuristic information as explained in section
10.4. The optimal value of this solution improves the lower bound of the objective function
and prunes portions of the search space whose lower bound is bigger than the best solution
found so far. The reduced costs associated to linear variables is proportional to the cost to
be added to the optimal solution of the relaxed problem if the corresponding linear variable
becomes part of a solution. If this sum is greater than the best solution found so far, the linear
variable can be fixed to 0, i.e., it is excluded from the solution. This technique is known in
OR as variable fixing [124]. Given a mapping between LP and CP variables, we have the same
information for CP variable domain values. Thus, we can infer primitive constraints of the
kind X 6= v, and we prune the subproblem defined by the branching constraint p = (X = v).

The advantage of this approach is twofold. First, we exploit cost-based information for
domain filtering in global constraints. The advantage with respect to traditional OR vari-
able fixing technique is that in our case domain filtering usually triggers propagation of other
constraints thanks to shared variables. Second, we do not need to define each time a proper re-
laxation of the original problem, but we associate a proper relaxation to each global constraint
which can be written once for all for optimization purposes. A complementary approach could
instead generate a single linear program containing a linearization of the inequalities corre-
sponding to the whole set of constraint representing the problem as done in [141]. This would

128 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

allow to have one single global optimization constraint in the form of LP. However, it can be
applied only if we consider as a relaxed problem a linear problem, while our approach is more
general and we can apply more sophisticated techniques such as additive bounds [69].

10.3 Global optimization constraints

In this chapter we apply our ideas on two global constraints of ILOG solver: a constraint
of difference (IlcAllDiff) and a path constraint (IlcPath) which was extended in order to
handle transition costs depending on the selected path.

The constraint IlcAllDiff [137] applied to an array of domain variables V ars = (X1, ..., Xn),
ensures that all variables in V ars have a different value.

The constraint IlcPath ensures that, given a set of nodes I, a maximum number of paths
NbPath, a set of starting nodes S and a set of ending nodes E, there exists at most NbPath
paths starting from nodes in S, visiting all nodes in I and ending at nodes in E. Each
node will be visited only once, will have only one predecessor and only one successor. The
constraint works on an array of domain variables Next, each representing the next node in
the path (Next[i] = j if and only if node i precedes j in the solution).

In both cases, as LP relaxation we use the Assignment Problem (AP) solved by the
Hungarian algorithm described in [34]. We have chosen the AP solver as a Linear Component
for two reasons: (i) it is a suitable relaxation for the IlcPath constraint and exactly the
same problem represented by IlcAllDiff constraint; (ii) we have a specialized, polynomial
and incremental algorithm (the Hungarian method) for solving it and computing the reduced
costs2. Notice that the proposed approach is independent from the used relaxation. In fact,
the algorithm providing lower bound values and reduced costs can be seen as a software
component, and it can be easily substituted by other algorithms. For example, an algorithm
which incrementally solves the Minimum Spanning Arborescence can be easily used instead
of the Hungarian algorithm for computing the lower bound and the reduced costs for the path
constraint as shown in [74].

Two important points that should be defined are (i) the mapping between variables ap-
pearing in the global constraint and variables appearing in the AP formulation; (ii) the cost
based propagation.

In the next sections, we formally define the Assignment Problem, the mapping and the
cost-based propagation.

10.3.1 The Assignment Problem as optimization component

The Linear Assignment Problem (AP) has been already presented in Chapter 7, and given a
square cost matrix cij of order n, is the problem of assigning to each row a different column,
and vice versa in order to minimize the total sum of the row-column assignment costs.

We recall here the ILP model presented in Chapter 7 (and we refer to the notation intro-
duced in that chapter):

Z(AP) = min
∑

i∈V

∑

j∈T

cij xij(10.1)

2Note that the AP can be formulated as an Integer Linear Program. However, being the cost matrix totally
unimodular, the LP relaxation of the AP always provides an integer (thus optimal) solution.

10.3. GLOBAL OPTIMIZATION CONSTRAINTS 129

subject to ∑

i∈V

xij = 1, j ∈ T(10.2)

∑

j∈T

xij = 1, i ∈ V(10.3)

xij ∈ {0, 1} ∈ V, j ∈ T(10.4)

where xij = 1 if and only if arc (i, j) is in the optimal solution.
As stated in Chapter 7, the AP optimal solution can be obtained through the Hungar-

ian (primal-dual) algorithm. We have used a C++ adaptation of the Hungarian algorithm
described in [34]. The solution of the AP requires in the worst case O(n3), whereas each
re-computation of the optimal AP solution, needed in the case of modification of one value
in the cost matrix, can be efficiently computed in O(n2) time through a single augmenting
path step.

The information provided by the Hungarian algorithm is the AP optimal solution and a
reduced cost matrix c. In particular, for each arc (i, j) ∈ A the reduced cost value is defined
as cij = cij −ui− vj , where ui and vj are the optimal values of the Linear Programming dual
variables associated with the i-th constraint of type (10.2) and the j-th constraint of type
(10.3), respectively. The reduced cost values are obtained from the AP algorithm without
extra computational effort during AP solution. Each cij is a lower bound on the cost to be
added to the optimal AP solution if we force arc (i, j) in solution.

10.3.2 Mapping

In this section, we define the mapping between variables and constraints used in our op-
timization component and those used in the CP program. The mapping between the ILP
formulation and the CP formulation is straightforward and has been previously suggested in
[141]. In CP, we have global constraints involving variables X1, ..., Xn (in the path constraints
they are called Nexti), ranging on domains D1, ..., Dn, and cost cij of assigning value j ∈ Di

to Xi. Obviously, the cost of each value not belonging to a variable domain is infinite. The
problem we want to solve is to find an assignment of values to variables consistent with the
global constraint, and whose total cost is minimal. If an ILP variable xij is equal to 1, the
CP variable Xi is assigned to the value j, xij = 1 ↔ Xi = j. Constraints (10.2) and (10.3)
correspond to a constraint of difference imposing that all CP variables assume different values.
The ILP objective function corresponds to the CP objective function.

It is worth noting that the AP codes work on square matrices, while, in general, in the
CP problem considered, it is not always true that the number of variables is equal to the
number of values. Thus, the cost matrix of the original problem should be changed. Suppose
we have n variables X1, . . . , Xn, and suppose that the union of their domains contains m
different values. A necessary condition for the problem to be solvable is that m ≥ n. The
original cost matrix has n rows (corresponding to variables) and m columns (corresponding
to values). Each matrix element cij represents a cost of assigning j to Xi if value j belongs
to the domain of Xi. Otherwise, cij = +INF . In addition, we have to change the matrix
so as to have a number of rows equal to the number of columns. Thus, we can add to the
matrix m− n rows where each value cij = 0 for all i = n + 1, . . . ,m and for all j = 1, . . . ,m,
obtaining an m ×m cost matrix. The addition of these m − n rows brings the algorithm to

130 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

a time complexity of O(mn2) (and not O(m3)), whereas each re-computation of the optimal
AP solution requires only O(nm) time.

Note that the constraint of difference and the AP component have exactly the same
semantics: they compute a solution where all variables are assigned to different values. Thus,
each solution of the AP is feasible for the constraint of difference. In general, in a CP program
the same variables appear in different constraints. Thus, the constraint of difference alone
(and the AP component alone) can be seen as a relaxation of a more general problem. As a
consequence, the AP optimal solution ZLB is a lower bound on the optimal solution of the
overall problem. On the contrary, when used within a path constraint, the AP component
represents a relaxation of the constraint itself (where sub-tours may appear) and it is no
longer true that the optimal solution of the AP is feasible for the path constraint. In this
case, the AP optimal solution ZLB is a lower bound of the sum of the arcs appearing in the
path constraint.

As already mentioned, the AP provides a reduced cost matrix. Given the mapping between
LP and CP variables, we know that the LP variable xij corresponds to the value j in the
domain of the CP variable Xi. Thus, the reduced cost matrix cij provides information on CP
variable domain values, grad(Xi, j) = cij .

10.3.3 The Cost-Based Propagation

In this section we describe filtering techniques based on the information provided by the
optimization component. We have a first (trivial) propagation based on the AP optimal
value ZLB. At each node of the search tree, we check the constraint ZLB < Z where Z is the
variable representing the CP objective function. This kind of propagation generates a yes/no
answer on the feasibility of the current node of the search tree; therefore it does not allow
any real interaction with the other constraints of the problem.

More interesting is the second propagation from reduced costs c towards decision variables
X1, ..., Xn, referred to as RC-based propagation. This filtering algorithm directly prunes
decision variables X1, ..., Xn domains on the basis of reduced costs c. Suppose we have
already found a solution whose cost is Z∗. For each domain value j of each variable Xi,
ZLBXi=j

= ZLB+cij is a lower bound value of the subproblem generated if value j is assigned to
Xi. If ZLBXi=j

is greater or equal to Z∗, j can be deleted from the domain of Xi. This filtering
algorithm performs a real back-propagation from Z to Xi. Such domain filtering usually
triggers other constraints imposed on shared variables, and it appears therefore particularly
suited for CP. Indeed, the technique proposed represents a new way of inferring primitive
constraints starting from non primitive ones. In particular, primitive constraints added (of
the form Xi 6= j) do not derive, as in general happens, from reasoning on feasibility, but
they derive from reasoning on optimality. Furthermore, note that the same constraints of the
form Xi 6= j are also inferred in standard OR frameworks (variable fixing). However, this
fixing is usually not exploited to trigger other constraints, but only in the next lower bound
computation, i.e., the next branching node.

When the AP is used as optimization component, an improvement on the use of the
reduced costs can be exploited as follows: we want to evaluate if value j could be removed
from the domain of variable Xi on the basis of its estimated cost. Let Xi = k and Xl = j
in the optimal AP solution. In order to assign Xi = j, a minimum augmenting path, say
PTH, from l to k has to be determined since l and k must be re-assigned. Thus, the cost
of the optimal AP solution where Xi = j is ZLB + cij + cost(PTH), by indicating with

10.4. HEURISTICS 131

cost(PTH) the cost of the minimum augmenting path PTH. In [74], two bounds on this
cost have been proposed, whose calculation does not increase the total time complexity of
the filtering algorithm (O(n2)). We will refer to this propagation as improved reduced cost
propagation (IRC-based propagation).

10.3.4 Propagation Events

In this section, we describe the data structures which should be built and maintained by the
global constraints, and the events triggering propagation.

When the constraint is stated for the first time, the cost matrix is built and the Hungarian
Algorithm is used to compute the AP optimal solution and the reduced cost matrix in O(n3).
Each time the AP optimal solution is computed, the lower bound of the variable representing
the objective function is updated and the RC-based propagation is performed (or IRC-based
if the corresponding flag is set). The constraint is triggered each time a change in a variable
domain happens and each time the upper bound of the objective function is updated. Each
time a value j is removed from the domain of variable Xi, the cost matrix is updated by
imposing cij = +∞, i.e., xij = 0. If value j belongs to the solution of the AP (and only in
this case), the lower bound ZLB is updated by incrementally re-computing the assignment
problem solution in O(n2). The AP re-computation leads to a new reduced cost matrix.
Thus, the RC-based propagation (or IRC-based) is triggered and some other values may be
removed.

Note that since the re-computation of the AP solution is needed only if the value removed
from the domain of a variable is part of the current AP solution, it is possible to write the
optimization constraint in such a way that whenever a value is assigned to a variable only
one incremental re-computation is needed. Each time the objective function upper bound is
updated, the RC-based propagation (or IRC-based) is triggered.

10.4 Heuristics

The optimal solution of a relaxed problem, the lower bound value, and the set of reduced
costs can be used for the heuristics during the search for a solution. Different examples of
such use are described in the next section where three combinatorial problems are considered.
In general, we can say that the gradient information (reduced costs) can be used to calculate
a regret function (see for example [37] for the definition of regret) useful for the variable
selection, whereas the optimal assignment in the relaxed problem can be used for the value
selection, and finally the lower bound value can be used to select a working subproblem in a
local improvement framework, as described in section 10.5.3.

10.5 Computational Results on Different Problems

In this section we present the empirical results on different problems for which the linear
assignment problem turns out to be a relaxation. We report computing times (given in
seconds on a Pentium II 200 MHz) and number of fails. We refer to different strategies: (i)
a pure CP approach exploiting the Branch & Bound a-la CP; (ii) a strategy exploiting the
LB-based propagation, referred to as ST1; (iii) a strategy exploiting both the LB-based and

132 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

RC-based propagation, referred to as ST2; (iv) a strategy exploiting the LB-based and IRC-
based propagation, referred to as ST3. Also comparisons with related approaches on the same
applications (if any) are shown. The problems considered are: Travelling Salesman Problems
instances taken from the TSP-lib and solved also in [36], Timetabling problems described in
[37]. Scheduling Problems with setup times are finally considered and solved using a local
improvement technique.

Travelling Salesman Problems have been chosen because standard CP techniques perform
very poorly on these problems; we are able to solve problems which are one order of magnitude
greater than those solved by a pure CP approach. Caseau and Laburthe in [37] have already
shown the advantages of CP techniques in Timetabling problems w.r.t. pure OR approaches.
Here we show that the tighter integration proposed outperforms their approach. Indeed,
the modelling uses different constraints of difference embedding information on cost. These
constraints represent different relaxations of the same problem on shared decision variables.
Thus, they smoothly interact with each other and with the entire set of problem constraints
allowing to efficiently solve the problem. Finally, preliminary results obtained on Scheduling
Problems with setup times show the generality of the approach, and propose a new method
for modelling and solving such problems. Implementation details, and more computational
results on the TSP and Timetabling problems presented can be found respectively in [74] and
[72].

10.5.1 TSPs

TSP concerns the task of finding a tour covering a set of nodes, once and only once, with
a minimum cost. The problem is strongly NP-hard, and has been deeply investigated in
the literature (see [100] for an annotated bibliography). Although CP is far from obtaining
better results than the ones obtained with state of the art OR technology, it is nevertheless
very interesting to build an effective TSP constraint; in fact, many problems contain sub-
problems that can be described as TSPs, e.g., Vehicle Routing Problem (VRP), Scheduling
Problems, and many variants of TSP are also interesting, e.g., TSP with Time Windows (see,
Section 10.5.4). In these cases the flexibility and the domain reduction mechanism of Con-
straint Programming languages can play an important role, and hybrid CP-OR systems could
outperform pure OR approaches (as shown in [129] and [130]).

In this section, a set of symmetric TSP instances (up to 30 nodes, from TSP-lib [138])
is analyzed. The pure CP approach has not been reported because it is not able to prove
optimality within 30 minutes on none of the instances considered. Our results have been
compared with those achieved by Caseau and Laburthe [36] and reported in row CL97, Table
10.1. The computing times of this last row are given in seconds on a Sun Sparc 10.

Table 10.1: Results on small symmetric TSP instances.

Problem gr17 gr21 gr24 fri26 bayg29 bays29
Time Fails Time Fails Time Fails Time Fails Time Fails Time Fails

ST1 8.79 13k 0.11 96 1.7 1.5k 19.88 16.6k 89.4 79.8k 135.7 112.8k
ST2 0.71 758 0.05 31 0.28 145 3.68 1.8k 10.6 9.4k 15.4 10.8k
ST3 0.66 646 0.06 31 0.27 120 2.86 1.6k 11.09 7.8k 13.7 8.8k
CL97 3.10 5.8k 7.00 12.5k 6.90 6.6k 930.0 934k 4.4k 4.56M 1.2k 1.1M

10.5. COMPUTATIONAL RESULTS ON DIFFERENT PROBLEMS 133

The search strategy used exploits the information coming from the optimization compo-
nent. It implements a sub-tour elimination branching rule often used in OR-based Branch
and Bound algorithm for the TSP. In any stage of the search tree, we consider the solution of
the AP, we choose a tour belonging to the optimal AP solution, and we branch by removing
one arc of the tour in each branch. Note that the tour chosen, infeasible for the TSP, will not
appear in any of the generated branches.

Results show that the use of the back propagation from the objective function to the
decision variables (strategies ST2 and ST3) turns out to be very important for efficiently
solve optimization problems.

10.5.2 Timetabling Problems

The timetabling problems considered have been described in [37]. The problems consist in
producing a weekly schedule with a set of lessons whose duration goes from 1 to 4 hours.
Each week is divided in 4-hours time slots and each lesson should be assigned to one time
slot. The problem involves disjunctive constraints on lessons imposing that two lessons cannot
overlap and constraints stating that one lesson cannot spread on two time slots. The objective
function to be minimized is the sum of weights taking into account penalties associated to pairs
lesson-hour. We have modelled the problem by considering: (i) an array of domain variables
Start representing the course starting times; (ii) an array of variables Slot representing the
slot to which the course is assigned; (iii) an array of variables SingleHours representing the
single hours of each course. Different variables are linked by the following constraints:

Start[i] mod 4 = Slot[i]
Start[i] = SingleHours[i][0]

Two different matching problems representing two relaxations of the timetabling problem have
been modelled by two constraints of difference embedding an optimization component. The
first one is the linear assignment relaxation arising when lessons are considered interruptible
involving variables SingleHours. The cost of assigning each SingleHours[i] variable to a
value H is the cost of assigning the corresponding course to the time slot H mod 4 divided by
the duration of the course. The second relaxation considers variables Slot for courses lasting
3 and 4 hours. The corresponding problem is an AP since two 3 or 4 hours courses cannot
be assigned to the same slot for limited capacity. The cost of assigning a course to a slot
is defined by the problem. The interesting point here is that different problem relaxations
coexist and easily interact through shared variables.

In Table 10.2 we report, in addition to the results of the four described approaches, the
results obtained by the constraint MinWeightAllDifferent described by Caseau and Laburthe
[37]. (In the last row of Table 10.2, we refer to row 4 of Table 6 of [37], and the corresponding
computing times are given in seconds on a Pentium Pro 200 MHz.)

Table 10.2 shows that for these instances ST2 outperforms in terms of computing times
other approaches, although ST3 has more powerful propagation (less number of fails). In this
case, in fact, the reduction of the search space does not pay off in terms of computing time.

We have used the information provided by the AP solution also for guiding the search.
Defining the regret of a variable as the difference between the cost of the best assignment
and the cost of the second best, a good heuristic consists in selecting first variables with high
regret. In [37] the regret has been heuristically evaluated directly on the cost matrix as the
difference between the minimum cost and the second minimum of each row (despite of the
fact that these two minimum could not be part of the first best and the second best solutions).

134 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

Table 10.2: Results on timetabling instances.

Problem Problem 1 Problem 2 Problem 3
Time Fails Time Fails Time Fails

Pure-CP 3.77 5.4k 5.50 8.5k 11.20 14.5k
ST1 0.70 213 0.15 58 7.60 2.5k
ST2 0.70 199 0.10 30 4.00 1.3k
ST3 0.90 182 0.16 28 6.10 1.2k

CL [37] 29.00 3.5k 2.60 234 120.00 17k

Reduced cost provide a more accurate computation of the regret: for each variable, a lower
bound on the regret is the minimum reduced cost excluding the reduced cost of the value in
the AP solution. This regret is then combined in a weighted sum with the size of the domain
(following the First-Fail principle), and such a weighted sum is used in the variable selection
strategy. Concerning the value selection strategy for variable Xi, we have used the solution
of the AP.

10.5.3 Scheduling with Set up times

We are given a set of n activities A1, ..., An and a set of m unary resources (resources with
maximal capacity equal to one) R1, ..., Rm. Each activity Ai has to be processed on a resource
Rj for pi time units. Resource Rj can be chosen within a given subset of the M resources.
Activities may be linked together by precedence relations. Sequence dependent setup times
exist among activities. Given a setup time matrix Sk (square matrix of dimension equal to
n), sk

ij represents the setup time between activities Ai and Aj if Ai and Aj are scheduled
sequentially on the same resource Rk. In such a case, start(Aj) ≥ end(Ai) + sk

ij . Also a setup
time suk

j before the first activity Aj can start on resource Rk may exist. A teardown time
tdk

i after the last activity Ai ends on resource Rk may exist.
Constraints of the problem are defined by the resource capacity, the temporal constraints,

and the time bounds of the activities (release date, and due date). The goal is to minimize
the sum of setup time, given a maximal makespan.

A multiple-TSP M-TSP can model a relaxation of the scheduling problem where each
resource, and each activity are represented by nodes and arc costs are the setup times. The
solution of the M-TSP provides both an assignment of activities to resources and their mini-
mum cost sequencing.

In the following, we will give some preliminary results. The scheduling problem analyzed
were solved in two phases: we first looked for a feasible solution, and then we iteratively select
a small time window TWi, we freeze the solution outside TWi, and perform a Branch and
Bound search within the selected window. The scheduling problem considered consists in 25
job of 6 activities each. The activities of each job are linked by temporal constraints and the
last activity of each job is subject to a deadline. Each activity requires a set of alternative
unary resources and a discrete resource with a given capacity profile.

The first solution (first row of Table 10.3) produces a makespan equal to 2728 and a
total setup time equal to 930. This first solution is used as starting point for the local
improvement phase. The second row of Table 10.3 reports the improvement on the first

10.5. COMPUTATIONAL RESULTS ON DIFFERENT PROBLEMS 135

Table 10.3: Results on a Scheduling Problem with setup times.

Makespan Total Setup CPU Time
First Sol. 2728 930 8
Pure-CP 2705 750 386

ST2 2695 600 249

solution obtained using a pure CP approach, while the third row reported the results obtained
using the optimization constraint (LB-based and RC-based propagation). Both approaches
used the same search strategy. The use of the optimization constraint played an important
role in the local improvement phase. In fact for a given time window TWi, the lower bound
gives very good information on the local optimal solution because the scheduling constraints
(relaxed on the M-TSP) are locally not tight. Indeed, in some cases the gap between the value
of the lower bound calculated at the root node and the value of the local optimal solution
found is zero.

In this application the optimization constraint is also very important for the selection of
the time window TWi. For each time window TWi we calculate the gap between the current
cost and the lower bound. Such a value is used to select the time window in which running
the Branch and Bound optimization. In fact, the higher the gap is, the more chances we have
to obtain a good improvement on the solution.

It is important to stress that in this case the optimization constraint interacts with all the
scheduling constraints (time bounds, precedence relationship, capacity constraints) thought
shared variables. The Edge Finder [11] constraint may, for example, deduce that a given
activity Ai must precede a set of other activities, and this information is made available to
the optimization constraint.

10.5.4 TSPTW

The Travelling Salesman Problem with Time Windows (TSPTW) is one of the most famous
variants of TSP, a time-constrained variant. More formally, TSPTW consists of finding the
minimum cost path to be travelled by a vehicle, starting and returning at the same depot,
which must visit a set of n cities exactly once. Each pair of cities has an associated travel
time. The service at a node i should begin within a time window [ai, bi] associated to the
node. Early arrivals are allowed, in the sense that the vehicle can reach node i befor ai,
but, in this case, the vehicle has to wait until the node is ready for the beginning of service.
This problem can be found in a variety of real-life applications such as routing, scheduling,
manufacturing and delivery problems.

One can consider the TSPTW from two different viewpoints: a routing part (TSP) and
a scheduling part (related to the time windows). The TSP part is mainly an optimiza-
tion problem (it is, in general, simple to find a solution, but very difficult to find the best
one), whereas often scheduling problems contain very difficult feasibility issues. As already
mentioned, CP methods are very effective for scheduling problems, in particular, where the
feasibility component is relevant.

We have modeled and solved TSPTW in [73] by using again AP as a bound within a CP
framework, and by developing ad hoc propagation techniques and branching strategies. (We

136 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

refer to [73] for a complete discussion of these techniques.) In this section, we present some
preliminary computational results obtained by this method on a set of real-world asymmetric
instances deriving from stacker crane routing applications3, and considered by Ascheuer,
Fischetti and Grötschel [5].

In Table 10.4 we report the results on a subset of these instances, and we compare
them with the results obtained with the branch-and-cut approach of Ascheuer, Fischetti
and Grötschel. For the branch-and-cut we report in the first column either the value of the
optimal solution (when known) or the lower and upper bounds, whereas in the second column
we have the computing times (in seconds on a Sun Sparc Station 10). A time limit of 5 hours
(5h in Table 10.4) is given. Our algorithm runs with two different branching strategies par-
ticularly suitable for problems with a relevant scheduling component (see, [73] for a detailed
discussion), and, as in the previous tables, we indicate the computing times, and the number
of fails. The computing times are expressed in seconds on Pentium II 200 MHz, and if the
time limit of 2 hours (2h in Table 10.4), is reported the corresponding solution is not proven
to be optimal.

Table 10.4: Results on rbg instances from Ascheuer, Fischetti and Grötschel [5].

Instance Ascheuer et al. Sequence Sequence LDS
best time best time fails best time fails

rbg010a 149 0.12 149 0.03 11 149 0.02 11
rbg016a 179 0.2 179 0.04 12 179 0.03 12
rbg020a 210 0.2 210 0.03 10 210 0.04 10
rbg027a 268 2.25 268 0.19 33 268 0.18 33
rbg031a 328 1.7 328 279 99.5k 328 318 89.2k
rbg048a [456-527] 5h 503 2h - 487 2h -
rbg049a [420-501] 5h 505 2h - 497 2h -
rbg050b [453-542] 5h 546 2h - 548 2h -
rbg050c [508-536] 5h 573 2h - 542 2h -

10.6 Conclusions

In this chapter, we have proposed the use of an optimization component such as a Linear
Program in global constraints. For feasibility purposes, global constraints represent a suitable
abstraction of general problems. For optimization purposes embedding OR methods in global
constraints is a necessary condition for efficiently handle objective functions.

The advantages of the proposed integration are that we are able to infer primitive con-
straints starting from non primitive ones on the basis of lower bound and reduced costs infor-
mation. This enhances operational behavior of CP for optimization problems by maintaining
its flexibility and its modelling capabilities.

Although most of the OR techniques used are fairly standard in the OR community we
believe that their introduction in CP global constraints leads to significant new contributions.

3The complete set can be downloaded, along with the best known solutions, from the web page:
http://www.zib.de/ascheuer/ATSPTWinstances.html.

10.6. CONCLUSIONS 137

We greatly powered the CP constraints for optimization problems. We also powered the back-
propagation from the objective function to the decision variables; such propagation is limited
in a pure OR framework since pure OR branch and bound does not have a constraint store
active on shared variables. This last point, in particular, allowed us to easily model and
solve problems whose pure OR modelling would lead to very complex algorithms. Finally,
the different prospective in which reduced cost fixing is used brought (and may bring) to new
contributions such as the improved reduced cost propagation.

Future work concern further generalization of the method by integrating in global con-
straint a general LP solver providing information on lower bound and on reduced costs. Also,
we are currently investigating the use of additive bounds [69] and other specialized cost-based
methods in global constraints.

138 CHAPTER 10. AP AS OPTIMIZATION COMPONENT FOR CP CONSTRAINTS

Chapter 11

The Multiple Depot Vehicle
Scheduling Problem

11.1 Introduction

The1 Multiple-Depot Vehicle Scheduling Problem (MD-VSP) is an important combinatorial
optimization problem arising in the management of transportation companies. In this problem
we are given a set of n trips, T1, T2, . . . , Tn, each trip Tj (j = 1, . . . , n) being characterized by
a starting time sj and an ending time ej , along with a set of m depots, D1, D2, . . . , Dm, in
the k-th of which rk ≤ n vehicles are available. All the vehicles are supposed to be identical.
In the following we assume m ≤ n.

Let τij be the time needed for a vehicle to travel from the end location of trip Ti to
the starting location of trip Tj . A pair of consecutive trips (Ti, Tj) is said to be feasible if
the same vehicle can cover Tj right after Ti, a condition implying ei + τij ≤ sj . For each
feasible pair of trips (Ti, Tj), let γij ≥ 0 be the cost associated with the execution, in the
duty of a vehicle, of trip Tj right after trip Ti, where γij = +∞ if (Ti, Tj) is not feasible, or
if i = j. For each trip Tj and each depot Dk, let γkj (respectively, γ̃jk) be the non-negative
cost incurred when a vehicle of depot Dk starts (resp., ends) its duty with Tj . The overall
cost of a duty (Ti1 , Ti2 , . . . , Tih) associated with a vehicle of depot Dk is then computed as
γki1 + γi1i2 + . . . + γih−1ih + γ̃ihk.

MD-VSP consists of finding an assignment of trips to vehicles in such a way that:

i) each trip is assigned to exactly one vehicle;

ii) each vehicle in the solution covers a sequence of trips (duty) in which consecutive trip
pairs are feasible;

iii) each vehicle starts and ends its duty at the same depot;

iv) the number of vehicles used in each depot Dk does not exceed depot capacity rk;

v) the sum of the costs associated with the duty of the used vehicles is a minimum (unused
vehicles do not contribute to the overall cost).

1The results of this chapter appear in: M. Fischetti, A. Lodi, P. Toth, “A Branch-and-Cut Algorithm for
the Multiple Depot Vehicle Scheduling Problem”, Technical Report OR/99/1, DEIS - Università di Bologna,
[68].

139

140 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

Depending on the possible definition of the above costs, the objective of the optimization
is to minimize:

a) the number of vehicles used in the optimal solution, if γkj = 1 and γ̃jk = 0 for each trip
Tj and each depot Dk, and γij = 0 for each feasible pair (Ti, Tj);

b) the overall cost, if the values (γij), (γkj) e (γ̃jk) are the operational costs associated
with the vehicles, including penalities for dead-heading trips, idle times, etc.;

c) any combination of a) and b).

MD-VSP is NP-hard in the general case, whereas it is polynomially solvable if m = 1.
It was observed in Carpaneto, Dell’Amico, Fischetti and Toth [33] that the problem is also
polynomially solvable if the costs γkj and γ̃jk are independent of the depots.

Several exact algorithms for the solution of MD-VSP have been presented in the literature,
which are based on different approaches. Carpaneto, Dell’Amico, Fischetti and Toth [33]
proposed a Branch-and-Bound algorithm based on additive lower bounds. Ribeiro and Soumis
[140] studied a column generation approach, whereas Forbes, Holt and Watts [75] analyzed a
three-index integer linear programming formulation. Bianco, Mingozzi and Ricciardelli [25]
introduced a more effective set-partitioning solution scheme based on the explicit generation
of a suitable subset of duties; although heuristic in nature, this approach can provide a
provably-optimal output in several cases. Heuristic algorithms have been proposed, among
others, by Dell’Amico, Fischetti and Toth [48]. Both exact and heuristic approaches were
recently proposed by Löbel [112, 113] for constrained versions of the problem.

In this chapter we consider a branch-and-cut [126] approach to solve MD-VSP to proven
optimality, in view of the fact that branch-and-cut methodology proved very successful for a
wide range of combinatorial problems; see e.g. the recent annotated bibliography of Caprara
and Fischetti [31].

The chapter is organized as follows. In Section 11.2 we discuss a graph theory and an
integer linear programming model for MD-VSP. In Section 11.3 we propose a basic class of
valid inequalities for the problem, and in Section 11.3.1 we address the associated separation
problem. A second class of inequalities is introduced in Section 11.4 along with a separation
heuristic. Our branch-and-cut algorithm is outlined in Section 11.5. In particular, we describe
an effective branching scheme in which the branching variable is chosen according to the
concept of “fractionality persistency”, a completely general criterion that can be extended to
other combinatorial problems. In Section 11.6 we report extensive computational experiments
on a test-bed made by 135 randomly generated and real-world test instances, all of which are
available on the web page http://www.or.deis.unibo.it/ORinstances/. Some conclusions
are finally drawn in Section 11.7.

11.2 Models

We consider a directed graph G = (V, A) defined as follows. The set of vertices V =
{1, . . . , m + n} is partitioned into two subsets: the subset W = {1, . . . , m} containing a
vertex k for each depot Dk, and the subset N = {m + 1, . . . , m + n} in which each ver-
tex m + j is associated with a different trip Tj . We assume that graph G is complete, i.e.,
A = {(i, j) : i, j ∈ V }. Each arc (i, j) with i, j ∈ N corresponds to a transition between trips

11.2. MODELS 141

Ti−m and Tj−m, whereas arcs (i, j) with i ∈ W (respectively, j ∈ W) correspond to the start
(resp., to the end) of a vehicle duty. Accordingly, the cost associated with each arc (i, j) is
defined as:

cij =

γi−m,j−m if i, j ∈ N ;
γi,j−m if i ∈ W, j ∈ N ;
γ̃i−m,j if i ∈ N, j ∈ W ;
0 if i, j ∈ W, i = j;

+∞ if i, j ∈ W, i 6= j.

Note that arcs with infinite cost correspond to infeasible transitions, hence they could be
removed from the graph (we keep them in the arc set only to simplify the notation). Moreover,
the subgraph obtained from G by deleting the arcs with infinite costs along with the vertices
in W is acyclic.

By construction, each finite-cost subtour visiting (say) vertices k, v1, v2, . . . , vh, k, where
k ∈ W and v1, . . . , vh ∈ N , corresponds to a feasible duty for a vehicle located in depot Dk

that covers consecutively trips Tv1−m, . . . , Tvh−m, the subtour cost coinciding with the cost
of the associated duty. Finite-cost subtours visiting more than one vertex in W , instead,
correspond to infeasible duties starting and ending in different depots.

MD-VSP can then be formulated as the problem of finding a min-cost set of subtours, each
containing exactly one vertex in W , such that all the trip-vertices in N are visited exactly
once, whereas each depot-vertex k ∈ W is visited at most rk times.

The above graph theory model can be reformulated as an integer linear programming
model as in Carpaneto, Dell’Amico, Fischetti and Toth [33]. Let decision variable xij assume
value 1 if arc (i, j) ∈ A is used in the optimal solution of MD-VSP, and value 0 otherwise.

v(MD − V SP) = min
∑

i∈V

∑

j∈V

cij xij(11.1)

∑

i∈V

xij = rj , j ∈ V(11.2)

∑

j∈V

xij = ri, i ∈ V(11.3)

∑

(i,j)∈P

xij ≤ |P | − 1, P ∈ Π(11.4)

xij ≥ 0 integer, i, j ∈ V(11.5)

where we have defined ri := 1 for each i ∈ N , and Π denotes the set of the inclusion-minimal
infeasible paths, i.e., the simple and finite-cost paths connecting two different depot-vertices
in W .

The degree equations (11.2) and (11.3) impose that each vertex k ∈ V must be visited
exactly rk times. Notice that variables xkk (k ∈ W) act as slack variables for the constraints
(11.2)-(11.3) associated with k, i.e., xkk gives the number of unused vehicles in depot Dk.

Constraints (11.4) forbid infeasible subtours, i.e., subtours visiting more than one vertex
in W . Finally, constraints (11.5) state the nonnegativity and integrality conditions on the
variables; because of (11.2)-(11.3), they also imply xij ∈ {0, 1} for each arc (i, j) incident with
at least one trip-vertex in N .

In the single-depot case (m = 1), set Π is empty and model (11.1)-(11.5) reduces to the
well-known Transportation Problem (TP), hence it is solvable in O(n3) time.

142 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

11.3 Path Elimination Constraints (PECs)

The exact solution of MD-VSP can be obtained through enumerative techniques whose ef-
fectiveness strongly depends on the possibility of computing, in an efficient way, tight lower
bounds on the optimal solution value. Unfortunately, the continuous relaxation of model
(11.1)-(11.5) typically yields poor lower bounds. In this section we introduce a new class of
constraints for MD-VSP, called Path Elimination Constraints, which are meant to replace the
weak constraints (11.4) forbidding infeasible subtours.

Let us consider any nonempty Q ⊂ W , and define Q := W \ Q. Given any finite-cost
integer solution x∗ of model (11.1)-(11.5), let

A∗ := {(i, j) ∈ A : x∗ij 6= 0}

denote the multiset of the arcs associated with the solution, in which each arc (k, k) with
k ∈ W appears x∗kk times. As already observed, A∗ defines a collection of

∑m
k=1 rk subtours

of G,
∑m

k=1 x∗kk of which are loops and correspond to unused vehicles.
Now suppose removing from G (and then from A∗) all the vertices in Q, thus breaking a

certain number of subtours in A∗. The removal, however, cannot affect any subtour visiting
the vertices k ∈ Q, hence A∗ still contains

∑
k∈Q rk subtours through the vertices k ∈ Q. This

property leads to the following Path Elimination Constraints (PECs):

∑

i∈S∪Q

∑

j∈(N\S)∪Q

xij ≥
∑

k∈Q

rk, for each S ⊆ N, S 6= ∅.(11.6)

Note that the variables associated with the arcs incident in Q do not appear in the constraint.
By subtracting constraint (11.6) from the sum of the equations (11.3) for each i ∈ Q∪ S,

we obtain the following equivalent formulation of the path elimination constraints:

∑

i∈Q

∑

j∈S

xij +
∑

i∈S

∑

j∈S

xij +
∑

i∈S

∑

j∈Q

xij ≤ |S|, for each S ⊆ N, S 6= ∅,(11.7)

where we have omitted the left-hand-side term
∑

i∈Q

∑
j∈Q xij as it involves only infinite-cost

arcs. This latter formulation generally contains less nonzero entries than the original one in
the coefficient matrix, hence it is preferable for computation.

Constraints (11.7) state that a feasible solution cannot contain any path starting from a
vertex a ∈ Q and ending in a vertex b ∈ Q. This condition is then related to the one expressed
by constraints (11.4). However, PEC constraints (11.7) dominate the weak constraints (11.4).
Indeed, consider any infeasible path P = {(a, v1), (v1, v2), . . . , (vt−1, vt), (vt, b)}, where a, b ∈
W , a 6= b, and S := {v1, . . . , vt} ⊆ N . Let Q be any subset of W such that a ∈ Q and
b 6∈ Q. The constraint (11.4) corresponding to path P has the same right-hand side value as
in the PEC associated with sets S and Q (as |P | = t + 1 and |S| = t), but each left-hand side
coefficient in (11.4) is less or equal to the corresponding coefficient in the PEC.

We finally observe that, for any given pair of sets S and Q, the corresponding PEC does
not change by replacing S with S := N \S and Q with Q := W \Q. Indeed, the PEC for pair
(S, Q) can be obtained from the PEC associated with (S,Q) by subtracting equations (11.2)
for each j ∈ S ∪Q, and by adding to the result equations (11.3) for i ∈ S ∪Q. As a result, it
is always possible to halve the number of relevant PECs by imposing, e.g., 1 ∈ Q.

11.3. PATH ELIMINATION CONSTRAINTS (PECS) 143

11.3.1 PEC Separation Algorithms

Given a family F of valid MD-VSP constraints and a (usually fractional) solution x∗ ≥ 0, the
separation problem for F aims at determining a member of F which is violated by x∗. The
exact or heuristic solution of this problem is of crucial importance for the use of the constraints
of family F within a branch-and-cut scheme. In practice, the separation algorithm tries to
determine a large number of violated constraints, chosen from among those with large degree
of violation. This usually accelerates the convergence of the overall scheme.

In the following we denote by G∗ = (V,A∗) the support graph of x∗, where A∗ := {(i, j) ∈
A : x∗ij 6= 0}.

Next we deal with the separation problem for the PEC family. Suppose, first, that the
subset Q ⊆ W in the PEC has been fixed. The separation problem then amounts to finding
a subset S ⊆ N maximizing the violation of PEC (11.6) associated with the pair (S, Q). We
construct a flow network obtained from G∗ as follows:

1. for each w ∈ W , we add to G∗ a new vertex w′, and we let W ′ := {w′ : w ∈ W};

2. we replace each arc (i, w) ∈ A∗ entering a vertex w ∈ W with the arc (i, w′), and define
x∗iw′ := x∗iw and x∗iw := 0;

3. we define the capacity of each arc (i, j) ∈ A∗ as x∗ij ;

4. we add two new vertices, s (source) and d (sink);

5. for each w ∈ Q, we add two arcs with very large capacity, namely (s, w) and (w′, d).

By construction:

• the flow network is acyclic;

• no arc enters vertices w ∈ Q := W \Q, and no arc leaves vertices w′ ∈ W ′;

• for each w ∈ W , the network contains an arc (w,w′) with capacity x∗ww.

• the network depends on the chosen Q only for the arcs incident with s and d (steps 1–4
being independent of Q).

One can easily verify that a minimum-capacity cut in the network with shore (say) {s} ∪
Q∪S corresponds to the most violated PEC (11.6) (among those for the given Q). Therefore,
such a highly violated PEC cut can be determined, in O(n3) time, through an algorithm that
computes a maximum flow from the source s to the sink d in the network. In practice, the
computing time needed to solve such a problem is much less than in the worst case, as A∗ is
typically very sparse and contains only O(n) arcs.

As to the choice of the set Q, one possibility is to enumerate all the 2m−1−1 proper subsets
of W that contain vertex 1. In that way, the separation algorithm requires, in the worst case,
O(2m−1n3) time, hence it is still polynomial for any fixed m. In practice, the computing time
is acceptable for values of m not larger than 5. For a greater number of depots, a possible
heuristic choice consists of enumerating only the subsets of W with |W | ≤ µ, where parameter
µ is set e.g. to 5.

144 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

Once a PEC is detected, we refine it by fixing its trip-node set S and by re-computing
(through a simple greedy scheme) the depot-vertex set Q so as to maximize the degree of
violation.

Preliminary computational experiments showed that the lower bounds obtained through
the separation algorithm described are very tight, but often require a large computing time
because the number of PECs generated at each iteration is too small. It is then very important
to be able to identify a relevant number of violated PECs at each round of separation.

PEC decomposition

A careful analysis of the PECs generated through the max-flow algorithm showed that
they often “merge” several violated PECs defined on certain subsets of S. A natural idea is
therefore to decompose a violated PEC into a series of PECs with smaller support.

To this end, let S and Q be the two subsets corresponding to a most-violated PEC (e.g.,
the one obtained through the max-flow algorithm). Consider first the easiest case in which
x∗ is integer, and contains a collection of q ≥ 2 paths P1, . . . Pq starting from a vertex in
Q, visiting some vertices in S, and ending in a vertex in Q. Now, consider the subsets
S1, . . . , Sq ⊆ S containing the vertices in S visited by the paths P1, . . . , Pq, respectively. It is
easy to see that all the q PECs associated to the subsets S1, . . . , Sq are violated (assuming
that S is inclusion minimal, and letting Q be unchanged). Even if it is not possible to
establish a general dominance relation between the new PECs and the original PEC, our
computational results showed that this refining procedure guarantees a faster convergence of
the branch-and-cut algorithm.

When x∗ is fractional the refining of the original PEC is obtained in a similar way, by
defining S1, . . . , Sq as the connected components of the undirected counterpart of the subgraph
of G∗ induced by the vertex set S.

Infeasible path enumeration

A second method to increase the number of violated PECs found by the separation scheme
consists in enumerating the paths contained in G∗ so as to identify infeasible paths of the
form P = {(a, v1), (v1, v2), . . . , (vt−1, vt), (vt, b)} with a, b ∈ W , a 6= b, and such that the
corresponding constraint (11.7) is violated for S := {v1, . . . , vt} ⊆ N and Q := {a}. Since
the graph G∗ is typically very sparse, this enumeration usually needs acceptable computing
times. According to our computational experience, enumeration is indeed very fast, although
it is unlike to identify violated PECs for highly fractional solutions.

PECs with nested support

The above separation procedures are intended to identify a number of violated PEC
chosen on the basis of their individual degree of violation, rather than on an estimate of their
combined effect. However, it is a common observation in cutting plane methods that the
effectiveness of a set of cuts belonging to a certain family depends heavily on their overall
action, an improved performance being gained if the separation generates certain highly-
effective patterns of cuts.

A known example of this behavior is the travelling salesman problem (TSP), for which
commonly-applied separation schemes based on vertex shrinking, besides reducing the com-

11.4. LIFTED PATH INEQUALITIES (LPIS) 145

putational effort spent in each separation, have the important advantage of producing at each
call a noncrossing family of violated subtour elimination constraints.

A careful analysis of the PECs having a nonzero dual variable in the optimal solution of
the LP relaxation of our model showed that highly-effective patterns of PECs are typically
associated with sets S defining an almost nested family, i.e., only a few pairs S cross each
other. We therefore implemented the following heuristic “shrinking” mechanism to force the
separation to produce violated PECs with nested sets S.

For each given depot subset Q, we first find a minimum-capacity cut in which the shore
of the cut containing the source node, say {s} ∪ Q ∪ S1, is minimal with respect to set
inclusion. If violated, we store the PEC associated with S1, and continue in the attempt at
determining, for the same depot subset Q, additional violated PECs associated with sets S
strictly containing S1. This is achieved by increasing to a very large value the capacity of
all network arcs having both terminal vertices in Q ∪ S1, and by re-applying the separation
procedure in the resulting network (for the same Q) so as to hopefully produce a sequence of
violated PECs associated with nested sets S1 ⊂ S2 · · · ⊂ St.

In order to avoid stalling on the same cut, at each iteration we increase slightly (in a
random way) the capacity of the arcs leaving the shore {s} ∪ Q ∪ Si of the current cut. In
some (rare) cases, this random perturbation step needs to be iterated in order to force the
max-flow computation to find a new cut.

As shown in the computational section, the simple scheme above proved very successful
in speeding up the convergence of the cutting-plane phase.

11.4 Lifted Path Inequalities (LPIs)

The final solution x∗ that we obtain after separating all the PECs can often be expressed as a
linear combination of the characteristic vectors of feasible subtours of G. As an illustration,
suppose that x∗ can be obtained as the linear combination, with 1/2 coefficients, of the
characteristic vectors of the following three feasible subtours (among others):

C1 = {(a, i1), (i1, i2), (i2, a)},

C2 = {(a, i1), (i1, i3), (i3, a)},

C3 = {(b, i2), (i2, i3), (i3, b)},

where a, b ∈ W , a 6= b, and i1, i2 and i3 are three distinct vertices in N (see Figure 11.1).
Notice that, because of the degree equations on the trip-nodes, only one of the above three

subtours can actually be selected in a feasible solution.
The solution x∗ of our arc-variable formulation then has: x∗ai1

≥ 1/2+1/2 = 1, x∗i1i2
≥ 1/2,

x∗i2i3
≥ 1/2, x∗i1i3

≥ 1/2, x∗i3b ≥ 1/2, hence it violates the following valid inequality, obtained
as a reinforcement of the obvious constraint forbidding the path (a, i1), (i1, i2), (i2, i3), (i3, b):

xai1 + xi1i2 + xi2i3 + xi3b + 2xi1i3 ≤ 3.(11.8)

The example shows that constraints of type (11.8) can indeed improve the linear model
that includes all degree equations and PECs. As a result, the lower bound achievable by

146 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

- - ¾-

^ À

I µ

¼
a b

i2

i1

i3

Figure 11.1: A possible fractional point x∗ with x∗ij = 1/2 for each drawn arc.

means of (11.8) can be strictly better than those obtainable through the set-partitioning or
the 3-index formulations from the literature [25, 75, 140].

Constraints (11.8) can be improved and generalized, thus obtaining a more general family
of constraints that we call Lifted Path Inequalities (LPIs):

∑

i∈Qa

∑

j∈I1∪I3

xij +
∑

i∈I1

∑

j∈I2∪Qb

xij +
∑

i∈I2

∑

j∈I2∪I3

xij +
∑

i∈I3

∑

j∈Qb

xij + 2
∑

i∈I1

∑

j∈I1∪I3

xij+

2
∑

i∈I3

∑

j∈I3

xij ≤ 3 + 2(|I1| − 1) + (|I2| − 1) + 2(|I3| − 1),(11.9)

where (Qa, Qb) is any proper partition of W , whereas I1, I2 and I3 are three pairwise disjoint
and nonempty subsets of N .

Validity of LPIs follows from the fact that they are rank-1 Chvátal-Gomory cuts obtained
by combining the following valid MD-VSP inequalities:

1/3 times PEC(I1 ∪ I2 ∪ I3, Qa),

2/3 times PEC(I1 ∪ I3, Qa),

1/3 times SEC(I1),

2/3 times SEC(I2),

1/3 times SEC(I3),

2/3 times CUT-OUT(I1),

2/3 times CUT-IN(I3),

where PEC(S, Q) is the inequality (11.7) associated to the sets S ⊆ N and Q ⊂ W , whereas
for each S ⊆ N we denote by SEC(S), CUT-OUT(S) and CUT-IN(S) the following obviously
valid (though dominated) constraints:

11.5. A BRANCH-AND-CUT ALGORITHM 147

SEC(S) :
∑

i∈S

∑

j∈S

xij ≤ |S| − 1

CUT-OUT(S) :
∑

i∈S

∑

j∈V \S
xij ≤ |S|

CUT-IN(S) :
∑

i∈V \S

∑

j∈S

xij ≤ |S|

A separation algorithm for the “basic” LPIs (11.9) having |I1| = |I2| = |I3| = 1 is obtained
by enumerating all the possible triples of trip-vertices, and by choosing the partition (Qa, Qb)
that maximizes the degree of violation of the corresponding LPI. In practice, the computing
time needed for this enumeration is rather short, provided that simple tests are implemented
to avoid generating triples that obviously cannot correspond to violated constraints.

For the more general family, we have implemented a shrinking procedure that contracts
into a single vertex all paths made by arcs (i, j) with i, j 6∈ W and x∗ij = 1, and then applies
to the shrunk graph the above enumeration scheme for basic LPIs.

11.5 A Branch-and-Cut Algorithm

In this section we present an exact branch-and-cut algorithm for MD-VSP, which follows the
general framework proposed by Padberg and Rinaldi [126]; see Caprara and Fischetti [31] for
a recent annotated bibliography.

The algorithm is a lowest-first enumerative procedure in which lower bounds are computed
by means of an LP relaxation that is tightened, at run time, by the addition of cuts belonging
to the classes discussed in the previous sections.

11.5.1 Lower Bound Computation

At each node of the branching tree, we initialize the LP relaxation by taking all the constraints
present in the last LP solved at the father node. For the root node, instead, only the degree
equations (11.2)-(11.3) are taken, and an optimal LP basis is obtained through an efficient
code for the min-sum Transportation Problem.

After each LP solution we call, in sequence, the separation procedures described in the
previous section that try to generate violated cuts. At each round of separation, we check
both LPIs and PECs for violation. The constraint pool is instead checked only when no new
violated cut is found. In any case, we never add more than NEWCUTS = 15 new cuts to
the current LP.

Each detected PEC is first refined, and then added to the current LP (if violated) in its
≤ form (11.7), with pair (S,Q) complemented if this produces a smaller support. In order to
avoid adding the same cut twice we use a hashing-table mechanism.

A number of tailing-off and node-pausing criteria are used. In particular we abort the
current node and branch if the current LP solution is fractional, and one (at least) of the
following conditions hold:

1. we have applied the pricing procedure more than 50 times at the root node, or more
than 10 times at the other nodes.

148 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

2. the (rounded) lower bound did not improve in the last 10 iterations;

3. the current lower bound exceeds by more than 10 units (a hard-wired parameter) the
best lower bound associated with an active branch-decision node; in this situation,
the current node is suspended and re-inserted (with its current lower bound) in the
branching queue.

According to our computational experience, a significant speed-up in the convergence of
the cutting plane phase is achieved at each branching node by using an “aggressive” cutting
policy consisting in replacing the extreme fractional solution x∗ to be separated by a new
point y∗ obtained by moving x∗ towards the interior of the polytope associated to the current
LP relaxation; see Figure 11.2 for an illustration. A similar idea was proposed by Reinelt
[139].

conv(MD − V SP)

x∗

xH2

y∗

y∗

xH1

current relaxation

I

Figure 11.2: Moving the fractional point x∗ towards the integer hull conv(MD − V SP).

In our implementation, the point y∗ is obtained as follows. Let xH1 and xH2 denote the
incidence vector of the best and second-best feasible MD-VSP found, respectively. We first
define the point

y∗ = 0.1x∗ + 0.9 (xH1 + xH2)/2

and give it on input to the separation procedures in order to find cuts which are violated by
y∗. If the number of generated cuts is less than NEWCUTS, we re-define y∗ as

y∗ = 0.5x∗ + 0.5 (xH1 + xH2)/2

and re-apply the separation procedures. If again we did not obtain a total of NEWCUTS
valid cuts, the classical separation with respect to x∗ is applied.

11.5. A BRANCH-AND-CUT ALGORITHM 149

11.5.2 Pricing

We use a pricing/fixing scheme akin to the one proposed in Fischetti and Toth [70] to deal
with highly degenerated primal problems. A related method, called Lagrangian pricing, was
proposed independently by Löbel [112, 113].

The scheme computes the reduced costs associated with the current LP optimal dual
solution. In the case of negative reduced costs, the classical pricing approach consists of
adding to the LP some of the negative entries, chosen according to their individual values.
For highly-degenerated LP’s, this strategy may either result in a long series of useless pricings,
or in the addition of a very large number of new variables to the LP; see Fischetti and Toth
[70] for a discussion of this behavior.

The new pricing scheme, instead, uses a more clever and “global” selection policy, con-
sisting of solving on the reduced-cost matrix the Transportation Problem (TP) relaxation of
MD-VSP. Only the variables belonging to the optimal TP solution are then added to the
LP, along with the variables associated with an optimal TP basis and some of the variables
having zero reduced-cost after the TP solution; see [70] for details.

Important by-products of the new separation scheme are the availability of a valid lower
bound even in the case of negative reduced costs, and an improved criterion for variable fixing.

In order to save computing time, the Transportation Problem is not solved if the number
of negative reduced-cost arcs does not exceed max{50, n}, in which case all the negative
reduced-cost arcs are added to the current LP.

As to the pricing frequency, we start by applying our pricing procedure after each LP
solution. Whenever no variables are added to the current LP, we skip the next 9 pricing calls.
In this way we alternate dynamically between a pricing frequency of 1 and 10. Of course,
pricing is always applied before leaving the current branching node.

11.5.3 Branching

Branching strategies play an important role in enumerative methods. After extensive compu-
tational testing, we decided to use a classical “branch-on-variables” scheme, and adopted the
following branching criteria to select the arc (a, b) corresponding to the fractional variable x∗ab

of the LP solution to branch with. The criteria are listed in decreasing priority order, i.e.,
the criteria are applied in sequence so as to filter the list of the arcs that are candidates for
branching.

1. Degree of fractionality: Select, if possibile, an arc (a, b) such that 0.4 ≤ x∗ab ≤ 0.6.

2. Fractionality persistency: Select an arc (a, b) whose associated x∗ab was persistently
fractional in the last optimal LP solutions. The implementation of this criterion requires
initializing fij = 0 for all arcs (i, j), where fij counts the number of consecutive optimal
LP solutions for which x∗ij is fractional. After each LP solution, we set fij = fij + 1
for all fractional x∗ij ’s, and set fij = 0 for all integer variables. When branching has to
take place, we compute fmax := max fij , and select a branching variable (a, b) such that
fab ≥ 0.9fmax.

3. 1-paths from a depot: Select, if possible, an arc (a, b) such that vertex a can be reached
from a depot by means of a 1-path, i.e, of a path only made by arcs (i, j) with x∗ij = 1.

150 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

4. 1-paths to a depot: Select, if possible, an arc (a, b) such that vertex b can reach a depot
by means of a 1-path.

5. Heuristic recurrence: Select an arc (a, b) that is often chosen in the heuristic solutions
found during the search. The implementation of this mechanism is similar to that used
for fractionality persistency. We initialize hij = 0 for all arcs (i, j), where hij counts the
number of times arc (i, j) belongs to an improving heuristic solution. Each time a new
heuristic solution improving the current upper bound is found, we set hij = hij + 1 for
each arc (i, j) belonging to the new incumbent solution. When branching has to take
place, we select a branching variable (a, b) such that hab is a maximum.

11.5.4 Upper Bound Computation

An important ingredient of our branch-and-cut algorithm is an effective heuristic to detect
almost-optimal solutions very early during the computation. This is very important for large
instances, since in practical applications the user may need to stop code execution before a
provably-optimal solution is found. In addition, the success of our “aggressive” cutting plane
policy depends heavily on the early availability of good heuristic solutions xH1 and xH2 .

We used the MD-VSP heuristic framework proposed by Dell’Amico, Fischetti and Toth
[48], which consists of a constructive heuristic based on shortest-path computations on suitably-
defined arc costs, followed by a number of refining procedures.

The heuristic is applied after each call of the pricing procedure, even if new variables
have been added to the current LP. In order to exploit the primal and the dual information
available after each LP/pricing call, we drive the heuristic by giving on input to it certain
modified arc costs c′ij obtained from the original costs as follows:

c′ij = cij − 100x∗ij
where cij are the (LP or TP) reduced costs defined within the pricing procedure, and x∗

is the optimal LP solution of the current LP. Variables fixed to zero during the branching
correspond to very large arc costs c′ij . Of course, the modified costs c′ij are used only during
the constructive part of the heuristic, whereas the refining procedures always deal with the
original costs cij .

11.6 Computational Experiments

The overall algorithm has been coded in FORTRAN 77 and run on a Digital Alpha 533 MHz.
We used the CPLEX 6.0 package to solve the LP relaxations of the problem.

The algorithm has been tested on both randomly generated problems from the literature
and real-world instances.

In particular, we have considered test problems randomly generated so as to simulate
real-world public transport instances, as proposed in [33] and considered in [25, 48, 140]. All
the times are expressed in minutes. Let ρ1, · · · , ρν be the ν relief points (i.e., the points where
trips can start or finish) of the transport network. We have generated them as uniformly
random points in a (60 × 60) square and computed the corresponding travel times θab as
the Euclidean distance (rounded to the nearest integer) between relief points a and b. As
for the trip generation, we have generated for each trip Tj (j = 1, · · · , n) the starting and
ending relief points, ρ′j and ρ′′j respectively, as uniformly random integers in (1, ν). Hence we

11.6. COMPUTATIONAL EXPERIMENTS 151

have τij = θρ′′i ρ′j
for each pair of trips Ti and Tj . The starting and ending times, sj and ej

respectively, of trip Tj have been generated by considering two classes of trips: short trips
(with probability 40%) and long trips (with probability 60%).

(i) Short trips: sj as uniformly random integer in (420, 480) with probability 15%, in (480,
1020) with probability 70%, and in (1020, 1080) with probability 15%, ej as uniformly
random integer in (sj + θρ′jρ′′j

+ 5, sj + θρ′jρ′′j
+ 40);

(ii) Long trips: sj as uniformly random integer in (300, 1200) and ej as uniformly random
integer in (sj + 180, sj + 300). In addition, for each long trip Tj we impose ρ′′j = ρ′j .

As for the depots, we have considered three values of m, m ∈ {2, 3, 5}. With m = 2,
depots D1 and D2 are located at the opposite corners of the (60 × 60) square. With m = 3,
D1 and D2 are in the opposite corners while D3 is randomly located in the (60 × 60) square.
Finally, with m = 5, D1, D2, D3 and D4 are in the four corners whereas D5 is located
randomly in the (60 × 60) square. The number rk of vehicles stationed at each depot Dk has
been generated as a uniformly random integer in (3 + n/(3m), 3 + n/(2m)).

The costs have been obtained as follows:

(i) γij = b10 τij + 2(sj − ei − τij)c, for all compatible pairs (Ti, Tj);

(ii) γk,j = b10 (Euclidean distance between Dk and ρ′j)c+ 5000, for all Dk and Tj ;

(iii) γ̃j,k = b10 (Euclidean distance between ρ′′j and Dk)c+ 5000, for all Tj and Dk.

The addition of a big value of 5000 to the cost of both the arcs starting and ending
at a depot (cases (ii) and (iii) above) copes with the aim of considering as an objective of
the optimization the minimization of both the number of used vehicles and the sum of the
operational costs (see Section 11.1).

Five values of n, n ∈ {100, 200, 300, 400, 500}, have been considered, and the corresponding
value of ν is a uniformly random integer in (n/3, n/2).

In Table 11.1, we consider the case of 2 depots (m = 2). 50 instances have been solved,
10 for each value of n ∈ {100, 200, 300, 400, 500}. For each instance, we report the instance
identifier (ID, built as m-n-NumberOfTheInstance, see Appendix A), the percentage gap of
both the Transportation Problem (LB0) and the improved (Root) lower bounds, computed at
the root node with respect to the optimal solution value, the number of nodes (nd) and the
number of PEC (PEC) and LPI (LPI) inequalities generated along the whole branch-decision
tree. The next four columns in Table 11.1 concern the heuristic part of the algorithm: the
first and the third give the percentage gaps of the initial upper bound (UB0) with respect to
the initial lower bound (LB0) and the optimal solution value (OPT), respectively; the second
and the fourth columns, instead, give the computing times needed to close to 1% the gaps
between the current upper bound (UB) with respect to the current lower bound (LB) and
OPT, respectively. In other words, from each pair of columns in this part of the table we
obtain an indication of the behavior of the branch-and-cut if it is used as a heuristic: for the
first pair the gap is computed on line by comparing the decreasing upper bound (UB) with
the increasing lower bound (LB), whereas for the second pair the computation is off line with
respect to the optimal solution value. Finally, the last three columns in Table 11.1 refer to
the optimal solution value (OPT), to the number of vehicles used in the optimal solution (nv),
and to the overall computing time (time), respectively. Moreover, for each pair (m,n) the

152 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

results of the 10 reported instances are summarized in the table by an additional row with
the average values of the above-mentioned entries.

Note that the percentage gaps reported in this table and in the following ones are obtained
by purging the solution values of the additional costs of the vehicles (2 times 5000, for each
used vehicle) in order to have more significant values.

Tables 11.2 and 11.3 report the same information for the cases of 3 and 5 depots, respec-
tively. In particular, 40 instances are shown in Table 11.2, which correspond to four values
of n ∈ {100, 200, 300, 400}, whereas in Table 11.3 we consider 30 instances corresponding to
three values of n ∈ {100, 200, 300}.

As expected, the larger the number of depots the harder the instance for our branch-and-
cut approach, both in terms of computing times and the number of cuts that need to be
generated. The number of branching nodes, instead, increases only slightly with m.

The behavior of the algorithm as a heuristic is quite satisfactory, in that short computing
time is needed to reduce to 1% the gap between the heuristic value UB and the optimal solu-
tion value. For the case of 2 depots, this is not surprising as the initial heuristic of Dell’Amico,
Fischetti and Toth [48] is already very tight; for the other cases (m ∈ {3, 5}), the information
available during the cutting-plane phase proved very important to drive the heuristic. The
overall scheme also exhibits a good behavior as far as the speed of improvement of the lower
bound is concerned, which is important to provide an on-line performance guaranteed of the
heuristic quality.

In Table 11.4, the instances of the previous tables are aggregated in classes given by
the pair (m,n), and the average computing times in Tables 11.1-11.3 are decomposed by
considering the main parts of the branch-and-cut algorithm. In particular, we consider the
time spent for solving the linear programming relaxations (LP), the pricing time (PRI), the
separation time (SEP), the time spent at the root node (ROOT) and the time spent for the
heuristic part of the algorithm (HEUR). Finally, the last two columns compare the computing
times obtained by our branch-and-cut algorithm with those reported in Bianco, Mingozzi and
Ricciardelli [25] for their set-partitioning approach (algorithms B&C and BMR, respectively).
As a rough estimate, our Digital Alpha 533 MHz is about 50 times faster than the PC 80486/33
Mhz used in [25].

A direct comparison between algorithms B&C and BMR in Table 11.4 is not immediate,
since the instances considered in the two studies are not the same. Moreover, for n ≥ 200 the
set-partitioning approach was tested by its authors on only 4 (as opposed to 10) instances,
and no instance with m = 2 and n ≥ 400 nor with m ≥ 3 and n ≥ 400 was considered by
BMR. More importantly, the set-partitioning solution scheme adopted by BMR is heuristic
in nature, in that it generates explicitly only a subset of the possible feasible duties, chosen
as those having a reduced cost below a given threshold. Therefore its capability of proving
the optimality of the set-partitioning solution with respect to the overall (exponential) set of
columns depends heavily on the number of columns fitting the threshold criterion, a figure
that can be impractically large in some cases.

Table 11.5 presents the results obtained on a subset of the instances (chosen as the largest
ones), by disabling in turn one of the following branch-and-cut mechanisms: the fractionality-
persistency criterion within the branching rule (“without FP”), the convex combination of
heuristic solutions when cutting the fractional point (“without CC”), the generation of nested
cuts within PEC separation (“without NC”). Finally, the last two columns in Table 11.5
give the results obtained by using a basic branch-and-cut algorithm (“basic B&C”) that
incorporates none of the above tools. In the table, the first two columns identify, as usual,

11.6. COMPUTATIONAL EXPERIMENTS 153

Table 11.1: Randomly generated instances with m = 2; computing times are in Digital Alpha
533 MHz seconds.

% Gap LB % Gap time to 1% % Gap time to 1%

ID LB0 Root nd PEC LPI UB0−LB0
LB0

UB−LB
LB

UB0−OPT
OPT

UB−OPT
OPT

OPT nv time

2-100-01 0.2444 0.0000 1 102 9 1.69 0.05 1.44 0.03 279463 25 0.35
2-100-02 0.9400 0.0000 1 120 11 1.30 0.29 0.35 0.02 301808 27 0.38
2-100-03 0.9198 0.0000 1 126 9 2.91 0.32 1.96 0.22 341528 31 0.45
2-100-04 1.7379 0.0000 1 170 19 3.23 0.34 1.44 0.32 289864 26 0.67
2-100-05 2.5750 0.0000 1 277 26 4.04 1.14 1.36 0.09 328815 30 1.45
2-100-06 0.8830 0.0000 1 68 8 0.96 0.01 0.07 0.00 360466 33 0.28
2-100-07 0.5411 0.0000 1 102 7 1.51 0.01 0.97 0.00 290865 26 0.42
2-100-08 1.0636 0.0000 1 118 13 3.61 0.40 2.51 0.22 337923 31 0.50
2-100-09 0.6601 0.0000 1 223 20 2.26 0.59 1.59 0.07 270452 24 0.90
2-100-10 0.4427 0.0000 1 170 15 0.89 0.01 0.45 0.00 291400 26 0.63
Average 1.0008 0.0000 1.0 147.6 13.7 2.24 0.32 1.21 0.10 – 27.9 0.60
2-200-01 0.5599 0.0000 1 392 30 0.94 0.09 0.38 0.08 545188 49 5.23
2-200-02 0.8168 0.0000 3 668 22 2.03 3.80 1.20 1.03 617417 56 13.58
2-200-03 1.4321 0.0123 14 839 41 2.22 4.23 0.75 0.10 666698 61 26.73
2-200-04 0.2559 0.0000 1 319 38 1.29 0.34 1.03 0.14 599404 54 4.17
2-200-05 0.6807 0.0045 3 1354 49 1.46 4.20 0.77 0.07 626991 56 27.73
2-200-06 0.6262 0.0000 1 312 30 1.60 3.08 0.96 0.10 592535 54 5.15
2-200-07 0.8525 0.0441 7 3467 79 1.28 3.34 0.42 0.07 611231 55 77.43
2-200-08 0.7922 0.0231 4 2595 61 1.87 4.68 1.06 2.00 586297 53 61.02
2-200-09 0.4396 0.0000 1 634 32 1.53 2.03 1.09 1.40 596192 54 9.10
2-200-10 0.4629 0.0000 1 261 29 0.84 0.06 0.37 0.05 618328 56 2.88
Average 0.6919 0.0084 3.6 1084.1 41.1 1.51 2.59 0.80 0.50 – 54.8 23.30
2-300-01 1.0487 0.0169 23 4778 71 2.75 22.19 1.67 8.62 907049 83 349.38
2-300-02 0.6277 0.0025 3 1306 74 1.44 9.13 0.81 0.48 789658 71 46.30
2-300-03 0.2890 0.0123 19 1234 67 1.31 3.61 1.02 0.66 813357 74 61.12
2-300-04 0.6514 0.0000 1 1312 51 1.37 12.91 0.71 0.33 777526 70 51.37
2-300-05 0.4559 0.0000 1 557 46 1.61 9.75 1.15 7.47 840724 76 19.25
2-300-06 0.5946 0.0205 5 1499 50 1.24 6.18 0.64 0.23 828200 75 66.55
2-300-07 0.4223 0.0090 3 1200 49 1.14 4.30 0.72 0.12 817914 74 30.67
2-300-08 0.5443 0.0000 1 880 60 1.53 1.08 0.97 0.15 858820 78 33.02
2-300-09 0.6855 0.0073 3 1902 68 1.57 11.54 0.88 0.27 902568 82 77.20
2-300-10 0.8440 0.0142 3 2580 55 1.70 14.00 0.84 0.55 797371 72 106.72
Average 0.6163 0.0083 6.2 1724.8 59.1 1.57 9.47 0.94 1.89 – 75.5 84.16
2-400-01 0.4177 0.0058 7 5559 95 1.26 12.34 0.84 1.02 1084141 98 431.27
2-400-02 0.6690 0.0000 1 3153 81 1.76 24.42 1.08 6.75 1028509 93 171.45
2-400-03 0.8149 0.0000 1 2530 127 1.85 31.27 1.02 1.47 1152954 105 137.85
2-400-04 0.7740 0.0107 5 5593 86 1.89 20.16 1.10 5.71 1112589 101 412.78
2-400-05 0.7163 0.0306 9 7743 89 1.46 19.61 0.73 0.78 1141217 104 670.77
2-400-06 0.3347 0.0000 1 1270 79 1.19 5.12 0.85 0.77 1100988 100 61.57
2-400-07 1.3563 0.0000 1 4175 111 2.67 76.70 1.28 6.13 1237205 113 398.30
2-400-08 0.5709 0.0000 1 2569 74 1.46 25.05 0.88 0.43 1111077 101 158.92
2-400-09 0.8082 0.0000 1 4286 90 2.34 79.45 1.51 13.95 1104559 100 410.67
2-400-10 0.6185 0.0021 3 2444 72 1.84 27.33 1.21 4.70 1086040 99 125.85
Average 0.7081 0.0049 3.0 3932.2 90.4 1.77 32.15 1.05 4.17 – 101.4 297.94
2-500-01 0.5132 0.0051 5 10994 112 2.26 58.38 1.74 26.06 1296920 118 1222.15
2-500-02 0.5425 0.0115 22 19595 126 0.84 0.99 0.29 0.98 1490681 136 2667.48
2-500-03 0.6780 0.0059 5 7540 151 2.10 77.52 1.41 35.77 1328290 121 854.77
2-500-04 0.4815 0.0032 3 12196 185 1.47 67.62 0.98 0.70 1373993 125 1351.38
2-500-05 0.4315 0.0008 5 7928 143 1.29 26.53 0.85 1.38 1315829 119 807.68
2-500-06 0.6797 0.0017 14 11265 113 1.61 57.39 0.92 0.92 1358140 124 1155.47
2-500-07 0.8368 0.0063 3 5175 103 2.53 141.60 1.67 66.40 1436202 131 1025.73
2-500-08 0.5110 0.0000 1 2941 64 1.59 52.30 1.07 2.09 1279768 116 356.93
2-500-09 0.6671 0.0000 1 5331 163 1.47 74.96 0.79 2.98 1462176 134 588.92
2-500-10 0.7041 0.0008 3 8085 95 1.96 86.75 1.24 13.28 1390435 127 1576.82
Average 0.6045 0.0035 6.2 9105.0 125.5 1.71 64.40 1.10 15.06 – 125.1 1160.73

154 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

Table 11.2: Randomly generated instances with m = 3; computing times are in Digital Alpha
533 MHz seconds.

% Gap LB % Gap time to 1% % Gap time to 1%

ID LB0 Root nd PEC LPI UB0−LB0
LB0

UB−LB
LB

UB0−OPT
OPT

UB−OPT
OPT

OPT nv time

3-100-01 1.4330 0.0938 11 867 12 3.60 2.14 2.12 1.35 307705 28 9.22
3-100-02 1.1900 0.0000 1 222 12 1.50 0.97 0.30 0.02 300505 27 1.05
3-100-03 1.2729 0.0000 1 441 14 1.78 0.80 0.48 0.02 316867 29 2.22
3-100-04 2.3361 0.0000 1 468 13 2.72 1.05 0.32 0.02 336026 31 2.37
3-100-05 0.5087 0.0000 1 223 12 2.32 0.10 1.80 0.10 278896 25 1.25
3-100-06 2.4235 0.0035 3 419 19 2.91 1.35 0.42 0.02 368925 34 2.35
3-100-07 1.5778 0.0000 1 368 14 2.80 2.48 1.18 0.08 287190 26 2.78
3-100-08 2.4476 0.0000 1 436 10 4.61 1.53 2.05 0.66 338436 31 3.55
3-100-09 1.3260 0.0000 1 270 9 1.34 0.42 0.00 0.02 275943 25 1.13
3-100-10 2.8307 0.0000 1 306 12 4.98 1.95 2.01 1.02 285930 26 2.03
Average 1.7346 0.0097 2.2 402.0 12.7 2.86 1.28 1.07 0.33 – 28.2 2.80
3-200-01 0.9718 0.0832 14 4108 49 2.69 10.86 1.69 3.60 551657 50 151.05
3-200-02 1.1254 0.0502 25 3943 59 2.39 3.68 1.24 0.35 543805 50 124.93
3-200-03 1.2151 0.0000 1 290 15 2.63 3.68 1.38 3.41 615675 57 7.18
3-200-04 2.2455 0.0169 3 2752 34 4.62 16.40 2.27 5.12 557339 51 112.22
3-200-05 1.1319 0.0000 1 1692 33 2.03 6.49 0.88 0.22 626364 57 55.12
3-200-06 0.9749 0.0000 1 405 12 2.40 3.60 1.40 1.32 558414 51 6.65
3-200-07 1.5283 0.0044 3 1053 24 3.75 7.80 2.16 2.45 595605 55 33.48
3-200-08 1.2196 0.0000 1 779 24 1.99 6.65 0.74 0.08 562311 51 15.22
3-200-09 1.7184 0.0549 11 4553 19 2.91 13.31 1.14 5.51 671037 62 196.08
3-200-10 1.1409 0.0000 1 1308 43 3.30 6.73 2.12 2.23 565053 52 25.50
Average 1.3272 0.0210 6.1 2088.3 31.2 2.87 7.92 1.50 2.43 – 53.6 72.74
3-300-01 0.9527 0.0047 7 1778 32 2.21 23.63 1.23 1.35 834240 77 87.43
3-300-02 1.0743 0.0185 20 10943 77 2.94 30.31 1.84 9.60 830089 76 706.75
3-300-03 1.9330 0.0117 3 3358 44 4.55 34.40 2.53 8.95 799803 74 286.57
3-300-04 1.2872 0.0042 3 2260 44 2.90 46.55 1.58 14.59 850929 78 166.17
3-300-05 1.0288 0.0222 5 5264 26 2.97 55.72 1.92 10.77 837460 77 576.20
3-300-06 0.9292 0.0000 1 2758 33 2.63 21.13 1.67 10.37 795110 73 142.05
3-300-07 0.5823 0.0013 3 2276 43 2.03 21.72 1.43 1.34 774873 70 138.10
3-300-08 1.2559 0.0045 3 2739 26 3.51 76.69 2.21 20.62 916484 85 261.42
3-300-09 1.3253 0.0282 9 6254 36 3.25 32.35 1.88 10.48 830364 77 560.77
3-300-10 1.0055 0.0199 21 8900 96 2.21 19.15 1.19 5.37 850515 78 472.95
Average 1.1374 0.0115 7.5 4653.0 45.7 2.92 36.17 1.75 9.34 – 76.5 339.84
3-400-01 1.5358 0.0074 5 10679 65 3.83 211.20 2.24 102.55 1141067 106 3188.92
3-400-02 0.4626 0.0167 13 21240 97 1.18 7.83 0.71 0.60 1059717 97 1617.23
3-400-03 0.6149 0.0053 8 14811 79 1.30 50.25 0.68 1.37 1124169 103 2205.48
3-400-04 1.1152 0.0246 35 24730 74 2.68 66.53 1.53 25.66 1091238 101 5142.95
3-400-05 0.7706 0.0000 1 4548 65 2.11 61.78 1.33 3.47 1159027 107 429.15
3-400-06 1.2421 0.0195 21 26217 139 2.97 117.21 1.69 17.11 1042121 96 4476.55
3-400-07 1.0737 0.0255 21 25868 111 2.16 83.86 1.06 14.51 1104156 101 4144.12
3-400-08 0.9852 0.0398 43 32159 102 2.21 91.88 1.21 11.98 1050490 97 5480.95
3-400-09 1.1130 0.0000 1 5732 57 2.69 58.85 1.54 38.39 1007810 93 775.32
3-400-10 0.5863 0.0203 32 34646 130 1.48 34.92 0.89 1.10 1063571 98 4315.67
Average 0.9499 0.0159 18.0 20063.0 91.9 2.26 78.43 1.29 21.67 – 99.9 3177.63

11.6. COMPUTATIONAL EXPERIMENTS 155

Table 11.3: Randomly generated instances with m = 5; computing times are in Digital Alpha
533 MHz seconds.

% Gap LB % Gap time to 1% % Gap time to 1%

ID LB0 Root nd PEC LPI UB0−LB0
LB0

UB−LB
LB

UB0−OPT
OPT

UB−OPT
OPT

OPT nv time

5-100-01 3.3840 0.0000 1 738 5 6.28 3.25 2.68 0.68 365591 34 6.87
5-100-02 2.1433 0.0000 1 454 3 4.00 1.64 1.77 0.74 295568 27 2.95
5-100-03 4.6979 0.1824 21 3240 10 7.53 9.60 2.48 9.16 314117 29 58.02
5-100-04 1.5884 0.0552 13 1516 5 2.63 3.17 1.00 0.07 340785 31 25.18
5-100-05 0.9784 0.0000 1 245 1 2.27 0.55 1.27 0.44 306369 28 1.25
5-100-06 4.0112 0.1091 2 1012 5 6.38 3.42 2.11 1.30 333833 31 11.32
5-100-07 3.2928 0.0895 11 1871 8 6.66 6.30 3.15 1.50 296816 27 30.07
5-100-08 2.6971 0.1091 14 1862 14 5.99 6.85 3.13 6.85 355657 33 34.18
5-100-09 1.5456 0.0075 3 581 2 3.20 1.46 1.61 0.88 306721 28 4.58
5-100-10 4.3193 0.2840 24 3499 8 6.19 3.90 1.60 0.60 291832 27 50.48
Average 2.8658 0.0837 9.1 1501.8 6.1 5.11 4.01 2.08 2.22 – 29.5 22.49
5-200-01 2.4575 0.1190 13 8467 8 6.10 83.42 3.49 74.33 619511 58 603.50
5-200-02 2.4653 0.0463 6 2971 3 5.53 19.05 2.93 14.73 601049 56 123.45
5-200-03 1.9709 0.0435 5 4452 4 6.40 44.23 4.30 32.41 623685 58 247.73
5-200-04 5.5508 0.1391 31 12267 14 10.05 82.40 3.94 35.05 622408 58 883.22
5-200-05 2.1769 0.0000 1 4681 2 4.87 45.24 2.59 6.42 597086 55 221.12
5-200-06 1.9155 0.0253 4 3938 1 2.90 28.09 0.93 0.37 479571 44 160.57
5-200-07 2.4430 0.0000 1 2624 2 4.83 27.24 2.27 26.72 553880 51 128.22
5-200-08 1.6582 0.0574 11 6393 0 3.33 70.28 1.62 43.35 595291 55 594.38
5-200-09 1.4916 0.0000 1 3991 0 4.33 45.66 2.77 34.16 588537 54 220.32
5-200-10 1.1019 0.0207 9 4869 16 2.10 14.03 0.97 0.43 593183 54 231.77
Average 2.3232 0.0451 8.2 5465.3 5.0 5.04 45.96 2.58 26.80 – 54.3 341.43
5-300-01 1.3620 0.0139 7 10383 7 3.09 153.03 1.68 9.77 784685 72 2006.65
5-300-02 2.1725 0.0426 13 11445 16 4.55 188.02 2.28 129.37 856341 80 1899.32
5-300-03 2.6642 0.0233 6 14724 5 5.42 319.76 2.61 148.86 900205 84 3040.72
5-300-04 2.1696 0.0072 3 6277 1 4.04 111.28 1.78 109.95 815586 76 847.63
5-300-05 1.9572 0.0393 21 20860 14 4.23 153.60 2.19 153.60 868503 81 4506.17
5-300-06 1.9015 0.0561 9 21257 20 5.17 278.69 3.17 166.24 787059 73 4863.87
5-300-07 1.5106 0.0131 13 13876 5 4.25 129.78 2.67 11.70 811301 75 2799.87
5-300-08 1.8754 0.0576 12 25377 9 4.73 307.65 2.77 67.12 780788 72 5796.38
5-300-09 1.9037 0.0098 6 13507 0 3.79 168.88 1.81 24.00 850934 79 3148.93
5-300-10 2.2229 0.0220 15 15177 8 5.53 179.31 3.19 65.81 819068 76 2395.40
Average 1.9740 0.0285 10.5 15288.3 8.5 4.48 199.00 2.42 88.64 – 76.8 3130.49

the class of instances considered. For each version of the algorithm two columns are given,
which report averages (over the 10 instances) on the number of nodes and the computing time,
respectively. A time limit of 10,000 CPU seconds has been imposed for each instance. The
number of possibly unsolved instances within the time limit is given in brackets. The number
of nodes and the computing time considered for unsolved instances are those reached at the
time limit, i.e., averages are always computed over 10 instances so as to give a lower bound
on the worsening of the branch-and-cut algorithm without the considered tools (a larger time
limit would have produced even greater worsenings).

The results of Table 11.5 prove the effectiveness of the improvements we proposed in
speeding up the branch-and-cut convergence. This is particuarly interesting in view of the
fact that these rules are quite general and can be applied/extended easily to other problems.

In Figure 11.3 we give an example of how, at the root node, the speed of convergence of
the lower bound depends on the different versions of the branch-and-cut algorithm considered
in the previous table (except for the version without fractionality-persistency in the branching
rule, that of course does not differ from B&C at the root node). The instance 2-500-01 is

156 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

Table 11.4: Randomly generated instances: average computing times over 10 instances; CPU
seconds on a Digital Alpha 533 MHz.

Partial Computing Times Overall
m n LP PRI SEP ROOT HEUR B&C BMR

100 0.25 0.10 0.10 0.60 0.07 0.60 81
200 14.04 2.36 2.97 13.34 0.90 23.30 647∗

2 300 52.42 10.91 7.39 46.56 3.83 84.16 755∗

400 195.86 29.08 30.65 225.28 9.42 297.94 –
500 787.99 100.59 106.97 712.47 35.96 1160.73 –
100 1.69 0.22 0.33 2.30 0.20 2.80 109
200 53.03 5.10 5.33 39.80 1.96 72.74 835∗

3 300 254.41 21.65 22.07 213.68 9.30 339.84 1472∗

400 2549.43 151.46 160.82 1187.70 44.94 3177.63 –
100 16.00 1.06 2.29 9.31 0.63 22.49 186

5 200 271.52 10.75 24.45 189.98 8.00 341.43 1287∗

300 2645.93 68.97 133.37 1562.15 45.23 3130.49 1028∗

∗ Average values over 4 instances ([25]; BMR computing times are CPU seconds on a PC
80486/33).

Table 11.5: Randomly generated instances: different versions of the branch-and-cut algorithm.
Average computing times over 10 instances; CPU seconds on a Digital Alpha 533 MHz.

B&C without FP without CC without NC basic B&C
m n nd time nd time nd time nd time nd time

300 6.2 84.16 7.8 96.01 7.1 94.07 5.3 105.55 9.2 141.69
2 400 3.0 297.94 9.1 466.32 4.5 325.90 8.4 519.42 31.3 1239.70

500 6.2 1160.73 17.5 1691.56 8.1 1238.22 10.3 1389.99 60.3 6171.15 (3)

3 300 7.5 339.84 10.5 422.39 8.7 380.73 8.6 562.11 17.6 509.06
400 18.0 3177.63 196.3 5281.56 (4) 188.5 5010.50 (2) 125.1 4395.07 (2) 326.1 6385.34 (6)

5 200 8.2 341.43 16.0 457.92 11.5 615.87 15.8 562.11 20.4 810.90
300 10.5 3130.49 24.8 4011.97 (1) 640.9 7716.95 (6) 10.8 3611.57 415.3 7745.74 (5)

11.6. COMPUTATIONAL EXPERIMENTS 157

considered: the final lower bound at the root node is obtained in 800 CPU seconds by B&C,
in 1100 CPU seconds when the nested cuts are not generated, in 1400 CPU seconds when the
convex combination is disabled, and in 2300 CPU seconds by the basic B&C.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00

Computing Time (CPU seconds)

%
 L

B
 G

ap
 (

w
.r

.t
. t

he
 o

pt
im

al
 s

ol
ut

io
n

va
lu

e)

B&C

without CC

without NC

basic B&C

Figure 11.3: Instance 2-500-01: lower bound convergence at the root node for different
versions of the cutting plane generation.

Finally, the table in Figure 11.4 reports the results obtained by the branch-and-cut al-
gorithm on a set of 5 real-world instances (with n ∈ {184, 285, 352, 463, 580}) that we ob-
tained from an Italian bus company. The bus company currently has m = 3 bus depots
to cover the area under consideration, and was interested in simulating the consequences of
adding/removing some depots. This “what-if” analysis resulted in 3 instances for each set
of trips, each associated with a different pattern of depots (i.e., m ∈ {2, 3, 5}). As for the
randomly generated instances, a big value of 5000 is added to the cost of each arc visiting a
depot.

The entries in the table are the same as in Tables 11.1-11.3. In addition, as in Table 11.4,
we report the computing times of the main components of the algorithm.

The real-world instances appear considerably easier to solve for our branch-and-cut al-
gorithm than those considered in the randomly-generated test bed. Indeed, the computing
times reported in the table of Figure 11.4 are significantly smaller than those corresponding
to random instances, and the number of branching nodes is always very small. In our view,
this is mainly due to the increased average number of trips covered by the duty of each ve-
hicle: in the real-world instances of the table in Figure 11.4, each duty covers on average
7-9 trips, whereas for random instances this figure drops to the (somehow unrealistic) value
of 3-4 trips per duty. This improved performance is an important feature of our approach,

158 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

Figure 11.4: Real-world instances: computing times in Digital Alpha 533 MHz seconds.

�

�
�
�
�
�

�

�
�
�

���
	
�

�
�

�

�
�
�

���
	
�

�
�

�

�
�

���
�
�
��
	
�

�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

!
"#
$
!
"

$
!
"

!
#
$
!

$
!

!
"#
%
&
'

%
&
'

!
#
%
&
'

%
&
'

(
�
)

�
*

�
�

�
�
�

+
�
�

�
(
(
)

,
�
-
�

�
.
�

/
0�
1
2
0�
�
�
3/
2
4
�
�
3�
�
�
�

�

�
4
5

�
1

�
3/
6

/
3/
7

�
3�
�

�
3�
6

7
/
�
7
�
2

/
6

�
32

2
35

�
37

6
3�

�
32

6
3�
�

7
0�
1
2
0�
�

�
3�
�
/
�
�
3�
�
�
�

�

�
/
4
/

�
4

/
31
1

�
�
36
/

�
34
7

6
36
8

7
�
1
8
�
2

/
6

8
38

1
34

7
3�

/
1
3/

/
32

/
1
3/
�

5
0�
1
2
0�
�

�
34
1
1
2
�
3�
2
/
1

2

/
8
4
/

2

5
3�
�

1
5
34
1

7
3�
7

1
5
34
1

7
�
6
�
1
7

/
6

2
1
37

�
/
/
3�

�
/
38

�
7
5
36

1
31

/
�
8
37
�

/
0/
1
5
0�
�
�
3�
1
5
8
�
3�
�
�
�

�

�
/
2
7

�
/
�

�
31
6

�
37
1

�
36
4

�
37
1

2
1
1
4
6
4

2
�

�2
31

4
3/

6
32

7
1
32

7
34

7
1
32
7

7
0/
1
5
0�
�
�
35
8
8
�
�
3�
�
/
4

4

2
8
2
1

8
4

/
36
6

7
4
32
5

/
3�
2

7
2
31
8

2
1
6
7
�
5

2
�

��
8
3/

6
�
3/

/
7
36

�
5
7
3�

�
8
38

/
5
1
32
1

5
0/
1
5
0�
�
�
38
5
2
/
�
3�
�
6
�

8

�
5
�
1
8

/
7

2
35
7

�
2
6
3/
8

7
35
7

�
�
2
3�
5

2
1
�
�
�
7

2
�

5
5
6
3�
�
1
4
3�

�
�
1
32

5
7
6
37

4
8
35

�
�
7
5
34
�

/
07
5
/
0�
�
�
3��
1
�
�
3�
�
�
�

�

�
1
6
5

4
6

�
38
5

�
35
4

�
31
2

�
35
4

5
2
�
1
�2

2
2

7
�
35

�
7
31

�
/
3/

4
4
38

1
36

4
4
31
1

7
07
5
/
0�
�
�
37
�
8
5
�
3�
�
�
�

�

7
2
1
7

1
6

�
31
/

5
�
3�
5

�
35
�

/
6
32
4

5
7
8
/
/
�

2
2

��
4
31

7
5
32

/
5
32

/
2
7
37

7
1
31

/
2
7
37
5

5
07
5
/
0�
�
�
36
1
1
2
�
3�
�
�
1

/
�
�
7
4
�
5

/
�

7
3/
4

/
5
�
3/
4

/
35
6

�
8
8
34
5

5
7
7
2
�
2

2
2

�
�
6
6
3/
2
/
4
3�

�
7
4
37

�
�
1
8
31

�
8
2
32

/
�
7
1
31
7

/
02
6
7
0�
�
�
3�
2
/
�
�
3�
�
�
�

1

�
�
7
5
7

2
8
1

�
34
7

�
38
1

�
36
8

�
38
1

6
6
�
1
7
8

5
7

7
8
2
3�

4
8
3�

�
1
8
3�

5
4
2
37

2
�
31

8
/
�
38
7

7
02
6
7
0�
�
�
3�
/
6
/
�
3�
�
/
2

4

�
6
6
�
2

�2
1

�
32
8

1
4
3�
8

�
37
6

5
1
3�
5

6
5
4
5
5
5

5
7

�
/
7
7
35

�
6
5
3/

/
�
5
36

�
�
4
8
32

�
/
�
35

�
8
4
2
38
/

5
02
6
7
0�
�
�
3/
6
8
�
�
3�
�
7
7

�
5
7
5
/
4
/

7
5

/
3�
1

��
2
�
35
4

�
38
�

1
�
/
34
4

6
5
�
7
1
/

5
7
5
7
�
�
31
6
5
�
3/

4
1
1
34

5
4
�
8
38

�
�
2
8
32

1
1
4
2
38
/

/
05
1
�
0�
�
�
3�
�
8
5
�
3�
�
�
�

�

1
5
�
1

5
5
6

�
37
�

�
32
/

�
3/
1

�
32
/

1
7
1
6
2
7

6
1

7
8
7
32

1
6
3/

/
/
7
36

8
/
2
31

5
�
38

8
/
2
31
�

7
05
1
�
0�
�
�
3�
/
4
7
�
3�
�
�
�

�

1
/
5
6

�
�
2

�
34
6

7
35
/

�
34
7

7
35
/

1
7
2
�
7
�

6
1

6
�
1
35

�
�
5
35

�
6
2
32

�
�
7
8
38

�
7
4
32

�
�
7
8
38
5

5
05
1
�
0�
�
�
3�
7
1
6
�
3�
/
�
8

�
7
�
5
4
1

/

�
37
1

5
4
1
34
8

�
3/
2

5
�
�
36
�

1
/
7
5
2
8
9

6
1
2
/
�
�
3/
5
�
8
34

�
5
5
2
38

�
�
�
�
�
3�

7
�
/
5
3/

�
�
�
�
�
3�
�

9
�
	
��
�

:
��

�
;

�
<
=
��>
��
�>
	
���
	
:��
��

;
��
?�
�
�
�	
@

�
<
�
?
:

=
	
A
B

�
<
C
�
:
	
1
/
7
5
�
8
3

11.7. CONCLUSIONS 159

in that set-partitioning solution approaches are known to exhibit the opposite behavior, and
run into trouble when the number of nonzero entries of each set-partitioning “column” (duty)
increases.

11.7 Conclusions

Vehicle scheduling is a fundamental issue in the management of transportation companies.
In this chapter we have considered the multiple-depot version of the problem, which belongs
to the class of the NP-hard problems.

We argued that a “natural” ILP formulation based on arc variables has some advantages
over the classical “set partitionig” or “multi-commodity flow” formulations, commonly used
in the literature, mainly for the cases in which only few depots are present.

We addressed a basic ILP formulation based on variables associated with trip transitions,
whose LP relaxation is known to produce rather weak lower bounds. We then enhanced
substantially the basic model by introducing new families of valid inequalities, for which
exact and heuristic separation procedures have been proposed. These results are imbedded
into an exact branch-and-cut algorithm, which also incorporates efficient heuristic procedures
and new branching and cutting criteria.

The performance of the method was evaluated through extensive computational testing
on a test-bed containing 135 random and real-life instances, all of which are made publicly
available for future benchmarking.

The outcome of the computational study is that our branch-and-cut method is competitive
with the best published algorithms in the literature when 2-3 depots are specified, a situation
of practical relevance for medium-size bus companies. As expected, when several depots are
present the performance of the method deteriorates due to the very large number of cuts that
need to be generated.

The performance of our branch-and-cut method turned out to be greatly improved for
real-world instances in which each vehicle duty covers, on average, 7-9 trips (as opposed to
the 3-4 trips per duty in the random problems). Evidently, the increased number of trip
combinations leading to a feasible vehicle duty has a positive effect on the quality of our
model and on the number of cuts that need to be generated explicitly. This behavior is
particularly important in practice, in that the performance of set-partitioning methods is
known to deteriorate in those cases where each set-partitioning “column” (duty) tends to
contain more than 3-5 nonzero entries. Hence our methods can profitably be used to address
the cases which are “hard” for set-partitioning approaches.

We have also shown experimentally the benefits deriving from the use of simple cut selec-
tion policies (nested cuts and deeper fractional points) and branching criteria (fractionality
persistency) on the overall branch-and-cut algorithm performance.

Finally, significant quality improvements of the heuristic solutions provided by the method
of Dell’Amico, Fischetti and Toth [48] have been obtained by exploiting the primal and dual
information available at early stages of our branch-and-cut code.

Future directions of work include the incorporation in the model of some of the additional
constraints arising in practical contexts, including “trip-objections” that make it impossible
for some trips to be covered by vehicles of certain pre-specified types or depots.

160 CHAPTER 11. THE MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

Appendix 11.A: Format of the instances in the test-bed

The instances on which we tested our algorithm are made publicly available for benchmarking.
The data set is composed by 120 random instances generated as in [33] (see Section 11.6),

and by 15 real-world instances. Each instance is associated with a unique identifier, which
is a string of the form m-n-NumberOfTheInstance. E. g., ID = 3-200-05 corresponds to the
5-th instance with 3 depots and 200 trips. For real-world instances, the identifier has instead
the form ID = m-n-00.

For each instance ID we distribute two files, namely ID.cst and ID.tim, containing the
cost matrix and the starting and ending time vectors of instance ID, respectively.

The first line of each ID.cst file contains the m+2 entries m, n, and nv(i) for i = 1, . . . ,m
(where nv(i) is the number of vehicles available at depot Di), whereas the next lines give the
complete (n + m)× (n + m) cost matrix, whose entries are listed row-wise. Each file of type
ID.tim contains the n trip starting-times followed by the n trip ending-times, all expressed
in minutes from midnight.

Chapter 12

Other Combinatorial Optimization
Problems

12.1 Introduction

In this chapter we consider the unconstrained Quadratic 0-1 Programming Problem (QP) and
the Data sets Reconstruction Problem (DRP). These two combinatorial optimization problems
are not directly related to AP, but the approaches used to address them are similar to others
presented in the previous chapters, and for this reason have been included in the thesis.

In particular, the evolutionary heuristic developed for QP shares with the tabu search
for 2BP presented in Part I the same metahueristic idea: iteratively (heuristically) fixing a
fragment of the current solution (a set of bins for 2BP) and trying to improve it by perform-
ing Local Search on the remaining part. In the following section, this simple guideline is
successfully applied to QP.

Concerning DRP, the exact algorithm developed for it extensively uses the heuristic ap-
proach separately proposed, as already done by the branch-and-cut for MD-VSP. This is a
very general feature because exact approaches usually take advantages from heuristics, but
the DRP example shows once again how a good exploitation of the heuristic rules could be
crucial for the exact solution.

12.2 The unconstrained Quadratic 0–1 Programming

The1 general formulation of the unconstrained Quadratic 0-1 Programming Problem is the
following:

min f(x) = ctx +
1
2
xtQx, x ∈ {0, 1}n(12.1)

where n is the size of the problem, c is a rational n-vector and Q is an n × n symmetric
rational matrix. This problem is NP-hard, indeed it contains as a special case the Maximum
Stable Set Problem.

QP is a well known and interesting combinatorial optimization problem first because it
has many practical applications for example in capital budgeting and financial analysis [120],
traffic message management [77] and machine scheduling [4] and second because it is closely

1The results in this section appear in: A. Lodi, K. Allemand, T. M. Liebling, “An Evolutionary Euristic
for Quadratic 0–1 Programming”, European Journal of Operations Research 119, 662–670, 1999, [106].

161

162 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

related to other problems in the literature, as for example the Max Cut Problem (see below)
and the Quadratic Assignment Problem.

The first results in the literature regarding QP are due to Hammer [90], who pointed out
the equivalence between QP and the Max Cut Problem.

Two cases where QP is polynomially solvable are known. The first one is the case in
which all the elements of the matrix Q are nonpositive (see Picard and Ratliff [131]) while
the second one, shown by Barahona [12], is the case where the graph defined by Q is series-
parallel. Lower bounds for the problem have been proposed by Hammer, Hansen and Simeone
[91] and polyhedral studies have been given by Barahona and Mahjoub [14], Padberg [125]
and De Simone [46]. Exact approaches to QP are due to Barahona, Jünger and Reinelt [13]
(Branch and Cut) and to Pardalos and Rodgers [128] (Branch and Bound).

In the last years two effective heuristic approaches have been presented: the first proposed
by Chardaire and Sutter [39] is based on a decomposition method while the second, based on
the Tabu Search technique, has been studied in two different papers by Glover, Kochenberger
and Alidaee [80] and Glover, Kochenberger, Alidaee and Amini [81].

This section presents a heuristic approach for QP based on combining solutions inside a
genetic paradigm. In the following Section we discuss some classic methods from the literature
for combining solutions and we briefly present our own combination strategy. In Section 12.2.2
we describe two effective algorithms used to locally optimize the solutions before and after
such combinations while in Section 12.2.3 the evolutionary algorithm is presented. Finally,
in Section 12.2.4 we discuss a large set of computational experiments comparing our results
with the ones of powerful exact and heuristic algorithms from the literature and establishing
the effectiveness of our approach in terms of quality of solutions and computing time.

12.2.1 Combining solutions methods

Two of the most known and effective methods for combining solutions in an evolutionary way
are Genetic Algorithms (GAs) and Scatter Search (SS) (see Mühlenbein [123] and Glover [79],
respectively). Both methods can be outlined, very briefly, as follows:

1. define a set P of feasible solutions;
2. combine a subset of P in some way;
3. update P and repeat until a stopping criterion is reached.

The way to implement the above steps is very different in the two approaches. In this
section we refer to an updated version of the classic genetic framework in which the main
operators of selection, mutation and recombination-crossover (see Section 12.2.3) are designed
to be constructive instead of simply evolutionary (see again Mühlenbein [123] for a complete
overview of the evolution of the genetic approach). In particular, the treatment of the solutions
in an ordered way and the use of heuristics are features of the new genetic paradigm which
were not part of the original one. The addition of these tools brings the new genetic framework
close to the Scatter Search approach with the important difference that GAs are still part of
mathematical random search methods, while in Scatter Search no random choice is performed
during the exploration of the solution space.

The heuristic algorithm we developed, and that will be presented in the following sections,
is designed on the genetic framework, but is also indebted to Scatter Search because it makes

12.2. THE UNCONSTRAINED QUADRATIC 0–1 PROGRAMMING 163

an extensive use of intensification algorithms, as is standard in SS and not in GAs. The
original idea followed here is to incorporate effective and fast heuristic algorithms inside a
well structured method of combining solutions. Such a method is designed to iteratively select
a subset of assignments common to high quality solutions, then, letting the variables in this
subset fixed (they identify a promising region), we can define a subproblem of reduced size
and perform intensification on it. This simple and clean approach is used for the first time to
address QP and the results are proved to be satisfactory (see Section 12.2.4).

12.2.2 Intensification algorithms

As mentioned in the previous section, our evolutionary heuristic (EH) for QP makes extensive
use of heuristic algorithms to improve solutions and speed up the method. In this section we
present two simple algorithms which are very well suited to this aim.

MinRange Algorithm

Let us consider the following property pointed out by Pardalos and Rodgers [128]:

Lemma 12.1. If x∗ is the optimal solution of the quadratic problem

min f(x) = ctx +
1
2
xtQx, x ∈ S(12.2)

where S is a convex set, then x∗ is also optimal for the following linear problem:

min g(x) = ∇tf(x∗)x, x ∈ S(12.3)

In the special case where S = [0, 1]n, Lemma 12.1. implies that variables whose partial
derivatives have fixed sign in [0, 1]n can be forced to 0 or 1. For each component of the
gradient of f(x) it is easy to compute a lower and an upper bound:

lbi = ci +
∑

j

q−ij ≤
∂f

∂xi
≤ ci +

∑

j

q+
ij = ubi(12.4)

where q−ij (resp. q+
ij) are the negative (resp. positive) elements of the i-th row of Q. If ∂f

∂xi

has fixed positive (resp. negative) sign, then xi can be forced to value 0 (resp. 1).
It is easy to see that the property shown in Lemma 12.1. remains true in the discrete case

where S = {0, 1}n, i.e. in the QP case.
Using this property we developed a simple algorithm called MinRange (MINimum RANGE

of the gradient) utilized as a procedure in the genetic algorithm in order to fix variables. A
variable is considered fixed if its value cannot be changed in the following steps of the search.
It is completely fixed (see below) if its value can never be changed or temporarily fixed if its
value must remain unchanged only during a given number of steps. The framework of the
MinRange algorithm can be outlined as follows.

Algorithm MinRange
1. compute ubi and lbi of each unfixed variable i;
2. repeat

2.a try to fix the variables not already fixed to 0 or 1;
2.b update the ubi and lbi of the still unfixed variables i

164 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

until ((all the variables are fixed) or
(no variable has been fixed in this cycle)).

Updating the bounds of the unfixed variables (step 2.b) is performed as follows: if variable
i∗ has been forced to 0 (resp. to 1) and variable i is still unfixed then

if qii∗ > 0
then ubi := ubi − qii∗ (resp. lbi := lbi + qii∗)
else lbi := lbi − qii∗ (resp. ubi := ubi + qii∗).

In a preprocessing phase, i.e. when no variable has been fixed before calling MinRange,
it is clear that the variables forced by the MinRange algorithm (if any) will be considered
completely fixed. Indeed these variables have been forced to their exact value and so the size
of the problem becomes smaller. In particular, if MinRange performed in the preprocessing
forces µ variables then only n−µ components of x remain to be fixed in the rest of the global
algorithm.

Local Search Algorithm (LS)

Each iteration of the local search algorithm is composed of two phases, a constructive phase
and a destructive one. This terminology is due to Glover et al. [80] who perform very similar
phases to identify solutions called critical events that represent the base of their tabu strategy.

A constructive phase consists in successively setting to 1 the variables (previously set to 0)
that lead to an improvement of the objective function. The phase is initialized by calculating
the improvement vector imp (impi indicates the improvement achievable by setting xi := 1),
then at each step the best improvement is selected, the corresponding variable is set to 1, and
finally the vector and the objective function are updated. The phase ends if either a prefixed
number of variables has been set to 1 or no improvement is possible.

Letting z be the current solution, inf a large positive value and C a prefixed parameter,
the scheme of a constructive phase can be described as follows.

for i := 1 to n do
if (xi = 0 and i not fixed)
then impi := ci +

∑n
j=1 qijxj

else impi := inf ;
count = 0;
repeat

if mini=1,...,n impi < 0
then i∗ := arg mini=1,...,n impi

else i∗ := 0;
if (i∗ 6= 0) then

begin
xi∗ := 1;
z := z + impi∗ ;
impi∗ := inf ;
for i := 1 to n do

if (impi 6= inf) then impi := impi + qii∗ ;
count := count + 1

end
until ((count > C) or (i∗ = 0)).

12.2. THE UNCONSTRAINED QUADRATIC 0–1 PROGRAMMING 165

It should be noted that O(n2) time is needed in the initialization to calculate vector imp
while updating the same vector is performed efficiently in a mere O(n).

A destructive phase is clearly analogous; the variables considered are those set to 1 and
we try to improve z by setting them to 0.

The constructive and destructive phases are performed consecutively and together repre-
sent a single iteration of LS. Since this single iteration is heuristic the result depends from the
order in which the two phases are performed. We decided to perform first the constructive
phase according to preliminary computational experiments. The algorithm terminates after
performing a prefixed number ϕ of iterations.

12.2.3 An Evolutionary Heuristic (EH)

According to the genetic paradigm discussed in Section 12.2.1, the framework of our evolu-
tionary algorithm can be outlined as follows:

1. generate an initial population of different solutions;
2. repeat

3. select two solutions in the population, the parents;
4. generate a new solution by applying a cross-over operator to the parents;
5. the new solution is modified by a mutation operator;
6. insert the new solution in the population and update the population

until a stopping or restart criterion is satisfied
7. if stopping criteria are not satisfied go to 1.

For each step of this structure we will present below our implementation based on the
strategy of efficiently combining strong intensification and timely diversification.

Initial population

The initial population is composed of SIZEmin elements. SIZEmin− g of these elements are
randomly generated and improved through LS, while the remaining g elements are the best
solutions found in the g previous restarts performed by the algorithm (clearly g = 0 at the
beginning).

Stopping and restart criteria

The stopping and restart criteria used are quite standard. The algorithm terminates both
if (i) a prefixed number of iterations is performed or (ii) a prefixed time limit is reached.
We restart the search by generating a new initial population (see Initial population and also
Mutation operator) after R consecutive iterations without an improvement of the current best
solution.

Selection operator

The selection operator is implemented according to the choice of Taillard [147]. We con-
sider the population sorted in non-decreasing order of the objective function value. With
SIZE denoting the current size of the population and y1, y2 two random variables uniformly
distributed in [0, 1], the two parents P1 and P2 are selected as follows:

• P1 =
⌊
y2
1 × SIZE + 1

⌋

166 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

• P2 =

{ ⌊
y2
2 × (SIZE − 1) + 1

⌋
if

⌊
y2
2 × (SIZE − 1) + 1

⌋
< P1⌊

y2
2 × (SIZE − 1) + 2

⌋
otherwise

Note that by squaring y1 and y2 the probability of choosing the best solution in the population
at each step becomes higher.

Crossing-Over operator

The cross-over phase is intended to perform a strong intensification action. The motto followed
is: good solutions are similar. We temporarily fix the variables with the same value in P1 and
P2 obtaining a child (SON) that has a reduced number of unfixed variables and we apply to it
the intensification actions (see Section 12.2.2). We illustrate the strategy with the following
example.

Example

P1

P2

CF CF CF

CFCFCF

CF CF CF TFTFTFTF

0 1 1 1 0 0 1 0 1

100100011

SON

Figure 12.1: Example of crossing-over phase, n = 12.

Therein CF and TF indicate respectively the variables completely fixed (in an exact way in
the preprocessing phase) and the temporarily fixed ones (in a heuristic way through compar-
ison of P1 and P2).2

The variables CF are common to all the elements of the population and so also to SON,
while the variables TF remain fixed only during the next operations performed on SON. Mark-
ing these variables TF fixed enables to fix other variables applying the MinRange algorithm
to SON. In other words, starting from a partial heuristic solution, we perform MinRange in
order to complete it in the best possible way (exactly) and then converge quickly to the local
optimum.

12.2. THE UNCONSTRAINED QUADRATIC 0–1 PROGRAMMING 167

Mutation operator

The mutation operator in genetic algorithms is intended to perform an action of diversification.
In our algorithm we have two types of diversification:

a. if at the end of the cross-over phase not all the variables have been fixed then the
unfixed variables of SON are randomly set;

b. after T restarts without improvement of the globally best solution, we restart with a
population containing no element of the previous restarts.

Post-Optimization

Between the phases of mutation and insertion, a post-optimization of the current solution
SON is performed by applying algorithm LS.

Insert and Update

After having inserted SON in the current population, we sort the population and eliminate
its worst solution if SIZE > SIZEmax, where SIZEmax indicates the limit in the size of the
population allowed.

12.2.4 Computational experiments

To test our approach we used a set of problems generated with the generator proposed by
Pardalos and Rodgers [128], which has been designed to incorporate the characteristics of
many computational experiences presented in the literature.

Test problems

We solved all the instances of the problem set studied by Glover at al. [80]. This set is
composed of six different classes of problems up to n = 500. Each class is characterized by
the range of the elements in the main diagonal and in the off diagonal of the matrix Q (see
Table 12.1).

Table 12.1: Classes of QP problems.

name class main diagonal off diagonal
WBRJ a +/− 100 +/−100
Gulati b −63 – 0 0 – 100
Barahona c +/− 100 +/− 50
– d +/− 75 +/− 50
– e +/− 100 +/− 50
– f +/− 75 +/− 50

Each instance is characterized by the number of variables (n), the density of the matrix
Q (dens) and the seed needed to initialize the random generator of Pardalos and Rodgers
(seed).

168 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

Classes a, b and c are designed according to the profile given by Pardalos and Rodgers for
problems called “WBRJ”, “Gulati” and “Barahona” respectively and represent the maximal
sizes of problems solved in the literature prior to recent works of Glover et al. [80, 81]. For
the instances in these classes the optimal solutions can be computed through the Branch and
Bound approach of Pardalos and Rodgers (B&B). This algorithm performs very well for the
problems of classes a and b (for most of them it requires less than 1 CPU second to find the
optimal solution and at most 200 seconds to terminate on a Pentium 90 PC, see [80]), while
the instances of class c are already too large for B&B, that needs thousands of seconds to
validate the optimal solutions when possible (see again [80]).

The other classes we have tested were first introduced in [80] and the instances have much
larger size than the ones solved before the above cited papers.

Globally we use as benchmark the values of B&B for problems of the first three classes
(optimal solutions), while for each problem of the remaining classes we take the best value
obtained by the different versions (TS-0, TS-1, TS-2 and TS-3) of the Tabu Search approach
by Glover et al. described in [81]. Note that for the problems in classes a, b and c each Tabu
Search algorithm finds the same solutions of B&B, i.e., the optimal one, while for the other
problems none of the Tabu Search algorithms described in [81] strictly dominates the others.

In particular, Table 12.2 presents the results of our approach (EH) on instances of the
first three classes, comparing with algorithm B&B . For each problem, in addition to n, dens
and seed, we indicate the number of variables that we are able to fix (completely) through
MinRange in the preprocessing phase, the best value found by EH, the number of iterations
and the CPU time (expressed in seconds) to find this solution (Itb and Ttb indicate Iter to best
and Time to best respectively) and finally the value provided by B&B.

Table 12.3 presents the results for the remaining classes of problems and contains the
same information of Table 12.2. We also include a column (Rtb) indicating in which restart
the best solution has been found, a column that is not indicated in Table 12.2 because all the
best solutions were found in the beginning iterations. In this table, as mentioned above, the
benchmark value for each problem is the best known solution (BKS in Table 12.3) provided
by the different Tabu Search algorithms.

Implementation details

The evolutionary heuristic (EH) was coded in ANSI C and run on a Silicon Graphics INDY
R10000sc 195Mhz. The stopping criterion used for these experiments was a prefixed time
limit that was adapted according to the size of the instances. In particular, a limit of 1 CPU
second was assigned to the instances of classes a, b, c and d while for classes e and f the time
limit becomes respectively of 5 and 60 CPU seconds.

The default values for the parameters introduced are the following:

• C = 50 and ϕ = 1 (LS);

• SIZEmin = 50, SIZEmax = 80, R = 50 and T = 3 (EH).

In order to obtain a more effective intensification action for the large instances of classes
e and f the number of iterations of algorithm LS is increased by 1 (ϕ = 2) and, only for
the instances of the class f, the size of the initial population (SIZEmin) and the number of
non-improving iterations allowed before a restart (R) grow up to 60 and 80 respectively.

12.2. THE UNCONSTRAINED QUADRATIC 0–1 PROGRAMMING 169

Table 12.2: Computational results on problems of classes a, b and c. Time limit of 1 CPU
second on a Silicon Graphics INDY R10000sc.

ID n dens seed fixed EH Itb T tb B&B

1a 50 .1 10 16 −3414 2 0.02 −3414
2a 60 .1 10 18 −6063 0 0.03 −6063
3a 70 .1 10 8 −6037 32 0.08 −6037
4a 80 .1 10 5 −8598 0 0.06 −8598
5a 50 .2 10 3 −5737 2 0.03 −5737
6a 30 .4 10 0 −3980 0 0.01 −3980
7a 30 .5 10 0 −4541 0 0.01 −4541
8a 100 .0625 10 52 −11109 2 0.06 −11109
1b 20 1.0 10 0 −133 2 0.00 −133
2b 30 1.0 10 0 −121 0 0.01 −121
3b 40 1.0 10 1 −118 1 0.02 −118
4b 50 1.0 10 1 −129 0 0.02 −129
5b 60 1.0 10 0 −150 2 0.03 −150
6b 70 1.0 10 0 −146 2 0.03 −146
7b 80 1.0 10 0 −160 1 0.04 −160
8b 90 1.0 10 1 −145 16 0.06 −145
9b 100 1.0 10 1 −137 18 0.09 −137
10b 125 1.0 10 3 −154 3 0.12 −154
1c 40 .8 10 0 −5058 0 0.01 −5058
2c 50 .6 70 0 −6213 0 0.02 −6213
3c 60 .4 31 0 −6665 2 0.04 −6665
4c 70 .3 34 0 −7398 2 0.05 −7398
5c 80 .2 8 0 −7362 0 0.07 −7362
6c 90 .1 80 8 −5824 2 0.07 −5824
7c 100 .1 142 20 −7225 5 0.10 −7225

170 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

Table 12.3: Computational results on problems of classes d, e and f, time limit of 1, 5 and 60
CPU seconds respectively on a Silicon Graphics INDY R10000sc.

ID n dens seed fixed EH Rtb Itb T tb BKS

1d 100 .1 31 4 −6333 0 0 0.09 −6333
2d 100 .2 37 0 −6579 0 10 0.12 −6579
3d 100 .3 143 0 −9261 0 9 0.12 −9261
4d 100 .4 47 0 −10727 0 21 0.14 −10727
5d 100 .5 31 0 −11626 1 142 0.50 −11626
6d 100 .6 47 0 −14207 0 4 0.11 −14207
7d 100 .7 97 0 −14476 0 16 0.14 −14476
8d 100 .8 133 0 −16352 0 10 0.12 −16352
9d 100 .9 307 0 −15656 0 54 0.21 −15656
10d 100 1.0 1311 0 −19102 0 2 0.11 −19102
1e 200 .1 51 0 −16464 1 141 2.47 −16464
2e 200 .2 43 0 −23395 0 9 0.50 −23395
3e 200 .3 34 0 −25243 0 5 0.45 −25243
4e 200 .4 73 0 −35594 0 18 0.63 −35594
5e 200 .5 89 0 −35154 0 19 0.66 −35154
1f 500 .10 137 0 −61194 2 449 43.06 −61194
2f 500 .25 137 0 −100161 2 465 43.47 −100161
3f 500 .50 137 0 −138035 4 588 59.33 −138035
4f 500 .75 137 0 −172771 0 71 8.80 −172771
5f 500 1.0 137 0 −190507 4 566 59.07 −190507

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 171

Computational results

The behavior of EH has proved to be quite satisfactory.
For all instances in classes a, b and c we find the optimal solution in a very short computing

time and in many cases we are able to find this solution already by simply improving the
solutions of the initial population by LS (Itb = 0 in Table 12.2).

For problems in classes d, e and f EH finds the best known solution. In particular, for
problem 4f EH has been the first algorithm to find the solution of value −172771 which is
known as the best one (instead of the previous one of value −172734 referred in the early
versions of [80, 81]). The computing time needed clearly increases with the size of the problems
(up to a 500× 500 dense matrix) but it remains very small even for instances of class f. For
these large problems the restart (i.e., search diversification) actions become more and more
effective.

The comparison between EH and the Tabu Search algorithms is difficult. As mentioned in
Section 12.2.4, none of these algorithms can be considered as dominant also because the time
limits given to each of them are quite different since the stopping criterion for each algorithm
is not the computing time but the number of cycles. In particular we reported the average
times of each algorithm for 40 cycles (stopping condition) for classes d, e and f in Table 12.4,
where the computing times are referred to a Pentium 200 PC. In the same table we indicate
in the last column the time limit for EH on a Silicon Graphics INDY R10000sc 195Mhz. (To
our knowledge the computing times on the above machines are quite comparable.)

Table 12.4: Average time limits of the Tabu Search algorithms (Pentium 200 PC seconds)
and time limit of EH (Silicon Graphics INDY R10000sc seconds).

Classes TS-0 TS-1 TS-2 TS-3 EH
d 4 4 15 10 1
e 8 8 43 24 5
f 21 21 320 133 60

It can be noted that for some instances of classes a, b and c the MinRange algorithm
performed as preprocessing phase is quite effective (up to 52 variables completely fixed) while
for the remaining classes only in one case (problem 1d) it is possible to reduce the size of the
instance.

12.3 The Data sets Reconstruction Problem

In 2 this section we consider the problem of selecting a subset of samples from a given data set
so as to minimize the overall reconstruction error of the complete set. This problem has several
practical applications, and in particular we focus on applications arising in the biomedical
field. The first one is the X-Ray Computed Tomography (CT) examination of long bones.
Given a safe amount of radiation dose absorbed by a patient, corresponding to a prefixed
number of CT scans, the problem is to conveniently locate such scans so as to maximize the

2The results of this section appear in: A. Lodi, D. Vigo, C. Zannoni, “Exact and Heuristic Algorithms for
Data sets Reconstruction”, European Journal of Operational Research 124, 139–150, 2000, [111].

172 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

information obtained. The second application arises in the Electrocardiography (ECG) data
acquisition, where a relevant problem is to reduce as much as possible the memory space
required to store the ECG signal without loosing significant diagnostic information. In both
cases, the same optimization problem occurs: given a finite major set of information (i.e., the
possible positions of the CT scanner and the ECG signal samples) it is necessary to select
a subset of it with prefixed cardinality, in order to reconstruct, with a minimum error, the
overall information.

More formally, the Data set Reconstruction Problem may be described as follows. We
are given a data set S defined by n samples. Each sample i = 1, . . . , n, is associated with
a reference coordinate, xi (e.g., representing the time instant or the position of the sample),
and the corresponding value, F(xi). In the one-dimensional (1D) case F(xi) is a scalar value,
indicated as f(xi), whereas in the two-dimensional (2D) case F(xi) is a vector of p values,
indicated as fj(xi) (j = 1, . . . , p). Analogously, in the three-dimensional (3D) case F(xi)
is a two-dimensional array of p · q values, indicated as fjh(xi) (j = 1, . . . , p;h = 1, . . . , q).
Examples of the one- and two-dimensional cases are the previously mentioned ECG and CT
applications, respectively. We assume that samples are numbered according to increasing
values of the coordinate xi.

The problem consists of determining a subset T = {t1, . . . , tk} ⊂ S of k samples, such
that t1 = 1, tk = n, and t1 < t2 . . . < tk−1 < tk. The objective is to minimize the total
reconstruction error, ET , of data set S.

Given the subset T , the reconstructed value FT (xi) is computed for each sample in S. The
total error ET is a function of the reconstruction errors, eT

i , for each sample in S, where eT
i is

in turn a function of the original and reconstructed values at coordinate xi, such that eT
h = 0

for each h ∈ T .
In this section, as normally happens both in the literature and in practical applications,

we consider the case in which the reconstructed values are computed by linear interpolation
(see, Figure 12.2). Each reconstructed value FT (xi) may be easily computed by using the
two consecutive original samples th and th+1 such that i ∈ [th, th+1). For example, in the 1D
case, we have

fT (xi) = f(xth) +
f(xth+1

)− f(xth)
xth+1

− xth

(xi − xth).(12.5)

Moreover, the total reconstruction error is represented by the root mean square error (RMSE)

ET =

√∑n
i=1(eT

i)2

n
(12.6)

where
eT
i = fT (xi)− f(xi).(12.7)

Analogously, in the 2D case, for each i ∈ [th, th+1), the reconstructed value fj(xi) (j =
1, . . . , p) may be obtained as in (12.5), by replacing fT (·) with fT

j (·), and f(·) with fj(·). The
resulting total reconstruction error is given by (12.6), where

eT
i =

√∑p
j=1(f

T
j (xi)− fj(xi))2

p
.(12.8)

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 173

-

6

x

f(x)

xi

fT (xi)

f(xi)

xnx1

ª

µ

Figure 12.2: Example of reconstruction by linear interpolation of a 1D data set with n = 11
and k = 5.

In Section 12.3.1 the biomedical applications which motivate the present study are dis-
cussed, whereas in Section 12.3.2 possible mathematical models are presented. The exact
and heuristic approaches based on dynamic programming are described in Section 12.3.3 and
12.3.4, respectively. Finally, computational experiments on a large set of both real-world and
randomly generated instances are presented in Section 12.3.5, and conclusions are drown in
Section 12.3.6.

12.3.1 The biomedical applications

The biomedical application which mainly motivates the present work regards the 3D recon-
struction of long bones from Computed Tomography (CT) images.

Various orthopaedic research and clinical applications require the analysis of the 3D stress
field in bone structures. This information is useful to investigate structural and functional
behavior of human bones and can be accomplished through 3D Finite Element Modeling
(3D FE). The advent of X-ray computed tomography provided transaxial images containing
accurate description of bone geometry and tissue density allowing for the generation of 3D
models of human bones in-vivo. Due to the risks related to X-ray absorption, however, the
number of CT images acquired in-vivo should be kept as low as possible and their position
should be selected in order to maximize the geometry and density accuracy of 3D FE models.
One of the clinical applications which require the accurate reconstruction of bone morphology
is the design of custom made prostheses. These implants are needed in patients affected by
severe hip joint malformations altering the normal anatomy. In this case, during CT data
acquisition, radiologists simply apply standard protocols provided by the implant producers,
suggesting an uniform scanning plan. Zannoni, Cappello and Viceconti [150], analyzed the
possibility to improve 3D modeling through the automatic positioning of the CT scans ac-
cording to geometry and density gradients. In clinical practice the position of the CT scans is

174 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

decided by the radiologists on the basis of an X-ray anterior-posterior projection of the bone
segment under examination (the so-called scout image, see Figure 12.3). In [150] a heuristic
algorithm, called DIEOM, has been applied to the scout image to improve the selection of the
CT scans for 3D reconstruction. In order to validate the approach based on the optimization
on scout image, two different scanning plans have been computed. The DIEOM algorithm
has been applied on the 2D scout image and on the 3D data set, on average 430 CT im-
ages acquired in-vitro with the minimum scanning step available, 1 mm, of three femurs. 3D
reconstruction was performed starting from the 2D optimized, 3D optimized scanning plan
and the standard protocol. The reconstruction error, RMSE, was evaluated by comparing
the reconstructed and the original data sets. The major result was that the 2D optimized
scanning plan reduces the 3D reconstruction error of about 20% with respect to the standard
protocol. Direct 3D optimization accounts for a slight further reduction of about 4%, at the
expense of a dramatic increase of the computational effort. This shows that the approach
based on the 2D optimization on the scout image is a good way to improve 3D reconstruction
quality of long bones.

The second biomedical application we consider is related to the problem of compressing
Electrocardiography (ECG) signal in order to efficiently reduce the storage space. Such a
problem is relevant due to the high redundancy of the ECG signals. Haugland, Heber and
Husøy [93] formulated this problem as a one-dimensional DRP (1D-DRP). In [93] a mathe-
matical programming model of the problem is introduced and a classic dynamic programming
approach is adapted to exactly solve it. The computational tests performed in [93] showed that
this exact approach is not directly usable in on-line compression of the ECG signals. Indeed,
in practical applications the compression time must be smaller than one second, whereas this
exact approach requires computing times about one order of magnitude larger. Nevertheless,
the exact approach can be fruitfully used to measure the quality of on-line heuristic methods.

In Section 12.3.5 we consider the application of our exact and heuristic methods to real-
world CT scanning optimization and ECG signal compression problems.

The present work was carried out within the European Commission funded project named
PROMISE (Pre and Post Processing of Medical Images on High performance Architectures).
The results of PROMISE project, including the algorithms described in this section, are
available through WWW (http://www.cineca.it/visit/promise/index.html) as decision sup-
port tools for radiology units.

12.3.2 Problem definition and modeling

The problem of determining the set of k samples which minimizes the reconstruction error
of a given data set, made up by n >> k samples, can be also viewed as the following graph
theoretic problem (see, e.g., Ahuja, Magnanti and Orlin [3], and Haugland, Heber and Husøy
[93]). As previously mentioned we consider the case of reconstructed values computed by
linear interpolation and we use as objective function the RMSE associated with the selected
samples.

We are given a directed graph G = (V, A), where V is the set of vertices, each associated
with a different sample i = 1, . . . , n. The arc set A contains a directed arc (i, j) for each
pair of vertices i and j whose corresponding samples may be consecutive in subset T . By
definition of T , an arc (i, j) ∈ A only if i < j, therefore graph G is acyclic.

With each arc (i, j) ∈ A is associated a cost cij , defined as the sum of the square errors of
the reconstructed values of all the samples from i to j when one selected sample is i and the

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 175

following one is j. In the 1D case, the arc costs are:

cij =
j∑

h=i

[(
f(xi) +

f(xj)− f(xi)
xj − xi

(xh − xi)

)
− f(xh)

]2

.(12.9)

In the 2D and 3D cases, the arc costs are defined in an analogous way by considering linear
interpolation between the corresponding values of the samples, as described in Section 12.3.
Note that the arc costs defined in this way turn out to be non-negative.

With this representation the actual type of DRP (i.e., with one- or multi-dimensional
samples) is only considered in the definition of the cost matrix c. This allows for a common
framework for considering 1D-, 2D- and 3D-DRP.

A path in G from vertex 1 to n is a sequence of samples, ordered by increasing coordinate
values, and if the path includes k − 1 arcs it corresponds to a feasible DRP solution. Hence,
DRP calls for the determination of the min-cost path from vertex 1 to n with k − 1 arcs.

For a general graph the problem of determining the min-cost simple path (i.e., such that
no vertex is visited more than once) with prefixed cardinality is NP-hard in the strong sense,
since it generalizes the Hamiltonian path problem. However, when the path is only required
to be elementary (i.e., such that no arc is used more than once) the problem turns out to be
polynomially solvable, see Saigal [142], and Beasley and Christofides [19]. When, as in our
case, the graph is acyclic, every path is guaranteed to be elementary and simple, hence DRP
is polynomially solvable as well.

An integer linear programming (ILP) formulation of DRP can be defined as follows. For
each arc (i, j) ∈ A we introduce a binary variable xij , which takes value 1 if the arc is used
in the optimal solution, and 0 otherwise. The model then reads:

(DRP) min
∑

(i,j)∈A

cijxij(12.10)

subject to
∑

i:(i,j)∈A

xij −
∑

i:(j,i)∈A

xji = 0 for each j ∈ V, j 6= 1, n(12.11)

∑

j:(1,j)∈A

x1j = 1(12.12)

∑

i:(i,n)∈A

xin = 1(12.13)

∑

(i,j)∈A

xij = k − 1(12.14)

xij ∈ {0, 1} for each (i, j) ∈ A(12.15)

where constraints (12.11) impose that the same number of arcs enters and leaves a given
vertex, whereas constraints (12.12) and (12.13) impose the degree requirements of the first
and last vertices. Note that when, as in our case, graph G is acyclic each vertex has at most
one entering and leaving arc. Finally, constraint (12.14) stipulates the resource requirements
by imposing that exactly k− 1 arcs are used in the optimal solution. Note that the objective
function is the sum of the errors, but the RMSE may be easily obtained by using (12.6).

Closely related formulations have been introduced in the literature. Saigal [142] gave
an ILP model for the Cardinality-constrained Shortest Elementary Path (CSEP) problem,

176 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

calling for the determination, on a general graph, of the shortest elementary path which uses
a prefixed number of arcs. Beasley and Christofides [19] considered the Resource Constrained
Shortest Path (RCSP) problem, which consists of finding, on a general graph, a shortest
elementary path such that the total amount of (multi-dimensional) resource requirements
associated with the traversed arcs and nodes must be within a prescribed range. Note that
both CSEP and DRP are special cases of RCSP where: (i) only one resource is considered; (ii)
the resource requirement associated with each arc is equal to one; (iii) the resource requirement
associated with the nodes is zero; (iv) the total amount of used resource must be equal to
k− 1. The resulting transformation is valid for DRP due to the already mentioned acyclicity
of the associated graph. Beasley and Christofides [19], proposed to relax the above model by
dualizing in a Lagrangian fashion constraint (12.14). The resulting Lagrangian problem can
be solved in polynomial time, since it can be viewed as a min-cost flow problem requiring to
send a unit of flow from vertex 1 to vertex n.

The maximum sizes of the DRPs associated with 2D and 3D CT scan positioning are those
arising in long bone reconstructions which, as mentioned in Section 12.3.1, involve between
400 and 500 samples. Analogous sizes are encountered in ECG data compression problems.
This results in graphs with at most 500 nodes.

12.3.3 An exact algorithm for DRP

In this section we describe an exact algorithm for DRP, based on dynamic programming (see,
Bellman and Dreyfus [20], and Dreyfus and Law [61]). We first review dynamic programming
approaches proposed in the literature for related problems. These algorithms can be adapted
to solve one- and multi-dimensional DRP when they are formulated as graph theoretic prob-
lems (see Section 12.3.2). We next propose an effective variant of the basic recursion used by
these algorithms and discuss the efficient implementation of the resulting algorithm.

Dynamic programming for related problems

Saigal [142] proposed a dynamic programming approach to solve CSEP, i.e., the problem of
finding the shortest elementary path with a prefixed number of arcs. Let S(j, h) be the state
of the dynamic program, denoting the cost of the shortest path from vertex 1 to vertex j
involving exactly h arcs, and π(j, h) the index of the vertex preceding j in such a path. The
algorithm is based on the following standard recursion, in which each state of the current
stage, h, is generated by considering the states of the previous stage, h− 1.

{
S(j, h) = mini=1,...,n{S(i, h− 1) + cij}
π(j, h) = arg mini=1,...,n{S(i, h− 1) + cij} j = 2, . . . , n;h = 2, . . . , k(12.16)

where the initial state is {
S(j, 1) = c1j

π(j, 1) = 1
j = 2, . . . , n.(12.17)

The optimal solution value is S(n, k) and can be computed in O(kn2) time.
Haugland, Heber and Husøy [93] adapted the above recursion to exactly solve 1D-DRP.

The adaptation is required since in DRP the path must contain k vertices. Therefore, S(j, h)
now represents the cost of the shortest path from vertex 1 to vertex j, visiting exactly h
vertices. In addition, the path must be simple, and its first and last vertices must be 1 and

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 177

n, respectively. Finally, due to the special structure of the underlying graph, the path is a
sequence of vertices ordered by increasing numbers. As a consequence the number of states
which must be considered is drastically reduced. For example, when defining the state S(j, h)
in (12.16) only states S(i, h−1) with i = h−1, . . . , j−1 need be considered, since h−1 vertices
have been already visited and the last of these vertices can be, at most, vertex j − 1. The
above general recursion has been redefined in [93] in a natural backward fashion as follows:

procedure B-DP;
0. for j := 2 to n do S(j, 2) := c1j ; π(j, 2) := 1;
1. for h := 3 to k do
2. for j := h to n do
3. S(j, h) := S(h− 1, h− 1) + ch−1j ; π(j, h) := h− 1;
4. for i := h to j − 1 do
5. if S(i, h− 1) + cij < S(j, h) then

S(j, h) := S(i, h− 1) + cij ; π(j, h) := i
end.

Also in this case the optimal solution value is S(n, k) and can be computed in O(kn2)
time. However, as previously mentioned, the actual computational effort required by this
recursion is considerably smaller. In fact, the number of states needed to define the new state
S(j, h) is, on average, half of that needed by (12.16). Note that, since the last vertex of the
path must be n, in the last iteration of loop 1. (i.e., that with h = k), only state S(k, n)
should be defined. Hence, in this last iteration, Steps 2 to 5 can be performed just with j = n.

From a computational point of view, in the multi-dimensional DRP context, the actual
bottleneck is the definition of the cost matrix c. In fact, by using (12.9), the overall com-
putation of matrix c requires O(skn2) time, where s is the cardinality of each sample in the
data set (i.e., s = p in the 2D-DRP, and s = p · q in the 3D-DRP). On the other hand, the
determination of the optimal solution, once c is given, takes O(kn2) time. Haugland, Heber
and Husøy [93] proposed, for the 1D-DRP case, a method to compute matrix c in O(n2) time.

A new forward recursion

In the following we propose an alternative dynamic programming recursion which normally
generates a smaller number of states than the above described backward one. In addition,
this recursion does not necessarily require the overall computation of the cost matrix, thus
considerably reducing the average computational effort for multi-dimensional DRP.

In our new forward recursion the non-dominated states of the last considered stage, say
h−1, are used to generate the states of the current stage h. For example, the non-dominated
states are those with value smaller than that of a known feasible solution. After the definition
of each stage h (h = 1, . . . , k − 1), let us define the set Ih of the active vertices, i.e., those
corresponding to the non-dominated states of the stage. The recursion is as follows:

procedure F-DP;
0. I1 := {1};
1. for h := 2 to k − 1 do
2. Ih := ∅;

for i := h to n− k + h do S(i, h) := UB;

178 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

3. for each i ∈ Ih−1 do
4. for j := i + 1 to n− k + h do
5. if S(i, h− 1) + cij < S(j, h) then

S(j, h) := S(i, h− 1) + cij ; π(j, h) := i;
6. Ih := Ih ∪ {j};
7. S(n, k) := UB;
8. for each i ∈ Ik−1 do

if S(i, k − 1) + cin < S(n, k) then
S(n, k) := S(i, k − 1) + cin; π(n, k) := i

end.

where the upper bound, UB, is the value of a feasible solution provided by a heuristic algo-
rithm.

It can be seen that the overall computational complexity of F-DP is the same as that of
B-DP. However, if at each stage h the cardinality of the set Ih is kept small, then the average
computational effort is considerably reduced. In particular, at Step 6, only the indices of the
states S(j, h) whose value is strictly smaller than UB are included in Ih. In fact, recalling
that cij ≥ 0 for all (i, j) ∈ A, a state with value not smaller than UB may not lead to a
feasible solution improving UB. To this end it is crucial to obtain tight upper bound values
as those produced by the heuristic algorithm described in the next section.

Set Ih can be further reduced by applying the following dominance criterion. A state
S(j, h) is dominated (hence {j} is not included into Ih) if it exists a state S(j, `) such that
S(j, h) ≥ S(j, `) and ` < h. In other words, the state is dominated if there exists a different
path to vertex j using a smaller number of arcs and with not greater cost.

Our computational experiments (see Section 12.3.5) showed that the combination of these
two simple strategies is considerably effective in the reduction of the dynamic program state
space.

Another important consequence of the obtained state space reduction is that several entries
of the cost matrix c are not used since the corresponding state transition is not performed.
We exploit this fact by avoiding the off-line computation of matrix c and by computing its
entries only if and when they are used during the dynamic program. Moreover, at each stage
h the computation of a still undefined entry cij can be stopped (and cij is set to +∞) as
soon as it reaches an upper bound value uh which guarantees that the value associated with
the corresponding state transition S(i, h − 1) + cij is not smaller than UB. More formally,
by denoting with µh := mini∈Ih−1

{S(i, h− 1)} the cost of the shortest partial path involving
h − 1 vertices, we define uh := UB − µh as the upper bound on the cost of completion of
any path with h − 1 vertices (where u2 := UB). For each i ∈ Ih−1, the state transition
S(i, h−1)+cij , which possibly updates state S(j, h), may require the computation of the still
undefined entry cij . During such computation we set cij = +∞ as soon as we obtain cij ≥ uh,
since this implies S(i, h−1)+cij ≥ µh +UB−µh = UB. Note that the value cij is the sum of
s · (j− i− 1) interpolation errors, where s = 1, s = p and s = p · q in the 1D, 2D and 3D case,
respectively. Hence, early stops in the computation of the entries of c can be very effective in
reducing the overall computational effort, particularly, in the multi-dimensional cases.

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 179

12.3.4 A DP-based heuristic algorithm

In this section we present a new heuristic algorithm for DRP, called H-DP, based on the
forward dynamic programming approach of Section 12.3.3. This algorithm proved to be
effective both in terms of solution quality and computing time required.

Algorithm H-DP uses the forward dynamic programming recursion but, at each stage
h, heuristically purges the set of non-dominated states used to generate the states of the
next stage, by removing the less “promising” ones. In particular, we adopted two different
reduction criteria which are used at Step 5 of Procedure F-DP to further purge the number
of states whose corresponding vertex is included into set Ih.

The first criterion removes the states which introduce a “too large” additional interpolation
error, i.e., an error which is larger than α UBE/(k − 1), where UBE/(k − 1) is the average
error per selected vertex of the solution obtained with the trivial heuristic which selects a set
of k regularly spaced vertices, and α is a real parameter. Our computational experience has
shown that good results are obtained with α values between 2 and 5. In the computational
testing of the next section we used α = 3.

The second reduction rule removes the states which are associated with vertices “too far”
from the current vertex i. (This is connected with the concept of planning/forecast horizons
used in forward DP algorithms for dynamic lot size problems, see, e.g., Lundin and Morton
[114] and Chand, Sethi and Proth [38].) In particular, we remove the states associated with
vertices having index larger than i+di, where di is the maximum distance of the next selected
vertex from the currently selected vertex i. Parameter di is determined by taking into account
the degree of fluctuation of the values in the data set following coordinate xi, associated with
vertex i. In the preprocessing step, we compute for each vertex i the fluctuation index vi. In
the 1D case the index is defined as

vi =
min{n−1,i+d}∑

j=i

fxj+1 − fxj

xj+1 − xj
.

In other words vi is the sum of the slopes of the segments connecting subsequent samples in
the data set not farther from i than a predefined parameter d = n/(k−1). (In the 2D and 3D
cases the fluctuation index is defined analogously, by considering the slopes of the segment
between corresponding values in subsequent samples.) Then, the maximum jump parameter
di of each vertex i is defined as

di = max{d, 5d(1− vi

vmax
)}

where vmax = maxi=1,...,n−1{vi} is the maximum fluctuation index.
The use of the above criteria drastically reduces the computing time of algorithm H-DP

with respect to the exact approach. However, since we have retained the most promising
states the quality of the obtained solutions is generally very good and in many cases the
optimal solution is found.

12.3.5 Computational results

The effectiveness of both exact and heuristic approaches (F-DP and H-DP, respectively)
described in the previous sections has been extensively tested by considering both real-world
and randomly generated instances and by comparing their results with those obtained by

180 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

previous approaches from the literature. The algorithms have been coded in ANSI-C language
and the computational experiments have been performed by using a Silicon Graphics INDY
R10000sc.

We first examine the real-world instances of scanning plan selection for the Computed
Tomography analysis of long bones. As discussed in Section 12.3.1, this application is modeled
as a 2D-DRP by using the scout image of the bone. We considered five different scout images
of human femurs characterized by slightly different values of n and p (i.e., different sizes
of the original data set to be reconstructed). The images are matrices of values ranging
between 0 and 255, representing the gray level of each pixel. Instances F1, F2 and F3 are
those described in Zannoni, Cappello and Viceconti [150], whereas F4 and F5 are new test
problems. The number of samples to be selected is k = 50 which is considered, in clinical
practice, a safe amount of radiation absorbed by the patient. The results obtained with these
instances are presented in Table 12.5, where for each test problem we report the corresponding
values of n and p. For the exact approach F-DP the table reports the optimal value, RMSE∗,
of the reconstruction error, expressed in gray level values, and the overall computing time,
expressed in Silicon Graphics INDY R10000sc CPU seconds, which also includes the initial
run of heuristic H-DP. As to our algorithm H-DP and heuristic DIEOM, described in [150],
the table gives the relative deviation of the reconstruction error of the heuristic solution with
respect to the optimal one and the corresponding computing time. The relative deviation
of the solutions of a heuristic algorithm A, is computed as (RMSEA − RMSE∗)/RMSE∗,
where RMSEA and RMSE∗ are the values of the heuristic and optimal solutions, respectively.
Solutions marked with an asterisk are optimal. The code of algorithm DIEOM has been
kindly provided us by the authors.

Table 12.5: Test problems from 2D real-world scanning plan optimization instances. Com-
puting times in Silicon Graphics INDY R10000sc CPU seconds.

F-DP DIEOM H-DP
Problem n p RMSE∗ time dev. time dev. time

F1 419 410 1.574 81.25 0.134 40.47 0.000 * 8.01
F2 442 389 2.399 133.84 0.060 54.92 0.000 * 6.37
F3 453 320 0.650 65.28 0.184 38.15 0.045 6.15
F4 445 104 7.631 38.86 0.071 4.57 0.015 1.71
F5 409 107 12.438 21.27 0.077 3.40 0.000 * 1.69

Average 4.938 68.10 0.105 28.30 0.012 4.79

The results of Table 12.5 point out that the computing time required by the exact approach
is on average only 2.5 times greater than that required by DIEOM, and that it allows for an
average improvement of the solution quality larger than 10 %. On the other hand, algorithm
H-DP produces optimal or near-optimal solutions in times which are up to one order of
magnitude smaller than those needed by DIEOM.

In addition to the real-world problems, we performed a set of experiments on 2D randomly
generated instances. These instances were obtained by the superposition of N × P cosine
waves (N = P = 50) with uniformly random amplitude and phase. Formally, each value

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 181

Figure 12.3: Different scanning plans computed for scout image of femur F4: (a) radiological
(uniform) plan, (b) plan determined by heuristic H-DP, (c) optimal plan.

fj(xi) (i = 1, . . . , n; j = 1, . . . , p) is computed as

fj(xi) =
N∑

r=1

P∑

s=1

Ars cos(irωx + jsωy − ϕrs)(12.18)

where Ars and ϕrs are the random components of amplitude and phase spectra, uniformly
distributed in the intervals [0, 1] and [0, 2π], respectively, whereas ωx = 2π/n and ωy = 2π/p.

A large set of 450 instances is considered, corresponding to n = 100, 200, 300, 400 and
500, p = n

2 , 3
4n and n, and k = b n

15c, b n
10c and bn

5 c. The computational results are presented
in Table 12.6, where each entry is the average value computed over ten generated instances.
These instances appear easier than the real-world ones for the DIEOM heuristic approach.
In fact, the deviation of the DIEOM solutions and the computing times are smaller than in
the previous class. On the other hand, our heuristic H-DP confirms its effectiveness both in
terms of solution quality and computing times: in a large majority of the instances heuristic
H-DP obtains a smaller deviation and on average the computing times are about five times
smaller than those of DIEOM. Moreover, for these instances the determination of the optimal
solution turns out to be harder. The average computing times of exact approach F-DP are
about one order of magnitude larger than the heuristic ones. However, even in the larger
instances with n = p = 500 the computing times are within 11 minutes.

We finally considered the set of real-world ECG data compression instances used by Haug-
land, Heber and Husøy [93] to test their exact algorithm CCSP for 1D-DRP. This set is made

182 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

Table 12.6: Randomly generated 2D-DRP test problems. Computing times in Silicon Graph-
ics INDY R10000sc CPU seconds.

DIEOM H-DP F-DP
n p k dev. time dev. time time

50 0.059 0.02 0.026 0.11 0.50
100 75 6 0.049 0.04 0.027 0.10 0.70

100 0.036 0.05 0.015 0.28 1.11

50 0.059 0.04 0.039 0.05 0.44
100 75 10 0.037 0.08 0.037 0.06 0.65

100 0.043 0.07 0.035 0.06 0.89

50 0.044 0.08 0.040 0.03 0.39
100 75 20 0.038 0.13 0.031 0.03 0.59

100 0.026 0.21 0.033 0.04 0.83

100 0.034 0.21 0.027 0.44 7.16
200 150 13 0.036 0.32 0.030 0.64 10.93

200 0.041 0.50 0.026 0.81 14.48

100 0.035 0.37 0.034 0.21 6.82
200 150 20 0.035 0.65 0.038 0.30 10.41

200 0.034 0.87 0.038 0.33 13.76

100 0.033 1.36 0.038 0.09 5.92
200 150 40 0.034 2.07 0.028 0.15 8.99

200 0.033 2.73 0.031 0.17 11.89

150 0.029 1.15 0.038 0.71 34.92
300 225 20 0.032 1.43 0.031 1.25 52.43

300 0.037 2.21 0.032 1.79 71.22

150 0.031 1.37 0.030 0.59 33.43
300 225 30 0.029 2.30 0.025 1.13 50.40

300 0.030 3.93 0.019 1.72 68.57

150 0.022 0.47 0.013 0.25 23.24
300 225 60 0.029 0.74 0.016 0.33 35.17

300 0.026 0.90 0.014 0.48 46.35

200 0.038 2.40 0.038 1.40 107.99
400 300 26 0.041 4.49 0.041 2.25 164.66

400 0.030 11.93 0.038 3.23 231.69

200 0.032 6.58 0.022 1.29 98.13
400 300 40 0.033 10.22 0.026 1.80 148.66

400 0.030 28.40 0.023 2.68 204.10

200 0.010 1.08 0.000 0.38 43.48
400 300 60 0.010 1.94 0.000 0.54 65.62

400 0.011 5.98 0.000 0.80 83.74

250 0.031 7.20 0.029 2.91 261.98
500 375 33 0.026 27.80 0.033 4.11 446.80

500 0.030 36.85 0.035 6.35 658.21

250 0.062 6.86 0.018 1.76 220.16
500 375 50 0.060 36.20 0.019 3.03 349.20

500 0.064 43.20 0.022 4.29 504.25

250 0.019 2.41 0.000 0.64 57.70
500 375 100 0.020 10.65 0.000 0.93 85.55

500 0.022 16.52 0.000 1.18 111.05

12.3. THE DATA SETS RECONSTRUCTION PROBLEM 183

up by five ECG instances, with n = 500 samples each, from the MIT database [122]. As
in [93], for each instance we considered six different values of k = bn

2 c, bn
5 c, bn

8 c, b n
12c, b n

16c
and b n

20c. Table 12.7 compares our heuristic and exact algorithms with the exact algorithm
CCSP. The code of CCSP has been kindly provided us by the authors. For each ECG in-
stance and for each value of k, the table reports the optimal RMSE value and the computing
times of CCSP and F-DP. The table also includes the relative deviation of the solution of the
well-known heuristic FAN (see, Barr [15]), derived from Table 1 of [93], as well as the relative
deviation and the computing time of heuristic H-DP. Also with these real-world instances
the proposed exact and heuristic approaches have a very good performance. The new exact
F-DP is considerably faster than the backward CCSP algorithm, requiring on average about
half of the time required by CCSP, and always obtaining the optimal solutions in less than
three seconds. Heuristic H-DP has an average deviation of 0.006, i.e., more than 50 times
smaller than that of classical FAN method, and finds the optimal solution in half of the cases.
The computing times of heuristic H-DP are generally smaller than half a second, thus being
suitable for on-line ECG signal compression.

12.3.6 Conclusions

In this section we have presented innovative and effective exact and heuristic approaches for
the solution of Data set Reconstruction Problems which find several practical applications,
particularly in the biomedical field. The research was initially motivated by the optimiza-
tion of the Computed Tomography (CT) scanning plan in the reconstruction of long bones,
but the algorithms presented have a wide range of other practical applications, e.g., in the
compression of Electrocardiography (ECG) data. The resulting problem can be modeled as
that of determining a shortest path with prefixed cardinality on a suitably defined graph.
Although, the problem is known to be polynomially solvable by Dynamic Programming, the
computing times required by known exact approaches from the literature are generally not
compatible with real-world applications.

The exact approach proposed in this section is based on an efficient implementation of
a Dynamic Programming algorithm, and optimally solves real-world instances of femur data
reconstruction in computing times which are comparable with those of heuristic algorithms
from the literature. In addition, for the real-world applications we considered, the optimal
solutions turn out considerably better than the heuristic ones: in the CT case the improvement
is about 10 %, whereas in the ECG case is 30 %.

In order to obtain high quality solutions within much smaller computing times we have
proposed an effective heuristic algorithm. The experimental testing has shown that the new
heuristic outperforms previously proposed methods being able to determine near-optimal
solutions in a few seconds.

The present work was carried out within the European Commission funded project named
PROMISE (Pre and Post Processing of Medical Images on High performance Architectures).
The results of PROMISE project, including the algorithms described in this section, are
available through WWW (http://www.cineca.it/visit/promise/index.html) as decision sup-
port tools for radiology units.

184 CHAPTER 12. OTHER COMBINATORIAL OPTIMIZATION PROBLEMS

Table 12.7: Test problems from 1D-DRP real-world ECG signal compression instances. Com-
puting times in Silicon Graphics INDY R10000sc CPU seconds.

Exact FAN H-DP
Problem k RMSE∗ CCSP F-DP dev. dev. time

250 0.504 9.50 2.23 0.148 0.004 0.47
100 1.776 5.12 2.66 0.296 0.015 0.36
62 2.289 3.35 1.99 0.252 0.004 0.32

202 0 41 2.904 2.26 2.53 0.247 0.000 * 0.31
31 3.856 1.66 1.39 0.315 0.000 * 0.34
25 6.100 1.34 1.46 0.423 0.000 * 0.40
250 0.597 9.12 2.33 0.257 0.000 * 0.48
100 1.808 4.86 2.70 0.277 0.002 0.37
62 2.332 3.21 2.10 0.328 0.002 0.36

203 0 41 2.736 2.19 2.71 0.386 0.000 * 0.39
31 3.415 1.64 1.53 0.461 0.000 * 0.38
25 4.553 1.33 1.56 0.478 0.000 * 0.44
250 0.618 8.83 2.40 0.159 0.000 * 0.49
100 1.806 4.80 2.70 0.332 0.002 0.36
62 2.385 3.18 2.04 0.284 0.000 * 0.34

203 1 41 3.018 2.17 2.66 0.369 0.000 * 0.35
31 3.692 1.63 1.47 0.410 0.027 0.33
25 4.438 1.33 1.44 0.477 0.000 * 0.38
250 0.465 10.12 2.29 0.225 0.000 * 0.48
100 1.443 5.36 2.69 0.350 0.006 0.37
62 1.882 3.49 2.11 0.300 0.003 0.35

207 0 41 2.299 2.35 2.76 0.299 0.000 * 0.35
31 2.571 1.75 1.49 0.317 0.000 * 0.32
25 2.900 1.41 1.43 0.301 0.001 0.34
250 0.580 9.49 2.42 0.171 0.000 * 0.51
100 1.910 5.17 2.54 0.291 0.001 0.36
62 2.524 3.36 1.94 0.310 0.000 0.34

214 0 41 3.149 2.27 2.47 0.333 0.014 0.32
31 3.769 1.69 1.31 0.411 0.029 0.28
25 4.618 1.37 1.25 0.374 0.060 0.29

Average 2.565 3.85 2.09 0.319 0.006 0.37

Bibliography

[1] E. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Simulated annealing. In E. Aarts
and J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 91–120.
J. Wiley & Sons, Chichester, 1997.

[2] E. Aarts and J. K. Lenstra (eds.). Local Search in Combinatorial Optimization. John
Wiley & Sons, Chichester, 1997.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, Englewood
Cliffs, 1993.

[4] B. Alidaee, G. Kochenberger, and A. Ahmadian. Programming approach for the optimal
solution of two scheduling problems. International Journal of System Science, 25:401–
408, 1994.

[5] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving ATSP with time windows by
branch-and-cut. Technical report, ZIB Berlin, 1999.

[6] B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algorithm for two-dimensional
packing. Journal of Algorithms, 2:348–368, 1981.

[7] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest. Orthogonal packing in two dimensions.
SIAM Journal on Computing, 9:846–855, 1980.

[8] D. S. Baker and J. S. Schwarz. Shelf algorithms for two-dimensional packing problems.
SIAM Journal on Computing, 12:508–525, 1983.

[9] E. Balas and E. J. Saltzman. Facets of the three-index assignment polytope. Discrete
Applied Mathematics, 23:201–229, 1989.

[10] E. Balas and E. J. Saltzman. An algorithm for the three-index assignment problem.
Operations Research, 39:150–161, 1991.

[11] P. Baptiste, C. Le Pape, and W. Nuijten. Efficient operations research algorithms in
constraint-based scheduling. In Proceedings of IJCAI’95, 1995.

[12] F. Barahona. A solvable case of quadratic 0-1 programming. Discrete Applied Mathe-
matics, 13:23–26, 1986.

[13] F. Barahona, M. Jünger, and G. Reinelt. Experiments in quadratic 0-1 programming.
Mathematical Programming, 36:157–173, 1989.

185

186 BIBLIOGRAPHY

[14] F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Programming,
36:157–173, 1986.

[15] R. C. Barr. Adaptive sampling of cardiac waveforms. J. Electrocard., 19:379–394, 1989.

[16] J. J. Bartholdi III, J. H. Vande Vate, and J. Zhang. Expected performance of the shelf
heuristic for the 2-dimensional packing. Operations Research Letters, 8:11–16, 1989.

[17] J. E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. Journal
of the Operational Research Society, 36:297–306, 1985.

[18] J. E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure.
Operations Research, 33:49–64, 1985.

[19] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989.

[20] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton University
Press, 1971.

[21] B. E. Bengtsson. Packing rectangular pieces – a heuristic approach. The Computer
Journal, 25:353–357, 1982.

[22] H. Beringer and B. De Backer. Combinatorial problem solving in constraint logic pro-
gramming with cooperating solvers. In C. Beierle and L. Plumer, editors, Logic Pro-
gramming: formal Methods and Practical Applications. North Holland, 1995.

[23] J. O. Berkey and P. Y. Wang. Two dimensional finite bin packing algorithms. Journal
of the Operational Research Society, 38:423–429, 1987.

[24] D. P. Bertsekas and P. Tseng. Relaxation methods for minimum cost ordinary and
generalized network flow problems. Operations Research, 36:93–114, 1988.

[25] L. Bianco, A. Mingozzi, and S. Ricciardelli. A set partitioning approach to the multiple
depot vehicle scheduling problem. Optimization Methods and Software, 3:163–194, 1994.

[26] A. Bockmayr and T. Kasper. Branch-and-Infer: A unifying framework for Integer and
Finite Domain Constraint Programming. INFORMS Journal on Computing, 10:287–
300, 1998.

[27] D. J. Brown. An improved BL lower bound. Information Processing Letters, 11:37–39,
1980.

[28] R. E. Burkard and R. Rudolf. Computational investigation on 3-dimensional axial
assignment problems. Belgian J. Oper. Res. Statist. Comput. Sci., 32:85–98, 1993.

[29] R. E. Burkard, R. Rudolf, and G. Woeginger. Three-dimensional axial assignment
problems with decomposable coefficients. Discrete Applied Mathematics, 65:123–139,
1996.

[30] P. Camerini, L. Fratta, and F. Maffioli. On improving relaxation methods by modified
gradient techniques. Math. Prog. Study, 3:26–34, 1975.

BIBLIOGRAPHY 187

[31] A. Caprara and M. Fischetti. Branch-and-cut algorithms. In M. Dell’Amico, F. Maffioli,
and S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages
45–63. John Wiley & Sons, Chichester, 1997.

[32] A. Caprara and P. Toth. Lower bounds and algorithms for the 2-dimensional vector
packing problem. Technical report OR/97/3, DEIS - University of Bologna, 1997.

[33] G. Carpaneto, M. Dell’Amico, M. Fischetti, and P. Toth. A branch and bound algorithm
for the multiple depot vehicle scheduling problem. Networks, 19:531–548, 1989.

[34] G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the assignment
problem. Annals of Operations Research, 13:193–223, 1988.

[35] Y. Caseau and F. Laburthe. Improving Branch and Bound for Jobshop Scheduling
with Constraint Propagation. In M. Deza, R. Euler, and Y. Manoussakis, editors,
Combinatorics and Computer Science, LNCS 1120, pages 129–149. Springer Verlag,
1995.

[36] Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In Proceedings of the
Fourteenth International Conference on Logic Programming - ICLP’97, pages 316–330,
1997.

[37] Y. Caseau and F. Laburthe. Solving various weighted matching problems with con-
straints. In Proceedings of Constraint Programming - CP’97, 1997.

[38] S. Chand, S. P. Sethi, and J.-M. Proth. Existence of forecast horizons in undiscounted
discrete-time lot size models. Operations Research, 38:884–892, 1990.

[39] P. Chardaire and A. Sutter. A decomposition method for quadratic zero-one program-
ming. Management Science, 41:704–712, 1995.

[40] B. Chazelle. The bottom-left bin packing heuristic: An efficient implementation. IEEE
Transactions on Computers, 32:697–707, 1983.

[41] N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting problems.
Operations Research, 25:30–44, 1977.

[42] F. K. R. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins.
SIAM Journal of Algebraic and Discrete Methods, 3:66–76, 1982.

[43] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:801–826, 1980.

[44] E. G. Coffman, Jr. and P. W. Shor. Average-case analysis of cutting and packing in
two dimensions. European Journal of Operational Research, 44:134–144, 1990.

[45] T. H. Cormen, C. E. Leiserson, and R. R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[46] C. De Simone. The cut polytope and the boolean quadratic polytope. Discrete Mathe-
matics, 79:71–75, 1990.

188 BIBLIOGRAPHY

[47] M. Dell’Amico. On the continuous relaxation of packing problems. Technical Report
182, Dipartimento di Economia Politica, Università di Modena, 1999.

[48] M. Dell’Amico, M. Fischetti, and P. Toth. Heuristic algorithms for the multiple depot
vehicle scheduling problem. Management Science, 39:115–125, 1993.

[49] M. Dell’Amico, M. Labbé, and F. Maffioli. Spanning tree problems with leaf-dependent
objective function. Networks, 27:175–181, 1996.

[50] M. Dell’Amico, A. Lodi, and F. Maffioli. Solution of the cumulative assignment problem
with a well-structured tabu search method. Journal of Heuristics, 5:123–143, 1999.

[51] M. Dell’Amico, A. Lodi, and S. Martello. Efficient algorithms and codes for k-cardinality
assignment problems. Discrete Applied Mathematics, 1999 (to appear).

[52] M. Dell’Amico and F. Maffioli. A new tabu search approach to the 0–1 equicut problem.
In I.H. Osman and P. Kelly, editors, Meta-Heuristics: theory and applications, pages
361–377. Kluwer Academic Publishers, 1996.

[53] M. Dell’Amico, F. Maffioli, and M. Trubian. New bounds for optimum traffic assignment
in satellite communication. Computers & Opererations Research, 25:729–743, 1998.

[54] M. Dell’Amico and S. Martello. The k-cardinality assignment problem. Discrete Applied
Mathematics, 76:103–121, 1997.

[55] M. Dell’Amico and S. Martello. Linear assignment. In M. Dell’Amico, F. Maffioli, and
S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages
355–371. Wiley, Chichester, 1997.

[56] M. Dell’Amico, S. Martello, and D. Vigo. An exact algorithm for non-oriented two-
dimensional bin packing problems. In preparation, 1998.

[57] M. Dell’Amico and S.Martello. Optimal scheduling of tasks on identical parallel pro-
cessors. ORSA Journal on Computing, 7:191–200, 1995.

[58] M. Dell’Amico and M. Trubian. Solution of large weighted equicut problems. European
Journal of Operational Research, 106:500–521, 1997.

[59] E. A. Dinic. Algorithms for solution of a problem of maximum flow in networks with
power estimation. Soviet Mathematics Doklady, 11:1277–1280, 1970.

[60] K. A. Dowsland and W. B. Dowsland. Packing problems. European Journal of Opera-
tional Research, 56(1):2–14, 1992.

[61] S.E. Dreyfus and A. M. Law. The Art and The Theory of Dynamic Programming.
Academic Press, New York, 1977.

[62] H. Dyckhoff. A typology of cutting and packing problems. European Journal of Oper-
ational Research, 44:145–159, 1990.

[63] H. Dyckhoff and U. Finke. Cutting and Packing in Production and Distribution. Physica
Verlag, Heidelberg, 1992.

BIBLIOGRAPHY 189

[64] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and Packing (C&P). In
M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies in Com-
binatorial Optimization. John Wiley & Sons, Chichester, 1997.

[65] A. El-Bouri, N. Popplewell, S. Balakrishnan, and A. Alfa. A search based heuristic for
the two-dimensional bin-packing problem. INFOR, 32:265–274, 1994.

[66] O. Færø, D. Pisinger, and M. Zachariasen. Guided local search for the three-dimensional
bin packing problem. Technical report, DIKU - University of Copenhagen, 1999.

[67] G. Fischetti, M. Laporte and S. Martello. The delivery man problem and cumulative
matroids. Operations Research, 41:1055–1064, 1993.

[68] M. Fischetti, A. Lodi, and P. Toth. A branch-and-cut algorithm for the multiple depot
vehicle scheduling problem. Technical Report OR/99/1, DEIS - Università di Bologna,
1999.

[69] M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric traveling
salesman problem. Mathematical Programming, 53:173–197, 1992.

[70] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling salesman
problem. Management Science, 43:1520–1536, 1997.

[71] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar, editor,
Principle and Practice of Constraint Programming - CP’99, LNCS 1713, pages 189–203.
Springer-Verlag, Berlin Heidelberg, 1999.

[72] F. Focacci, A. Lodi, and M. Milano. Integration of CP and OR methods for Matching
Problems. In Proceedings of the Workshop on Integration of AI and OR techniques
in Constraint Programming for Combinatorial Optimization Problems - CP-AI-OR’99,
1999.

[73] F. Focacci, A. Lodi, and M. Milano. Solving TSP with Time Windows with constraints.
In D. De Schreye, editor, Logic Programming - Proceedings of the 1999 International
Conference on Logic Programming, pages 515–529. The MIT-press, Cambridge, Mas-
sachusetts, 1999.

[74] F. Focacci, A. Lodi, M. Milano, and D. Vigo. Solving TSP through the integra-
tion of OR and CP techniques. Electronic Notes in Discrete Mathematics, 1, 1999.
http://www.elsevier.com/cas/tree/store/disc/free/endm/.

[75] M. A. Forbes, J. N. Holt, and A. M. Watts. An exact algorithm for the multiple depot
bus scheduling problem. European Journal of Operational Research, 72:115–124, 1994.

[76] J. B. Frenk and G. G. Galambos. Hybrid next-fit algorithm for the two-dimensional
rectangle bin-packing problem. Computing, 39:201–217, 1987.

[77] G. Gallo, P. L. Hammer, and B. Simeone. Quadratic knapsack problems. Mathematical
Programming, 12:132–149, 1980.

[78] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

190 BIBLIOGRAPHY

[79] F. Glover. A template for scatter search and path relinking. In J. K. Hao, E. Lutton,
E. Ronald, M. Schoenauer, and D. Snyers, editors, Lecture Notes in Computer Science,
volume 1363, pages 1–45. 1997.

[80] F. Glover, G. A. Kochenberger, and B. Alidaee. Adaptive memory tabu search for
binary quadratic programs. Management Science, 44:336–345, 1998.

[81] F. Glover, G. A. Kochenberger, B. Alidaee, and M. Amini. Tabu search with critical
event memory: an enhanced application for binary quadratic programs. In S. Voss,
S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization, pages 93–110. Kluwer Academic
Publishers, Boston, 1998.

[82] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

[83] I. Golan. Performance bounds for orthogonal oriented two-dimensional packing algo-
rithms. SIAM Journal on Computing, 10:571–582, 1981.

[84] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm.
Journal of Algorithms, 22:1–29, 1997.

[85] D. Goldfarb and M. D. Grigoriadis. A computational comparison of the dinic and net-
work simplex methods for maximum flow. In B. Simeone, P. Toth, G. Gallo, F. Maffioli,
and S. Pallottino, editors, FORTRAN Codes for Network Optimization, pages 83–103.
Baltzer, Basel, 1988.

[86] M. Grötschel, L. Lovász, and Schrijver A. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin Heidelberg, 1988.

[87] O. Haas. The cumulative assignment problem - local search and heuristics. Master
thesis, Department of Mathematics, University of Kaiserslautern, Germany, 1995.

[88] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general, orthogonal,
two-dimensional knapsack problems. European Journal of Operational Research, 83:39–
56, 1995.

[89] E. Hadjiconstantinou and N. Christofides. An exact algorithm for the orthogonal, 2-
d cutting problems using guillotine cuts. European Journal of Operational Research,
83:21–38, 1995.

[90] P. L. Hammer. Some network flow problems solved with pseudo-boolean programming.
Operations Research, 13:388–399, 1965.

[91] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality, complementation and persis-
tence in quadratic 0-1 programming. Mathematical Programming, 28:121–155, 1984.

[92] P. L. Hammer and V. R. Mahadev. Bithreshold graphs. SIAM J. Appl. Math., 6:497–
506, 1985.

[93] D. Haugland, J. G. Heber, and J. H. Husøy. Optimisation algorithms for ECG data
compression. Medical & Biological Engineering & Computing, 35:420–424, 1997.

BIBLIOGRAPHY 191

[94] M. Hifi. Exact algorithms for large-scale unconstrained two and three staged cut-
ting problems. In Contribution à la Résolution de Quelques Problèmes Difficiles de
l’Optimisation Combinatoire. Thèse d’Habilitation à Diriger des Recherches en Infor-
matique, Université de Versailles–Saint Quentin en Yvelines, 1998.

[95] S. Høyland. Bin-packing in 1.5 dimension. In R.G. Karlsson and A. Lingas, editors,
Lecture Notes in Computer Science, pages 129–137. Springer-Verlag, Berlin, 1988.

[96] R. Jain, J. Werth, and J. C. Browne. A note on scheduling problems arising in satellite
communication. JORS, 48:100–102, 1997.

[97] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,
MA, 1973.

[98] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing, 3:299–325, 1974.

[99] R. Jonker and T. Volgenant. A shortest augmenting path algorithm for dense and sparse
linear assignment problems. Computing, 38:325–340, 1987.

[100] M. Jünger, G. Reinelt, and G. Rinaldi. The travelling salesman problem. In
M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies in Com-
binatorial Optimization, pages 199–221. Wiley, 1997.

[101] M. Laguna and F. Glover. Tabu search. In C. R. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, pages 70–141. Blackwell Scientific Publications,
1993.

[102] K. Lagus, I. Karanta, and J. Ylä-Jääski. Paginating the generalized newspaper: A com-
parison of simulated annealing and a heuristic method. In Proceedings of the 5th Inter-
national Conference on Parallel Problem Solving from Nature, pages 549–603, Berlin,
1996.

[103] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, New York, 1976.

[104] K. Li and K.-H. Cheng. On three-dimensional packing. SIAM Journal on Computing,
19:847–867, 1990.

[105] K. Li and K.-H. Cheng. Heuristic algorithms for on-line packing in three dimensions.
Journal of Algorithms, 13:589–605, 1992.

[106] A. Lodi, K. Allemand, and T. M. Liebling. An evolutionary heuristic for quadratic 0–1
programming. European Journal of Operational Research, 119:662–670, 1999.

[107] A. Lodi, S. Martello, and D. Vigo. Neighborhood search algorithm for the guillotine non-
oriented two-dimensional bin packing problem. In S. Voss, S. Martello, I.H. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization, pages 125–139. Kluwer Academic Publishers, Boston, 1998.

192 BIBLIOGRAPHY

[108] A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the oriented two-
dimensional bin packing problem. European Journal of Operational Research, 112:158–
166, 1999.

[109] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems. INFORMS Journal on Computing, 11:345–357,
1999.

[110] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing
problems. Technical Report OR/99/2, DEIS - Università di Bologna, 1999.

[111] A. Lodi, D. Vigo, and C. Zannoni. Exact and heuristic algorithms for data sets recon-
struction. European Journal of Operational Research, 124:139–150, 2000.

[112] A. Löbel. Optimal Vehicle Schedule in Public Transport. PhD thesis, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Germany, 1998.

[113] A. Löbel. Vehicle scheduling in public transit and lagrangean pricing. Management
Science, 44:1637–1649, 1998.

[114] R. A. Lundin and T. E. Morton. Planning horizons for the dynamic lot size model: Zabel
vs. protective procedures anc computational results. Operations Research, 23:711–734,
1975.

[115] S. Martello, D. Pisinger, and D. Vigo. An algorithm for the three-dimensional bin
packing problem. Technical Report OR/98/10, DEIS - Università di Bologna, 1999.

[116] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem.
Operations Research, 1999 (to appear).

[117] S. Martello and P. Toth. Linear assignment problems. In S. et al. Martello, editor,
Surveys in Combinatorial Optimization, pages 259–282. North-Holland, Amsterdam,
1987.

[118] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester, 1990.

[119] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing
problem. Management Science, 44:388–399, 1998.

[120] R.D. McBride and J.S. Yormark. An implicit enumeration algorithm for quadratic
integer programming. Management Science, 26:282–296, 1980.

[121] F. K. Miyazawa and Y. Wakabayashi. An algorithm for the three-dimensional packing
problem with asymptotic performance analysis. Algorithmica, 18:122–144, 1997.

[122] G. Moody. MIT-BIH arrhythmia database CD-ROM. MIT, 1992. 2nd edn.

[123] H. Mühlenbein. Genetic algorithms. In E. Aarts and J. K. Lenstra, editors, Local Search
in Combinatorial Optimization, pages 137–191. John Wiley & Sons, Chichester, 1997.

[124] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, New York, 1988.

BIBLIOGRAPHY 193

[125] M. Padberg. The boolean quadratic polytope: Characteristics, facets and relatives.
Mathematical Programming, 45:139–172, 1989.

[126] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of a large-
scale symmetric traveling salesman problems. SIAM Review, 33:60–100, 1991.

[127] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, Englewood Cliffs, N.J., 1988.

[128] P. M. Pardalos and G. P. Rodgers. Computational aspects of a branch and bound
algorithm for quadratic zero-one programming. Computing, 45:131–144, 1990.

[129] G. Pesant, M. Gendreau, J. Y. Potvin, and J. M. Rousseau. An exact constraint
logic programming algorithm for the travelling salesman problem with time windows.
Transportation Science, 32:12–29, 1998.

[130] G. Pesant, M. Gendreau, J. Y. Potvin, and J. M. Rousseau. On the flexibility of Con-
straint Programming models: From Single to Multiple Time Windows for the Travelling
Salesman Problem. European Journal of Operational Research, 117:253–263, 1999.

[131] J. C. Picard and H. D. Ratliff. Minimum cuts and related problems. Networks, 5:357–
370, 1974.

[132] W. P. Pierskalla. The multidimensional assignment problem. Operations Research,
16:422–431, 1968.

[133] C. A. Pomalaza-Ráez. A note on efficient SS/TDMA assignment algorithms. IEEE
Trans. on Communications, 36:1078–1082, 1988.

[134] C. Prins. An overview of scheduling problems arising in satellite communications. JORS,
45:611–623, 1994.

[135] J.F. Puget. A C++ implementation of CLP. Technical Report 94-01, ILOG Headquar-
ters, 1994.

[136] L. Qi, E. Balas, and G. Gwan. A new facet class and a polyhedral method for the
three-index assignment problem. In D. Z. Du, editor, Advances in Optimization and
Approximation, pages 256–274. Kluwer Academic Publishers, 1994.

[137] J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings
of AAAI’94, 1994.

[138] G. Reinelt. TSPLIB - a Travelling Salesman Problem Library. ORSA Journal on
Computing, 3:376–384, 1991.

[139] G. Reinelt. Oral communication, 1999.

[140] C. Ribeiro and F. Soumis. A column generation approach to the multiple depot vehicle
scheduling problem. Operations Research, 42:41–52, 1994.

[141] R. Rodosek, M. Wallace, and M. T. Hajian. A new approach to integrating mixed integer
programming and constraint logic programming. Annals of Operational Research, 1997.

194 BIBLIOGRAPHY

[142] R. Saigal. A constrained shortest route problem. Operations Research, 16:205–209,
1968.

[143] W. Schneider. Trim-loss minimization in a crepe-rubber mill; optimal solution versus
heuristic in the 2 (3)-dimensional case. European Journal of Operational Research,
34:273–281, 1988.

[144] H. Simonis. Calculating lower bounds on a resource scheduling problem. Technical
report, Cosytec, 1995.

[145] D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Information
Processing Letters, 10:37–40, 1980.

[146] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing, 26:401–409, 1997.

[147] E. Taillard. Heuristic methods for large centroid clustering problems. Technical Report
IDSIA-96-96, IDSIA, Lugano, Switzerland, 1996.

[148] F. J. Vasko, F. E. Wolf, and K. L. Stott. A practical solution to a fuzzy two-dimensional
cutting stock problem. Fuzzy Sets and Systems, 29:259–275, 1989.

[149] C. Voudouris and E. Tsang. Guided local search and its application to the traveling
salesman problem. European Journal of Operational Research, 113:469–499, 1999.

[150] C. Zannoni, A. Cappello, and M. Viceconti. Optimal CT scanning plan for long-bone
3-D reconstruction. IEEE Transactions on Medical Imaging, 17:663–666, 1998.

