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TWO DIMENSIONAL FILTERS AND THE PROBLEM OF REALIZATION
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ABSTRACT

Two-dimensional filters in input-output form are characterized by formal
power series in two indeterminates. The realization problem consists.in loo
king for updating equations operating on a state space. -

The partial order on the time set induces two different kinds of states:
an infinite dimensional global state space which derives directly from Nero
de equivalence and a local state space. Whenever the input-output map is a
raticnal power series, the local state space is finite dimensional and it
is the natural framework for describing the local state evoluticn by appro
priate updating equations. The updating equations on the local state space
have the structure of a doubly-indexed dynamical system (2-D system).

The problem of constructing an efficient realization, that is a low di-
mensional one, is partially solved by linear computation of reachable and
observable realization. Nevertheless these realization are in general not
minimal and the minimality depends on the ground field.

A suitable condition of boundedness on initial states is required to in
troduce internal stability. Under this assumption the intermal stability
means that the free evolution approaches zero as the distance from initial
states goes to infinity. Necessary and sufficient conditions for asymptotic
stability are given and connections between internal and exterpal stability
are also considered,

1. INTRODUCTION

The aim of this communication is to report on problems and results in
the study of dynamical models for two-dimensional filters,

Despite of several recent contributions [ 1-12 |, many problems are
still unsolved and some of them will be mentioned in the paper. The con-
struction of dynamical models as a generalization from the standard theory
of linear systems, involves polynomials in two indeterminates, non commuta
tive algebra techniques, partial orderings on time set,which represent a

substantial difference between one-dimensional and two-dimensional systems.

2. ALGEBRAIC APPROACH TO REALIZATION

The realization problem constitutes a modern and formalized version of
the classical engineering problem of constructing some devices on the basis
of design specifications.

It essentially consists in determining dynamical models (i.e, state-spa-

ce models) which exhibit a prescribed input-output behaviour. We therefore
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need: 1) an abstract description of the particular class of input—output

maps we d

1 with, il) an abstract description of the dynamical models we
propese to adopt, iii) an algorithm which allows us to pass from the in
put /output map to the dynamical model.

To give an example, let us consider the realization of discrete, linear
invariant systems.

When one represents the input and the output sets by means of truncated

formal Laurent series, the class of linear i/o map is the ring xﬁmmg of
formal power series in one indeterminate. Denoting by s an element in
zMﬁ&Q‘ the output y is obtained from the input u as the Cauchy product
su .

As it is well known, the linear dynamical models used in the realization

of linear i/o maps, are the following

x(h+1) = A x(h) + 3 u(h)

- () = € x(h)

In fact a linear i/o map s, is realized by model (1) (for suitable A,
B, C) if and only if s is rational. In this case there are infinitely ma
ny realizations of s, and the natural problem is to single out the "most
efficient" ones. The Nerode equivalence provides a canonical solut’on, in
the sense that it is essentially unique: the state space is the set of Ne
rode equivalence classe, and matrices (A, B, C) are determined modulo a ba
sis transformation.

In this section a short account will be given of state-space realiza
tion of two-dimensional filters. We therefore need an axiomatic description
of their i/o behaviour as well of the class of dynamical models we consi-
der as candidate at theilr realization.

The sets of input and output functions of a two-dimensional digital fil
ter are subclasses of xme.x being a generic field. These functions arere
presented as formal power series in two indeterminates zy and z,. To cha-
racterize the sct of these functions assume in Z x Z the product of orde-

rings and introduce the notions of "past” and "future" of a point (h,k)in

VA

We shall call "past" of (h,k) the set of points (i,j), such that i<h,
i=k, (i,5) # (h,k) and "future" of (h,k) the set of peints (i,j) with
h<i, k<j. )

We say that a function ué wme is past-finite if the intersection of
the support of u and the past of any point in Zx# 1is a finite set. The

set of functions % we shall assume as admissible inputs to the filter are

E. Fornasini/G. Marchesini 373

— . . UxZ
the past-finite functions in K "

With this in mind we define a linear, stationary, digital filter in in-

xZ 7 = = - %
put-output form, as a map # UK L which satisfies the following axioms:
1) linearity
(ii) stationarity:

hk._ hk .
m.mmu.nm..& |Nu..Nmm.ncv. Vh,ke %, Vued

(111) causality:
the support of £(1) belongs to the future of (0,0) and dces not con

tain the point (0,0)

We can directly check that ImFC%and that the impulse response F({l) con
stitutes the transfer function of the filter, for we have {in formal power

series notation):
Flu) = F(L)u. Vue¥

In this way the input-ocutput representations of two-dimensional filters
are in onme-to-one correspondence with the formal power series in zy and z,

with zero constant term, called "causal formal power series' and denoted by

k [[zp2,0]

This result generalizes the above mentioned connection existing between
input—output representations of one-dimensional systems and formal power
series in one indeterminate.

The realization of one-dimensional systems is done by introducing a ti-
me vector function x(-), called the state of the system, which has a sepa-
ration property with respect to the past, in the sense that the knowledge
of this vector at any instant t is sufficient to evaluate the output at
1> t, When one deals with two-dimensional filters it is :o.woummn possible
to attach a vector having a separation property to any point (h,k) in Zx2
in such a way that the knowledge of this vector and of the input in the fu
ture of (h,k) makes possible to compute the output in the future of (h,k).
Clearly this fact is Intrinsic to the structure of partial ordering of
Zx#, since a separation property should interest an infinite set of
points.

It is worth while to recall that the structure of model (1) can be axi-
omatically derived from Nerode equivalence on the input space. Witlrthe aim
of singling out state space models which realize two-dimensional filters
we are naturally led to extend Nerode equivalence to the input space ¥ .

"

For this consider in ZxZ a non empty set %, called "separation set",

it - > " LT
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which satisfies the following characteristic properties:

{5 if h>1, k> j, (h,k) and (i,j) cannot simultaneously belong to ¥

(i) if (h,k) belongs to %, then % intersects the sets {(h-1,k), (h,k+l)
(h=1,k+1)} and {(h+l,k), (h, k-1), (h+l,k-1)}and does not contain the
set {(h+l,k), (h,k+l}}

(i1i) if (h,k) is in the future of ¥ , then there is only a finite number

of elements (i,j) in % with (h,k) > (i,])

“Thus the plane #x2 is partitioned in two subsets:

{(i,7): (i,j)e ¢ or (i,j) belongs to the past of some
point in @& 3}

ﬂ«% = {(1,3): (1,])¢¥ and (i,]) belongs to the future of some

point in ¥ }

Assuming the Input be zero in Feo s then the knowledge of the input in

¢
m&; is necessary and sufficient to compute the ocutput in MN.

Plainly there are infinitely many possibilities of mrmﬂwnm the set @ .
In particular image processing usually refers to separation sets as in
fig. 1.

Let %" denote the set of functions ue®

with support in | g and W¥the set of func- -

tious with support in Fe . For every uc#

let f(u) denote the restriction of F(u) to F.,,

This defines a linear map f :%+@*which charac

terizes the filter in the same sense as I does.

-

After introducing a concatenation in% N.mu. b
{
1t 1s easy to check that f-equivalence classes ¢ 1 w |
in %" coincide with Nerode equivalence classes Zn

which turn out to be the cosets of % relative
to ker f.

The space % ‘/ker f displays the "memory fun

ction" of the i/o map and it ¢ be assumed as the state space X, of a dy-

namical system which realizes the two-dimensional filter, !

This construction is clearly canonical but suffers from the drawback
that the dimension of xz is infinite even if the i/o map is given by a ra-
tional function. It seems therefore impossible to describe the dynamics of
xz in terms of appropriate updating equations.

This fact represents the first substantial difference with respect  to

discrete, linear systems where the Nerode state space is finite dimensional
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if and only if the i/o map is ratiomal.

These difficulties can be overcome te some extent by introducing the no g
tion of "local state space". A dynamical model,based on the introduction of
a local state vector, is required to have a structure such that: (i) every
point (i,j) in ZxZ is associated with a finite dimensional vector, called
local state at (i,j), which linearly depends on the past of (i,j), (ii) the
set of local states on & separation set € is necessary and sufficient to
compute with linear operations the free evolution on m&h.

These conditions are not sufficient for deriving univocally the structu
re of the updating equations. The class of mcdels we shall define, is con-
stituted by the so called "2-D systems' and has the property that it con-

tains the other local state models.

DEFINITION. A double—indexed linear, stationary, finite-dimensional, dy
namical system (2-D system) I = A>H.>m.mw.wmunv is defined by the first or
der partial difference equaticn:

x(h+l,k+l) = Apx(htl k) +Ayx(h,kel) + Bjulhl, k) +
(2) + Bou(h,k+1)
y(h,k) = Cx(h,k)
where u(h,k), the input value at (h,k), and y(h,k), the output value at
nxn nxl lxn 1.2

(h,k), are in K and h,k € %, >w e K ] mw e K , CekK , 1=

and

x £ X = K© (local state space).

1t is straightforwara to verify that the ifo relationship (transfer fun
ction) of a 2~D system, when it starts from zero local states on a separa-
tion set, is the same as a two-dimensional filter and it is given by the
folloewing rational series:
sl
s, = C(I-Ayz; - Agz, ﬁwHNW + mmmmv
Then it is clear that 2-D systems constitute a class of dynamical sy-
stems which can be used to realize two-dimensional filters. Actually every
2-D system can be viewed as a realization of its transfer function s. -
'wo problems naturally arise: the first is to specify the subclass of the
class of two-dimensional filters which can be realized by 2-D systems;
the second consists in setting up some techniques for obtaining the most
"afficient" realization in the sense of the dimension of the local state.
The solution to the first problem recalls very closely the solution of
the realization problem for discrete linear systems and is given by the

following proposition [2,8]:
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PROPOSITION. Let s € xMMNH_Nmuu. Then there exists a 2-D system which

realizes s (i.e. whose trasfer function is s) if and only if s belongs to

the set of rational series with zero constant term.

A=

MINIMALITY

So far the second problem, that is to find realizations whose local sta

te space shows the lowest dimension, has not been solved in a satisfactory

way though several partial related results have been reached yet ﬁm.mu.

In this section we shall briefly report some partial solutions to this

problem and some questions whichstill wait for a complete answer.

Lf we start from a rational transfer function, we can use existing

techniques for computing the matrices A>H.>mvmw.wm.nu of a realization

fu‘mg. In general these procedures do not provide minimal realizations e-

ven 1if the numerator and denominator

polynomials. Nevertheless there exhist algorithms we can use to reduce the

dimension whenever the realization we start with is "locally-unreachable™

and/or "locally -unobservable".

Referring to ﬁuw for definitions, we recall here that a test for local-

of the trasfer function are coprime

-reachability and local-observability comsists in checking the full rank

of the following matrices:

A= [BiB,)iA B | A/B, +AB, |

| i=1 “_ b
i ..”QJ () >meH+9H foor |

and
T _ D Ti T |
1] ,T | (CA)) wﬂnpmv eeiclyy

, . L
ol >Muﬁ....

rFLm A, = A

aBy e

LAy s ], i*i <n

|
2 M_.....

"reachability matrix"

1y itj<n

"observability matrix"

]
2

1

Matrices >~ Ty >m are inductively defined as
r 0 o R 0
>~rkL >m = bH = >H
r s _ r-1 s
>H L) >M = >w T)» Lt

r i
>Nv + >m ;H (W) A

5)

If one of the above matrices is not full rank, there is a finite, li-

near procedure ﬁw_wau which leads to a locally-reachable and locally-ob-

servable realization which has lower dimension than the one we started

with, This procedure has a structure which follows the usual one in linear

system theory. The main difference is that the locally-reachable and lo-

cally observable realizations we obtain are not necessary minimal. For in-
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stance the following 2-D systems:

-1 0 m.o 1 j [0]] o 1]
A= , A, = , B, = » By = » €= [0 1]
S PR A P L P R B
and i r
0 1 0 o o
MHr.oow,wmn-Mo
01 0 ﬁoH

are both locally-reachable and locally-observable realizations of the tran

sfer function:

2 2
L = Z] 7 2,

Obviously the second one does not constitute a minimal realization.

As a matter of fact the analysis of the structure of minimal realiza-
tions, as well as the design of algerithms which explicitly give such rea
lizations, constitute the bottleneck of 2-D systems theory.

To get some insight intc the algebraic nature of the problem we obser-
ve that the dimension of minimal realizations depends on the field we use
for constructing the realizations. This fact seems to signify that a solu
tion should resort to mathematical tools beyond linear algebra.

To illustrate nrwnunOﬂmmamﬂ the transfer function

2 Z12,

H+NW+NW

complex realization of dimension 2:
0 i

g_nnw 1]

0 i -i 0| [} -1
2

which admits the following
-i 0 0 -i

The identity H+NM+N = det AH.ubwnw - A NMV cannot be satisfied if

2 r iR
A4, belong no,waW. For the contrary, assume
i |
2 2 ‘ ﬁw+v ro|
H.+NH+NN = det |
f t 1+

with p,q,r,t homogencous polynomials of degree one in ﬁ._WH.NuQ. Since
the left hand side does not include monomials of degree one, we get p=-q.

Letting p=uz, *8z,, we have

N-
AQN+HUNW * 2afzz, + Hmw+wvnw = =rF
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which would imply that a positive definite yuadratic form admits a proper
factorization on R ﬁmw.xmg i

It is significant to point out that Kung, Lévy,Morf and Kailath ﬁﬁ
tried to get minimal realizations resorting to a less general model than
(2), and yet they fell with an algebraic non linear problem exactly like

that we mentioned above.

4

4. STABILITY

The notion of internal stability of a 2-D system is related to the be-
haviour of the free evolution of local states resulting from a generic lo-
cal state assignment on a separation set & .

Let assume in ZxZ the distance

A((i,3), (0,k)) & [(i-h) | + | (G=K) |

and denote by

d((i,j),%) = min  d((i,j), (h,k})
¢ (h,k)EE

the distance between (i,j) and the set ¥ . Introduce the following nota-

tions:

(1) 2 = {x(h,k), (h,kK)E¥) , "global state" on €

_AE

@ g fi= su
Km_&‘.«&‘

denotes the cuclidean norm of xe X.

DEFLNITION. Let% be a separation set in Zx# and assume u = 0. The

2-D system (2) is asymptotically stable with respect to ¢ if given e»0, fer

every &, with | Z |l < =, there exists a positive integer m such that
7Tﬂw.uv__am when (i,j) is in the future of ¥ and d((i,3),%) » m.

The internal stability depends on the pair A>Hu>mv and one could expect
that it depends also on the separation set %. Actually the dependence on
¥ does not subsist ﬁwmm and the following Proposition gives an algebraic

criterion for checking asymptotic stability:

PROPOSITION. A 2-D system &L = A>H.>m.ww.wm.nu is asymptotically stable
if and only if the polynomial aoﬁhleubwimm?mV is devoid of zeros in the

closed polydisc:

.m\y = :NH_NNVmexe" |z _:A.w. TL <1} ,

The result presented in Proposition above makes suitable for asymptotic
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stability analysis those tests elaborated for input-output stability
mwunwmg. In fact for a two-dimensional filter, with transfer function
nmmw.wwv\aﬁmw.wwv,gﬂo.ov =1, to be m:ccniommvcn stable it is necessary and
sufficient that amuwuva not be zero in mw.
nomnwamommm properties are relevant in analyzing the relations between

input-output (BIBO) stability and asymptotic stability of 2-D systems. For

this It .is important to note ﬁuu that if ¥ = nbw_bmhmﬂumm,nv is a realiza-

tion of a transfer function nANH.NNv\nnNH.NNV with p and q relatively pri-

me and
(i) An.H|>HNH:>Nva are left-coprime
(i1) AH|>HNHr>NNM.mwNH+wMNmV are right-coprime

then det AHleNHibmnmv = aﬁNH.NMV.
Realizations satisfying (i) and (ii) will be called "coprime™.
For 2-D systems input-output stability and internal stability are rela-

ted as shown in the following Corollary:

COROLLARY. Let muﬁww.bu_mw.wm.nv. Then we have the following implica-
tions:
L asymptotically stable - I input—output stable

I asymptotically stable + I input-output stable + £ coprime

E.Fornasini, G.Marchesini
Dept. of Electrical Eng., Univ. of Padua
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REFERENCES

mwu S.Attasi, "Systémes lindaires homogénes a deux indices", IRIA Rapport
LABORIA, n. 31, September 1973.

ﬁm_ E.Fornasini and G.Marchesini, "Algebraic Realization Theory of Two-Di
mensional Filters", in Variable Structure Systems, (Portland 1974),
Lecture Notes in Economics and Mathematical Systems, n. 111, Springer
Verlag 1975.

ﬁuw R.P.Roesser, "A discrete State-Space Model for Linear Image Proces=
sing", IEEE Trans. on Automatic Control, vol.; AC-20, n. 1, pp. 1-10,
February 1975.

mbu S.K.Mitra, A.D.Sagar and N.A.Pendergrass, "Realizations of Two-Dimen=
sional Recursive Digital Filters'", IEEE Trans. on Circuits and Sy-
stems, vol. CAS-22, n. 3, pp. 177-184, March 1975

ini and G.Marchesini, "State-Space Realization Theory of Twe-
sional Filters", IEEE Tr on Automatic Control, vol. AC-2L,
pp. 484-492, August 1976.

|
l
:
E
j
|
|
|
|
\
:
\



bl

(8]

]

[10]
(1]
[12]
[13]

[14]

[1s]

Session B4

E.Fornasini and G.Marchesini, "Two-dimensional Filters: New Aspects of |
the Realization Theory", Third Int. Joint Conf. on Pattern Recogaition,’ 0t
Nov. 8-11, 1976, Coronado, California.

$.Kung, B.Lévy, M.Morf, T.Kailath, "New Results in 2-D Systems Theory,
Part I: 2-D Polynomial Matrices, Factorization and Coprimeness, Part
II: 2-D State-Space Models. Realizatrion and the Notions of Controlla-
bility, Observability and Minimality", Proc. of IEEE, vol. 65, n. 6,
June 1977.

E.Fornasini and G.Marchesini, "Doubly~Indexed Dynamical Systems: Sta-—
te-Space Models and Structural Properties', Journal of Math. Systems
Theory, vol. 12, n. 4, 1978,

E.Fornasini, "On the relevance of non-commutative power series in spa-
tial filters realization", IEEE Trans. on CAS, May 1978.

E.Fornasini and G.Marchesini, "Computation of Reachable and Observable
Realizations of Spatial Filters", Int. J. Control., vol. 25, n. 4, pp.
621-635, 1977.

E.Fornasini and G.Marchesini, "On the Problem of Constructing Minimal
Realizations for Two-Dimensional Filters", to appear in IEEE Trans. on
Comp.,

E.Fornasini and G.Marchesini, "Stability problems in 2-D Systems', in
Variable Structure Systems (Taormina 1977), Lect. Notes in Econ. and
Math. Systems, Springer Verlag., 1978.

J.L.Shanks, S.Treitel and.J.H.Justice, "Stability and synthesis of two-
—dimensional recursive filters', IEEE. Trans. Audio Electroacoust., vol.
AU-20, pp. 115-128, June 1972.

T.S.Huang, "Stability of two-dimensional recursive filters', IEEE
Trans. Audio Electroacoust., vol. AU-20, pp. 158-163, June 1972,

C.Farmer and J.D.Bednar, "Stability of spatial digital filters", Math.
Biosci, vol. 14, pp. 113-119, 1972.




