
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria dell’Informazione

Exact and Heuristic Methods
for Nesting Problems

Matteo Fischetti and Ivan Luzzi

Padova, 1/4/2004

Work supported by the CNR/MIUR project n. CU.03.00107.PF25
“Metodi e sistemi di supporto alle decisioni".

Contents

1 Introduction 1
1.1 Cutting and Packing problems . 1
1.2 Problem Representation . 2
1.3 Outline . 4
1.4 Main contributions . 4

2 The irregular nesting problem 7
2.1 Applications of the irregular nesting problem 7
2.2 Polygonal approximation and tessellation methods 9
2.3 Direct placement methods . 10
2.4 Improvement methods . 14

3 A tabu search heuristic 17
3.1 Representation . 17
3.2 Initial placement . 17
3.3 Data structure improvement . 21
3.4 Tabu search . 23
3.5 Using tabu search to improve the solution 24
3.6 Compaction . 25
3.7 Diversification . 27
3.8 Computational results . 28

4 Computational geometry 33
4.1 Minkowski sum and difference . 33
4.2 Intersection . 35
4.3 Containment . 36
4.4 Algorithms for computing the Minkowski sum 37

5 A MIP model for the Irregular Nesting Problem 39
5.1 The model . 39
5.2 Using no-fit polygons . 40
5.3 Interpretation of the relaxed model 42
5.4 Lifting of constraint coefficients 43

i

ii CONTENTS

5.5 Guiding the search tree . 44
5.6 Computational results . 46

6 Multiple Containment Problem 49
6.1 The Multiple Containment Problem 49
6.2 Geometrical considerations . 50
6.3 The grid . 52
6.4 The model . 53
6.5 Converting a solution of the model to a feasible layout 55
6.6 Computational results . 62

7 Conclusion 65

A NESTLIB specification 69

List of Figures

1.1 Global and local coordinate system in the layout. 3

2.1 Comparison between parallel and alternate placement. 8
2.2 Tessellation of the region with hexagons. 10
2.3 Example of a strip packing variant. 11
2.4 Dynamic selection of the piece that best fit the candidate zone. . 12
2.5 Automatic placement of the larger pieces using the heuristic algo-

rithm by Milenkovic. 14
2.6 Opening of a gap to better accommodate small pieces. 16

3.1 Matrix and polygon representation of different figures. 18
3.2 Situation before and after the placement of piece 3. 18
3.3 Initial placement of the pieces. 19
3.4 Initial placement for test 9 and test 10. 20
3.5 Randomized initial placement for test 9 and test 10. 21
3.6 Tabu search exploration scheme. 23
3.7 Iteration of the tabu search algorithm. 25
3.8 Some tabu steps. 26
3.9 A compaction step applied to the current solution. 27
3.10 Test Blazewicz 9 and 10: data from Oliveira & Ferreira 29
3.11 Test Oliveira & Ferreira: fixed rotation (top) and 180 ◦ rotations

(bottom) . 30
3.12 Test Oliveira & Ferreira: shirts (top) and trousers (bottom) . . . 31

4.1 Using no-fit polygon UAB to determine intersection between two
polygons A and B. 35

4.2 Using Minkowski difference to determine the feasible displacement
of a polygon inside another one. 36

5.1 Input data for pieces (left) and marker region (right). 40
5.2 Partition of U ij into polyhedral “slices”. 41
5.3 Lifting of shaded line coefficients of slice k into vertices of slice h. 44
5.4 Assigned positions of three pieces A, B, and C. 45

iii

iv LIST OF FIGURES

5.5 Possible relative positions of three pieces A, B, and C, when only
two relative positions are specified. 45

5.6 Algorithm for the branching priority assignment. 46
5.7 Broken glass instances. 47

6.1 Big and small pieces of a shirt. 50
6.2 Placement of big pieces, and relative holes. 51
6.3 Original holes and their usable region. 51
6.4 Grid of a specific hole and relative measurement points. 52
6.5 Trim pieces allocated by the model. 56
6.6 Weakness in the geometrical constraints of the model. 57
6.7 Infeasible solution obtained by our model (top), and a correspond-

ing feasible solution obtained by a greedy strategy (bottom). . . . 58
6.8 Solution obtained by our model for a group of “special” trims. . . 59
6.9 Feasible solution obtained by our model (top), and a corresponding

feasible solution obtained by a greedy strategy (bottom), for a
group of “special” trims. 60

6.10 Feasible solution obtained by our model (top), and a corresponding
feasible solution obtained by a greedy strategy (bottom), for a
group of “small” trims. 61

6.11 Feasible solution obtained by our model (top), and a correspond-
ing feasible solution obtained by a greedy strategy (bottom) for
problem instance 101. 63

6.12 Feasible solution obtained by our model (top), and a correspond-
ing feasible solution obtained by a greedy strategy (bottom) for
problem instance 385. 64

List of Tables

3.1 Comparison of loading and placement time with the different data
structures. 22

3.2 Computational results of the tabu search algorithm on instances
from Oliveira & Ferreira. 28

5.1 Computational results of the MIP model for the irregular nesting
problem. 47

6.1 Computational results of the algorithm for the multiple contain-
ment problem. 62

v

Chapter 1

Introduction

1.1 Cutting and Packing problems

Many industrial problems involve placing objects into containers so that no
two objects overlap each other. The general goal is to either minimize the size of
the container or to find an optimal collection of objects that can be placed (either
in terms of number or total area).

These problems are known by a variety of names, such as layout, packing,
nesting, loading, placement, marker making, etc... A number of industries applies
layout techniques when cutting parts from stock material. In apparel manufac-
turing, for instance, pattern pieces are arranged on cloth, and the goal is to find
a non-overlapping arrangement which uses the least amount of cloth. In sheet
metal layout, objects are cut from metal stock sheets; the goal here is typically
to cut as many objects as possible from a given sheet. In shoe manufacturing
instead, each hide has a different shape, and the goal is to cut as many objects
from each hide as possible. In VLSI layout, rectangular modules are arranged on
a chip in such a way as to best meet the two competing goals of minimizing the
chip area and minimizing the length of interconnections between modules on the
chip. Finally, in furniture layout an arrangement of furniture usually must even
satisfy a set of aesthetic criteria.

When the 2-dimensional objects to be packed are non-rectangular the pro-
blem is called irregular nesting and the output produced by a packing algorithm
is called a layout.
The material utilization, or efficiency,1 of a layout is the ratio of the area oc-
cupied by the pieces to the rectangular area of the used stock sheet. The waste
of material is the unused area of the stock sheet within the used length, and is
therefore equal to 1 minus the efficiency (depending on the stock material, on
its shape and on the shape and dimension of the pieces to be cut, the waste of

1In the literature the efficiency is also referred as yield.

1

2 CHAPTER 1. INTRODUCTION

material in particular contexts ranges from 10-15% up to 40% or even 50%).
From now on we will focus our attention on the irregular nesting problem in

the textile industry, also known as the marker making problem.
Currently, marker making is done by experienced human marker makers with

the assistance of interactive CAD systems. A human marker maker needs about
a year of training before he/she can generate markers of acceptable efficiency, and
it takes between 30 to 45 minutes to generate a marker of good quality (estimated
within 1-2 percent of the optimal).

Current automated marker making systems fall short of human performance
by up to 5 percent in marker efficiency. Although the prospective of developing
an automated system may not be very attractive from the pure efficiency point of
view, it is convenient from other aspects: the time to find an acceptable solution
can be much shorter if done by a specialized algorithm; computers run 24 hours
a day 7 days a week and never get sick; there is no training time; furthermore
this system could be used to find a solution that gives a good estimate of the real
efficiency, for example to evaluate different garment combinations in a marker.

1.2 Problem Representation

In marker making, the garment pieces are represented by polygons.2 The
vertices of a polygon are the extreme points on the boundary of a pattern, and
each pair of vertices is connected by an edge (a straight line segment). There are
more vertices and shorter edges in regions of higher curvature, and fewer vertices
and longer edges in regions of lower curvature.

As shown in figure 1.1, there is a local coordinate system attached to each
piece. The origin of the local coordinate system is usually fixed at the center of
the bounding box of the piece, defined as the smallest rectangle containing the
piece with sides parallel to the coordinate axes. The coordinates of the vertices
are specified in the local coordinate system. The position of piece in the marker
is given with respect to a global coordinate system. The origin of the global
coordinate system corresponds to the lower left corner of the rectangular sheet
on which the pieces should be laid.

The placement of the pieces is restricted to a horizontal rectangular strip in
the first orthant of the global coordinate system, and is called the marker region.
The marker region is bounded from the left by the y axis and is open on the
right. After the placement of a few pieces, the uncovered region remaining in
the marker is broken into a set of connected components called holes, and can
possibly be used to fit some of the remaining pieces.

2In the sequel we will use the terms piece, figure and polygon interchangeably.

1.2. PROBLEM REPRESENTATION 3

XO

X’

Y’Y

used length

O’

Figure 1.1: Global and local coordinate system in the layout.

The rules of marker making sometimes permit a piece to change its orienta-
tion by rotating and/or flipping in the local coordinate system. A basic rotation
step is specified for each piece. The amount is usually 45, 90 or 180 degrees. A
piece can be rotated by a multiple of its rotation step about its local origin. In
addition to multiples of its basic rotation amount, a piece can, in some special
cases, also rotate by some small amount called tilt, which is usually less than 3
degrees but can be as large as 7 or 8 degrees. This is done to better fit pieces to-
gether and to get a tighter solution, but it can be forbidden in some applications
due to grain or fabric material constraints.
In the sequel we only consider the basic case of 180 degrees rotation and no flip
and tilt allowed, which is by far the most common rotation allowed in practical
applications.

The irregular nesting problem is strongly NP-hard [GJ79], even in its sim-
plified version where all the polygons are rectangles and can only translate. This
can be proved by reduction from the NP-hard PARTITION problem, defined as
follows: given a set S of integers, decide if S can be partitioned into two subsets
S1 and S2 such that the sum of the elements of S1 equals the sum of the elements
of S2.

We reduce PARTITION to NESTING by the following construction. For
any instance {a1, a2, . . . , an} of PARTITION, we build rectangles of height 1
and length ai, (i = 1, .., n). We put the rectangles into a container of height 2.
PARTITION has a solution if and only if the blocks can be compacted to the
length

∑
ai/2.

4 CHAPTER 1. INTRODUCTION

1.3 Outline

In chapter 2 the irregular nesting problem is introduced and analyzed in
all its variants; a quick survey of the literature is given together with the main
bibliographic references.

In chapter 3 a first approach to the problem is analyzed, where pieces are
represented by bitmaps where a bit is 1 if it corresponds to a point in the interior
of the figure, 0 otherwise. The overlap check is done via straightforward bitwise
comparison. Different strategies are used to find an initial solution, and a tabu
search technique has been used to explore neighbor solutions. This approach was
easy to implement and produced good quality solutions. A main drawback is that
the size of the bitmaps grows proportionally with the precision required in the
piece representation, and the execution time increases steeply. To overcome this
problem a different approach has been analyzed, where all figures are represented
by polygons defined by the corresponding vertices. Chapter 4 deals with the
computational geometry aspects involved in this approach: the concept of no-fit
polygon is defined and its use to detect overlap among pieces is described.

In chapter 5 a MIP model for the irregular nesting problem is defined, in two
different versions, and some computational results are presented. A basic version
of this model was first introduced by Daniels, Li and Milenkovic [DLM94]; we
extended it by lifting some of the coefficients in the constraints, so as to improve
the formulation.

The usual way to build a solution is to place the “big pieces” first and then
insert the remaining ones in the holes left by the big pieces. However, choosing
the pieces to be put in the holes is not an easy task, and most of the times a
greedy strategy proves not adequate. In chapter 6 a new bi-dimensional knapsack
problem is presented to model this task in a simplified way, and some interesting
computational results are presented.

Finally, in appendix A we introduce a new standard specification to represent
instances of the nesting problem. We converted all the instances found in the
literature to this standard and provided a web site (NESTLIB) where this data
can be downloaded by the scientific community to test different algorithms.

1.4 Main contributions

We designed, implemented and tested a new algorithm for the automatic
nesting of irregular pieces using the tabu search methodology and a bitmap rep-
resentation of the pieces. We introduced a new alternative bitmap representation
and an efficient technique to check for overlap which allows one to reduce the ex-
ecution time. We investigated the behaviour of the algorithm with different tabu

1.4. MAIN CONTRIBUTIONS 5

parameters, and applied the concepts of “intensification” and “diversification” of
the search to this particular problem.

We also defined a MIP model for the irregular nesting problem based on the
one proposed by Daniels, Li and Milenkovic. We enhanced this model by applying
a lifting technique to the constraint coefficients. Furthermore, we implemented a
branching technique based on priorities to guide the visit of the search tree, and
showed that this methodology effectively improves the solution time.

Finally, we defined a new knapsack-type model for the multiple containment
problem, based on geometrical considerations. The model is used to place small
pieces in the gaps left by the placement of big pieces. We implemented this model
and tested it on real world instances, showing its effectiveness.

Finally, a large set of test problems was collected and made available as a
library (NESTLIB).

6 CHAPTER 1. INTRODUCTION

Chapter 2

The irregular nesting problem

In this chapter we will make a quick survey on the irregular nesting problem:
the field of application where it arises and the different approaches that were used
to deal with it.

2.1 Applications of the irregular nesting problem

One of the first industrial fields interested in the irregular cutting has been
the ship-building industry. The problem involves determining a cutting pattern
for a given set of parts, each of which consisting in a number of different pieces,
from a series of metal stock sheets; the pieces from a single part must be kept
together. Since more than one sheet is usually required, the way in which the
different parts are combined together has a significant effect on the overall cutting
problem; this problem is known as the sequencing problem. Arbel [Arb93] suggests
a two phase method: first an integer programming model based on estimated
packing efficiencies assigns pieces to single sheets, then the actual nesting of the
pieces is performed.

A problem involved in the metal cutting process is related to the metal dis-
tortion due to the torch heat. For this reasons the same cut cannot be used for
two adjacent pieces, but “bridges” or gaps are left between them in order to avoid
movement of the pieces during the cutting process. Another aspect to be taken
into account when dealing with metal, is the cutting time: depending on the
type of torch (oxygen or laser), and on the type of metal and its width, cutting
speed ranges from 100 mm per minute up to 7 m per minute. For this reason the
objective function is a tradeoff between waste and cutting time. Usually more
copies of the same piece have to be cut, and therefore patterns are clustered in
parallel blocks in order to use multiple torches working in parallel and follow-
ing the same cutting sequence. Tàvora [Tàv89] suggests an algorithm based on
a clustered traveling salesman model to minimize the movement of the cutter
between cutting operations. The choice between parallelizing the process or re-

7

8 CHAPTER 2. THE IRREGULAR NESTING PROBLEM

ducing the waste of material becomes crucial in some situations. For example,
when many identical pieces with complex shape have to be cut, one can choose
between parallel placement to improve the cutting time, or alternate placement
to improve efficiency (see figure 2.1).

Figure 2.1: Comparison between parallel and alternate placement.

In the textile industry the marker layout problem is very different: here
there is no need for bridges between pieces, but the grain and pattern of the
fabric means that the orientation is usually fixed or at most a 180 degree rotation
is allowed. Furthermore, if the fabric has a pattern, the placement of certain
pieces have to respect special rules and must fit into a lattice. A typical marker
consists of several copies of the same garment (different sizes can be included
to improve efficiency) consisting of a few large pieces called panels (e.g. trouser
legs), and some smaller ones called trims (e.g. pockets and waist bands).

Also in the furniture industry and the wood industry in general, orientation
is a main concern, due to the grain of wood; furthermore, the presence of defects
of any sort (knots, creeks, etc..) imposes to waste part of the material. Usually in
this field, a human expert draws the patterns directly on the wood, avoiding the
different defects, then a cutting machine connected to a digital camera recognizes
the tracks and follows them on the cutting process.

The leather industry faces all the problems above, but also considers the
quality of the different parts of a hide. Here each hide has its own shape, tone,
and possibly defects. Certain parts of the final product have to be cut from high
quality sections of the hide, while others don’t have any special requirement.
Furthermore, if the leather is not to be dyed, it’s important to cut pieces which
will be together in the finished product, from adjacent parts of the hide, in order
to guarantee the same color.

2.2. POLYGONAL APPROXIMATION AND TESSELLATION METHODS 9

In spite of these differences all these problems have the common requirement
of finding a feasible layout of a given set of pieces on a stock sheet region, with
the goal of minimizing the total waste of material.

There are three different types of approach to this problem:

• pieces are first grouped in smaller subsets and inserted, either singularly or
in group, into a super-set of ideal polygons with fixed shape and size; then
the latter are nested on the stock sheet;

• pieces are considered one at a time and directly placed on the marker region;

• an initial placement is found, which could also allow some overlap among
pieces, then iterative methods are used to improve the solution.

2.2 Polygonal approximation and tessellation meth-
ods

One of the first approaches to the irregular nesting problem, especially in the
past, has been that of including one or more irregular pieces into a more regular
shape, usually a rectangle, and then to use one of the bin packing algorithm
available to place these simpler figures on the marker region. In the case of free
rotation, one can include the figure in a rectangle with minimum area; Freeman
and Shapira [FS75] first include the piece in a convex polygon, then examine all
rectangles with base corresponding to each of the polygon edges until they find
the rectangle with minimum area.

In practice, solutions of this type offer acceptable results only in the cases
where the pieces are themselves almost rectangular, so that the waste within the
enclosing rectangle is low. Adamowicz and Albano [AA76] impose a threshold on
the amount of waste they are willing to accept in any enclosure: if a single piece
enclosed in the rectangle exceeds this limit, it is combined with a copy of itself
rotated by 180◦. If neither of these two options stays within the waste threshold,
an attempt is made to fill the remaining space with some of the other pieces.

An alternative to using rectangles, is to nest all pieces into identical polygons
which can be used to tile the plane (tessellation). The most used plane-tiling
polygons are: triangles, quadrilaterals, pentagons and hexagons. Dori and Ben-
Bassat [DBB84] base their packing algorithm on tessellation. They first nest the
required shapes into polygons with minimum wasted area, then enclose them into
hexagons which are suitable for tiling the plane. They only considered convex
pieces, although they state that non-convex shapes could be nested in a similar
way; Karoupi and Loftus [KL91] have extended this method to deal with curved
and non-convex polygons (see figure 2.2).

10 CHAPTER 2. THE IRREGULAR NESTING PROBLEM

Figure 2.2: Tessellation of the region with hexagons.

This type of approach gives reasonable quality solutions only if the original
shapes match well with the hexagonal contour, and if the problem involves a large
number of relatively small pieces; hexagons indeed, form a perfect1 tessellation
only of an infinite two-dimensional region, but will give rise to some waste around
the edges when fitted into a finite rectangular region, as shown in figure 2.2.

2.3 Direct placement methods

Straightforward single pass packing strategies involve taking the pieces in a
given order and placing them on the stock-sheet according to a given placement
policy. This may be repeated several times for different orderings or different
placement strategies, and the best solution is chosen.

The simplest such approach is the Monte Carlo method, which forms the
basis of a nesting package described by Böme and Graham [BG79]. The pieces
are “thrown” onto the stock sheet at random; it is suggested that at least 2000
of these random trials are done in order to obtain acceptable solutions. The best
solution found is then further improved by small random perturbations.

Qu and Sanders [QS87] propose two interesting extensions to the standard
strip packing methods which proved to be quite effective. In the first, the pieces
are sorted by decreasing length and then placed along two adjacent edges of
the stock sheet. The resulting L-shaped region is then considered packed and
effectively removed from consideration; the process is then repeated with the
rectangular remaining area. The second method uses the same placement policy,
but orders the pieces according to their heights. In the simple strip packing
method the pieces are sorted into decreasing height order and laid in strips across
the bottom of the stock sheet. The authors suggest a modification to this method

1A perfect tessellation covers completely a given region with no waste.

2.3. DIRECT PLACEMENT METHODS 11

to ensure that full advantage is taken of the possible interlock between pairs of
non-rectangular pieces. Each strip is started with the tallest remaining piece, but
then the other pieces are dynamically sorted in order to chose the best fitting piece
for each placement. Each remaining piece is tried to be placed close to the current
profile and the ratio between the area of the piece and the free space remaining
from the current packed profile to the right border of the piece, is calculated: the
piece maximizing this ratio is chosen for placement.

Figure 2.3: Example of a strip packing variant.

Once the whole strip has been packed as far as possible along the stock sheet
border, the smaller pieces are considered for filling the spaces above the current
placement, as long as they do not extend above the current height of the strip.
The same process is then repeated for a new strip as shown in figure 2.3.

Other common methods use a leftmost placement rule: each piece is taken
one at a time from a given list, sorted on a specific criterion (e.g. decreasing area),
and placed on the stock sheet region as left as possible on the current packing
profile. In one of the earliest paper on marker layout, Art [Art66] uses a leftmost
placement policy, but suggests that a weighted combination of different factors be
used to determine the exact location: these include minimizing the leftmost point
of the piece, its rightmost point, and the wasted area. He also suggests that one
ore more pieces could be manually combined together to form “meta-pieces” that
could be more easily placed on the region, but could be also broken up during
the algorithm if this appeared to be beneficial.

Dowsland and Dowsland [DDB98] also use a leftmost placement policy to-
gether with a random ordering of the pieces, but unlike many other, they do
not limit the placement to the current profile and allow new pieces to effectively
“jump” over pieces already placed to fill holes which have been left between larger
pieces. This first solution is then improved by a “jostle” procedure that will be
described in the next section.

12 CHAPTER 2. THE IRREGULAR NESTING PROBLEM

Amaral et al. [ABJ90] use a more sophisticated method that does not allow
hole filling but attempts to ensure that such holes will not be generated by se-
lecting the next piece dynamically. Their method is based on the so called sliding
process in order to find for each piece a suitable position. Pieces are sorted in
decreasing order of their area and two different placement policies are used for
large and small pieces, since small pieces can be used to fill holes left between
the larger pieces in the layout. This reflects the strategy of a human expert
working on the layout problem manually. A profile with the “visible” edges of
already placed pieces is created; in order to simplify the calculation, the profile
is approximated by the vertical and horizontal segments of the bounding box of
the packed pieces. A set of placement zones is calculated, which are rectangular
regions laying between adjacent steps of the current profile (see figure 2.4).

Figure 2.4: Dynamic selection of the piece that best fit the candidate zone.

The first piece which will fit into the leftmost placement zone is then selected
and placed using a sliding vector technique until it touches one of the placed
pieces. If the piece to be placed is classified as small, it must be inserted below
the current profile, thus filling a potential hole that would be generated if a big
piece were to be placed above there. In this phase the actual piece dimensions,
rather than its bounding box ones, are used to position the new piece accurately.
Although the solutions provided by this algorithm were unable to match those of
human experts, computational times were much faster.

Albano and Sapuppo [AS80] are concerned with the more complex problem
in which the pieces may be placed in a number of different orientations. They
also use leftward placement but attempt to improve a single pass algorithm by
allowing some backtracking. They assume that the pieces are convex polygons
which can assume any orientation; thus the full state space of solutions consists
of the permutations of all pieces, each one assigned to all feasible positions and
in all its possible rotations. Clearly it is not possible to scan the whole search

2.3. DIRECT PLACEMENT METHODS 13

space in a reasonable time even for limited size instances, therefore the search is
guided by two bounds. The first one represents the quality of the partial solution
obtained so far, and is a measure of the wasted are behind the current packing
profile. The second is a rough estimate on the waste which will be generated by
the remaining pieces, and is approximated by a fixed proportion of their area. The
branch which minimizes the sum of these two bounds is chosen next. To further
reduce the search space, the number of branches at each node is limited in two
ways: only one orientation is allowed for each piece, namely the one which results
in the smallest extension to the right. Thus each remaining piece generates only
one branch at each node, but not all of them are visited: only a fixed number
of nodes with the smallest right projection will be considered. Finally, when
backtracking occurs, the process is forced to backtrack of a certain number of
levels, in order to avoid visiting nodes corresponding to solutions too close to the
one just discarded.

A major research project on marker making for the textile industry has been
recently developed at Harvard University by Victor Milenkovic and its research
group. One of their first papers on this subject [MDL92], describes an algorithm
which seeks to approximate the approach of an experienced worker for the marker
layout problem of trousers. They first try to place the larger pieces in columns,
then they insert the small pieces into the gaps left by the big ones eventually
moving some of them to easily accommodate the trims. In order to respect the
grain constraint, pieces are only allowed to rotate by 180◦ and to flip vertically,
for a total of 4 orientations per piece. For every column, all possible combina-
tions of big pieces are tried, and the one with maximum height is chosen. The
precise y-coordinate of all pieces are calculated once all the stacks have been
decided, but the feasibility of each column is verified by means of geometrical
constraints among adjacent pieces. Furthermore, a heuristic algorithm checks
that there exists a feasible placement of the remaining pieces (only considering
the x-coordinate), with a quasi-vertical right profile of the last column. Figure 2.5
shows an example of a marker generated with this method on a trouser instance.

Finally when all big pieces have been placed, the algorithm proceeds with the
insertion of the small ones in the gaps left by the big pieces. If some of the trims
cannot fit, a special procedure is called to enlarge some gaps to accommodate the
remaining pieces without increasing the total length.

Haistermann and Lengauer [HL93] faced the more complex problem of de-
termining cutting patterns for leather hides. Since no two hides are identical, a
new pattern must be generated for each one, so the objective becomes finding
a fast method to generate solutions of reasonable efficiency. Both the hides and
the demanded pieces are very irregular, so the first step of the algorithm is to
use a smoothing routine to approximate the original shapes by polygons with

14 CHAPTER 2. THE IRREGULAR NESTING PROBLEM

Name:
Width:
Length:
Pieces:
Efficiency:

z1out
59.75 in
271.05 in
24

69.68%

Figure 2.5: Automatic placement of the larger pieces using the heuristic algorithm
by Milenkovic.

fewer points, and hence fewer “deep” concavities. Pieces are then coded with a
set of parameters which gives a rough estimation of the profile of the piece. This,
together with the size, is then used to evaluate the suitability of each piece for
placing against the current packing profile.

2.4 Improvement methods

A different approach, which has become increasingly popular in recent years,
is to produce an initial layout which may be feasible but suboptimal, or slightly
infeasible, and then to use small changes in order to improve it. Such an ap-
proach may either continuously seek for improvement, or may incorporate a meta-
heuristic technique such as simulated annealing or tabu search in order to allow
non-improving steps.

Jain et al. [JFR92] use simulated annealing to solve a nesting problem with
many pieces and any orientation. For each figure they store a set of parameters:
coordinate of the reference point, angular rotation and displacement vector with
successive copies of the same piece. A solution is then defined by associating a set
of values with these parameters. The quality of the nesting is measured as a linear
combination of area utilization and penalty for overlap. A neighbor solution is
defined by changing one of the parameters and therefore corresponds to chang-
ing the orientation of one piece, or its position, or eventually the displacement
between two pieces. In order to avoid large perturbations of the solution, which
are unlikely to be accepted at low temperature, the magnitude of each one of the
changes is bounded by a factor which decreases with the temperature. Compu-
tational experiments using simulated annealing suggest that this technique can
give good results, but has the drawback of excessive computing time: to guar-
antee good solution indeed, the temperature has to decrease very slowly, thus

2.4. IMPROVEMENT METHODS 15

augmenting the computational time.

Also Lutfiyya et al. [LMPD92] tackle the same problem but allow only a
fixed set of orientations. Infeasible solutions in which some pieces overlap are
included in the solution space and are penalized in the cost function by a penalty
factor multiplied by an approximation of the overlap area. The second term of the
objective function tries to ensure that pieces are nested well, by rewarding edges
at similar angles which are coincident or close to one another, while the third term
forces the pieces to lay as close as possible to the origin. A neighborhood move
consists of displacing a piece, changing its orientation or swapping two pieces.

Oliveira and Ferreira [OF93] use a formulation whose core closely meets the
actual requirements of a typical practical application. They fix the width of the
stock sheet and use simulated annealing to minimize its length. Overlap solutions
are allowed and penalized in the objective function together with the total length
required. Neighbor solutions are obtained by moving a single piece to a new
position.

Dowsland et al. [DDB98] introduce a new improvement technique called
jostling, which outperforms their own implementation of the typical simulated
annealing algorithm. The “jostle” procedure is inspired by the observation that a
jagged right hand end of a marker is less efficient than a flatter one and that when
granular products are stored in a container, any unevenness in the surface can be
removed by shaking the container back and forth. According to their algorithm,
pieces are first sorted by any criteria (either arbitrary or following some heuristic
rules) and then placed using a standard leftmost placement policy; then they
are selected in decreasing order of the x-coordinate of their rightmost point, and
packed according to a rightmost placement policy. Once this packing is complete,
the pieces are reordered in increasing order of their leftmost points and packed
again using a leftmost placement policy. This process is repeated for a fixed
number of iterations, and can be applied to any initial ordering and placement
policy. Computational experiments suggest that around 20 “jostles” can give
results which significantly improve upon a one-pass layout.

A research project with a direct application in the industry field has been
carried out by Milenkovic, Daniels and Li. In two important papers [MDL92]
and [LM95] they suggest an improvement method for practical problems in the
garment industry. They observe that many instances consist of similar mixes of
similar shapes, and therefore suggest that solutions to new problem be initialized
from a database of human expert solutions to similar problems. Depending on
the exact dimensions of the pieces, such a solution may contain small amounts
of overlap or small gaps; thus it may need an expansion process to remove the
overlap or a compaction process to fill the gaps, or a combination of the two. The
basic idea of compaction is to simulate forces on the pieces which move them in

16 CHAPTER 2. THE IRREGULAR NESTING PROBLEM

the required way. Thus if the objective is to minimize the length required by a
given layout, a “gravitational” force squeezing everything to the left will have the
desired effect. Conversely, if the objective is to open up a gap between two pieces
in order to fit a smaller piece, then a repulsion force between the two is required
as shown in figure 2.6.

Name:
Width:
Length:
Pieces:
Efficiency:

tholeOwsRe
59.75 in
129.79 in
42

85.23%

Name:
Width:
Length:
Pieces:
Efficiency:

tholeori
59.75 in
129.79 in
42

85.23%

Figure 2.6: Opening of a gap to better accommodate small pieces.

Such process can be modeled either using simulation techniques developed for
computer simulations of rigid objects acting under different forces, or by solving
a series of differential equations. However both these approaches prove to be too
slow from a practical point of view. The solution finally adopted involves the use
of linear programming. The displacement vector of the pieces are calculated, and
for each pair of pieces, the no overlap constraint defines a feasible region for the
difference between their vectors u−v (in chapter 4 we give a detailed explanation
on how to build and use such constraints). The objective is to move the pieces in
such a way as to minimize the potential energy caused by the imaginary forces
E = −∑

i fi · vi, subject to the vectors u − v remaining within their feasible
regions. In general these regions will not be convex an the resulting minimization
problem is NP-hard. However it is possible to select convex subregions which
allow some movement in the required direction. The problem can then be solved
using linear programming, and the precess repeated until no further improvements
are possible. A similar model can be used to move pieces apart to eliminate
overlap. This models will be analyzed in detail in chapter 5.

Chapter 3

A tabu search heuristic for the
Irregular Nesting Problem

3.1 Representation

Our first approach to the nesting problem has been using a simple represen-
tation and a tabu search technique.

We decided to use matrices to represent the figures to be placed and the holes
where to place them. Bitmaps are the simplest way to store this information, thus
we used different size matrices where each pixel is set to 1 if it is part of the figure,
0 otherwise. This structure is quite straightforward to implement and offers an
easy way to detect overlap among figures: all you need is just to check if the bits
representing the same point on the solution are both set to 1. But this approach
also has the disadvantage of requiring a lot of memory to store the whole matrix,
and a lot of time to analyze all its points. Furthermore, the size of the matrix
depends on the resolution adopted, and is independent from the figure it stores
(see figure 3.1). So, depending on the resolution to be used, the number of points
to represent the same figure grows very quickly and the time to deal with these
matrices may become excessive.

We adopted the matrix representation but implemented some add-on struc-
ture to speed up the overlap checking. Together with the bitmap we store the
perimetric points plus some internal points selected in a particular way. This dou-
ble structure together with some other tricks explained later, allows our algorithm
to run with reasonable times even with medium resolution.

3.2 Initial placement

We start with all pieces unplaced stored in a proper piece-list and the stock
sheet empty; the hole-list initially contains the whole stock sheet, considered as

17

18 CHAPTER 3. A TABU SEARCH HEURISTIC

Matrix 10 x 10 = 100 points Matrix 50 x 50 = 2500 points Polygon: 3 points

Polygon: 10 points Polygon: 16 points Polygon: 28 points

Figure 3.1: Matrix and polygon representation of different figures.

a hole of fixed width and “virtually infinite” length.
As a first step we sort the piece-list by some criterion, usually by area, and

start placing one piece at a time until the list is emptied. For each piece we
consider all the holes big enough to include it, starting from the smallest one: we
try all the possible rotations of the piece in order to find the best one. The so
called best fit criterion allows us to use as much as we can all the holes created
from the placement of the preceding pieces, always choosing the smallest hole
where the piece can fit. We are sure that every piece is placed since there always
exists a “virtually infinite” hole, namely the stock sheet extending to the right of
all placed pieces. After a new piece is placed we update the hole-list by removing
the old hole and inserting the just created ones: in the example of figure 3.2 hole
a is replaced by new holes b, c and d.

cb

d

1

2

3a
2

1

Figure 3.2: Situation before and after the placement of piece 3.

The main goal is to minimize the length of the right used margin, which is

3.2. INITIAL PLACEMENT 19

to compact all pieces as much as possible toward the left side of the stock sheet.

Figure 3.3: Initial placement of the pieces.

As one can see from the example of figure 3.3, our algorithm places both
circles as much as possible to the left, nesting them among the hexagons, but
wasting a lot of area above and below them. This is the disadvantage of using
a greedy strategy: optimizing the placement of a single figure doesn’t guarantee
the optimality of the complete solution. Placing the circles toward the borders
requires a bigger length but it would allow a third circle to fit between them.

This drawback is particularly evident in the instances where all pieces have
approximatively the same size. If there are smaller pieces, instead, these will
probably fit in the holes, thus reducing the waste generated by the big pieces;
this fact can be observed in figure 3.4 which shows the initial solution obtained
for test 9 and 10 derived from Blazewicz et al. [BHW93].

To overcome the problem above one could sort the initial piece-list by dif-
ferent criteria: area of enclosing rectangle, length of enclosing rectangle, width
of enclosing rectangle, perimeter of enclosing rectangle, area of polygon, perime-
ter of polygon, utilization ratio of enclosing rectangle, are the most cited in the
literature. We made several simulations and found out that it is very difficult
to find a good criterion for all instances, because some of them work well for a
certain set of instances, but others work better on some other instances. We also
investigated the behavior of a randomized choice of the position, where for every
piece the algorithm decides at random (with a certain probability) if placing the
piece toward the left side or toward the upper or lower borders.

20 CHAPTER 3. A TABU SEARCH HEURISTIC

Figure 3.4: Initial placement for test 9 and test 10.

3.3. DATA STRUCTURE IMPROVEMENT 21

Figure 3.5: Randomized initial placement for test 9 and test 10.

The initial solution obtained with the randomized placement are shown in
figure 3.5 and can be compared with those obtained with "normal" placement in
figure 3.4 ; for test 9 there is a considerable reduction of waste, from 38.60% to
32.03%, while for test 10 the reduction of waste from 29.59% to 27.96% is not so
impressive. As expected, the improvement is more significant for instances where
all pieces have a comparable size.

3.3 Data structure improvement

As mentioned in section 3.1, the main disadvantage of using a matrix repre-
sentation is the need of checking a large number of points (theoretically all points
of a piece) in order to detect a possible overlap with another figure. Instead
of checking all points, we only check the perimetric points and eventually some
suitably-defined internal points to make sure that one piece does not completely

22 CHAPTER 3. A TABU SEARCH HEURISTIC

include the other. If no points overlap, then the position is considered feasible.
In order to use this mechanism, for any figure its perimetric points have to

be calculated; this operation is done by a recursive procedure which analyze all
points close to the figure border. The precomputation phase adds an overhead
time when reading the input figures but saves a lot of time in the placement
phase, since one of the most time consuming procedures is indeed the check for
overlap. The first two columns of table 3.1 gives a rough idea of the time saving
obtained by exploiting this technique.
As one can see the loading time is increased for the instances with high resolu-
tion due to the perimeter calculation time, but the placement time is drastically
reduced by a factor 3.

MATRIX PERIMETER DYNAMIC LIST

Test 9 low resolution
Loading 0.13 0.12 0.20
Placement 0.22 0.16 0.14
Total 0.51 0.38 0.51

Test 10 low resolution
Loading 0.27 0.27 0.29
Placement 0.25 0.18 0.15
Total 0.71 0.55 0.49

Test 9 high resolution
Loading 2.38 2.40 2.43
Placement 22.73 7.24 3.15
Total 26.69 11.32 7.24

Test 10 high resolution
Loading 2.58 3.25 3.21
Placement 23.85 7.10 3.32
Total 27.13 12.21 8.47

Table 3.1: Comparison of loading and placement time with the different data
structures.

To reduce the execution time even further, we adopted a dynamic manage-
ment of the perimetric point list. When trying to place a certain piece, the
algorithm tries many positions for the reference point of the figure with respect
to a same hole, namely all the possible ones starting from the left. For a place-
ment to be feasible all its perimetric points have to be checked, but if just one
point overlaps we can stop the check and declare this position unacceptable.
If a certain perimetric point determines an overlap with another point in the hole,

3.4. TABU SEARCH 23

it is quite probable that the same point will cause an infeasibility also when the
reference point is moved to an adjacent position, thus it is convenient to check
this point first. Therefore, every time an infeasibility is detected, the perimetric
point that caused it is moved to the head of the list so that it will be the first
point checked in the next iteration.

The overhead induced by this operation is minimum since it just needs to
move some pointers in the list, but again we obtained a considerable reduction
of the placement times as one can see from the last column of table 3.1.

3.4 Tabu search

Once an initial solution has been found, a tabu search technique is applied
to improve the solution. It consists of a sequence of piece movements from their
original position into new holes, both internal and external.1

Tabu search is a heuristic technique to improve a given solution by visiting
its neighborhood. It was introduced in the 70’s as an alternative apprach to
the traditional iterative methods, and successively formalized by Fred Glover
[Glo89, Glo90], and Hertz and de Werra [HdW90]. Classical descent iterative
methods have the main disadvantage of getting stuck in local optima that rarely
coincide with the global one. To overcome this problem one could start from
different initial solution, or could allow non-improving steps so that the algorithm
can escape from local optima and visit a wider neighborhood (see figure 3.6).

Figure 3.6: Tabu search exploration scheme.

After a non-improving step it is highly probable that the algorithm will return
to the previous local optimum, since this corresponds to the most improving step.
To avoid this inconvenient one has to store not only the value of the best solution

1The external hole is the unused part of the stock sheet extending to the right of all placed
pieces.

24 CHAPTER 3. A TABU SEARCH HEURISTIC

found so far, but also the path to the current one. These informations are used
to avoid considering already visited solutions, that are considered tabu.2

A tabu search algorithm keeps track of the previous solutions and forbids
to visit the same solution a second time. However since the time and memory
to store a whole list of solutions can be excessively high, one can only store the
“move” to transfer from one solution to the next one, or equivalently its “inverse
move”. In our case we accomplish this task by storing, for each piece, the last
iteration where it was moved: a piece is in the tabu list if the difference between
the current tabu iteration and the last iteration where it was moved, is smaller
than a certain parameter tabu size.

The tabu size parameter determines the length of the tabu list and is a
fundamental parameter of this methodology. Depending on the tabu size the
algorithm can intensify the search in a restricted neighborhood, or it can diversify
the search by visiting a wider neighborhood.

3.5 Using tabu search to improve the solution

As already said in the previous section, once an initial solution is found the
algorithm keeps moving pieces in order to find a better solution. The main objec-
tive is to reduce the total length, thus it first try to move an external piece3 into
an internal hole using the best-fit criterion. If this is not possible, the algorithm
computes the waste of each internal piece, as the sum of the areas of all the holes
adjacent to that piece. Then the piece with the higher waste is removed from the
solution and placed into the external hole.

Before considering a certain piece the algorithm always checks whether this
piece is available, meaning that it does not belong to the tabu list; as explained
before, this is accomplished by simply checking the tabu iteration in which it has
been moved for the last time. After a piece is moved, the current tabu iteration
is marked on the piece, so that it will not be available for the next tabu size
iterations.

The following scheme represent a main iteration of the tabu search algorithm;
where TABU and HOLES represent the list of the tabu pieces and the list of
the available holes, respectively.

Figure 3.8 shows some tabu steps on a given instance, with a reduction of
the waste from 36.31% to 29.70%.

2From here the name of the algorithm: tabu search.
3We define a piece as external if it is adjacent to the external hole, that is if it belongs to

the right profile.

3.6. COMPACTION 25

try to place an external piece p /∈ TABU in an internal hole h ∈ HOLES

by using the best fit criterion;
if move is feasible

then
perform the move;

else
chose the internal piece p /∈ TABU with the biggest waste;
remove p from the solution and place it in the external hole;

endif
update the tabu list TABU ;
recalculate the holes and update the hole list HOLES;

Figure 3.7: Iteration of the tabu search algorithm.

3.6 Compaction

As pieces are moved around during the tabu search phase, holes are not
always completely filled by new pieces and often big wastes of material occur.
This happens especially when a piece is removed from a certain hole and replaced
by a smaller one: the narrow holes just created are not big enough for another
piece, and the total waste grows significantly.
In this case a compaction of the pieces is needed, in order to reduce the waste
and compress all pieces toward the origin.4

Our compaction procedure starts sorting all pieces by their leftmost point
in ascending order. Then the first piece is moved to the left of one unit: if the
move is feasible it is recursively moved left by twice the previous quantity until
an overlap is detected. Now with a bisection method the algorithm looks for the
maximum left shift admittable and fixes the new position of the piece.
The procedure is then repeated an all other pieces, until every figure has at least
one contact point with every other neighbor. This process doesn’t guarantee of
course a complete elimination of waste, but it helps reducing it.

To better exploit this idea, we also allow pieces to slid diagonally when they
get in contact with another piece, thus improving the power of the compaction
procedure.

In our code we run the compaction procedure every 25 tabu iterations; fig-
ure 3.9 shows the solution before and after a compaction step.

4Lower left angle.

26 CHAPTER 3. A TABU SEARCH HEURISTIC

Figure 3.8: Some tabu steps.

3.7. DIVERSIFICATION 27

Figure 3.9: A compaction step applied to the current solution.

3.7 Diversification

Another key concept in the tabu search methodology is diversification: it
consists of a big step to a completely different solution, i.e. a move toward an
unexplored region of the solution space.

We run a diversification step every 100 tabu iterations in the following way.
First a compaction step is performed using the procedure described in the previous
section; then the waste of each piece is calculated, and the first k pieces with the
largest waste are removed from the solution and placed in the external hole.

The resulting solution is now quite bad but after a few tabu steps, it will get
more compact and much different than the previous one.

This is not the only way to perform a diversification step. As we explained
before, the tabu size is the key parameter to act on the algorithm. The smaller
the tabu size, the sooner a piece becomes available again: this directly affects the

28 CHAPTER 3. A TABU SEARCH HEURISTIC

solution with a continuous movement of the external pieces which translates into
an intensification of the search around the current solution. One the other hand,
increasing the tabu size keeps the pieces blocked for a longer period, allowing a
greater number of pieces (eventually also the internal ones) to be processed and
moved: this means a great movement of pieces around the stock sheet, hence a
diversification step.

3.8 Computational results

We tested our code on instances found in the literature and described in the
paper by Oliveira et al. [OGF00]. On almost all the tests we improved the best
solution found in the literature, though the results cannot be compared directly,
due to the different piece representation adopted (see table 3.2). These results
confirm the validity of the heuristic approach to very difficult problems like the
irregular nesting problem, and confirm once more the effectiveness of the tabu
search methodology.

GREEDY RANDOM TABU BEST FROM
BY SIZE GREEDY SEARCH LITERATURE

Blazewicz 9: data from Oliveira & Ferreira (width = 150)
Length 254 246 237
Waste 33.15% 30.98% 28.35%
Blazewicz 10: data from Oliveira & Ferreira (width = 150)
Length 301 277 269 289
Waste 34.01% 29.16% 27.06%
Oliveira & Ferreira: fixed rotation (width = 40)
Length 69 66 66.75
Waste 38.48% 35.68%
Oliveira & Ferreira: rotation 180◦ (width = 40)
Length 66 75 61 61
Waste 35.68% 33.40% 30.41%
Shirts: data from Oliveira & Ferreira (width = 400)
Length 652 640 664
Waste 16.79% 15.23%
Trousers: data from Oliveira & Ferreira (width = 79)
Length 259 256 263.17
Waste 12.41% 11.38%

Table 3.2: Computational results of the tabu search algorithm on instances from
Oliveira & Ferreira.

3.8. COMPUTATIONAL RESULTS 29

Figure 3.10: Test Blazewicz 9 and 10: data from Oliveira & Ferreira

30 CHAPTER 3. A TABU SEARCH HEURISTIC

Figure 3.11: Test Oliveira & Ferreira: fixed rotation (top) and 180 ◦ rotations
(bottom)

3.8. COMPUTATIONAL RESULTS 31

Figure 3.12: Test Oliveira & Ferreira: shirts (top) and trousers (bottom)

32 CHAPTER 3. A TABU SEARCH HEURISTIC

Chapter 4

Computational geometry

When placing pieces on the stock sheet the most frequent operation is the
definition of a feasible position, meaning a position where the current piece is
completely within the marker region and does not overlap any other already
placed piece.

The simplest operation to perform is an overlap checking between two poly-
gons. Preparata and Shamos [PS85] introduced an algorithm to accomplish this
task. Amaral et al. [ABJ90] and Oliveira and Ferreira [OF93] used another
method called D functions to detect intersection of segments. If these meth-
ods work quite well in the simple case, things get really complicated when both
polygons are non convex. In this case a possible solution is to divide one of the
figures in convex components and to solve the simplified problem introducing
special constraints to glue these components together.

Another methodology to detect intersection of figures uses the so-called no-fit
polygon. This concept was first introduced by Adamowicz and Albano [AA76],
then Milenkovich et al. [LM95] gave a detailed explanation of its utilization in the
nesting process, and it is now probably the most used method to determine the
interaction between two polygons. The definition of the no-fit polygon is based
on the mathematical concept of Minkowski sum [Min03].

4.1 Minkowski sum and difference

The Minkowski sum and difference are powerful preprocessing tools for poly-
gon intersection and containment problems. Using the Minkowski sum and differ-
ence, respectively, we can convert a polygon-polygon intersection (overlap) query
and a polygon-polygon containment query into point-in-polygon queries, which
allow us to achieve sub-linear query times.

Definition 4.1 ([Min03, GRS83, Ser82]) The Minkowski sum of two poly-

33

34 CHAPTER 4. COMPUTATIONAL GEOMETRY

gons A and B is defined as:

A⊕B = {a + b : a ∈ A, b ∈ B}

or equivalently:
A⊕B =

⋃

b ∈B

Ab

where the notation Ab means the translation of polygon A by vector b:

Ab = {a + b : a ∈ A}

Definition 4.2 ([Min03, GRS83, Ser82]) TheMinkowski difference of poly-
gons A and B is defined as:

AªB =
⋂

b ∈B

Ab

From the definition it follows that:

A⊕B = B ⊕ A

but in general
AªB 6= B ª A

The next lemma establishes the relationship between Minkowski sum and
difference.

Lemma 4.1 ([Ser82])
AªB = A⊕B

where A denotes the complement of A:

A := {a : a 6∈ A}

and symmetrically:

Lemma 4.2 ([Ser82])
A⊕B = AªB

The next lemma shows that the "shape" of the Minkowski sum and Minkowski
difference are translation invariant.

Lemma 4.3 Let A and B be two point sets. Let s and t be two points. Then

As ⊕Bt = (A⊕B)s+t

and
As ªBt = (AªB)s+t

4.2. INTERSECTION 35

4.2 Intersection

Definition 4.3 The no-fit polygon between two polygons A and B is:

UAB = A⊕ (−B)

where −B is the reflective image of B w.r.t. the origin:

−B = {−b : b ∈ B}

The no-fit polygon between A and B represents the region of intersection
between the two polygons. Given the definition above, we can state the following:

Theorem 4.1 ([GRS83, Ser82]) Let A and B be two point sets and x be a
point in the plane. Then A ∩Bx 6= ∅ if and only if x ∈ UAB.

From lemma 4.3 on the translation we derive the following:

Corollary 4.1 As ∩Bt 6= ∅ if and only if t− s ∈ UAB

Corollary 4.1 states that, regardless of the actual position of the polygons
in the plane, we can verify their intersection by simply checking if the difference
of their displacement vectors belongs to the no-fit polygon UAB of A and B

calculated in the origin.

y − y
B A

x − xAB

vB

vB
vB

v = (0,0)A

intersect A
B does not

B overlaps AUAB

B touches A

Figure 4.1: Using no-fit polygon UAB to determine intersection between two poly-
gons A and B.

When the reference point of polygon A is in the origin (as shown in figure 4.1),
the no-fit polygon can be interpreted as the locus of points of the reference point
of B when it slides without rotating around polygon A.

36 CHAPTER 4. COMPUTATIONAL GEOMETRY

Lemma 4.4 One of the following situations is verified:

• the reference point of B lies inside the no-fit polygon UAB

=⇒ pieces A and B overlap;

• the reference point of B lies exactly on the border of the no-fit polygon UAB

=⇒ pieces A and B touch each other without overlapping;

• the reference point of B lies outside the no-fit polygon UAB

=⇒ pieces A and B are far apart.

4.3 Containment

Minkowski difference offers an useful method to determine whether a polygon
can be fully contained in another one without overlapping its border. This is
important when we want to check whether a given piece lays entirely within the
marker region, or to determine which is the free region of movement of a piece
within a given hole.

Theorem 4.2 ([Ser82]) Let A and B be two point sets and x be a point in the
plane. Then Bx ⊆ A if and only if x ∈ Aª (−B).

The theorem above can be proved by the following intuition: let A be the com-
plement of A. If A is a polygon, then A is the exterior of A. For a vector x,
the condition that Bx is totally contained in A is equivalent to the condition
that the intersection of Bx with A is empty. By Theorem 4.1, this is the same
as x /∈ A ⊕ (−B), or equivalently, x ∈ A⊕ (−B). But lemma 4.1 states that
A⊕ (−B) is exactly the Minkowski difference Aª (−B), which proves the claim.

ABV

A

B

Figure 4.2: Using Minkowski difference to determine the feasible displacement of
a polygon inside another one.

4.4. ALGORITHMS FOR COMPUTING THE MINKOWSKI SUM 37

As shown in figure 4.2, piece B is entirely contained within polygon A as
long as the reference point of B belongs to the shaded region VAB = Aª (−B).

4.4 Algorithms for computing the Minkowski sum

The complexity of computing the Minkowski sum of two polygons varies
depending on the class of polygons under considerations.

Guibas et al. [GRS83] observed that the Minkowski sum of two convex poly-
gons can be computed in linear time by merging the edge segments of the two
polygons.

In general, it is easy to see that an edge segment on the boundary of the
Minkowski sum of polygons P and Q is part of an edge segment formed as the
sum of a vertex in P and an edge in Q or vice versa. Let us call the edges formed
by the sum of a vertex in one polygon and an edge of the other polygon the
candidate edges. If there are n vertices in P and m vertices in Q, then there are
O(mn) candidate edges. A natural idea for generating the Minkowski sum is to
calculate the arrangement of the candidate edges in O(m2n2 log mn) time. The
algorithms in Kaul et al. [KOS91] and Agarwal et al. [AST92] for calculating the
Minkowski sum of two simple polygons follows this idea. Kaul et al. [KOS91]
introduced the concept of vertex-edge supporting pairs which reduces the number
of candidate edges.

In the worst case, the Minkowski sum of two simple polygons can have
O(m2n2) edges and the same number of internal holes. The following table sum-
marizes the maximum number of candidate edges for the possible combinations
of types of polygons.

Polygon A Polygon B Candidate edges
convex convex O(m + n)

non convex convex O(mn)

non convex non convex O(m2n2)

Milenkowic et al. [MDL92] identified a class of polygons called star-shaped
which are not as restricted as convex polygons but also easier to handle than
simple polygons. A polygon P is star-shaped if there exists a point k ∈ P such
that for each other point p ∈ P , the entire segment kp lies inside P . Such a point
k is called a kernel point of the polygon. Note that a convex polygon is a special
case of a star-shaped polygon in which the kernel equals the entire polygon.

They proved that the Minkowski sum of two star-shaped polygons is also
a star-shaped polygon; thus star-shaped polygons are “closed” under Minkowski
sum operations, a property only valid for the convex polygons but not for the
simple ones. This property states that the Minkowski sum of two star-shaped

38 CHAPTER 4. COMPUTATIONAL GEOMETRY

polygons cannot have holes. Thus, the computation of Minkowski sum is reduced
to calculating the outer envelope of the arrangement of the O(mn) candidate
edges by an angular sweepline algorithm. With the proper data structure this
operation can be done in O(mn log mn) time.
For the few cases where there are non-star-shaped polygons, a decomposition
algorithm is used to decompose the polygon into a small number of star-shaped
ones, with the constraint of keeping these components “glued” together.

Chapter 5

A MIP model for the Irregular
Nesting Problem

I chapter 3 we presented our first approach to the problem using a bitmap
representation of the pieces and the tabu search technique. One of the most
evident drawbacks of that type of representation is the lack of precision in the
figure shape definition. Beside all the problems in terms of speed of computation,
the bitmap representation does not allow a fair comparison of the results with
other algorithms.

For these reasons we adopted the polygonal representation and implemented
new placement algorithms starting from scratch. In chapter 4 we explained the
main concepts of computational geometry that we need to perform all operations
related with polygon overlap checking and so on.

In this chapter we present a MIP model for the irregular nesting problem
based on the compaction model introduced by Milenkovic et al. [LM95].

5.1 The model

We are given a set P of n possibly different pieces, and a rectangular marker
region with fixed width maxY and virtually infinite length. The shape of each
piece is defined by a simple polygon, and the coordinates vi = (xi, yi) of its
reference point define its placement location on the marker sheet. The distances
of the reference point of each piece i to the border of its bounding box define the
values of topi, bottomi, lefti and righti; see figure 5.1 for an illustration.

We can now give an introductory version of our model for the nesting pro-
blem, where ε represents a sufficiently small positive coefficient.

39

40CHAPTER 5. AMIPMODEL FOR THE IRREGULAR NESTING PROBLEM

(x , y)ii ���
�

i i

i

i

left right

bottom

top

length

maxY

Figure 5.1: Input data for pieces (left) and marker region (right).

min length + ε
∑
i∈P

(xi + yi) (5.1)

s. t. xi + righti ≤ length ∀ i ∈ P (5.2)

lefti ≤ xi ∀ i ∈ P (5.3)

bottomi ≤ yi ≤ maxY − topi ∀ i ∈ P (5.4)

“Pieces i and j do not overlap” ∀ i, j ∈ P : i < j (5.5)

The main goal is to maximize the efficiency, hence to minimize the total
length. In our objective function (5.1) we also consider a second goal: keeping
all pieces together as much as possible by compacting them toward the origin
of the marker region. The second term of the objective function has exactly
this meaning, i.e., minimizing the coordinate of the reference point of each figure
without affecting the main objective (length minimization).

Constraints (5.2) define the value of variable length, while constraints (5.3)
and (5.4) are simple bounds on the feasible values of variables xi and yi, defining
the position of the the reference point of each piece i.

Finally constraints (5.5), stated in words at this preliminary stage, avoid
overlaps among pieces.

5.2 Using no-fit polygons

A possible way to translate constraints (5.5) makes use of the so-called no-fit
polygons, as defined in section 4.2. For each pair of figures i and j, i < j, we
calculate the no-fit polygon Uij. In order for pieces i and j not to overlap, we
need to enforce that their displacement vector vj − vi is not contained in the
no-fit polygon Uij, that is conditions (5.5) translate into:

vj−vi =

(
xj

yj

)
−

(
xi

yi

)
6∈ Uij ⇐⇒ vj−vi ∈ U ij, ∀ i, j ∈ P : i < j

5.2. USING NO-FIT POLYGONS 41

Since U ij is the complement of a closed polygon, it is highly non convex. So
we need to decompose it into polyhedral components in order to express condi-
tions (5.5) through linear constraints. We divide U ij into a set of mij disjoint
convex polyhedral components, assigning a component U

k

ij for each convex1 edge,
and a component U

k

ij for each set of concave2 edges, as illustrated in figure 5.2.
In this way we define a partition of U ij into a set of disjoint polyhedra U

k

ij,
called slices, which satisfy:

U
h

ij ∩ U
k

ij = ∅ ∀ h 6= k,

mij⋃

k=1

U
k

ij = U ij

x −x ij

j
y −y

i

U
__8

ij

U
__7

ij

U
__9

ij

U
__1

ij

U
__2

ij

U
__3

ij

U
__4

ij

U
__5

ijU
__6

ij

Uij

O

Figure 5.2: Partition of U ij into polyhedral “slices”.

Figure 5.2 shows a possible partition of U ij into slices. In this example,
all components but two are built around a single convex edge, while U

3

ij and
U

4

ij are built around a pair of concave edges each. This means that having a
“simple” convex figure does not simplify the problem, because we may need as
many components as the number of its edges.

Every slice U
k

ij is a polyhedron defined by linear inequalities of the form:

α(xj − xi) + β(yj − yi) ≤ γ

where α, β and γ are the coefficients of the line defining a facet of the polyhedron.
The whole slice can then be represented in a matrix form as:

U
k

ij = {u ∈ R2 : Ak
ij · u ≤ bk

ij}
1An edge is called convex if its supporting line does not intersect the interior of the polygon.
2An edge is called concave if its supporting line intersects the interior of the polygon.

42CHAPTER 5. AMIPMODEL FOR THE IRREGULAR NESTING PROBLEM

For every pair of pieces i and j, the displacement vector vj − vi has to lay
in one of these slices: we then introduce a binary variable for each of them:

zk
ij =

{
1 if vj − vi ∈ U

k

ij

0 otherwise
∀ i, j ∈ P : i < j, k = 1 . . .mij

and impose the constraint that exactly one among z1
ij, . . . , z

mij

ij has to be set to 1
(i.e. active at the same time). Now we can express the non-overlapping condition
(5.5) with the following linear constraints:

Ak
ij(vj − vi) ≤ bk

ij + M(1− zk
ij) · 1 ∀ i, j ∈ P : i < j, k = 1 . . .mij(5.6)

mij∑

k=1

zk
ij = 1 ∀ i, j ∈ P : i < j (5.7)

zk
ij ∈ {0, 1} ∀ i, j ∈ P : i < j, k = 1 . . .mij(5.8)

where M is a sufficiently large positive value (big-M value).

As can be easily seen from the formulation, constraints (5.6) are active if and
only if the corresponding binary variable has value 1; otherwise the big-M factor
deactivates the whole set of constraints.

It is worth noting that the number of these constraints grows rapidly with
the input size (number of pieces): there are at least 3 facets for each slice and the
number of slices is linear in the number of edges of the no-fit polygon. The relation
between edges of the no-fit polygon and edges of the relative pieces depends on
the type of polygons, as explained in section 4.4. Since each piece can interact
with any other piece, the number of such no-fit polygons is quadratic in the input
size.

5.3 Interpretation of the relaxed model

As we have seen in the previous section, the binary variable zk
ij is used to

activate exactly one of the slices for each U ij. When we try to solve the model
using the standard branch and bound technique, the integer (binary in this case)
requirement is relaxed and the corresponding linear formulation is solved.

In this case, for each pair i, j we are likely to have more than one zk
ij variables

with positive values (while their sum is still equal to 1), thus admitting solutions
which are not feasible in the original (integer) formulation.

The geometric interpretation of this fact is that with fractional values of zk
ij,

the linearized model considers as feasible a wider region, that covers part or even
all of the original no-fit polygon Uij.

5.4. LIFTING OF CONSTRAINT COEFFICIENTS 43

This behaviour is emphasized by the presence of the big-M factor which can
deactivate the whole constraint even for values of the zk

ij close to 1 but not integer.
For example the choice z1

ij = z2
ij = 1

2
in (5.6), makes feasible almost all vj−vi,

including the total overlap position vj = vi, since M >> maxk=1...mij
{|bk

ij|}.

5.4 Lifting of constraint coefficients

To reduce the negative effect of the big-M factor on the linear relaxation of
the model, we applied a lifting technique [NW88] on the constraint coefficients.
This methodology consists of eliminating the big-M factor and substituting it
with a series of minimum values that guarantee the constraints to be valid.

Let us concentrate on a single convex slice k for the pair of pieces i and j;
we have (say) tkij facets defining this region, each of them defined by a constraint
of the form:

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤ γkf
ij + M(1− zk

ij) ∀ f = 1 . . . tkij

We substitute the big-M factor with a new set of terms, one for each binary
variable related to the pair of pieces i and j:

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤ γkf
ij +

mij∑

h=1

θkfh
ij zh

ij

By exploiting the fact that
∑mij

h=1 zh
ij = 1, we can replace the constant term

γkf
ij by γkf

ij

∑mij

h=1 zh
ij thus obtaining the general form:

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤
mij∑

h=1

δkfh
ij zh

ij

where δkfh
ij = γkf

ij + θkfh
ij .

As already said, when the slice k is not active its binary variable zk
ij is set

to 0, and some other variable zh
ij will be set to 1. Then the computation of each

lifting coefficient δkfh
ij amounts to the maximum value of the left-hand side when

variable zh
ij has value 1. Formally:

δkfh
ij := max

(vj−vi) ∈ U
h

ij∩B

αkf
ij (xj − xi) + βkf

ij (yj − yi)

that can be computed by inspection on the vertices of the closed region U
h

ij ∩B,
where B is a sufficiently large bounding box for the feasible displacement vector
vj−vi, e.g. a rectangle with height 2 ·maxY and length 2 ·maxX (where maxX

is an upper limit on the marker length). Figure 5.3 shows the vertices of slice
U

h

ij where to evaluate the lifted coefficient δkfh
ij of variable zh

ij with respect to a

44CHAPTER 5. AMIPMODEL FOR THE IRREGULAR NESTING PROBLEM

j
y −y

i

x −x ij

Uij
k

Uij
h

Uij

2
*

m
ax

Y

2 * maxX

O

Figure 5.3: Lifting of shaded line coefficients of slice k into vertices of slice h.

generic facet f of slice U
k

ij , namely αkf
ij (xj − xi) + βkf

ij (yj − yi) = δkfh
ij (in dashed

bold line in the figure).

The enhanced model can now be rewritten as follows.

min length + ε
∑
i∈P

(xi + yi) (5.9)

s. t. xi + righti ≤ length ∀ i ∈ P (5.10)

lefti ≤ xi ∀ i ∈ P (5.11)

bottomi ≤ yi ≤ maxY − topi ∀ i ∈ P (5.12)

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤
mij∑

h=1

δkfh
ij zh

ij (5.13)

∀ i, j ∈ P : i < j, k = 1 . . . mij f = 1 . . . tkij
mij∑

k=1

zk
ij = 1 ∀ i, j ∈ P : i < j (5.14)

zk
ij ∈ {0, 1} ∀ i, j ∈ P : i < j, k = 1 . . .mij (5.15)

5.5 Guiding the search tree

In section 5.3 we explained the weakness of the relaxed formulation and its
consequences. One of the main drawbacks is the heavy use of branch and bound
to get integer values for the binary variables. The meaning of variable zk

ij set

5.5. GUIDING THE SEARCH TREE 45

to 1 is that pieces i and j assume a feasible relative position. When dealing
with more than two pieces, the relative positions among them can easily become
inconsistent. Let us make an example with three pieces A, B and C stacked one
above the other in the given order as shown in figure 5.4 (B lies above A, and C

lies above both A and B).

C

A

B

Figure 5.4: Assigned positions of three pieces A, B, and C.

For simplicity of notation, let us say that zup
AB represents the variable related

to the feasible region having piece B above (up) A. Suppose we run a branch
and bound scheme to get to this situation: we first fix the value of variable zup

AB

= 1, meaning that piece B lies above A. Then we set variable zup
BC = 1, meaning

that piece C lies above B. Now we get to the relation between piece A and C.
Here the consistent choice would be to fix zup

AC = 1; any other settings will lead
to an infeasible solution. However, for the relaxed model the choice zup

AC < 1 is
also feasible.

Suppose now that the branching strategy only sets the relation between A

and B (zup
AB = 1), and A and C (zup

AC = 1), but not the relation between pieces
B and C. In this case two situations may occur, as shown in figure 5.5.

C

B

A

C

A

B

Figure 5.5: Possible relative positions of three pieces A, B, and C, when only
two relative positions are specified.

If in the branching scheme we proceeded directly with branching on other
pieces (D, E, ...), without fixing zup

AC = 1, we might get to infeasible solutions
further down in the search tree that could have been detected before.

For this reason, we implemented a branching scheme that guarantees that
any new piece involved in a branching choice is positioned in a way to ensure

46CHAPTER 5. AMIPMODEL FOR THE IRREGULAR NESTING PROBLEM

feasibility with respect to the other pieces already subject to branching. In other
words, we tend to branch so as to completely determine first the relative positions
(slices) of 2 pieces (say A and B), then that of 3 pieces (A, B and, say, C), of 4
pieces (A, B, C and, say, D), and so on.

We impose such a scheme through the use of priority of branching among
variables: variables with higher priority are branched first.

We assign branching priorities to variables in the following way:

ψ = 10.000 ;
S = ∅ ;
while P 6= ∅ do

select a piece p ∈ P ;
for all q ∈ S do

k = 1 ;
for all slices U

k

pq do
assign priority ψ to variable zk

pq ;
ψ = ψ − 1 ;
k = k + 1 ;

end do
end do
S = S + p ;
P = P − p ;

end do

Figure 5.6: Algorithm for the branching priority assignment.

5.6 Computational results

As already explained, the size of the model grows very rapidly with the input
size. Thus this model can only be used for instances of limited size.

We created some broken glasses instances, where a square region is broken
at random into n polygonal pieces. This kind of instances is important because
one knows in advance the value of the optimal solution, which is the length of
the entire glass. Figures 5.7 shows some of these instances.

The computational results3 on the instances above are reported in table 5.1.

For every instance, we report:

• the name of the instance;
3Solved with CPLEX 7.0 on a AMD Athlon 1.2 GHz with 512 Mbyte RAM

5.6. COMPUTATIONAL RESULTS 47

1 2

3
4

5 3

4

7

2

1

5

6

1 2

3

45
6

7
8

9

Figure 5.7: Broken glass instances.

INSTANCE PIECES INT. VAR. PRIORITY NODES TIME GAP

Glass1 5 73 no 470 0.26” 0%
yes 111 0.11” 0%

Glass2 7 173 no 100,000 97.40” 32.08%
yes 11,414 13.29” 0%

Glass3 9 302 no 100,000 157.76” 59.82%
yes 100,000 203.48” 58.70%

Table 5.1: Computational results of the MIP model for the irregular nesting
problem.

• the number of pieces involved;

• the number of integer (binary) variables;

• the flag for activating the priority branching rule;

• the total number of nodes in the branch and bound tree;

• the time to solve the model (in CPU seconds);

• the gap between the best solution found and the best lower bound in case
the solver reached the maximum number of nodes allowed (100,000).

As one can see, only the smaller instances could be solved to optimality within
the given node limit, while for the bigger ones, we could not get the optimum.
Furthermore, the use of the branching priorities to guide the construction of the
search tree, helps the solver considerably; indeed, the second instance (Glass 2)
could only be solved to optimality using this strategy.

48CHAPTER 5. AMIPMODEL FOR THE IRREGULAR NESTING PROBLEM

Chapter 6

A MIP model for the Multiple
Containment Problem

6.1 The Multiple Containment Problem

As explained in chapter 2, the usual way to build a layout is to place the
“big pieces” first and then to insert the remaining ones in the holes left by the
big pieces. In this chapter we deal with this second problem, called multiple
containment problem: given a set P of n possibly different “small” pieces called
trims, and a setH of m irregular polygons called holes, find the best assignment of
pieces into holes and their relative displacement vectors, such that the maximum
number (or total area) of pieces is placed and the maximum hole area is used.1

Note that in this problem we are not requested to place all pieces, nor to use all
holes, but to chose the holes and pieces that maximize our objective function.
To clarify this concept, let us make an example. If we have many trims and a
few holes we have to decide which pieces to place and in which holes, and it may
happen that not all pieces are placed. Conversely, if we have a few pieces and
many holes, we want to fill the holes as much as possible, so we have to decide
which holes to use and which pieces to place in the used holes.

A first approach to this problem is to use a greedy strategy: take a piece
at a time and scan all the available holes starting from the smallest one; once
you find a hole that can fit the piece, place it using the given placement policy
(e.g. bottom-left). This strategy has two main drawbacks: the first is that any
placement policy can compromise the free space for the other pieces, as already
discussed in chapter 3; the second one is that assigning a piece to a certain hole
in a greedy fashion, can compromise the global objective function.
For example, suppose we only want to consider the area of pieces and holes
without any geometrical consideration. We are given two holes (h1, h2), the first

1The used hole area is the region of a hole covered by trims.

49

50 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

with area 90 and the second with area 95, and a set of 4 pieces (p1, p2, p3, p4) with
area 85, 50, 40 and 10, respectively. A greedy strategy would place the biggest
piece p1 in the smallest hole h1, then pieces p2 and p3 in hole h2; at this point
piece p4 cannot be placed anymore and we have a wasted area of 5 in hole h1 and
5 in hole h2. Conversely, a smart assignment would place p2 and p3 in hole h1,
and then p1 and p4 in hole h2; this would allow placing all pieces with no wasted
area at all.

This simplified problem is well known in the Operation Research community
and is called the knapsack problem. However, when the geometrical considerations
are taken into account, the problem becomes very difficult and it is not easy to
write an effective mathematical model to represent it.

6.2 Geometrical considerations

We observed that trim pieces can very often be well approximated by their
bounding box (although in some cases, the real piece covers less than 50% of its
bounding box area). In this way we only have to deal with the interaction among
rectangles, and thus only have to check for vertical and horizontal interaction,
thus avoiding the nasty problem of inter-penetration due to non convexity of the
pieces. Figure 6.1 shows the set of pieces that composes a shirt: on the left the
big pieces, on the right the small ones and their corresponding bounding box.

big pieces

small pieces

Figure 6.1: Big and small pieces of a shirt.

Another important consideration is that the set of holes comes from the
geometrical difference of the stock sheet and the union of already placed “big”
pieces. Depending on the exact position of these pieces, this difference may consist
of distinct disjoint polygons, or one or more polygonal components connected
together by narrow strips (see the dark grey region of figure 6.2). Unfortunately,
when the holes are too small or the strips are too narrow, they are not useful,
since no pieces can fit into them. Actually, what we are really interesting in, is

6.2. GEOMETRICAL CONSIDERATIONS 51

not the original shapes of the geometrical difference, but their usable part, e.g.,
the area of the holes that can be occupied by the given trims.

Figure 6.2: Placement of big pieces, and relative holes.

Each piece has its own dimensions, therefore a hole that can contain a certain
piece, may not be useful for another one. In our simplification process we build
a rectangle with dimension equal to the minimum length and height of all trim
pieces, and call it the minBox. (Actually, since such dimensions only consider
the bounding box of each polygon, but not their real shape, we further reduce
the minBox by a certain factor that we fixed heuristically to 0.8). Now using
the Minkowski difference procedure illustrated in chapter 4 we calculate the free
movement region of our minBox within the original holes, thus defining a set of
so-called usable holes. Figure 6.3 shows in light grey the original holes and, in

Figure 6.3: Original holes and their usable region.

black, the usable holes.

52 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

6.3 The grid

Once we have derived the usable holes, we can start building their relative
grids in the following way. First we calculate the average length and height of the
trims (aveLength and aveHeight); then for each hole,2 we take its bounding box
and map it into a grid where each cell has dimensions aveLength and aveHeigth,
respectively.

For every row we draw a horizontal line through its center point and store
the start and end points where the line intersects the figure; if the shape is non
convex and the line intersects many times the hole border, we store only the
first and last intersection points. Furthermore, we store the actual length of each
row as the sum of lengths of such internal segments. In a similar way, we draw
vertical lines through the column centers and obtain the start and end points of
the columns together with their actual length.

Figure 6.4 shows an example of a specific hole and its relative measurement
points: the dots indicate the starting and ending points of the internal segments;
in this example, row 3 is the only one made up of two distinct segments.

�� ��

�� ��

�	
��

��

��

��

����

������

��
������ ����

Figure 6.4: Grid of a specific hole and relative measurement points.

2From now on, by the term hole we mean a usable hole.

6.4. THE MODEL 53

6.4 The model

Now we have all the information we need to start building the model. We
are given a set P of n possibly different trims, and a set H of m (usable) holes.
For each hole h ∈ H we compute:

• holeArea: the usable area of the hole;

• origXh, origYh: the coordinate of the reference point (lower left point) of
the hole bounding box;

• holeLengthh, holeWidthh: the hole bounding box dimensions;

• cellLengthh, cellWidthh: the average length and height of each cell in the
hole (it may be different from hole to hole because of the rounding factor);

• Rh, Ch: the number of rows and columns in the hole.

Furthermore, for each row and column of every hole we have the following input
data, defining the row/column starting point, ending point and length/width,
respectively:

rowStarthr
rowEndh

r

rowLengthh
r

∀ h ∈ H, r = 1 . . . Rh

colStarthc
colEndh

c

colWidthh
c

∀ h ∈ H, c = 1 . . . Ch

To define our model we need the following variables:

• Uh ∈ {0, 1} ∀ h ∈ H
a binary variable for each hole (= 1 whenever the hole is active, e.g. it is
used to place some pieces);

• Xh
rc, Y h

rc ∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch

real positive variables defining the exact coordinate position of the lower
left point of the bounding box of each piece inside cell h;

• Zhp
rc ∈ {0, 1} ∀ h ∈ H, p ∈ P , r = 1 . . . Rh, c = 1 . . . Ch

a binary variable to decide if piece p is placed in cell h.

54 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

We can now formulate the whole model as:

min
∑

h∈H
(holeAreah · Uh −

Rh∑
r=1

Ch∑
c=1

∑
p∈P

pieceAreap · Zhp
rc)

+ ε
∑

h∈H

Rh∑
r=1

Ch∑
c=1

(Xh
rc + Y h

rc) (6.1)

s. t.
∑
p∈P

Zhp
rc ≤ Uh ∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch (6.2)

∑
p∈P

pieceAreap

Rh∑
r=1

Ch∑
c=1

Zhp
rc ≤ holeAreah ∀ h ∈ H (6.3)

Xh
rc +

∑
p∈P

lengthp Zhp
rc ≤ Xr, c+1

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch − 1(6.4)

Xh
rc +

∑
p∈P

lengthp Zhp
rc ≤ rowEndh

r

∀ h ∈ H, r = 1 . . . Rh, c = Ch(6.5)
∑
p∈P

lengthp

Ch∑
c=1

Zhp
rc ≤ rowLengthh

r

∀ h ∈ H, r = 1 . . . Rh (6.6)

Y h
rc +

∑
p∈P

widthp Zhp
rc ≤ Yr+1, c

∀ h ∈ H, r = 1 . . . Rh − 1, c = 1 . . . Ch(6.7)

Y h
rc +

∑
p∈P

widthp Zhp
rc ≤ colEndh

c

∀ h ∈ H, r = Rh, c = 1 . . . Ch(6.8)
∑
p∈P

widthp

Rh∑
r=1

Zhp
rc ≤ colWidthh

c

∀ h ∈ H, c = 1 . . . Ch (6.9)

max(rowStarthr , origXh + (c− 1) · cellLengthh) ≤ Xh
rc

≤ min(rowEndh
r , origXh + (c) · cellLengthh)

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch (6.10)

max(colStarthc , origYh + (r − 1) · cellWidthh) ≤ Y h
rc

≤ min(colEndh
c , origYh + r · cellWidthh)

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch (6.11)

Uh ∈ {0, 1} ∀ h ∈ H (6.12)

Zhp
rc ∈ {0, 1} ∀ h ∈ H, p ∈ P , r = 1 . . . Rh, c = 1 . . . Ch(6.13)

6.5. CONVERTING A SOLUTIONOF THEMODEL TOA FEASIBLE LAYOUT55

As already mentioned, our main goal is to minimize the unused area in each
active hole; furthermore, the second term of the objective function (6.1) minimizes
the placement position of the trims within the cell.

Constraints (6.2) activate or deactivate all the selection variables of a single
cell, depending on the value of the relative hole activation variable Uh. Fur-
thermore, since Uh is a binary variable, when active (equal to 1) this constraint
imposes that only one piece can be assigned to a single cell.

Constraints (6.3) are typical capacity knapsack constraints: in this case they
refer to the area and impose that the total area of all the pieces placed in a certain
hole cannot exceed the area of the hole itself.

Constraints (6.4) impose that any piece in cell (r, c+1) must have x-coordinate
greater or equal to the rightmost point of the piece positioned in cell (r, c), while
constraints (6.5) impose a bound on the rightmost point of the piece positioned
in the last column of each cell. The next set of constraints (6.6) are again a sort
of capacity knapsack constraints, but refer to the total length of each row: the
sum of lengths of all the pieces placed in all cells of a certain row cannot exceed
the length of that row.

The next three sets of constraints (6.7), (6.8) and (6.9), are the equivalents
on columns of the last three sets of constraints on rows; they limit the relative
y-coordinate of each cell in a column and limit the total width of each column.

Finally constraints (6.10) and (6.11) impose lower and upper bounds respec-
tively to the x-coordinate and y-coordinate of each cell.

6.5 Converting a solution of the model to a feasi-
ble layout

Once the model has been solved we obtain the list of active holes, and the
position of the chosen pieces within those holes. Now we can replace the bounding
boxes that we have used with their original shape. Since the model deals with
rectangles, it does not take into account the rotation of the pieces, but only their
position. As a result, when we replace the original shapes, we must assign one
of the possible rotations to each piece. For practical reasons, when possible, we
assign alternative rotations to consecutive pieces with the same shape, e.g., if we
place two consecutive copies of the same piece we assign rotation 0 to the first
and rotation 180◦ to the second, and so on.

The solution of our model suffers from all the geometrical simplifications that
we applied in order to make it solvable. First of all, we consider the bounding
box of the trims, instead of their original shape, thus increasing the effective area;
then we use a reduction coefficient on the dimension to compensate somehow this

56 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

choice. Furthermore we only check the piece interaction on the lines through the
cell centers, but we do not consider any other possible intersection.

For all these reasons, when we actually replace the bounding boxes by the
original shapes, we might get a solution with many overlapping pieces, both
among trims and among trims and big pieces. Figure 6.8 shows the solution of
our model to the instance of figure 6.2: usable holes are drawn in light grey with
black borders and their corresponding cell centers are marked by a cross; placed
trim pieces are drawn in dark gray. As the figure clearly shows, there are many
overlapping pieces, and many others extend outside the assigned hole, although
the model considers this a feasible solution.

Figure 6.5: Trim pieces allocated by the model.

The main reason of overlap is that there are no geometrical relations imposed
among pieces assigned to cells of different rows/columns. Figure 6.6 presents an
example that shows the weakness of the model; as before, cell centers are marked
with a cross, and are labeled according to their position. Piece A is assigned to
cell (1, 1), piece B to cell (1, 2) and piece C to cell (2.1). Pieces A and B lie on

6.5. CONVERTING A SOLUTIONOF THEMODEL TOA FEASIBLE LAYOUT57

the same row (1) and satisfy all imposed constraints: both starting and ending
points are within the hole borders, and the sum of their length is less than the
hole length. Pieces A and C lie on the same column (1) and satisfy all constraints
regarding starting and ending points as well as total width. Piece B and piece
C occupy the second column and second row, respectively. They both satisfy all
model constraints, since they lay in different rows and columns, but they clearly
intersect.

2, 1

1, 1 1, 2

2, 2

A

C

B

Figure 6.6: Weakness in the geometrical constraints of the model.

It is not possible to take effectively into account in our model all geometrical
interactions related to the original shape and dimension of the pieces. What we
can do, instead, is to try to correct the solution obtained by our model by elim-
inating the overlap among figures. This process can be done using an algorithm
introduced by Li and Milenkovic [LM95], based on a linear version of the model
that we analyzed in chapter 5. In this case, all pieces are already placed, and
we know the relative positions of each pair of pieces; thus we can fix the variable
which selects a slice in the complement of the corresponding no-fit polygon (or,
equivalently, include in the model only the constraints relative to that particular
slice). The resulting model is linear, and therefore very easy to solve (if a feasible
solution exists). We use this model to separate overlapping pieces and obtain
(if possible) the feasibility of the solution. Unfortunately, the separation routine
cannot always guarantee to find a feasible solution, because pieces overlap too
much, or because they cannot move beyond the stock sheet borders. Figure 6.7
shows the solution obtained by our model, and the corresponding solution ob-
tained using a greedy strategy. Although the efficiency of the model solution is
higher than the greedy one, the figure shows many overlapping pieces, and, for
this instance, the separation algorithm fails to find a feasible solution. In these
cases, a possible way to correct the solution is to remove, one by one, the pieces
that present the largest overlap, until the solution becomes feasible.

Another possibility is to divide the trims into groups with similar dimensions,
and to run the model separately for each group. Indeed, we observed that when
the pieces involved in the model have more or less the same shape and dimension,

58 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

Length: 1654.02 Eff.: 87.25%Pieces: 50/76

Pieces: 45/76 Length: 1652.52 Eff.: 85.86%

Figure 6.7: Infeasible solution obtained by our model (top), and a corresponding
feasible solution obtained by a greedy strategy (bottom).

6.5. CONVERTING A SOLUTIONOF THEMODEL TOA FEASIBLE LAYOUT59

the geometrical problems discussed above are not likely to occur, or, if they occur,
the overlap induced is small and is usually repared by our separation algorithm.
If we apply this technique to our instance, we obtain the solution of figure 6.8;
this solution also presents some overlap, but this time the separation algorithm
is able to remove them.

Pieces: 34/76 Length:1641.49 Eff.: 84.07%

Figure 6.8: Solution obtained by our model for a group of “special” trims.

Figure 6.9 shows the final feasible solution obtained by our model after ap-
plying the separation routine, and the solution obtained by the greedy algorithm.
The model placed 14 pieces compared to the 10 pieces placed by the greedy algo-
rithm; furthermore, the efficiency of our solution is 83.97% compared to 81.54%
of the greedy solution, for a total improvement of about 2.5%.

The same process is then repeated on the remaining groups of trims, until no
more pieces can be fit. In figure 6.10 a second group of “small” pieces are placed
with both algorithms. The solution proposed by the model and successively
corrected by the separation routine placed 10 trims and achieved an efficiency
of 86.13%, while the greedy algorithm was able to place only 8 trims for a total
efficiency of 85.67%.

60 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

Pieces: 34/76 Length: 1643.53 Eff.: 83.97%

Eff.: 81.54%Pieces: 30/76 Length: 1634.55

Figure 6.9: Feasible solution obtained by our model (top), and a corresponding
feasible solution obtained by a greedy strategy (bottom), for a group of “special”
trims.

6.5. CONVERTING A SOLUTIONOF THEMODEL TOA FEASIBLE LAYOUT61

Pieces: 44/76 Length: 1665.50 Eff.: 86.13%

Pieces: 42/76 Length: 1660.87 Eff.: 85.67%

Figure 6.10: Feasible solution obtained by our model (top), and a corresponding
feasible solution obtained by a greedy strategy (bottom), for a group of “small”
trims.

62 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

6.6 Computational results

In our algorithm, we use the solution provided by the model for the multiple
containment problem as a first solution for the placement of the trims; we then
run the separation routine to remove overlap among pieces: we call this algorithm
the smart placement algorithm.

We test this algorithm on a set of instances taken from the garment industry,
and compare them to those obtained by the greedy algorithm.

The solution obtained are shown in the next figures, and the computational
results3 are reported in table 6.1

The running time of the algorithm for building and solving the model depends
on the number of different pieces, and the number and size of the holes. For most
of the instances, this time goes from less than 1 second to a few seconds, and is
definitively comparable to the time needed by the greedy algorithm.

INSTANCE PIECES TRIMS LENGTH EFFICIENCY

82 - group 1
smart 34/76 14 1643.53 83.97%
greedy 30/76 10 1634.55 81.54%

82 - group 2
smart 44/76 10 1665.50 86.13%
greedy 42/76 8 1660.87 85.67%

101
smart 44/50 10 3840.28 82.12%
greedy 42/50 8 3838.27 81.57%

385
smart 44/54 22 4697.05 83.74%
greedy 39/54 17 4671.81 83.58%

Table 6.1: Computational results of the algorithm for the multiple containment
problem.

3Using CPLEX 7.0 on a AMD Athlon 1.2 GHz with 512 Mbyte RAM

6.6. COMPUTATIONAL RESULTS 63

Pieces: 44/50 Length: 3840.28 Efficiency: 82.12 %

Length: Pieces: 42/50 3838.27 Efficiency: 81.57 %

Figure 6.11: Feasible solution obtained by our model (top), and a corresponding
feasible solution obtained by a greedy strategy (bottom) for problem instance
101.

64 CHAPTER 6. MULTIPLE CONTAINMENT PROBLEM

Pieces: 44/54 Length: 4697.05 Efficiency: 83.74 %

Pieces: 39/54 Length: 4671.81 Efficiency: 83.58 %

Figure 6.12: Feasible solution obtained by our model (top), and a corresponding
feasible solution obtained by a greedy strategy (bottom) for problem instance
385.

Chapter 7

Conclusion

We analyzed the irregular nesting problem, which belongs to the general
class of cutting & packing problems. The problem is strongly NP-hard, and its
geometrical aspects make really hard its solution in practice.

We first gave an overview of the different approaches that have been proposed
in the literature to deal with the problem in the various industrial fields where it
arises.

In chapter 3 a first approach to the problem is analyzed: pieces are rep-
resented by bitmaps, and the overlap check is done via straightforward bitwise
comparison. We designed, implemented and tested a new algorithm for the auto-
matic nesting of irregular pieces: different strategies were used to find an initial
solution, and a tabu search technique has been used to explore neighbor solutions.
This approach was easy to implement, and produced good quality solutions.

Furthermore, we introduced a new alternative bitmap representation and an
effective technique to check for overlap, which allowed to reduce the execution
time. We investigated the behavior of the algorithm with different tabu param-
eters, and applied the concepts of “intensification” and “diversification” of the
search to this particular problem.

We then switched to a different approach, where figures are represented by
polygons defined by the corresponding vertices. In chapter 4 we described all the
computational geometry aspects involved in this approach, and in particular the
concept of no-fit polygon and its use to detect overlap among pieces.

In chapter 5 we defined a MIP model for the irregular nesting problem based
on the one proposed by Daniels, Li and Milenkovic. We enhanced this model
by applying a lifting technique to the constraint coefficients, in order to reduce
the negative effect of big-M terms. Furthermore, we implemented a branching
technique based on priorities to guide the visit of the search tree, and showed
that this methodology leads to improved solution times.

Another problem related to the irregular nesting is the placement of small
pieces into some holes. Indeed, the usual way to build a solution is to place

65

66 CHAPTER 7. CONCLUSION

the big pieces first, and then insert the remaining ones (trims) in the holes left
by the big pieces. This problem is known as the multiple containment problem.
Choosing the pieces to put in the holes is not an easy task, and most of the times
a greedy strategy proves not adequate.

In chapter 6 we defined a new knapsack type model for the multiple con-
tainment problem, based on geometrical considerations. We designed, imple-
mented and tested this model on real-world instances, and showed that the results
archived by this algorithm are almost always better than the solution provided
by a greedy algorithm.

Finally, we introduced a new standard specification to represent instances
of the nesting problem. We converted all the instances found in the literature
to this standard, and provided a web site (NESTLIB) where this data can be
downloaded by the scientific community to test different algorithms.

Acknowledgements

This reaserach has been supported by the CNR/MIUR project n. CU.03.00107.PF25
“Metodi e sistemi di supporto alle decisioni"

67

68 CHAPTER 7. CONCLUSION

Appendix A

NESTLIB specification

This appendix describes the file format that we propose for the two-dimensional
irregular nesting problem.

Each line represents a field; it starts with the field name, followed by a colon
(:) and then by the value of the field. The Point field does not have a name,
but just the values of its x and y coordinates.

A first block of information describes the model and the composition of the
marker.

Model: modelName
Sizes: multiplicity * size
Sizes: multiplicity * size
. . .
Width: width

There is a line for each different size, reporting the size multiplicity and
name; the implied size index starts from 0. The model block ends with the Width
field which defines the width of the marker region.

Then there is a block of information for each single piece.

Name: pieceName
IdSize: sizeIndex
Quantity: quantity
Symmetric: symmetricFlag
InitRot: initialRotation
RotStep: rotationStep
Num_Points: numberOfPoints
x_coord y_coord
x_coord y_coord
x_coord y_coord
. . .

69

70 APPENDIX A. NESTLIB SPECIFICATION

Each block reports:

• the name of the piece

• the size index of the dress it belongs to

• the number of copies of this piece in each dress (Quantity)

• the Symmetric flag that indicates if this piece automatically generates its
symmetric piece along the y-axis (in this case also the symmetric piece has
a number of copies equal to the original one)

• the initial rotation of the piece w.r.t. the shape defined

• the rotation steps allowed to this piece (multiples of 90◦)

• the number of points that describes the shape.

After the Num_Points field there are exactly numberOfPoints lines defining
the x and y coordinates of each vertex of the polygon. The vertices are listed in
counterclockwise order, so that the inside of the polygon lies to the left of each
directed edge. All coordinate values are expressed in millimeters.

A comment line starts with the character % at the beginning of the line.

Example

This example shows the input file in our format for the instance SHAPES 0
provided by Oliveira & Ferreira.

71

% Input file for test SHAPES 0 by Oliveira & Ferreira
Model: SHAPES0
Sizes: 1 * M
Width: 4000

Name: f0
IdSize: 0
Quantity: 15
Symmetric: 0
Rotate90: 0
RotStep: 90
Num_Points: 8
0 0
200 0
200 300
1200 300
1200 0
1400 0
1400 500
0 500

Name: f1
IdSize: 0
Quantity: 7
Symmetric: 0
Rotate90: 0
RotStep: 90
Num_Points: 4
0 600
600 0
1200 600
600 1200

Name: f2
IdSize: 0
Quantity: 9
Symmetric: 0
Rotate90: 0
RotStep: 90
Num_Points: 11

72 APPENDIX A. NESTLIB SPECIFICATION

0 200
600 200
600 0
700 0
1100 400
1100 600
800 600
800 300
200 300
200 600
0 600

Name: f3
IdSize: 0
Quantity: 12
Symmetric: 0
Rotate90: 0
RotStep: 90
Num_Points: 12
0 200
200 200
200 0
400 0
400 200
600 200
600 400
400 400
400 600
200 600
200 400
0 400

Bibliography

[AA76] M. Adamowicz and A. Albano, Nesting two dimensional shapes in
rectangular modules, Computer Aided Design 8/1 (1976), 27–33.

[ABJ90] C. Amaral, J. Bernardo, and J. Jorge, Marker making using automatic
placement of irregural shapes for the garment industry, Computers
and Graphics (1990), no. 14/1, 41–46.

[Arb93] A. Arbel, Large scale optimization methods applied to the cutting stock
problem of irregular shapes, International Journal of Production Re-
search 31/2 (1993), 483–500.

[Art66] R.C. Art, An approach to the two-dimensional irregular cutting stock
problem, Tech. Report 36-Y08, IBM Cambridge Scientific Centre Re-
port, 1966.

[AS80] A. Albano and G. Sapuppo, Optimal allocation of two-dimensional
irregular shapes using heuristic search methods, IEEE Transacions on
systems, Man, and Cypernetics (1980), no. 10/5, 242–248.

[AST92] P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric
searching in geometric optimization, Proceedings of the 3rd ACM-
SIAM Symposium on Discrete Algorithms, 1992, pp. 72–82.

[BG79] D. Böme and A. Graham, Practical experiences with semi-automatic
and automatic part nesting methods, Computer Applications in the
Automation of Shipyard Operation and Ship Design III (C. Kuo,
K. MacCallum, and T. Williams, eds.), North-Holland Publishing
Company, 1979, pp. 213–220.

[BHW93] J. Blazewicz, P. Hawryluk, and R. Walkowiak, Using a tabu search
approach for solving the two-dimensional irregular cutting problem,
Annals of Operations Research (1993), no. 41, 313–327.

[DBB84] D. Dori and M. Ben-Bassat, Efficient nesting of conruent convex fig-
ures, Communications of the ACM 27/33 (1984), 228–235.

73

74 BIBLIOGRAPHY

[DDB98] K.A. Dowsland, W.B. Dowsland, and J.A. Bennel, Jostling for posi-
tion: local improvement for irregular cutting patterns, Journal of the
Operational Research Society (1998), no. 49, 647–658.

[DLM94] K. Daniels, Z. Li, and V. Milenkovic, Multiple containement methods,
Tech. Report TR-12-94, Harvard University, 1994.

[FS75] H. Freeman and R. Shapira, Determining the minimum area encasing
rectangle for an arbitrary closed curve, Communications of the ACM
81/7 (1975), 409–413.

[GJ79] M. Garey and D. Johnson, Computers and intractability: A guide
to the theory of np-completeness, W.H. Freeman and Company, San
Francisco, 1979.

[Glo89] F. Glover, Tabu search - part 1, ORSA Journal on Computing 1
(1989), no. 3, 190–206.

[Glo90] , Tabu search - part 2, ORSA Journal on Computing 2 (1990),
no. 1, 4–32.

[GRS83] L. Guibas, L. Ramshaw, and J. Stolfi, A kinetic framework for com-
putational geometry, Proceedings of the 24th IEEE Symposium on
Foundations of Computer Science, 1983, pp. 100–111.

[HdW90] A. Hertz and D. de Werra, The tabu search metaheurisitc: how we
used it, Annals of Mathematics and Artificial Intelligence (1990),
no. 1, 111–121.

[HL93] J. Haistermann and T. Lengauer, Efficient automatic part nesting
on irregular and inhomogeneous surfaces, Proceedeings of 4th ACM-
SIAM Symposium on Discrete Algorithms, SODA93, 1993, pp. 251–
259.

[JFR92] P. Jain, P. Fenyes, and R. Richter, Optimal blank nesting using simu-
lated annealing, Transactions of the ASME (1992), no. 114, 160–165.

[KL91] F. Karoupi and M. Loftus, Accomodating diverse shapes within hexag-
onal pavers, International Journal of Production Research (1991),
no. 29/8, 1507–1519.

[KOS91] A. Kaul, M.A. O’Connor, and V. Srinivasan, Computing minkowski
sums of regular polygons, Proceedings of the Third Canadian Con-
ference on Computational Geometry (Vancouver, British Columbia),
1991.

BIBLIOGRAPHY 75

[LM95] Z. Li and V. Milenkovic, Compaction and separation algorithms for
non-convex polygons and their applications, European Journal of Op-
erational Research (1995), no. 84, 539–561.

[LMPD92] H. Lutfiyya, B. McMillin, D.A.P. Poshyanon, and C. Dagli, Composite
stock cutting through simulated annealing, Mathematical Computer
Modelling (1992), no. 16/1, 57–74.

[MDL92] V. Milenkovic, K. Daniels, and Z. Li, Placement and compaction of
non-convex polygons for clothing manifacture, Proccedings of the 4th
Canadian Conference on Computational Geometry (St. John’s, New-
foundland), August 10-14 1992, pp. 236–243.

[Min03] H. Minkowski, Volumen und oberfläche, Mathematische Annalen
(1903), no. 57, 447–495.

[NW88] G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial opti-
mization, Wiley, New York, 1988.

[OF93] J.F.C. Oliveira and J.A.S. Ferreira, Algorithms for nesting problems,
Applied Simulated Annealing (R.V.V. Vidal, ed.), Springer-Verlag,
Berlin, 1993, Lecture Notes in Economics and Mathematical Systems
396, pp. 255–274.

[OGF00] J.F. Oliveira, A.M. Gomes, and S. Ferreira, Topos a new constructive
algorithm for nesting problems, OR Spectrum (2000), no. 22, 263284.

[PS85] F.P. Preparata and M.I. Shamos, Computational geometry, Springer-
Verlag, New york, NY, 1985.

[QS87] W. Qu and J. Sanders, A nesting algorithm for irregular parts and
factors affecting trim losses, International Journal of Production Re-
search (1987), no. 25/3, 381–397.

[Ser82] J. Serra, Image analysis and mathematical morphology, Academic
Press, New York, 1982.

[Tàv89] J. Tàvora, Path planning for a class of cutting operations, Proceedings
of SPIE Meeting, Applications of Artificial Intelligence (M. Trivedi,
ed.), vol. VII, SPIE 1095, 1989, pp. 405–415.

