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ALGEBRAIC REALIZATION THEORY OF TWO-DIMENSIONAL FILTERS

E. Fornasini, G, Marchesini

Dept. of Electrical Eng., Univ. of Padova, Italy

The purpose of this communication is to provide a first insight into the prob
lem of getting a recursive structﬁre for two—dimensional filters via the algebraic
: . . ! . .
realization theory. The line undertaken here has several points of contact with the

algebraic realization theory of bilinear maps [1,2].

, 1 .
1, External representation and Nerode equivalence classes

The external representatiJn of a two-dimensional filter is defined as:

U U Y Y,

)

. 8,
1) s (Tlx TZ’

- U =Y =K arbitrary field

- U v are sets of generalized formal power series in two variables over K:
@ . . > .
i i : .
r = Z (r, zlz%) zlz%, for some integer k.
~k=1,j

- F: U » V (input-output map): it satisfies!
(1) linearity
(ii) two-dimensional shift invariance:

i] ii T
F(zlz%r)= zlz%F(r), ) V.L,JE Z

(iii1) two-dimensional proper causality:

This work was supported by CNR GNAS.




' _ ij . .
(ul, zlzz) = (uz, zlzz), i<ty i,

jmplies:

i3 i_j . . :
(Ful’ leé) = (Fuzs Z}_Z‘;), 1< tl’ 1z tzy qu » Uye -
: 1
Under these assumptions it is easy to verify that:

s & F(1) ¢ (ZIZZ)K[[Zl’ ZZ]]
and

F(u) = su, Fuel-

!
So doing the two-dimensional €ilters (in their input—outTft representation)

are in one—to—omé correspondence with the formal series (2122)K [zl, zZ] and vi-

ceversa.
The state introduction via the Nerode equivalence classes represents the way

of obtaining a recursive filter in the system theoretic sense. This requires to

endow the input space with the structural properties:

(i) Truncation. Let

i i i i
r = .z'(r, zl,z%) zlz%,& Crey
1,]

the truncation operator T sy > U is defined by:
(tl,tz) - .

- i3y iJ
T E (r, zlzz) 242y

T =
(GstpV( <ty

(tstp)
Let (J ¥ & {T(O’O)u:u e(}. Then the map

fru¥* (z1 zz)K[[zl,zzj]
defined by the assignement:

f(u) = z (Fu, Zl, z3) zt 23
. 1 2 1 72
i,j>0

characterizes S in the same sense as T does. This follows from two-dimensional
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shift invariance.

(ii) Shift Operators. Two kinds of elementary shifts are considered:

(a) g;f >y

(b) o, U U
02: r > z;l T, r ey

+

Analogousiy for ¥. Then (J and ¥ are naturally endowed with a K[cl,uz] -module struc

ture (or equivalently a K[zil, z;1:| -module structure),
(iii) Concatenation. Let u,ve (¥, Then
uov-= Um Un utv
172
m = min deg v, n =min deg v

% ‘2

and u o ve (I¥%.

(= . L) : . 1 »
Let ups 4y €U, we say "u, 1s Nerode equivalent to u, (ul'\:u2) iff

f(u, ov) = f(u2 o V), ¥y e (.

1
Remark. Let ul,uzﬁu*. Then

Uy N, = f(ul) = f(uz)

The introduced equivalence is a congruence over the vector space {({* and consequently

(#/~ can be endowed with the same algebraic structure. In particular

{u:uvol 4 le]
is a subspace of (¥ and (*/v = ¥/ [o] is assumed as the state space XN The situation

is reprepresented by the commutative diagram:
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Ny

XN—U*/kerf

[(2yr2,]]

2. Some general properties of the input-output map

In the usual linear scalar case the following facts.are equivalent:
i) seK [(z)] , K}[(z)] ring of rational series
ii) dimﬁXN<CM, XN canonical (Nerode) state space

i1i) there exist compact support non-zero inputs such that the corresponding outputs

are compact support.

1f we refer to two—dimensional filters the situation is slightly different.
Actually it is direct to see that facts corresponding to 1) and iii) are still equi

valent. Of course point i) has to be changed into:
i) sek [(zl,zz)] , K [(21’22)] ring of rational series in two variables.

The dimension of the canonical state space Xy in this case is always infinite.
This can be jroved from the above commutative diagram by restricting the input space

U¥ to K[[zzl so that kerf = {0O}.

Remark 1. Let s €K [(zl,zz)} , 8 P(z , zgl)/Q(zzl, z;l) and P and Q have no com-
mon factors, them the class of compact support inputs giving compact support outputs
is the pincipal ideal (Q) modulo the shift sempigroup generated by g, and 02.This si-

tuation is analogous to the usual linear case,

Remark 2. If the input space is restrictéd to K zll, z;l], then dim Xy is finite if

and only if the series s belongs to the ring K [(zl,z )] of recognizable-series.
This can be proved noting that the rank of Henkel matrices corresponding to recogni

zable series is finite [3].

3, Internal representation

A double indexed, linear, shift invariant, finite dimensional dynamical sy-

stem in state space form is defined as

() Z = (IxT, U, u, v, Y, X, X, 9, 1)
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where:

-TxT, U, U, ¥, ¥ are as in §

X =" {local state space)

X= {?(h’k): }‘E(h,k) = (.. .,K(h'f‘l,k) ,X(h,k),x(h,k'}’ 1—): .. .),X(i,j) € X}

2 2 .. ,
- @ «T°x XxU + X (state transition function)

It satisfied the axioms:

(i) (two dimensional determinism): Let us uzeU and 321, 225)(. Then

(ul, zll_ z%)=(u2, zi z%), i<, t"<j<t" and
xl('z} ") =x2(r’, "), xl('r’ +1, ™) =x2('r' 1,0, % (8 ™) =x2(t; ™),
xl('ri'r"+1) =x2(t', t"+l),...,xl(‘c; t") =x2(T; t"), imply

p((t) t"), () ™, R, u)) =o((t) ™, () '), &y, uy)

(ii) (consistency): lLet G=C...,x(tt+1, ), x(tr} ), (1} 1" +1),..). Then
i

ot ™), (b ™, 2, we=x(t] '

(iii) (composition): Let t<t'<t" and 1<t <t". Then
e ({7} ), {(1,t), &, u) =e((1} "), (11t"), *¥,u)
where %= (...,9((t’ +l,t'),(T,t),ii,u),'Q((r{t'),(r,t),ﬁ,u),

p((t) t’ +1)3(T3t)9 2, u),"°)

(iv) (shift invariance):
A

A
. - 1 2 N
Q((t'('Al,T'}JAz), (t‘ +Al’ T’ +A2),X, cl 62 u) = Q((t)‘{)9(t:'{l)’x3u)
(v) (linearity)
0((t)1);(t:1‘,):§1+g2’u1+u2)=Q ((t!T)J(t:T!)Sﬁl!ul) +o ((taT))(t: T')>§2yu2)

- r:1 X > Y (read—out function)

It is assumed linear.

“On the basis of the previous assumptions on ¢ and r it is direct to check

that there exist AO, Al’ AzeKmm, CElenBEKnXl such that

x¢h+1, k+1) =A0x(h,k) +A1 x (h+1,k) +A2'x(h,k+ 1) +Bu (h,k)
y(h,k) = Cx (h,k)

These equations define (indirectly) the two maps © and r.

A double indexed dynamical system Z is a zero state realization of a two-di-

mensional filter S if for any i>r, j>s
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(Fu, 2ied) = x(e((1,3), (,9),0,0),

¥(r,s) ETZ; yuel with u(h,k) =0 for h<r, k<s.

Lemma, Let S as in (1), The following facts are equivalent:
<

i) se (lez) K[(zl,zz)]
#i) there exist m, neN such that for any uel¥, the map £(u)
i )

i .
—f(u) @ 2 z is one-to-one

Z
ey Gemy b2
proof 1)= 1i) is immediate.
{1) == i) Assume for sake of simplicity m=n.

Proper causality, 1inearity and shift-invariance properties imply that there

exist {bij} such that for any ueU¥

n
y(n+h, n+k) = Yoo b.. y(i+h, j+k), ¥h,k>0
Li,] ij ,

#

Suppose u =1, then y(i,3) = (s, zi 232) and

_ -1 70y -
() (2" 7" - L by m %) 870
1]
for non negative powers of 2z, and z,.

Letting now u=z§ and u=z‘2:, teZ, the relation (4) still holds for negative powers

of z; and z,. This implies that s is rational,

Proposition 3.1. Let S as in (1) with s sK[(zl,zz)] . Then it has a zero state reali
zation ).

Suppose usK[zzl, z;]‘} and introduce the map

-1 -1
£ (nom), K[zl ) ZZ] , ghxn

defined by the assignement

n . .
£ (n,n) (U) = n ( Zij ZJ]: Z% 0] £ (U) N Z; Z;)
1 ry8=1L1l,...,0

The following diagram

(°) The symbol @ denotes the Hadamard product.
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g l
f(n)n)

-1 =2
X=K [7‘1; Zy }/kerf(n’n)

. 2
commutes and dim X < n”,

In the proof we shall use the spaces:

. i -1 -1
uijé {u: ue 2] 2 K{z1 z ]}

and the projection maps:

..ot U U, ,,
1] 1]
wij(u) A uIJ
n=1 - -j n - -1
. = ..o A, .. b., =1,
proof. Let s glj alJ z” 7z, /glj i %1 %y bnn 1

nxn nxXn ukn 0

i K7 %K T kK x Koo X
UH (MO, Ml, MZ’ k)Y =M

defined by the following relations:

eI FM§1+1, 3+, Ménl, J)+}I£I,J+1)+(f(k),zi z%)

(n)j)_ (n1j+1) u n
M —M2 + mnj + (f(k),z1 zz),

+1
a(Esn) (i+1,0) m, 4 (f(k),z; z’z’),
n n
R SRR Loudlddy Ly Dy
0 j 1 jo i
1 1
n
(h,k) n _n
+ gh’k M b+ E(K), z; 2,
(b, k) #(n,n)
where .
n-1
N (k,1)_, (k,2)
"al 7Tl Do (M) -M

1<i, jen-1
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(. 2) (e, Z(Mk ) I(k,?.))_b T
o]

0h2™ Z b k(M n-1,n

..... sreri st s rent a0

The following diagram

(n’n)xf (n,n)xf (n,n)x id

u xK Kl'le'l K-l‘l.Xl'l KRXQ K

x id

Uoo*21 u10“2 ol

O .
o091 0T X021 ¥ (15217

' -E(n,n)x?(n,n) x?(h,n)

gxgxgxid
u XOO“ Xlox Xle K
X .
0102.1111 / \(n n)
(22 U £,

commutes along the coantinuous arrows. In particular

¢ (n,m) (n,n) ¢ (n,n)xf(n,n)

xid)o(ﬁ oX910 10%9,"

= !
009,01y = volf 10%%2"01 *

x(uy 272,)0)

The map X is well defined on the range of ﬂooxolo"floxczon(nx(. ,zlzz) and assumes
zero value elsewhere,
The existence of 9 is proved by applying the Zieger Lemma to the partial dia

gram:

gxgxgxid
-1 -1
Uoox z; Ulox z, UolxK /XOOX Xlox Xle K
/ /
g oX ﬁ- — - wo(f(n,n)xf(n,n)xf(n’n)x id)
/'/
Xll -~ g(n,n) Khxn

The map 9 induces the following linear transformations:

o' %00 11 B: K> Xy
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satisfying

- — + .
90k s Xy Kot ) T Bp oot A¥er Ty X0t B K

The output y(1,1) is the top left corner element of f(n’n)(xll). This defines the

read-out map.

Proposition 3.2, Let ) a zero state realization of a given S. Then there exists a

1:1 map e such that the diagram

commutes.
(The maps » and y are built up in natural way from @ and r in 2)

proof. By Zeiger Lemma there exists a linear map h: XN + X/ker y which is 1:1. Then

also e exists such that poe = h and is 1:1.

The definition of minimai realization is naturaliy related to the dimension of X in
the sense that this is minimal in the class of possible realizations of the given
fitter S.

The construction presented in Proposition 1 does not necessarily give a mini
mal realization,

Obviously the possibility of embedding Nerode state space Xy in X resulting

in Proposition 3.2 does not depend on the dimension of the realization.

Proposition 3. Let z be a zero sbate’ realization of a given S. Then

A .
? = F(1) ¢ (zlzz) K [(zl, 22)].

proof. The existence of E implies the existence of AO,Al,Astnxn, BEKnXl,Cslen

such that (3) hold. By associating the local state x(h,k) with the monomial
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% (h, k)z 7y el(n}(l [[zl, 22]] it is direct to verify that for any ueKI:[zl,ZZ]] we ha

ve

h k v h k ° h k
Zh,kx(h’k)ZIZZ Ao(gh,kx(h,k)zl-zz + Al(gh,kx(h,k)zlzz)zl +

- h_k
¥ Az(gh,kx(h,k)zlzz) z, + B(z;2))u

h k
and then (I-Aozlz2 Alz1 AZZZ}thx(h’K)ZIZZ

’

= B(zlzz)u.

The polynomial (IrA 2.7 ~A 2z z,) belonging to " n[zl,zz] has an inverse in the

172 1 172
ring of rational series K [(zl, 22)] and its inverse is
(I—Aozlzz—Alzl—Azzz) Z (A 2,2 +Alz Az 2

It results that

hk = (I- Azz Az-Az)-lB(zlzz)u

L ox(hk) =gz 1%27 817217 "%

h,k

and the output is given by

B - _ _ -1
y=C hka(h ,k) zlz2 = (I Aozlz2 Alzl Azzz) B(zlzz) u
E]

The series s is expressed by

-1
C(I—Aozlz2 Alzl-Azzz) B(zlzz)

: -1 . nxn
where (I--Aﬂzlzz--tfx.lz1 —AZZ2) belongs to K" [(zl,z )1 =K [(zl,z )]

This proves thst the product

-1
C(I-Aoz z, — Az, —Az,) B(zlzz) belongs to (2122) K [(21’22)1'

1%2 7 %1% 7 %%

1 AZ’ B, C) is a realization of a filter, Ao, Al’ AzeKnxn,

Be K“Xl, ek *®, and Tek™™ ™ is non singular, then (TAOT-l, TAlT“l, TAZT_l, B,

Remark. If (Ao, A

cT ) is still a realization of S, The matrix T is associated with a change of basis

A
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in the local state space.

4. Constructionuof a realization

We give here an effective technique of obtaining a realization (AO_, Al’ Az,
B, C) of a filter with seK [(Zl’ zz)]. This procedure can be interpreted as an al-
ternative proof of Proposition 3.1. Nevertheless the intrinsic meaning of the previous
proof of Proposition 3.1 is different in the sense that it is based on the concept

of equivalent classes according to Nerode idea.

Let s = },. a_ _. .
1] n=i, n-} 1

Pt

. . .
i -] -1 -] 3
2 %) /gij Boei, n-j %1 %2 Poo T

2 2 2 2 .
The matrices A, A, Azz»:Kn X gek” xl cegixn defined by:

[oors
L

|

[

l

|

!

I

|

%
.__.____.%.._w_,_,,__

l

|

l

|

l

|

l

1

!

-

e v v v . b b, ~b

.
337 P37 Bgy7P 3PPy ™0y 970 Ty
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_ 1 - | | 3
lllll [ _ — g
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(I | |
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# o #
[ a |
I ! _
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_ | T
, ! :
_ ]




76

¢= [ L+ e 8y, 815 29) 207 %30 %11 P01 P10 aoo]
satisfy the relation

_ _ . _ -1
s = C(1 Aozlz2 Alzl AZZZ) B(zlz2

5, Minimality of the realization and Hankel matrices

The Hankel matrix associated with a series s¢ (lez) k[[zl,zz]} is given by

2 2
(S'lez) (s,z, zz) (s,2,2, (s,z ) (s,zizg), (s,z1z357

H(s) = (S’Zizz) (s,2 1 z, (s, 7222 (s,z?zz)..-..

L

25 2.2
(s,zlzz) (5’2122) Cereaaaaens

Adopting an indexing which agrees with f the 1nput u eK[zl s 2] is represented Dy

the vector u = [(u 1) (u, z ) {u, z ) (u,zl ) (u,2.11 21)..]T so that the correspon—’
ding output is represented by the vector H(s) u. Of course if ue U¥*, the output in
(i,j) is given by the first component of H(s) (0 ; 13) .

The rank of H(s) with seK [(zl,z }] is in general infinite and it becomes fi
nite if and only if the series s belongs to the ring of recognizable series xe¢

[(21’22)] . Moreover the matrix H(s) with s rational has the following properties:

i) There exists a set of scalars {b_ ¥, £,8=0,..,, 0 such that for any h,k>n the
rows of H{(s) indexed by z?“r z‘gds ;re linearly dependent with coefficients {Br s}.

il)conslder the submatrices H (s) obtaxned considering in H(s) the columns indexed
by zl, i>0 and the rows 1nde1\ed by zl 12(, i>0 and the submatrices H (s) obtained
considering the columns indexed by z;, {>0 and the rows indexed by z; zli, i > 0.

For any positive k, the matrices H (s) and H (s) are finite rank,

1f we assume that the series s is recognizable we can exploit some useful pro
perties of this class of serles for getting a minimal realization in the set of re-
presentat1ons In fact if s ex° (zl,z ) there exist an integer m > 1, 2 representa-
tion u on kil of the commutative monoid generated by zq and Z,s two matrices

Calem and BsKle such that
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s = Z (Cu(z z ) B, z 2 ) ziz%
ij

The minimum value of m is given by rank H(s).

Proposition 5.1. Let s¢€ (z ) - [(zl,z )] and (C,u,B) a representation of s.Then .

(*u(zlzz), u(zl), n(z Y, B, C) is a realization of the filtér S corresponding to s

and u(zlzz) = u(zl) u(zz) pn(z )u(z ) Vlceversa let (A , l’ AZ’ B, C) be a reali-

zation of S satisfying — A = A1A2 AZAI Then the filter S is characterized by a
. rec

series s E(lez) K {(zl,zz)]

rec
proof. Let s s(zlzz) K [(zl,zz)] so that

« n *
= i J
8 = (2122) zi. C A1 A2 B z z;

a2 4 -
with Aln— u(zl), A2 u(zz) and A1A2 A1A2.
Then
_ . _
8= (zlzz)c(z AyAy, z) B = (2)2))C Zi(Alzl T Ay A].AZZIZZ) B

. 1
(2122) c(1 Alz1 A222 +A A221Z2)

This proves that (-AlAz, Al’AZ’ B,C) is a realization of S. The converse is immedia

te.
Remark 1. The rank of H(s), s eK [(z 3% )] provides the dlmen31on of a minimal
realization in the class of realization (A s 1, Av B,C) satisfying A = =A A
= - AZAI‘

in the sequel the realizations belonging to this class will be called repre-~
sentations.

Remark 2. If (—AlAz, Al, Ays B, C) and (—Klﬁz, ﬁl, 32, 8, € are two minimal repre-

. . . = . XM
sentations of dimenslon o=rank H(s), then there exists a non singular matrix TE:KP

such that:

.—1 -~ A~
1 = &) ™ =B
TALT L = A erl =¢
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When s is ratijonal but not recognizable, the minimization procedure cannot be
directly correlated with the Hankel matrix H(s) of the series s. Nevertheless it is
possible to get a partial minimization with the aid of a non-commutative structure.
To this end we recall that any non commutative rational series is recognizable. As
a consequence for a non commutative rational series rekK <(xl,x2,x3)> there exist an

m X m lxm

. . . 1
integer m, a representation j: X¥5K , two matrices B eRle and CeX such

that

r = z Cufw) Bw
wEeX¥

where X¥ is the free monoid generated by Xys Xys Xge

In this case u(xl) = Al’ u(xz) = A2’ u(xg) = AO are not necessarily commutati
ve. The series r can also be expressed as A minimal representation (Ko, Kl’ 32, B,0
of r, whose dimension is of course m=rank H(r), constitutes the minimal realization
of s in the class of realizations which are also representations for r.

For any realizationﬂ(Ao, Al’AZ’ B, C) of s in this class with dimension m,
there exists a matrix PeX' " of full ranmk, such that

AP =DPA
o] 0

i
H
!

F=E A

Qr

.
I

(9]

o
It

P B

In this class any minimal realization can be obtained from any other minimal

by similarity.

6. - Reachability and observability

In this paragraph s will be always assumed to be ratiomal so that it will be
possible to consider finite dimensional local state space.
Let X = X" be the local state space of a realization (Ao’Al’AZ’B’C) for the

given s.

Defintion 1 (locdl reachability): the local state x € Xis reachable in (i,j) if there

exists ue U such that
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_ . k ij
X = ((zlzz) zk(Aozlz2+Alzl+Azzz) Bu, lez)
Definition 2 The reachable local state space in (i,3) is

R,. B : h j
(i, =Exex = ((2122) zh(Aozlzz+Alzl+A?_zz) Bu ,ziz%), Jue U}

By shift jnvariance property XR(i,j) = XR(l,l) = KR.
The state space X is completely j-reachable if X~ = X.

- i, o - - _ -1
rp§c(A1x1+A2x2+on3) B = C(I- A%y A%, ong) B

The dimension of the minimal representation (AO, Aoy Az, C,B) is given by rank H(¥).
The morphism @} K<(x1,x2,x3)> + K [zl,ZZ] defined by the assignements o (k)=k,
vkek, o(xl)=zl,0(X2)=22',®(X3)=z 2 is amorphismof algebras whose image'is K[(zl,z-z)] .

172
This comes from the fact that

-1 -1
s C(T Alx1 A%y AOXB) B+ C(L Alzl A222 Aozlzz) B
so that the image of a recognizable series is a rational series. Since all rational
series are obtained by varying Al"AZ’Ao’ B, C, @is onto and to each representation
of a non—commutati.ve geries T eK<(xl,x2,x3)> corresponds 2 realization of e(r) ek
[(21’22)]‘
The map @ 18 factorized as in the following commutative diagram

K <(x1,x2,x3)> 9 =K [(zl,z )]

v

e
2%907 -
ker 0

K <(xl,x

where © is an {somorphism.

Given s &K [(zl,zz)] consider the coset 9 (s). A minimal reatization of 8 is then
a minimal representation in the class of representations associated to ° —1(3) . For
each ¥ co '-1(5) the dimension of a minimal representation is rank H(r) so that the di

mension of a minimal realization of s is min. rank H(x).
. . . e - (s .
In general starting from 2 realization (Ab,Aﬁ,A(z,}i,C) of a series 8 aK[(zl,zz)] we

can reduce the dimension of the realization by minimizing the representation of the
-1
- i fes r = C(I- A X, " .
non-cogmutative series r = G(I- A%~ A%y AOXS) B
In a way analogous to the usual lineal case a ]-reachability matrix R, asso”
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ciated with the realization (AO, Al’ A2’ B, -} can be introduced

v a

R = [B HOO . BMIO . BI‘IO1 . }

v h i
where Mij = (gh(Aozlzz tAz tAz) 2,2,)

The image of R is XR so that the state space is completely l-reachable if
and only if rank (R) = n.

Proposition 6,1. The minimal’realizations are completely l-reachable.

proof, Let (KO, 31, 32, g, €) be a minimal realization for s with dimersion n. Suppo
se n = din XX = rank (R) < n and decompose X as xR ® (XR)L. Then by definition of
reachability a zero-state realization of dimension n can be constructed in XR, This

contradicts the assumption of minimality

Remark. The realization associated ta ¥ in Proposition 3.1 and the realization pre~
sented in paragraph 4 are both completely l-reachable even if they are not neéessari

ly minimal,

Definition 3, A local state xeX is indistinguishable from Oe X if:

i
I ¢ (Ag212, + A2y + A2,) "% = 0

The left hand term in the above relation represents the zero-input response of Z

étarting from 2(0,0) = 0 and assuming x{1,1) = x.

Definition 4 (indistinguishable l-state space) ¢

A . i
X" ={x : xeX, ZiC(Aozlzz+Alz1 tAyz,) x = 0}

The space Xt is the null space of the observability matrix:

C ‘MOO

C MlO

e

c MOl




81

The state space X is completely l-observable if XI = {0} i.e. rank (0) = m.

" The analysis of reachability and observability can be done in a more standard

way when the series s is recognizable .(o) In this case if (—AlAz, Al,“Az, B, C) is
a representation of dimension n for s, the reachability and observability matrices

assume the form

v : L2 L2,
R = [B P EB D AB AR L AAR DA S ]

CA
CA

CA

o

CA A

CA

s

so that

H{(s) = 0 R.

By Cayley-Hamilton theorem the ranks of R and O can be evaluated considering

only the first 22 block submatrices. Hence for the computation of rank f(s) we shall
restrict to evaluate the rank of H 9 2(s).
n",n
On this basis we have directly the following result:

rec — > . . .
Proposition 6.2, Let seK [(zl,zz)} and n be the dimension of a minimal represen-—

tation. Then the local state space X is completely l-reachable and l-observable.

This folléws from H(s) = 0 R and rank H{s) = n.

(°) The systems in two variables presented in E&] can be considered as filters charac
terized by a recognizable series s. The "realizations' introduced there are act-
ually representations of s, so that a result similar to Prop 6.2 is proved,
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