Capitolo 11

Il criterio di Nyquist

11.1 Introduzione

Si consideri il sistema descritto da una funzione razionale propria W(s) e retroazionato da una reazione H(s) = k = costante:

La funzione di trasferimento del sistema retro
azionato in questo capitolo sarà denotata con $T_k(s)$ e il suo valore è

$$T_k(s) = \frac{W(s)}{1 + kW(s)}$$
(11.1)

La stabilità BIBO del sistema (11.1) è equivalente al fatto che $T_k(s)$ sia priva di poli nel semipiano chiuso $\Re e s \ge 0$ e il criterio di Nyquist, che andiamo ad esporre, fornisce una condizione necessaria e sufficiente per la stabilità BIBO. Tale condizione è basata sulla struttura geometrica del diagramma polare di $W(j\omega)$, ossia dall'immagine, secondo la funzione $W(\cdot)$, dell'asse immaginario:

Il critero è utile soprattutto quando non è disponibile una descrizione matematica precisa del sistema in catena diretta, dal momento che i valori di $W(j\omega)$ possono egualmente essere ottenuti per via sperimentale dalla rilevazione della risposta in regime permanente, in corrispondenza a ingressi sinusoidali di varie pulsazioni. Da questo punto di vista, esso è più efficiente dei criteri algebrici (tipo Routh-Hurwitz), basati sulla verifica che il polinomio a denominatore di $T_k(s)$ non abbia zeri a parte reale non negativa per il valore scelto di k. D'altra parte, il diagramma di Nyquist tiene conto dell'influenza sulla stabilità di un parametro soltanto (il valore di k), mentre i test di tipo algebrico consentono di valutare l'influenza della stabilità di più parametri simultaneamente. Al riguardo, si vedano ad esempio i metodi esposti nel capitolo 14 e basati sul teorema di Kharitonov.

11.2 Due proprietà delle funzioni di variabile complessa

Premettiamo all'enunciazione del criterio due risultati che hanno carattere di lemma, basati entrambi sulla teoria delle funzioni di variabile complessa.

Lemma 11.2.1 Se nel punto $s_0 \in \mathbb{C}$ la funzione meromorfa¹ W(s) ha uno zero o un polo isolato di ordine ν , la funzione

$$F(s) = \frac{W'(s)}{W(s)} \tag{11.2}$$

ha in s_0 un polo del primo ordine, con residuo = ν se s_0 è uno zero, e $-\nu$ se s_0 è un polo di W(s)

PROVA In entrambi i casi W(s) può essere espressa come

$$W(s) = (s - s_0)^{\pm \nu} \tilde{W}(s)$$

dove $\tilde{W}(s)$ è analitica e non nulla in un intorno di s_0 . Ma allora si ha

$$F(s) = \frac{\pm\nu(s-s_0)^{\pm\nu-1}\tilde{W}(s) + (s-s_0)^{\pm\nu}\tilde{W}'(s)}{(s-s_0)^{\pm\nu}\tilde{W}(s)} = \frac{\pm\nu}{s-s_0} + \frac{\tilde{W}'(s)}{\tilde{W}(s)}$$
(11.3)

dove la funzione $\tilde{W}'(s)/\tilde{W}(s)$ è analitica nell'intorno di s_0 .

Lemma 11.2.2 [PRINCIPIO DELL'ARGOMENTO] Sia

$$\gamma: [a,b] \to \mathbb{C}: t \mapsto \gamma(t) \tag{11.4}$$

una curva semplice chiusa nel piano complesso s, e sia W(s) una funzione razionale priva di zeri e di poli sulla curva γ .

Siano inoltre Z il numero degli zeri di W(s) interni alla curva $\gamma \in P$ il numero dei poli di W(s) interni alla curva γ , contati ciascuno con la propria molteplicità. So $W(\gamma)$ à l'immagino di γ secondo la mappa

Se $W(\gamma)$ è l'immagine di γ secondo la mappa

$$W(\cdot): s \mapsto W(s), \tag{11.5}$$

allora

i) $W(\gamma)$ è a sua volta una curva chiusa;

¹Una funzione complessa di variabile complessa si dice meromorfa se è analitica ovunque, salvo un insieme di punti isolati nei quali la funzione ha delle singolarità polari. In questo capitolo W(s) sarà sempre una funzione razionale.

11.2. RISULTATI PRELIMINARI

ii) se γ è percorsa in senso orario, il numero N degli aggiramenti antiorari dell'origine da parte del punto W(s) mobile su $W(\gamma)$ è dato da

$$N = P - Z. \tag{11.6}$$

PROVA Applichiamo il teorema dei residui alla funzione meromorfa F(s) = W'(s)/W(s), indicando con

$$\mathfrak{z}_1, \mathfrak{z}_2, \ldots \mathfrak{z}_t, \qquad m_1, m_2, \ldots, m_t$$

$$(11.7)$$

gli zeri di W(s), con le corrisponenti molteplicità, e con

$$\mathfrak{p}_1, \mathfrak{p}_2 \dots, \mathfrak{p}_r, \qquad n_1, n_2, \dots, n_r \tag{11.8}$$

i poli di W(s), con le corrispondenti molteplicità. Per il lemma precedente, in tutti i punti $\mathfrak{z}_i \in \mathfrak{p}_j$ la funzione F(s) ha poli semplici, con residui $m_i \in -n_j$, rispettivamente. Il teorema dei residui afferma allora (si ricordi che γ è percorsa in senso antioratio)

$$\oint_{\vec{\gamma}} F(s)ds = -2\pi j \left(\sum_{h=1}^{t} m_h - \sum_{h=1}^{r} n_h \right) = 2\pi j (P - Z)$$
(11.9)

Tenuto conto che $W(\gamma)$ si ottiene componendo la mappa γ e la mappa W:

$$W(\gamma(\cdot)): [a,b] \to \mathbb{C} \to \mathbb{C}: t \mapsto \gamma(t) \mapsto W(\gamma(t))$$

l'integrale a primo membro della (11.9) si può riscrivere come

$$\oint_{\vec{\gamma}} F(s)ds = \oint_{\vec{\gamma}} \frac{1}{W(s)} \frac{dW(s)}{ds} ds = \oint_{\vec{W}(\gamma)} \frac{1}{w} dw$$
(11.10)

Ponendo allora

$$w = \sigma + j\omega$$

$$dw = d\sigma + jd\omega$$

$$\frac{dw}{w} = \frac{\sigma d\sigma + \omega d\omega}{\sigma^2 + \omega^2} + j \frac{-\omega d\sigma + \sigma d\omega}{\sigma^2 + \omega^2}$$

la (11.10) diventa

$$\oint_{\vec{W}(\gamma)} \frac{\sigma d\sigma + \omega d\omega}{\sigma^2 + \omega^2} + j \oint_{\vec{W}(\gamma)} \frac{-\omega d\sigma + \sigma d\omega}{\sigma^2 + \omega^2}$$
(11.11)

Il primo addendo è nullo, essendo

$$\frac{\sigma}{\sigma^2 = \omega^2} d\sigma + \frac{\omega}{\sigma^2 + \omega^2} d\omega$$

una forma differenziale esatta in $\mathbb{R}^2 \setminus \{0\}$, con primitiva $\frac{1}{2} \ln(\sigma^2 + \omega^2)$. Il secondo addendo può essere riscritto in coordinate polari ρ, θ . Applicando la regola di trasformazione

$$\begin{bmatrix} d\sigma \\ d\omega \end{bmatrix} = \begin{bmatrix} \cos\theta & -\rho\sin\theta \\ \sin\theta & \rho\cos\theta \end{bmatrix} \begin{bmatrix} d\rho \\ d\theta \end{bmatrix}$$

si ottiene

$$j \oint_{\vec{W}(\gamma)} \frac{-\omega d\sigma + \sigma d\omega}{\sigma^2 + \omega^2} = j \oint_{\vec{W}(\gamma)} d\theta.$$
(11.12)

La (11.10) vale pertanto

$$\oint_{\vec{\gamma}} F(s)ds = j \oint_{\vec{W}(\gamma)} d\theta = j2\pi N$$
(11.13)

dove N denota il numero di giri insenso antiorario (si ricordi che θ cresce quando la rotazione è antioraria) compiute sulla curva $\vec{W}(\gamma)$ intorno all'origine del piano w. Confrontando (11.13) con (11.9), si ricava la (11.6).

La figura 11.2.1 illustra il contenuto della dimostrazione. Si noti che nell'esempio della figura l'angolo $d\theta$ è negativo, essendo associato ad una rotazione oraria intorno all'origine.

La formula (11.6) coinvolge tre termini e pertanto fornisce informazione su uno di essi quando siano noti gli altri due. Ad esempio, se è noto il numero Z_u degli zeri di W(s)a parte reale positiva e se sull'asse immaginario W(s) non ha né zeri, né poli, si può considerare il circuito γ_R costituito dalla semicirconferenza $Re^{j\theta}$, per θ variabile da $\pi/2a$ - $\pi/2$ e dal segmento di asse immaginario compreso fra i punti -jR e jR, descritto nel senso delle ordinate crescenti.

Figura 11.2.2

Quando R è abbastanza grande, γ_R include sia gli zeri che i poli di W(s) a parte reale positivi. Se in queste condizioni si è in grado di valutare il numero N di aggiramenti

antiorari dell'origine da parte di $W(\gamma_R)$, si può applicare la relazione

$$P_u = N + Z_u \tag{11.14}$$

e ricavare il numero P_u dei poli a parte reale positiva.

11.3 Poli e zeri a parte reale positiva e diagramma di Nyquist

L'applicazione tipica del metodo di Nyquist fa riferimento alla situazione asintotica (che è poi l'unica disponibile sperimentalmente), nella quale la funzione W(s) è nota sull'asse immaginario, ovvero è noto l'andamento delle curva $W(j\omega)$ al variare di ω su $(-\infty, +\infty)$. Quando W(s) è priva di poli sull'asse immaginarioe all'infinito, il diagramma di Nyquist è una curva chiusa e può essere visto come l'immagine del circuito γ_R di figura 11.2.2 quando il semicerchio di chiusura collassa sul punto all'infinito del piano complesso. Se, inoltre, W(s) è priva di zeri sull'asse immaginario e all'infinito, il diagramma di Nyquist non passa per l'origine ed è ben definito il numero N di aggiramenti dell'origine compiuti da $W(j\omega)$.

È allora applicabile al diagramma di Nyquist la (11.14), per ricavare uno dei tre termini a partire dalla conoscenza degli altri due. Ad esempio, si può valutare N dal diagramma, Z_u da informazioni disponibili sulla funzione W(s) e ricavare così P_u .

Esempio 11.3.1 Consideriamo il diagramma di Nyquist di

$$W(s) = \frac{(1+s)(1+\frac{s}{10})}{1+\frac{s}{2}+\frac{s^2}{2}}$$

Aiutandosi anche con i diagrammi di Bode, non è disfficile ottenere il diagramma di NYquist completo (i.e. per ω variabile da $-\infty$ a $+\infty$) Esso è una curva chiusa non passante per l'origine, quindi si possono contare gli aggiramenti dell'origine

Se il percorso sull'asse immaginario del piano s si richiude nel semipiano $\Re e s > 0$ (descrivendo così la curva γ_+ , allora l'asse immaginario deve essere descritto da $-\infty$ a $+\infty$ per avere un verso di percorrenza orario di γ_+ (ed è questo il verso convenzionalmente adottato per il diagramma di Nyquist).

È chiaro dalla figura 11.3.1 che $W(\gamma_+)$ compie un numero di giri antiorari intorno all'origine pari a -1, e risulta così soddisfatta la relazione

$$-1 = N = P_u - Z_u = 0 - 1$$

(si osservi che i poli di W(s) sono in $-\frac{1}{2} \pm j\frac{\sqrt{7}}{2}$, quindi hanno entrambi parte reale negativa, mentre gli zeri sono in -1 e $\frac{1}{10}$).

Se invece il percorso sull'asse immaginario si richiude nel semipiano $\Re e s < 0$, l'asse immaginario va descritto da $+j\infty$ a $-j\infty$ per avere una curva γ_- descritta in senso orario. Si ha così la situazione di figura 11.3.2

Figura 11.3.2

in cui $W(\gamma_{-})$ compie un giro in senso antiorario intorno all'origine e risulta

$$1 = N = P_s - Z_s = 2 - 1$$

dove P_s e Z_s denotano il numero dei poli e degli zeri a parte reale negativa, e quindi racchiusi dalla curva γ_- .

Se W(s) ha poli e/o zeri immaginari o all'infinito, il diagramma di Nyquist non è una curva chiusa e/o è una curva passante per l'origine , sulla quale risulta indefinita la variazione di fase.

Quando l'obiettivo è quello di porre in relazione la struttura del diagramma di Nyquist con il numero dei poli e degli zeri a parte reale positiva

1. si fa riferimento ad un circuito $\gamma_{R,\epsilon}$ orientato in senso orario, che descrive l'asse immaginario fra -jR e + jR aggirando poli e zeri immaginari di W(s) mediante piccole semicirconferenze di raggio ϵ centrate nelle singolarità, e che si richiude mediante una semicirconferenza di raggio R centrata nell'origine e contenuta nel semipiano $\Re e s > 0$. Tale percorso viene chiamato "contorno di Nyquist".

2. si indicano con

 Z_u il numero degli zeri di W(s) a parte reale positiva, contati ciascuno tante volte quant'è la rispettiva molteplicità;

 P_u il numero dei poli di W(s) a parte reale positiva, contati ciascuno tante volte quant'è la rispettiva molteplicità;

 $Z_{\rm im}$, $P_{\rm im}$, Z_{∞} , P_{∞} , nell'ordine, il numero degli zeri e dei poli immaginari, nonchè il grado del denominatore e del numeratore di W(s);

3. per il lemma 11.2.2 e per la discussione successiva, se ϵ è abbastanza piccolo e se R è sufficientemente grande, il numero di aggiramenti antiorari dell'origine da parte di $W(\gamma_{R,\epsilon})$ è

$$N_{R,\epsilon} = P_u - Z_u \tag{11.15}$$

(cò equivale a dire che l'incremento di fase subito dal vettore rappresentativo di W(s)quando s percorre in senso orario tutta la curva $\gamma_{R,\epsilon}$ è pari a $2\pi(P_u - Z_u)$.

4. Della variazione complessiva di fase $2\pi N_{R,\epsilon}$, se R è molto grande la variazione imputabile al tratto di percorso semicircolare di raggio R dipende soltanto dalla fifferenza fra il grado del numeratore e del denominatore di W(s). Più precisamente, se in

$$W(s) = \frac{q(s)}{p(s)}$$

si ha 4

$$\deg q = P_{\infty}, \qquad \deg p = \mathbb{Z}_{\infty}$$

allora nell'intorno del punto all'infinito la funzione W(s) si può rappresentare come

$$W(s) = s^{P_{\infty} - Z_{\infty}} (a_{\infty} + N(s))$$

con N(s) analitica, $N(\infty) = 0$, $a_{\infty} \neq 0$. La variazione di fase subita da W(s) quando s descrive la semicirconferenze è somma di quelle dei fattori $s^{P_{\infty}-Z_{\infty}}$ e $(a_{\infty} + N(s))$, quindi, al divergere di R, è pari a

$$(-P_{\infty} + Z_{\infty})\pi. \tag{11.16}$$

5. Se ϵ è molto piccolo, la funzione W(s) è rappresentabile, nell'intorno di una sua singolarità $j\omega_0$ sull'asse immaginario, nella forma

$$W(s) = \frac{1}{(s - j\omega_0)^n} [a_0 + H(s)], \qquad a_0 \neq 0 \quad \text{per un polo}$$

$$W(s) = (s - j\omega_0)^m [a_0 + H(s)], \qquad a_0 \neq 0 \quad \text{per uno zero}$$

$$\int_{\omega_0}^{\infty} \omega_{\omega_0} = \frac{1}{(s - j\omega_0)^n} [a_0 + H(s)], \qquad Figura 11.3.4$$

dove H(s) è una funzione analitica, nulla per $s = J\omega_0$. La variazione di fase quando si descrive la semicirconferenza è pari a $-n\pi$ nel caso del polo e a $m\pi$ nel caso dello zero, naturalmente quando il raggio della semicirconferenza tende a zero.

Della variazione di fase complessiva $2\pi N_{R,\epsilon}$, se ϵ è molto piccolo la variazione imputabile a poli e zeri immaginari è data allora da

$$(-P_{\rm im} + Z_{\rm im})\pi\tag{11.17}$$

La figura 11.3.5 evidenzia i contributi alla variazione di fase delle singolarità sull'asse immaginario e all'infinito, mentre la proposizione successiva è una immediata conseguenza della discussione che abbiamo svolto.

Proposizione 11.3.1 [VARIAZIONE DI FASE AL FINITO] Indichiamo con V_f la variazione di fase "al finito", che ha luogo quando si descrivono gli aperti dell'asse immaginario che, nel contorno di Nyquist, escludono poli e zeri immaginari della funzione W(s). Indichiamo inoltre con N il numero di aggiramenti antiorari dell'origine da parte di $W(\gamma_{R,\epsilon}$ quando $R \to \infty \ e \ \epsilon \to 0$.

Si ha allora

$$2\pi N = 2\pi (P_u - Z_u) = V_f + h(Z_{\rm im} - P_{\rm im}) + \pi (Z_\infty - P_\infty)$$
(11.18)

Conseguentemente, la variazione di fase al finito nel diagramma completo
² di Nyquist è data da

$$V_f = 2\pi (P_u - Z_u) + \pi (P_{\rm im} - Z_{\rm im}) + \pi (P_\infty - Z_\infty)$$
(11.19)

Osservazione Le figure 11.3.6a e 11.3.6b illustrano come il percorso associato alla descrizione dell'asse immaginario in corrispondenza a uno zero in $j\omega_0$ o all'infinito risulti

²i.e. per ω variabile da da $-\infty$ a $+\infty$

modificato dall'aggiramento dello zero sulla semicirconferenza di raggio ϵ e dal passaggio da jR a -jR.

Passando da $j(\omega_0 - \epsilon)$ a $j(\omega_0 + \epsilon)$ sulla semicirconferenza di aggiramento la fase di W(s) varia di π : lo si vede muovendosi sulla curva tratteggiata, corrispondente all'aggiramento dello zero semplice in $j\omega_0$.

Passando da $j\omega = jR$ a $j\omega = -jR$ lungo la semicirconferenza tratteggiata, la fase di $W(j\omega)$ varia di π quando c'è uno zero semplice all'infinito. Lo si vede sulla curva tratteggiata del diagramma, che corrisponde al percorso sulla semicirconferenza di raggio R molto grande.

Per i poli immaginari, quando si descrive la semicirconferenza di aggiramento di raggio ϵ da $j(\omega_0 - \epsilon)$ a $j(\omega_0 + \epsilon)$ (in figura 11.3.6c si considera il caso $\omega_0 = 0$) la fase di W(s), quando il polo è semplice, varia di $-\pi$.

Figura 11.3.6c

11.4 Stabilità dei sistemi reazionati

Quando la funzione di trasferimento della catena di retroazione è una costante, H(s) = k, la funzione di trasferimento ad anello chiuso è

$$T_k(s) = \frac{W(s)/k}{\frac{1}{k} + W(s)}$$
(11.20)

Tenendo anche conto della proposizione 10.6.3, possiamo affermare che per $k \neq 0$

- gli zeri di $\frac{1}{k} + W(s)$, incluso l'eventuale zero all'infinito, coincidono con i poli di $T_k(s)$;
- i poli di $\frac{1}{k} + W(s)$, incluso l'eventuale polo all'infinito, coincidono con i poli di W(s).

Ciò ha alcune ovvie, ma importanti, conseguenze sulla struttura polare di $T_k(s)$, riassunte nel seguente

Lemma 11.4.1 Si equivalgono le seguenti condizioni:

- i) $T_k(s)$ non ha poli immaginari e all'infinito;
- ii) $W(s) + \frac{1}{k}$ non ha zeri immaginari o all'infinito;
- iii) il diagramma di Nyquist di $W(j\omega)$ non passa per il punto $(-\frac{1}{k}, 0)$.

Quando queste condizioni sono soddisfatte, $T_k(s)$ ha soltanto poli a parte reale negativa se e solo se $\frac{1}{k} + W(s)$ non ha zeri a parte reale positiva.

PROVA La equivalenza di (ii) e (iii) deriva dal fatto che $W(j\omega)$ passa per -1/k per qualche ω (eventualmente per $\omega = \infty$) se e solo se $W(j\omega) + \frac{1}{k} = 0$.

È poi chiaro che, soddisfatta la (ii), la funzione $\frac{1}{k} + W(s)$ può avere soltanto zeri a parte reale strettamente positiva o strettamente negativa. Quando si escluda la prima eventualità, $\frac{1}{k} + W(s)$ ha solo zeri a parte reale negativa e ciò equivale al fatto che $T_k(s)$ abbia solo poli in $\Re e s < 0$

Proposizione 11.4.2 [CRITERIO DI NYQUIST] Condizione necessaria e sufficiente perché $T_k(s), k \neq 0$ abbia soltanto poli con parte reale negativa, e quindi il sistema retroazionato di figura 11.1.1 sia BIBO stabile è che

- a) il diagramma di Nyquist di $W(j\omega)$ non passi per il punto $-1/k \in \mathbb{C}$;
- b) quando $R \to \infty$ ed $\epsilon \to 0$, il numero N(-1/k) degli aggiramenti in senso antiorario del punto -1/k da parte della curva $W(\gamma_{R,\epsilon})$ soddisfa la condizione

$$N(-1/k) = P_u (11.21)$$

dove P_u denota il numero di poli di W(s) in $\Re e s > 0$.

PROVA Per il lemma precedente, la condizione (a) equivale al fatto che $T_k(s)$ non abbia poli immaginari o all'infinito.

D'altra parte, il contorno $\gamma_{R,\epsilon}$ esclude

- * i poli immaginari e all'infinito di $\frac{1}{k} + W(s)$, che coincidono con quelli di W(s);
- $\star\,$ gli zeri immaginari e all'infinito di $\frac{1}{k}+W(s),$ perché il diagramma di W(s) non passa per-1/k

[Non è rilevante che $\gamma_{R,\epsilon}$ escluda anche gli zeri immaginari e all'infinito di W(s), dato che essi non sono zeri di $\frac{1}{k} + W(s)$]

Si può allora applicare alla funzione $\overline{W}(s) := \frac{1}{k} + W(s)$ la proposizione 11.3.1, ottenendo

$$\bar{N} = \bar{P}_u - \bar{Z}_u \tag{11.22}$$

dove \bar{N} è il numero di aggiramenti dell'origine da parte di $\bar{W}(\gamma_{R,\epsilon})$, mentre $\bar{P}_u \in \bar{Z}_u$ sono, rispettivamente, il numero dei poli e degli zeri di $\bar{W}(s)$ in $\Re e s > 0$. Ora,

 \overline{N} coincide con il numero N(-1/k) di aggiramenti antiorari di -1/k da parte di $W(\gamma_{R,\epsilon})$; \overline{P}_u coincide con il numero P_u dei poli di W(s) in $\Re e s > 0$.

Infine, per il lemma 10.4.1 $\overline{Z}_u = 0$ è condizione necessaria e sufficiente (quando è soddisfatta la (a)) perchè $T_k(s)$ non abbia poli in $\Re e s \ge 0$; quindi la (11.21) fornisce la condizione di stabilità BIBO del sistema reazionato.

Quando W(s) è strettamente propria, è facile ottenere un criterio di stabilità del sistema reazionato riferito al diagramma di Nyquist di W(s), senza ricorrere al metodo dei semicerchi ausiliari, Infatti, per ogni $k \neq 0$ la funzione $\bar{W}(s) = \frac{1}{k} + W(s)$ ha numeratore e denominatore del medesimo grado e quindi, nelle notazioni del precedente paragrafo, si ha $\bar{P}_{\infty} - \bar{Z}_{\infty} = 0$ e la variazione di fase al finito (11.19) riferita a $\bar{W}(s)$ è data da

$$\bar{V}_f = 2\pi(\bar{P}_u - \bar{Z}_u) + \pi(\bar{P}_{rmim} - \bar{Z}_{im}),$$
 (11.23)

con ovvio significato dei simboli.

La stabilità BIBO del sistema reazionato equivale ad avere $\bar{Z}_{im} = \bar{Z}_u = 0$ (ovvero $\bar{W}(s)$ non deve avere zeri per $\Re e s \ge 0$), quindi

$$\bar{V}_f = 2\pi \bar{P}_u + \pi \bar{P}_{\rm im} \tag{11.24}$$

e, poiché i poli di W(s) e di $\overline{W}(s)$ coincidono,

$$\bar{V}_f = 2\pi P_u + \pi P_{\rm im} \tag{11.25}$$

Infine, la variazione di fase al finito di $\overline{W}(j\omega)$, quando ω varia da $-\infty$ a $+\infty$, coincide con la variazione di fase $V_f(-1/k)$ al finito del vettore (non nullo se il diagramma di $W(j\omega)$ non passa per -1/k) di origine -1/k ed estremo $W(j\omega)$. Vale quindi la seguente

Proposizione 11.4.3 [CRITERIO RIFERITO ALLE VARIAZIONI AL FINITO] Sia W(s) strettamente propria. Condizione necessaria e sufficiente affinché il sistema reazionato da $H(s) = k \neq 0$ sia BIBO stabile è che

- a) il diagramma di Nyquist di $W(j\omega)$ non passi per il punto $-1/k \in \mathbb{C}$;
- b) la variazione di fase al finito, riferita al punto -1/k, soddisfi

$$V_f(-1/k) = 2\pi P_u + \pi P_{\rm im} \tag{11.26}$$

dove P_u e P_{im} denotano il numero dei poli di W(s) rispettivamente in $\Re e s > 0$ e sull'asse immaginario.

Osservazione Gli schemi a blocchi

sono equivalenti. per studiare la stabilità si può fare riferimento a

1) gli aggiramenti di -1/k da parte del diagramma di $W(j\omega)$;

2) gli aggiramenti di -1 da parte del diagramma di $kW(j\omega)$. La scelta è dettata soltanto da motivazioni pratiche.

11.5 Esempi ed esercizi

Esempio 11.5.1 Si consideri la funzione di trasferimento

$$W(s) = \frac{60}{(s+1)(s+2)(s+5)} = \frac{6}{(1+s)(1+\frac{s}{2})(1+\frac{s}{5})}$$

Si vuol studiare la stabilità del sistema retroazionato, dapprima con k = 1 e poi con k generico.

La funzione W(s) ha uno zero triplo all'infinito, quindi è strettamente propria.

Il modulo di $W(j\omega)$ è decrescente da $\omega = 0$ ad $\omega = +\infty$, passando dal valore 6 al valore 0. La fasa è decrescente da $\omega = 0$ a $\omega = = \infty$, passando da fase nulla a $-\frac{3}{2}\pi$.

Figura 11.5.1

La parte immaginaria di $W(j\omega)$ si annulla per $\omega = \sqrt{17}$ e, in corrispondenza a tale pulsazione, si ha

$$W(j\sqrt{17}) = -0.47$$

Ricorrendo al metodo delle variazioni al finito, con riferimento al punto-1si ha

$$V_f(-1) = 0$$

Essendo $P_u = P_{im} = 0$, è soddisfatta la relazione

$$V_f(-1) = 2\pi P_u + \pi P_{\rm im}$$

e $T_1(s)$ è BIBO stabile.

Con riferimento a punti -1/k compresi fra -0.47 e 0, si ha

$$V_f(-1/k) = -4\pi$$

mentre per punti -1/k compresi fra 0 e 6 si ha

$$V_f(-1/k) = -2\pi$$

Quindi $T_k(s)$ non è BIBO stabile per

$$-0.47 \le -\frac{1}{k} \le 6.$$

Infine, a destra di 6 si ha $V_F(-1/k) = 0$ quindi $T_k(s)$ è BIBO stabile per -1/k > 6, ovvero per k < -1/6.

Se usiamo il criterio di Nyquist con l'immagine del contorno $\gamma_{R,\epsilon}$, si ha il diagramma di figura 11.5.2

Figura 11.5.2

CAPITOLO 11. IL CRITERIO DI NYQUIST

Per la stabilità in k = 1 si verifica che $N = P_u = 0$ Quindi la risposta è affermativa. Per la stabilità in -1/k > -0.47, si vede che $N = -2 \neq P_u = 0$ Quindi la risposta è negativa, etc...

Esempio 11.5.2 Se la funzione di trasferimento del sistema in catena di azione diretta è

$$W(s) = \frac{1}{s(s+2)(s+6)} = \frac{1}{s^3 + 8s^2 + 12s}$$

abbiamo un sistema di tipo 1 Il percorso di Nyquist 'e riportato in figura 11.5.3

Si noti che

1. Tutti i poli sono reali e non positivi; non ci sono zeri al finito. Per ω crescente da 0 a + ∞ la fase e il modulo di $W(j\omega$ decrescono monotonicamente.

- 2. Per $\omega \to +\infty$ la fase è quella di $(\frac{1}{j\omega})^3$ ovvero $-\frac{3}{2}\pi$.
- 3. Per $\omega \to 0$ si ha

$$W(j\omega) \sim \frac{1}{8(j\omega)^2 + 12(j\omega)} \sim -j\frac{1}{12\omega} - \frac{8}{144}$$

e la parte reale tende a $-\frac{8}{144}$.

4. Per l'immagine della semicirconferenza di raggio ϵ , W(s) per $s \to 0$ è approssimata dal termine corrispondente al polo s = 0 nello sviluppo in frazioni parziali, quindi da

$$\frac{1}{12s}$$

Ponendo $s=\epsilon e^{j\theta},$ con $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2},\ W(s)$ è approximata da

$$W(\epsilon e^{j\theta}) = \sim \frac{1}{12\epsilon} e^{-j\theta}, \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

Quando θ varia da $-\frac{\pi}{2}$ a $\frac{\pi}{2}$ (incremento di fase di π), la fase di $W(\epsilon e^{j\theta})$ varia da $\frac{\pi}{2}$ a $-\frac{\pi}{2}$, e quindi decresce di π .

11.5. ESEMPI ED ESERCIZI

5. L'attraversamento dell'asse reale si ha quando si annulla $\Im m \, W(j\omega),$ ossia quando si annulla la parte reale di

$$j\omega W(j\omega) = \frac{1}{(j\omega)^2 + 8(j\omega) + 12} = \frac{1}{(12 - \omega^2) - j8\omega} = \frac{(12 - \omega^2) + j\cdots}{\cdots}$$

quindi per $\omega = \sqrt{12}$. Per tale pulsazione si ha

$$W(j\sqrt{12}) = -\frac{1}{96}$$

6. Se $\frac{-1}{k}<-\frac{1}{96},$ cioè sek<96,si ha

$$V_f(\frac{-1}{k}) = \pi$$

$$P_{\text{im}} = 1 \text{ (polo di } W(s) \text{ nello zero)}$$

$$P_u = 0$$

ed è soddisfatta la relazione

$$V_f(-1) = 2\pi P_u + \pi P_{\rm im}$$

Ragionando sul contorno di Nyquist

si deve verificare che gli aggiramenti antiorari di -1/k siano in numero uguale a $P_u = 0$. E ciò è quanto succede.

7. Se $k \ge 96$, l'immagine del contorno di Nyquist presenta due aggiramenti orari di -1/k. Se k è negativo, si ha un aggiramento orario di -1/k. Si conclude per l'instabilità del sistema reazionato in entrambi i casi

8. Alla medesima conclusione si perviene con il metodo della variazione finita. Sek>96,si ha

$$V_f(\frac{-1}{k}) = -3\pi$$
$$P_{\rm im} = 1$$
$$P_u = 0$$

e non è soddisfatta la condizione $V_f(\frac{-1}{k} = 2\pi P_u + \pi P_{im})$. Se k < 0, si ha $V_f(\frac{-1}{k}) = -\pi$ e ancora non è soddisfatta la condizione $V_f(\frac{-1}{k} = 2\pi P_u + \pi P_{im})$.

Esempio 11.5.3 Si consideri la funzione di trasferimento

$$W(s) = \frac{(s - z_1)(s - z_2)}{s(s^2 + 2\delta\omega_n s + \omega_n^2)}$$

con z_1 e z_2 reali e negativi, $\delta>0$ e $\omega_n<|z_1|<|z_2|$ Di seguito si riportano i poli e gli zeri nel piano complesso e i diagrammi di Bode:

1. Applichiamo dapprima il criterio di stabilità relativo al contorno di Nyquist

Per il criterio di Nyquist (11.21), deve risultare

$$N(-1/k) = P_u = 0,$$

doveN(-1/k)rappresenta il numero degli aggiramenti antiorari del punto-1/k.Dalla figura 11.5.6 si vede che

- se -1/k è compreso fra $-\infty$ e il punto L, risulta N(-1/k)=0 e si ha stabilità;
- se è compreso fra i punti L e L, risulta N(-1/k)=-2 e si ha instabilità;
- se è compreso fra i punti S e 0, risulta N(-1/k)=0 e si ha stabilità;
- se è compreso fra i punti 0 e $+\infty$, risulta N(-1/k)=-1 e si ha instabilità.

2. Applicando il metodo delle variazioni al finito, per la stabilità deve essere

$$V_f(1/k) = 2\pi P_u + \pi P_{\rm im} = \pi$$

Dal diagramma di figura 11.5.7 è evidente che

Figura 11.5.7

- se -1/k è compreso fra $-\infty$ e il punto L si trova $V_f(-1/k) = \pi$ (stabilità); - se -1/k è compreso fra i punti L e Ssiha $V_f(-1/k) = -3\pi$ (instabilità); - etc...
- Esercizio 11.5.1 Data

$$W(s) = \frac{10(s+1)}{s^2(s+4)}$$

si tracci il diagrammi di Nyquist di $W(j\omega)$ e si studi la stabilità del sistema ad anello chiuso con retroazione unitaria.

Figura 11.5.8

 \sharp Soluzione Cominciamo tracciando i diagrammi di Bode di

$$W(s) = 2.5 \frac{1+s}{s^2(1+\frac{s}{4})}$$

Figura 11.5.9

Per $j\omega \rightarrow 0$ la funzione $W(j\omega)$ diverge. Più precisamente, osserviamo che per piccoli valori di s la funzione W(s) è rappresentata da

$$W(s) = \frac{2.5}{s^2} + \frac{\alpha}{s} + \dots$$

e che, posto $s = \epsilon^{j\theta}$, si ha

$$W(s) \sim \frac{2.5}{\epsilon^2} e^{-j2\theta} (\cos \theta \ da \ -\frac{\pi}{2} \ a \ \frac{\pi}{2}) = \frac{2.5}{\epsilon^2} e^{j\phi} (\cos phi \ da \ \pi \ a \ -\pi)$$

Quindi l'immagine secondo W della semicirconferenza di raggio ϵ , descritta in senso antiorario è una circonferenza di raggio $\frac{2.5}{\epsilon^2}$, descritta in senso orario:

Per grandi valori di s, il contorno di Nyquist prevede di descrivere in senso orario la semicirconferenza $s = Re^{j\theta}$ (vedi figura 11.5.11) per θ variabile da $\pi/2$ (punto X sul grafico di sinistra) a $-\pi/2$ (punto Y sul grafico di sinistra). In corrispondenza abbiamo

 $W(s) \sim \frac{10s}{s^3} = \frac{10}{s^2} = \frac{10}{R^2} e^{-j2\theta} = \frac{10}{R^2} e^{j\phi} \operatorname{con} \phi \text{ variabile in senso antiorario } da - \pi \ a \ \pi$

e si descrive la circonferenza da X a Y nel grafico di destra.

Il grafico di destra della figura 11.5.11 mostra che per l'immagine del contorno di Nyquist si ha

$$N(-1) = P_u = 0$$

quindi il sistema reazionato con reazione unitaria è BIBO stabile.

In alternativa, si possono considerare le variazioni al finito, riferite al punto -1, quindi le variazioni di fase relative ai tratti YA e BX nel grafico di destra. Evidentemente risulta $V_f(-1) = 2\pi$ D'altra parte si ha

$$P_{\rm im} = 2, \quad P_u = 0$$

e quindi è soddisfatta la condizione

$$2\pi = V_f(-1) = 2\pi P_u + \pi P_{\rm im}$$

che garantisce la stabilità BIBO.

11.6 Margini di stabilità

In molti casi, oltre a riconoscere se un sistema ad anello chiuso è stabile, importa anche conoscere quanto esso sia prossimo all'instabilità. Due parametri, di carattere qualitativo, comunemente impiegati per fornire questa informazione *nel caso di sistemi relativamente semplici* sono il margine di guadagno e il margine di fase.

Definizione 11.6.1 Il margine di guadagno m_G è il guadagno d'anello addizionale richiesto per portare il sistema al limite di instabilità. Esso può essere espresso in decibel, o come un fattore moltiplicativo

Definizione 11.6.2 Il margine di fase m_F è il ritardo addizionale richiesto per rendere instabile il sistema, misurato in corrispondenza alla pulsazione per cui è unitario il modulo del guadagno d'anello

Con riferimento all'esempio di figura 11.6.1, nel quale è riportato il diagramma del guadagno di anello

- dalla posizione del punto P, dove lo sfasamento è di π , vediamo che il guadagno deve essere incrementato di un fattore 2 per rendere instabile il sistema ad anello chiuso: si ha quindi

$$m_G = 2$$
, oppure $m_G = 20 \log 2 = 6 db$

- se si guarda al punto G, dove il guadagno di anello è unitario, si vede d'altra parte che il margine di fase è $m_F = 40^{\circ}$.

I margini di stabilità possono essere determinati anche dai diagrammi di Bode. A tale scopo si devono individuare

- il guadagno di anello alla frequenza di "phase crossover" (i.e. la frequenza alla quale la fase è 180° : punto P nel diagramma di Nyquist di figura 11.6.1);
- la fase alla frequenza di "gain crossover" (i.e. la frequenza alla quale è unitario il guadagno: punto G del diagramma di Nyquist)

- Si ricava il punto P dal diagramma di fase, si "risale" al diagramma del guadagno e si valuta il margine m_G ;

- Si ricava G dal diagramma di guadagno, si "scende" sul diagramma di fase e si valuta il margine m_F .

Esempio 11.6.1 Si supponga che il guadagno di anello del sistema sia

$$W_{k'}(s) = \frac{k'}{s(s+2)}$$

Figura 11.6.3

Per ogni valore di k^\prime il margine di guadagno è infinito, perché il diagramma di Nyquist non attraversa mai l'asse reale negativo.

D'altra parte i margini di fase dipendono da k^\prime (35° per $k^\prime=10$ e 16° per $k^\prime=50)$

 ${\bf Esempio}\ {\bf 11.6.2}$ Consideriamo un sistema il cui guadagno di anello sia

$$W_k(s) = \frac{k}{s(s+2)(s+10)}$$

Vogliamo determinare k in modo da avere $m_G = 6$ db oppure $m_F = 45^{\circ}$.

Figura 11.6.4

Tentativamente, scegliamo $k=k^\prime=20$ e tracciamo i diagrammi di Bode di

$$W_{k'}(s) = \frac{20}{20s(1+\frac{s}{2})(1+\frac{s}{10})} = \frac{1}{s(1+\frac{s}{2})(1+\frac{s}{10})}$$

Con k' = 20, determiniamo sul diagramma di fase il punto P di "phase crossover" e ricaviamo sul diagramma di ampiezza il margine di guadagno: esso è pari a 21 db. Per portarlo a 6 db si incrementa k' di 15 db, ovvero si passa a k" con

$$20\log_{10}\frac{k''}{k'} = 15$$

Si ricava $\log_{10}k"=\log_{10}k'+\frac{3}{4}$ e infine $k"\sim 120.$

Analogamente, per ottenere il margine di fase voluto, si considera il punto G di "gain crossover" per k' = 20 sul diagramma di ampiezza e si ricava sul diagramma di fase il corrispondente margine di fase, che eccede sostanzialmente i 45°. Per ottenere il margine di 45° si fa riferimento al punto G_d , cui corrisponde un guadagno addizionale che si legge sul diagramma di ampiezza.

11.7 Riferimenti bibliografici

- Marro G. "Controlli Automatici", Zanichelli 1992
- Sinha N.K. "Control Systems", Wiley, 1994