A PROGRESS REPORT ON OUTPUT FEEDBACK STABILIZABILITY OF MULTIVARIABLE 2D SYSTEMS

E. Fornasini

Istituto di Elettrotecnica e di Elettronica - Facolta di Ingegneria
’ via Gradenigo, 6/a - PADOVA
Italy

ABSTRACT

The output feedback stabilizability conditions of 2D
systems are expressed in terms of structural properties
of a pair of commuting linear transformations. An algorithm
is given for obtaining a stable closed loop 2D characte -
ristic polynomial.

1s Introduction

A peculiar aspect of the synthesis of a stabilizing
2D compensator is that, in general, even when the plant
is given by a factor coprime matrix fraction description
ND‘i, it is not possible to freely assign the variety of
the characteristic cleosed loop pelynomial. In fact this
variety is constrained to include the set of points where
the minors of maximal order of [D' N'] vanish simultaneo-
usly r1|d

Since this set is not explicitly known, one would
like to get rid of its calculation in the synthesis proce-
dure and to assign the characteristic polynomial of the
closed loop system in such a way that the above constraints
are automatically satisfied.

The idea we pursue in this paper is that of deriving
finite linear tests for checking feedback stabilizability
without any explicit computation of the set above.

The results we present here, based on a matrix ver-
sion of the Grdbner basis algorithm I3,5| are not complete
and constitute a progress report on the state of the art
on the subject.

2 Characteristic polynomials of the closed loop 2D

systems

Let W{zl,zz) be a strictly proper transfer matrix of

dimension pxm and let
N 0 Nz 2 = Wiz
F I =
1772 1772 1°72

be a right factor coprime Matrix Function Description (MFD).
Consider the ideal # generated by the minors of ma-

ximal order mi(zl,z2),...,mu(zi,z2) of the matrix

{ D(zl,z2
LN(zl'ZZ) _J

i
| ()

The coprimeness condition on N and D corresponds to assume
that the variety +# () is a finite subset of €x € or,
equivalently, that the quotient Rlzi,zzlfuﬁ is a finite
dimensional vector space over IR.

Let L = (A),85,B;,B,,C) be a 2D realizationof Wizq,z5)
2], where {1-A,z~A,z,, Bz +B;2,) are left factor copri-
me and (I-A;Z,-A,Zz,,C) are right factor coprime. Under

these assumptions, we have Il]
=& -A = det D '
det(I 1zl 2zz) e (nl 32)

Consider an output feedback compensator represented
by a proper MFD

=1
W =R S
et (z,02))8(z,.2)
of dimension mx p and let Zc =(F1,F2,G1,G2,H) be a reali-
zation of W_. satisfying the relation

det(I-F z -F z_ )} = det R(z_,z_)
171 722 172

Then the characteristic polynomial & of the closed
loop system obtained by the output feedback connection of
I and I is given by

A = det(RD+ SN) .
Using Binet-Cauchy formula, det(RD+SN} is expressed

as the sum of the preducts of all possible minors of maxi-
mal order, gj, i=1,2,...,v of {R S] into the corresponding

minors of the same order m;, i=1,2,...,v of [D‘N'], that
is
v
det(RD+ SN) = L g.m,
o T

Hence det (RD+SN} belongs to the ideal # for any choi-
ce of the compensator.

Conversely, given any polynomial p € #, there exists
a compensator rR~1 such that !1,3&

B = det(RD+SN) = p

This implies that ¥7(A) is freely assignable, except
that it must include ¥ (#) and does not contain (0,0). We
summarize our conclusions in the following

Proposition 1 The System I admits a stabilizing compensa-
tor if and only if ¥ (#) does not intersect the closed

unit polydisc PcCxC.

3. Existence of stable clesed loop polynomials

The above proposition allows us to establish some
criteria for testing closed loop stabilizability of 2D sy-
stems.

Let & =(g1,gz,...,gh) denote a Grodbner basis !5; of
the ideal # . Then the set {p1=1, p2,...,pv} of monic mo-
nomials in zy and z, that are not multiple of the leading
te.

power products of any of the polynomials in @ is fini

The corresponding residue classes module £, Dy Pgos.--

i . v b
itute a basis for the vector space R|zq,23]/F



Example | Consider the transfer functicn
3 5 2 5
z - -z -—z
- . ! 2 1 2 1 Dél\l
Z Z.) = = A
L 2 2 3 i
I e Al 3
2 1 21

The ideal £ is generated by the maximal order minors in
(1), namely N and D, and it is easy to check that N and D
constitute a Grdbner basis w.r.t. the lexicographical or-
dering of the pcwer products,

The only monomials +hat are not multiple of the lea-

ding power products z% and z, of N and D are

=1, =z, =
By B e BaiR

. A "
Hence {p; +F = Py, i= 1,2,3} is a basis of K!_zl,zzj/f .

Consider now the following maps

Zx :R[zl,zzj/fﬂ *Ri:z =L -_'/W

+F v +
1 B q+F zqu

,’3’2= ‘Rizlflz‘l/f *vRi:zl,z;/f : g fr z,a +F

They are both well defined, commuting linear trans-
formations on the [R-vector space F.Ezl,zz—_l /#. This implies
that when lREzl,z.zﬁi/.} is represented onto RY, .@’1 and .afz
are represented by a pair of commuting matrices M; and M,
in RYEV,

Note that the smallest ,‘fl and 32’2v invariant subspace
ger}er_ated by 51:7 is the whole space Rl}l,z; /¥ Thus
{Mng e, i,3€2 } is a set of generatcrs for the space R,

The construction of My and M, is performed along the

following lines:

i) associate with 51’52""’13\; the standard basis vec-
tors in RV

|

1
.e=[:i, .....

2
Lo

L

ii) for each 5j‘ represent z4py as a linear combination
of ;31,52,... '[_’u' This requires a strightforward ap-
plication of the so called "normal form algorithm"
§5| w.r. to the Grdbner basis (gl,gz,...,gh).

e
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0]
¢}
1

1
|
|

o

iii) the coefficients mij in

zp.=Ln'p i=1,2,...,v

19 5 131

are the entries of the matrix M1 we are locking for
M, = |m!
R

iv) and v) refer to the representation of z,p . for obtai-
ning the columns of M,,and are analogousjto ii) and
5 55 1

Example 2 Consider again the ideal of the Example 1 and

associate ey with 1, e, with z, and ey with E%. Clearly
2i-:z . Zi =%
1 1 11 1
Morecver s
3 ( 3 5 2 5 )+ ( 2 x 5 )
= - = -~z =z =z
. 521 e B TRy 2 7
2 5
=~z + =z (mod £ )
2 1 2 1

so that

1]
+

o | wn
— o
ra | LR

Kz
1

—

Hence we have

|
|
M’ = 1 0 5/2 | L
) 0 1 5/2_[
The computation of My is a little bit more involved. Note
that

.

z 32 3) + ( 2+32 +3)
= —— AN 2
z2 (zz«r-z1 5 2y z.l 5 %
= -z +T"z +3 (mod -# )
= (z z_+z 1z-3z)r4-(z +—z +3z )
B R 2 1 !
2 5
=z +=z 43z (mod . ¥ )
1 1
il G e O s R S +_Zl)
2.1
= - = d
z, ko, (mod £ )
2 2 4 3 3 2 4 3 3 2
zlz2 = (zlz.2+z1—5 zl—3zl) + (—zl+g zl+3z1)
4 3
= -z +lz 4-322 (mod £ )
201
( 4+5 3 5 2)+( 3+1 2}
= (= = + = - g
BT E T A F1%3 4
= _z3+l 12 (mod £ )
1 2 1
5 2
= (-2 += +—z )+ (-2z -—z )
2172 %
5
= -2z == 2 (mod £ )
2 i

This implies

- =2 3 - -
5 S ol +q
221 z. -3 zl+3
- <2 o
z = 25 +=
1T TR
=2 a2 5
¥ = - p——
.2'22.1 22.1 5 31
and finally
[ 3 o o |
wol2L s
2 2 2 2
-1 -1 -2

It is easy to check that Ml and M, commute.
F

Several properties pf the ideal .# and of the (fini-
te) variety ¥ (.#) are strictly related to the structure
of the commuting matrices M; and M, intrcduced above.

Property 1. A polynomial quRE:l,zzjf belongs to the ideal
# if and only if qiMy,My) =0

i
proof. Let qlz,z)) =L zlz% € £ This implies

iy 9ij

,)
~ry



1 (3)

and equivalently

0=1 g . M e (4)

iy 1ii
Multiplying (4) on the left by M?ag and recalling the ma-
trix commutativity we have

iJ r s
0= (Z M M_) (M M = @@
( qij 1 2}( " 2e1) r,s ;

This proves that q(Ml'Mz) =0
The viceversa is easily obtained by following back-
word the lines of the proof above.

Corollary Let ¥,(£), i=1,2, denote the minimum polyno-
mial of M;. Then ¥,;(z) is the minimum degree polynomial in
R|zi| n#.

A classical result \6\ in the theory of commutative
matrices jg the existence of common eigenvector for M1 and
M,. Property 2 clarifies how the pairs of eigenvalues that
correspond to common eigenvectors are related to the struc-
ture of the variety ¥ (#).

Property 2.
only if My and M, have a common eigenvector v and

Mv =o0av Mv =a_v 5
1 1 2 k2

proof.

Assume that (5) holds and consider any polynomial
- i3
qlzy,zy) =1 aj4 2123

in # . By property 1

1|
0=g(M ,M) =1L MM
aM, M) 954 MM
L3 i3
0=2 M M v = L a o v
Yy ¥ %5 %%
0 X 4.3 ( )
= ¢ el = gla, o
i5 %% T TSy

Since q(zl,zz) is arbitrary in #, (rxl,agj € ¥ (¥ . Vice -
versa, assume that (a,,0,) belongs to ¥ (F) and denote
by kl and k2 the algebraic multiplicities of z -0y and
z,-0p in ;bj and w2 respectively
kg
lbi(zl) = hl(zl)(zl_a]) 5 h1(02) #0

k
& . P
‘”2(22’ hzlzz) {z2 32) 7 h2(32) # 0

Note that hy(z;}h,(z,) ¢ #, since hl(al)hzmz) #0. Let t,
Dfrt< kl, be the largest integer such that

i t
hi(zl)nzlzz) (zl-cxl) ¢ 7

and let r, 0<r<v, be the largest integer such that

et ¥ DK, (2,06 (] (&, 96,9 5 yE
S\Zl, 2 B 1 Zl 2 Z2 Zl"Q] 22—02 e j

We therefore have that

.

s(zl,zz)e 4 (&)
slz 2,01z o) e g (7)
Blz sz y(z.~a.) € ¢ (8

Hence
v s ,Mle #0 (9)
1772771
and
(Ml—uil)v =0
M -a I)v =0
( R v

The last two equations show that the vector v defined in
(9) is a common eigenvector.

A different characterization of the variety ¥ (f) is
based on the Frobenius theorem I'?[ on simultaneous trian-
gularization of commutative matrices.

Theorem |FROBENIUS| Let M, and szbea_paj_r R L —
tative matrices. Then M; and My can be similtaneously redu-

ced to triangular form over C by a similarity transformation.

Let (al,az)ef:x@. Then (al,azje ¥ (#) if and

1 2 .
Property 3. Let T1= jtij‘ and T2=—[tijE be a pair of com-
mon triangular forms of the matrices M1 and M. Then
(u],az) in €x € belongs to ¥ (f) if and only if there ex-
ists an integer i such that

1 2
t =0, , t,, =a
ii 1 ii 2
proof. Since T, and Ml as well as T, and M, are connected

by a common similarity transformation, property 1 heolds
for matrices Tl and T2 too. Therefore, q(zl,ZQ) belongs to
# if and only if g(Ty,T;) = 0.

Let qlz,,z,)€ # . Then

el 22 T
1 * |
= ,T ) =

0 q(’I‘1 2) |
(tl t2 )
ERRNLASV S

e
>

Since q(zl,zzl is arbitrary in £, q(tii,tfi) =0 implies
wl toerwy
Viceversa, let (u],az]e “VU’) and suppose, by contra-

diction,
(@ o) ¢l el
o, ,0 t
; Ea i’ id
Then there exists a polynomial q(zl,zz) vanishing in

(t}_i,tii) , 1=1,2,...,v, and different from zero in (0‘1'0‘2)‘
We therefore have

o
i *
L g

o
E—

T 5T =
al 4 2) .
L o]
so that qv{Tl,Tz)x 0 and qU(zl,z ) € £ Since qv(al,az) is

different from zero, (oy,0,)€ Y (¥, contrary to the as-
sumption.

The condition for output feedback stabilizability,
given in Proposition 1, can be restated in terms of struc-
tural properties of the commutative matrices M; and M.
The following proposition is a strightforward conseguence

of Properties 2 and 3 above

Propesition 2. The following facts are egquivalent

i) I is output feedback stabilizable




ii) any common eigenvector of M, and M, refers to a pair
of eigenvalues (ul,azl such that |u1\> 1 and/or
|a2\>1

) in the triangular form of M; and

gti [>1 and/or 2, >1.

2l B any pair (tll'
M2 satisfies

Remark The proposition above does not provide an efficient
algorithm for testing output feedback stabilizability of
L. In fact, simultaneous trianguférization of M; and M,
as well as the computation of common eigenvectors cannot
be performed in a finite number of steps. However proper-
ties 2 and 3 have a theoretical intrinsic interest,in the
sense that they could constitute a good starting point for
obtaining linear stabilizability criteria in the style of
Lyapunov eguation.

In some particular cases, stabilizability conditions
are easy to check. For instance, all the eigenvalues of
M; have modulus greater than one if and only if there ex-
ists a negative definite matrix P satisfying the linear
matrix equation

MT P Ml- P=-=Q (Q positive definite)
Since wltz ) belongs to # and 1 is devoid of zeros in the
closed unit disk {zl .‘zl] <1}, there exists a stabilizing
compensator such that the closed loop 2D characteristic po-
lynomial of the system is given by wl(zl).

Analogous considerations held if all the eigenvalues
of M, have modulus greater than one.

. A more general situation comes out when some product
miMd is devoid of eigenvalues in the clesed unit disk.

1772
This happens if and only if the eguation

(MLJT(MJ) PFJM -P =90

i S 5 (Q positive definite) (10)

admits a negative definite scluticon P.
Referring to triangular forms, it is easy to convince
ourselves that condition (iii) in Proposition 2 is sati-
sfied.
In this case the minimum polynomial §;
is devoid of zeros in the closed unit disk,

r )
- (E) of M1M2

and the varie-

ty of
4 5 i3 L = ij
(z z7) = (22 -y )z 2zl -v. )...(z, 2. -7 )
Wiy By 17 T BT T %27 T
does not intersect @, since [y;[>1 1=1,2,...,v .
4. Stabilizing compensator design

As remarked at the end of section 3, in some cases it
is possible to construct directly a 2D stable polynomial

in F
solution P, the minimum polynomial of MiM% can be used.
we only have a criterion for deciding

which does not

whenever equation (10) admits a negative definite

Suppose, however,
whether .# includes a stable polynomial,
provide any constructive technigue. In this case an itera-
tive procedure for obtaining a stable closed loop polyno-
mial is based on the following propositions !8|
Proposition 3. For each positive integer k, there exists
1n F a monic polvnomlal 4 z§+z§) of minimal degree in
(2% +22 The set”® E[é TzzJpﬁ,ﬁ contains stable 2D polyno-

mials if and only if wk zk+z ) is 2D stable.

w

proof. Consider the matrix M%+M3 and denote by wk(
g,(z%*zb)efuﬂ, since Y, (M
K kS Z x

=0 and minimality follows from the definition of Y, -

L) it
Kamk)
b ]

1

minimum polynomial. Then

Since each polynomial in mi}§+z§]f\.fis a multiple

of Y, . then R[}§+z§1r\.¢contains 2D stable polynomials if
and only if wk is stable.
PrOEOSitiDn 4. Assume 1/(f)F\JD ¢. Then there exist an
integer k and a 2D stable polynomlal in m[} +22J nN#.

proof. Referring to commutative matrices in triangular
form, any (complex) pair (t ;) satisfies |t [> 1 and/
or |t }> 1. It is not dlfflcult to show that there exists
an integer h such that i(t1 )hAr(tz h| >2, for i=1,2,..v.
Let wh(E) denotehthe minimum polynomlal of M1+Mh The po-
lynomial ¢h(zi+zz) belongs to # by proposition 2 and fac-
torizes as

h h h h h h h h
= = +z - - +z -
ValE ) = B e S ey BT endE m, ~ 6D
Since wh(ﬁ) is devoid of zeros in the disk {£: [£|_£2}
it follows that ld }> 2, i=1,2,...,t, which in turn im-

plies 2D stability of all factors z?+z§-—6i.

The proof of Proposition 4 immediately suggests an
algorithm for computing a 2D stable polynomial in % .
1. Consider the sequence of matrices

3
M_+M M _+M M _+M
1.2 1

! 2 S2 2

and sclve the matrix equations

T

sPS -Pp, = -1 1= 1,895 w0

B g i
until a negative definite 5; is found. By Proposition 4,
this procedure stops after a finite number of steps if and
only if the system is stabilizable. Let h be the first

integer such that =N in negative definite.

2, Construct the minimum polynomial wh(E} of M1+M2 Then

U (zl+22; is a stable 2D polynomial in .
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