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Abstract is the identity of G. Denote the "positive semi-
N "o * -
groups' in G by P’i&l’ cé} = words w({g) in
Basic definitions are given for an input/ g1, 02, and the "negative semigroups” by N =
output theory and transform calculus for station- -1 -1 * ; =1 =1
A , - i 4 = words in ¢ , O .
ary, discrete-time linear systems on a time set 1 2 1 2

isomorphic to a free group. Relationships with For notational clarity, denote by T a second

free ideal rings are pointed out, and an algor-— copy of G to be used as a "time set" for the
ithm for computing minimal realizations is con- linear systems discussed below. The group G will
jectured. act on the right of T by t =t w(o,0” ) (defined :
' since T is really the same as G). Define a g
partial order < on T by ty < t, if tyw= i
1. Introduction ty for some w in P. The poset (T, <) can be
) thought of as a homogenous tree branching in two
This preliminary report investigates station— "future directions' and two "past directions'
ary linear systems on a time set which is isomor-— (see Fig. 1).
phic with a free group G. (In this paper, G is A stationary, linear, discrete-time system on
free on two letters, but this is just a notation-— (T,<) is given by I = (Z,U,Y, A1,A7,B,C), where
al convenience.)} Although we have not described X,U and Y are vector spaces over a field k, and
the connections explicitly here, most of this Ay, Apr X+ X, B: U~ X, and C: X > Y are k-linear
work represents yet another attempt to unify maps. The dynamical structure of I is defined by
automaton theory and control theory. A good vector difference equations
subtitle might be "Variations on a theme of M.
Fliess [3,4]." -1 -1
The first goal is to develop a Kalman-type x(t) = Alx(tol ) + %2 X(tUZ ) ¥.Bult)

input/output structure 'and a corresponding (2.1)
"extended" or Laurent-series i/o structure. The y{t)
resulting "Z-transform'" calculus seems to depend
on careful choices of module actions with parti-
cular attention to right actions versus left
actions. After much anguish, the authors are
reasonably certain of consistency.

In addition to the basic definitions, some
attractive relationships between system theory
and the theory of free ideal rings are presented.
In particular, the dimension of a minimal real-
ization is closely related to the number of gen-
erators of the Werode kernel. A conjecture giving

i

C x(t)

for all t in T.

The state space X will be considered as a left
module over the ring k <z zp> of non-commuting
polynomials in two variables, with zyx = Aix and
Zox = Azx for all x in X. If w is a word over
some two symbol alphabet, we abbreviate the gen-
eral formula by w(z)x = w(A)x.

This structure is well-known and was intro—
duced by Fliess [3] under the name '"serial

n
a method to calculate these generators is given madule’s
in a special case. )
The methodology of this paper is derived from 3. Input/Qutput Mappings.
[7,8]. 1In acdition to relationships with auto—
mata and forinal languages, these results are The k <zj, zy> - action on the state space X
closely relatad to two-dimensional digital filt— (or, more precisely, the ring inclusicn k ek
ers [5]. <z1, z7>) leads to the input and output string 3
: functors i
2. Systems 3
‘ QU = k <zl, Z,> ﬁk u :

Let G be the free group on two letters o1
and oi, so that a typical element of G is a word : ; %
w(clc‘ ) = Xy¥p...¥g with each x; either o1, Iy = Homk,(k <z, zz>,Y),
g1 ~, 03, or 02_1. The empty word e (with k=0)
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as in [6,7].

The module QU is a left k<zj,zp> — module
by z1(w(z)®€u) ='zlw(z)ﬂu as usual. To describe
the left k<zy,z2> - action on IY, write mappings
h in TY on the right, as w(z)+>w(z)h in Y. Then
z.h acts by w(z){z h) = (w(z)zqh for all words
w%z)A . g

The reachability and observability maps in
this context are given by

B: QU X

w(z)@u)é = w(A)Bu, and

C: X-TY

w(z) (xC) = Cw(A)x,

for all words w(z) in zj and zp. These maps fit
into the usual realization diagram of left
k(zl,zz> - modules

£
Qy ——————————3 TY

where the ifo map f = BC is uniquely given by the
Markov parameters w(z) (18u)f = Cw(A)B.

Existence and uniqueness of a (not necessar-—
ily finite dimensional) minimal realization of an
abstract ifo map £:020 + I'Y is routine. Finite-
ness of the minimal realization follows from the
Theorem of Kleine-Schutzenberger [2,p.175] just
in case f is rational. (Note that a scalar ifo
map f: k<zj,zp> > Tk is essentially the same as
a k-subset of {21,22}* as defined in [2,p.126].

4. Formal Laurent Series

The  (Kalman-type) i/o-maps discussed above
can be put into an "extended" or "Laurent' context.
(Compare [6].) For any vector space V, define

Ww={v: TV}

as the set of all "left-finite_functions" such
that for all t in T, {s < tiv(s) # 0} is
finite. To get a formal series representation,
think of v = T v(t)t.

The set L(V) accepts several useful actions.
First, L(V) is a left k<zj,zp> - module by the

. formula (zi%)(t) = v(o;t), and, more generally,

((2)¥) (t) = ¥(w 1(e"1)t), where w is any word
in two symbols. For example, if w(z) = 2z zj,
then w1(z) = zEl 212, and w-1(c~1) = 02012. To
motivate the action, think of zj as acting on
sifies as 0§1 , SO zi(ZQ(t)t) = Es(t)oi t =
Iv(o;t)t.

Second, L(V) is a right module over the ring
k<<cl, ap>> of non-commutative formal power series
in the group elements 0],02. In fact, if p=Lpgs
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is a power series, then (Gp)(tl = Ipsﬁ(t s—l)
Here s is a string in 3dq, Uz} , SO sl is a
string in 407, 0% A Tesml <'t, and the sum is
finite by the assumption of v.

In order to develop an i/o-theory on the
Laurent series level, it is necessary to give
left k<z],z> - linear maps i:QU - LU and p:

[Y -+ TY such that i is injective and p is sur-
jective. These mappings are given as follows:

i: Qu = [U

uif t= w(c—l)
{w(z) 8 u) i () =

o otherwise
p: LY TY

w(z) 0p) = v (a1

In both these cases we have identified & with T.
A1l these mappings fit together into a big
diagram
£

w—3 Y

where f# is defined as follows: let Mw = Cw(A)B:
U -+ Y be the Markov parameters, and let u be in
U. Then

@h@) = 1 oM ute v ().
w

Furthermore, £t is a left k<zy,z9> — module map
which is uniquely determined by the My, and
vice-versa.

5. Transform Calculus

In terms of the module actions defined above,
the standard updating equations (2.1) can be Te-
written as

3 A R0+ A x iy, ¥ Bu

- ~

vy = Cx.

(5.1)

Here Aj, Ap: LX » IX, B: LU~ IX, and C: ¥+ Ly
are given their natural meaning (e.g. (Cx)(t) =
Cx(t)) and X is considered as a right k<<gy,09>> -
module. Since mixed actions of the type X+ Ajxoy
are hard to use, the enveloping algebra My(k)®P

€ k<<51,02>> can be introduced, with right



actrons defined by, e.g.,

wrs OP _ v
R(t\l .3 gl) Al X Gl.
Thus works since (A A,,)Op = A.°PA P in the
opposite ring MH(R)APT Then we have
2a- Alopcl - AZOPOZ) = Bu
” % : (5.2)
y = Cx
so that
oo et 2 - _ op _ op =1
v u £ C Bu (1 Aoy AZ 02) 5
or, by expanding the right hand side,
" ~ -1
y(t) = £ C w(A) Bu (£ w (o)), (5.3)

w

which corresponds to the familiar formula on the
line. i

The same technique can be used to study
high-order scalar recurrences on a free zroup.
Suppose an i/o-map is defined by

y(£) =L dy(ew (0)) +bu(t), (5.4)

W
where w runs over words in two letters, and only
finitely many of the scalars dj are not zero.
This gives

y = Id yvw(s)+bu
w ¥ (5.5)

§f = § = @ U-fd w(e)) L.
Thus a type of recurrence familar to control
theorists defines a rational function (equiv-
alently, a regular language) of a rather special
type. This case will be studied more closely in
the next section.

6. Realizing Scalar Recurrences

Suppose given a scalar recurrence of the form
(5.4) above. The transfer function (5.5) defines
an i/o map f: 0k - Tk as usual, and in this case
fk = k<z), zp>. The left ideal I = ker(f) may be
space for f is just the eyclic left k<zjy, =z} -
module k<zy, zp>/L. One important goal is the
explicit computation of I, say by giving a list
of generators, and the explicit construction of
the state module from the ideal. This procedure
is more or less equivalent to the construction of
a (non-deterministic) k-valued finite state auto-
mation from a given regular language.

The following ring theoretic result is very
suggestive (1, p.85, bottom): let R = k{zy, zg,

s 23 and let I be an ideal of R. It is
known that T is a free R-module (R is a 'free
ideal ring'"). Suppose that I has finite rank r,
so that I has r free generators, and suppose also
‘that R/I is finite dimensional of dimension n.
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—Conjecture:

Then r-1 = n(d-1).
d=2, so r-1 = n.

We can use this result in specific calcula-
tions as follows: suppose we find elements
P1y «ees Py in I, and define the left ideal T =
Rpp,+ ... + Rpy. Then I, is free of rank r <t
(with equality of the Pj are independent). Then
either R/IO is infinite dimensional, or else dimg
(R/I;) = r-1.

A rather detailed conjecture is available in
the scalar case. Consider the recurrence (5.5) and’
set D = 1 - Idy w(o). For u(z) in ¢k, compute
u(z)D, a polynomial in zj, 22, 0y, 02, and set
z; 04 =1, 1 = 1,2, Finally, define the trunca-
tion Tr(u(z)D) by omitting all mixed terms. (For
example, zj o2 and z% 01 0 would be omitted.)

Let f£: 0k » I'k be given by u(z) f =
u(z)D_I (in the sense of (5.5).) Then ker f is
generated by the set {Tr(u(z)D)},where u(z) runs
through all polynomials such that Tr(u(z)D) lies
in k z1, 22

As an illustration, consider the recurrence
y(t) = y(tcil) + y(to7l o31) + u(t), or y = u(l -

In the case considered here

01 - 0201)° Let D=1 - g; - v201. Then
ZID oz - 1- 210201 > zl -1
Bl P Bg gy <Y T8
25 v el w28 u 2
22D 22 zzcl 2201 d z2
ZIZZD = zlzz = zlzzc -1 +zlz2 -1

Here the arrows represent truncation. Of these,
the second is not usable, and the conjecture would
suggest that the Nerode kernel 1 is generated by

z1 = 1, z%, z,29 - 1. Direct calculation shows
that k<zl,22> I is 2 dimensional, son =1 - 1, and .
these are free generators of the kernel. Further
calculation verifies that the resulting system is
minimal, and it is easy to draw a two-state non-
deterministic state diagram for this problem. More
details, and hopefully a proof of the conjecture,
will be submitted elsewhere.
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