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Controllability and Reconstructibility Conditions for
2-D Systems

MICHAEL SEBEK, MAURO BISIACCO, AND
ETTORE FORNASINI

Abstract—New necessary and sufficient conditions for local controlla-
bility and causal reconstructibility of multiinput multioutput 2-D systems

are presented which are based on 2-D matrix polynomial equations. The -

conditions are computationally attractive: only unimodular operations in
a Euclidean ring are required. In addition, when testing controllability
and/or reconstructibility, one obtains a deadbeat regulator and/or an
exact observer as byproducts.

I. INTRODUCTION

2-D signals and systems have been investigated in relation to several
modern engineering fields such as 2-D digital filtering, digital picture
processing, 2-D network realizability, seismic data processing, X-ray
image and aerial photographs enhancement, image deblurring, etc. [1]-
[3].

In most cases, 2-D systems result from a discretization procedure, both
in space and in time, applied to spatially distributed continuous-time
systems. This simplifies the evaluation of responses and makes it feasible
to design computer implementable algorithms. In this context, it is quite
natural to address 2-D state estimation and feedback control problems. In
fact, the results easily apply to continuous distributed parameter systems
modeled as 2-D systems. Moreover, as with 1-D systems, the output
feedback compensator design reduces to independently synthesizing a
state observer that processes measured data and a stabilizing state
feedback law [4].

A special case of 2-D observers are the ‘‘exact observers,”” whose
estimate error vanishes in a finite number of steps; these provide an exact
state estimation in real time [5]. Dually, a special case of compensators
are the deadbeat compensators, that drive to zero the state of the 2-D
system in a finite number of steps. Using this kind of compensators leads
to finite memory systems, in the sense that the initial conditions do not
affect the dynamics after a finite interval and the impulse response
exhibits FIR behavior.

In this note, we shall confine ourselves to exact observers and deadbeat
controllers. In this, we are motivated not only by their intrinsic interest,
but also by the fact that their synthesis is fully performed by using a 2-D
polynomial matrix approach.

Moreover, a general theory of asymptotic observers and stabilizing
compensators can be developed along similar lines, if only the ring of 2-D
polynomials is substituted by the ring of 2-D stable rational functions [4].

The notions of local controllability and causal reconstructibility of 2-D
systems have been introduced and discussed in [4] and [5], and play the
same role as the notions of controllability and reconstructibility in the 1-D
case.

The engineering significance of these concepts relies on the fact that
they provide necessary and sufficient conditions for the existence of 2-D
deadbeat compensators. More precisely, the synthesis of a state feedback
deadbeat controller is made possible by local controllability, while causal
reconstructibility allows one to build up exact observers [4]-[6]. From a
computational point of view, the compensator synthesis essentially
reduces obtaining the transfer matrices of the regulator and the observer
by solving certain matrix polynomial equations and realizes these transfer
matrices via 2-D state-space models.

The aim of this correspondence is to present a method for solving 2-D
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polynomial equations in a computationally attractive way and thereby, in
fact, to derive corresponding necessary and sufficient conditions for
controllability and reconstructibility of 2-D systems.

To test these conditions, we need just unimodular operations in a
Euclidean ring. The method is applicable for generic multiinput multiout-
put 2-D systems. Moreover, when checking controllability, we compute
also the transfer function of a deadbeat regulator. Similarly, when testing
reconstructibility, we obtain an exact observer.

II. DEFINITIONS
Consider a 2-D system ¥ = (A, 4,, B), B;, C, D) given by -

x(h+1, k+)=Ax(h, k+ 1)+ A x(h+ 1, k)+ Bu(h, k+1)
+Bu(h+1, k)

y(h, kK)=Cx(h, k)+Du(h, k) (D

where the /ocal state x is an n dimensional vector over the real field R,
input and output u and y take values in R™ and R?, respectively, and
Ay, Ay, By, By, C, D are real matrices of suitable sizes [4].
Denote by
Xo= D, x(i, =12}z

i=—o0

@)

the global state on the separation set

So={(i, j) : i+j=0}
and by
Xz, 2=, x(i, )zizd

i+jz0

Ulz, m)= 3, uli, )2z

i+jz0

Y(zi, 2= 3, (i, ))7iz}

i+jz0
the state, input, and output functions, respectively. Then one gets

Y(zi, z)=[C(U- Az, - A22) " "(Bi21+ B:2:) + D] U(2y, 22)

+CUI-Aiz— A1) "' %y (3)

where the first term describes the input-output map of the system via the
rational fransfer matrix.
Wiz, 2)=C(I- A1z~ A2z) " (Bizi + Boz) + D #
while the second stands for a free motion of ¥ from a nonzero global
initial state 9C,.

The causality of the system corresponds to the fact that the denominator
of the entries of W(z,, z,) has a nonzero constant term, so that W(z,, z,)
admits an expansion as power series in z; and z5.

A system X is strictly proper when D = 0 and is finite memory, if for :
any set of global initial conditions &y, the free-state evolution goes to zero i
in a finite number of steps. Recall that for a finite memory system, (1) is ¢
the polynomial matrix (I — 4,2; — A,z;) unimodular.

Assumption: We shall assume throughout this correspondence that the
real matrix A, is invertible.

First, this is a generic case. If, all the same, A4, is not invertible but A4,
is, we can simply interchange the roles of z, and z, in what follows. If
even A, is not invertible, but the matrix ed, + fA4, is for some e, fin R,
the substitution z; = 2, 2 = ez; + fz, will do the job. In such a way,
most of the practical cases are covered.

In general, the characteristic polynomial of ¥ is

det (1*A|Z| 7A2z;)=(det Az)zg+€1n—1z;_] +r4ag (S)

where all the a,_, - -, @ are polynomials in z,.

N i
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U‘Z _Y,_

Fig. 1.

Throughout this correspondence, we use the standard notation: R[z],
R(z)), R[z,, z2], and R(z,) [z2] stand for the ring of real polynomials in z,,
the ring of rational functions in z,, the ring of real 2-D polynomials in z;
and zp, and the ring of polynomials in z, with coefficients in R(z,),
respectively.

II. CONTROLLABILITY AND REGULATORS

As in 1-D case, local controllability means the ability to drive any
initial local state x(0, 0) to zero in a finite number of steps by using an
input function with support in the positive quarter plane. More precisely,
we have the following definition.

Definition 1: A system X is locally controllable if for any local-state
x(0, 0) there exists a polynomial input U(z;, z;) such that the state
evolution

X(21, 2)=(I— A2~ A,2) ' [x(0, 0)+ (B, 2, + Byz) Ulzy, Z)

is a polynomial vector.

The concept of local controllability has recently been investigated in
[4]. From there, we quote also the theorem.

Theorem 1: The following facts are equivalent.

1) X is locaily controllable.

2) There exist polynomial matrices M(z;, z;) and N(z;, z,) such that
the Bezout identity

(I-A1zi— A, 2)M(2), 2)+ (B2 + Bozo)N (21, 2) =1 (6)
holds.
3) For any (z;, z) in C x C,
rank [[—-A\z,—A;z, Biz+Bizx]=n. ()]

Now consider a state feedback regulator T, which is a 2-D dynamical
system [4] governed by equations

X'(h+1, k+1)=A/x"(h, K+ D+ A x"(h+1, k)
+Bu'(h, k+1)+Bju'(h+1, k)

Y'(h, k)=Cx’(h, k)+Du’(h, k) (8)
and connected with ¥ by a state feedback law (Fig. 1), so that
u'(h, k)=x(h, k)
®

Denoting by X the global initial state of the regulator T, one gets from
(8) and (9)

u(h, k)=y'(h, k).

Ui, z)=W'(zi, )X (21, @+ C'U-A{z-Aj) 'L, (10)
where the first term
Wiz, 2)=C'I-A]z-A]2) (B2, +B]z)+ D’ (11

is the rational transfer matrix of the regulator,
In the sequel, we shall concentrate our interest in deadbeat regulation
structures, by requiring that the feedback connection of Fig. 1 be a finite
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memory system. This amounts to the assumption that the free motion of ¥
and T’ converges to zero in a finite number of steps, independently on the
initial conditions 9, and X, .

The existence of a deadbeat regulator and local controllability are
strongly connected.

Theorem 2 [4]: For a strictly proper system Z, there exists a deadbeat
regulator X' if and only if T is locally controllable.

Moreover, the deadbeat regulator is any locally controllable and
causally reconstructible realization of the transfer matrix

Wz, 2)= = N(z1, 2)M(z,, 7o)~ (12)
where the polynomial matrices M (21, z2) and N(z,, z;) are given by (6).

From a glance at Theorems 1 and 2, it is clear how important the role of
(6) is. X is locally controllable and/or admits a deadbeat regulator iff (6) is
solvable. Moreover, its solutions directly provide the transfer matrix of
the deadbeat regulator (12). It is the aim of our correspondence to study
this equation in detail.

Quite recently, a considerable deal of work has been done in attempting
to extend some solution methods of 1-D matrix polynomial equations to
the 2-D case [9]-[12].

The consideration of 2-D equations has opened up a new set of
questions we shall explore in the sequel. However, they have many
properties similar to 1-D equations; for example, as in 1-D case, linearity
of (6) allows us to get the general solution from a particular one.

Lemma 1. Let F(z,, 2,) and G(z,, 25) be right coprime matrices such
that

Gz, 2)F (21, 22) 7' =(I- A 21— A22:) " '(By2, + Baza) (13)
and let M’ (z,, z;) and N'(z,, z) be any (particular) solution of (6). Then
the general solution of (6) is of the form

M(zi, )=M"(z), )+ G(z,, 2) T(z), 22)

N(z1, 22 =N"(z1, 2) - F (21, 2) T (2, 22) (14)
where T(z,, z;) is an arbitrary polynomial matrix of suitable size.
Proof: The proof is same as in the corresponding 1-D case. See also
[12].
Under the Assumption, also minimal solution resembles the 1-D case.
Lemma 2: Let F(z,, z,) be given by (13) with A, invertible and let (6)
be solvable. Then it possesses a unique solution such that the rational
matrix

F(z1, 22)7'N(zy, 22) (15)
is strictly proper in z,.

Proof: To get the minimum solution (15), we need to just take any
particular N’(z,, z») and divide it from the left by F(z, 2;) in (14) like in
the 1-D case [5]. This, however, is not generally possible in the 2-D case
as the ring R[z;, z;] is not Euclidean.

Fortunately, we can perform it whenever the Assumption is satisfied:
so, for any N'(z;, z,)

F(z1, 2)'N'(z1, ) = (adj F)N'/det F=E/det F

where £ = (adj F)N' is a matrix with polynomial entries e,;.
Now det F divides det (/ — A;z; — A,25) (see [7]) and the 73 leading
coefficient of det (I — A,z; — A,2,) is a nonzero constant.
So the z, leading coefficient of det F is a nonzero constant, too, and we
can divide in (15)
e;/det F=p,+ h;/det F (17)

to get a polynomial part p;; and a strictly proper (in z,) part A;/det F. Asa
result,
F(zi, 22)7'N'(21, 2) =P(21, 2) + H(zy, 25) (18)

where P = [p;] is a polynomial matrix while H = [A;/det F]isa strictly
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proper (in z,) rational matrix. Finally, (18) yields

N'(z 22)=F (21, 2)P(21, 2)+ F (21, 2)H (21, 25) (19)
so that we get the desired minimum solution
M(z1, 2)=M'(z1, )+ G(21, 22) P21, 25)
N(zi, 2)=F(z;, 2)H (21, 25) (20)

from (14) by taking 7 = P. Indeed,
Fl(zi, 22)"!'N(zy, 2) = H(z), 22)

is strictly proper in z, and this solution is unique as is the division (17).
To proceed, we can use the same plan of attack as in [9] for the scalar

case: we will work in R(z;) [z,]—the “‘nearest greater’’ Euclidean ring to

RI[z), z]. The following lemma is a standard Euclidean ring result.
Lemma 3: Let

(U=A12i = A22)M " (21, )+ (By2)+ Byz)N" (21, 2) =1 (21
be solvable for M”(z,, z,), N” (21, 22) with entries in R(z)) [z].
Then it possesses a unique solution such that

F(z1, 2)7'N" (2, 22) (22)

is strictly proper in z,.

Proof: If F(zy, z,), G(z, z;) are right coprime in R[z;, z,], they are
right coprime in R(z,) [z,] as well. We can, therefore, repeat the proof of
Lemma 2 even without the assumption, since the ring R(z)) [za] is
Euclidean.

Now we are prepared to state our main result.

Theorem 3: Let A, be an invertible matrix. Then (6) is solvable (in
Rlz), z3]) if and only if:

1} it is solvable in R(z,), [z] and

2) its R(zy) [z2] solution M” (21, 22), N" (21, 22) given by (21) and (22)
satisfy

M"(21, 22), N"(21, 2) € Rz, 2] (23)

Proof: Clearly 1) and 2) imply solvability in R[z,, Z2]. On the other
hand, the solvability of (6) in Rz, 2] implies 1) as R[z,, z;] C
R(z)) [z2]. Moreover, it implies also 2) since N(z,, ) satisfying (15) in
Lemma 2 satisfies (22) in Lemma 3 as well.

In a system theoretic version, the main result reads as follows.

Theorem 4: For a strictly proper system £ with A, invertible, the
following facts are equivalent.

1) X is locally controllable,

2) E admits a deadbeat regulator.

3) There exist matrices F| (z1, z2) and G(z,, z2) (generally with entries
in R(z)) [z]) satisfying both (21) and (22). At the same time, these
matrices are polynomial

F(z1, 72), G(zi, 2) € Rz, z2].

Proof: This is an easy consequence of Theorems 1, 2, and 3.
To check the controllability and/or to find the deadbeat regulator, any
Euclidean ring algorithm (in R(z,) [z2]) can be applied to solve (6). We
recommend the following procedure.

Algorithm

Step 1) Using elementary column operations (in R(z,) [z,]) perform the
reductions

d-Az-Az Byt Bz 110
7 '; T -~ | XU
0 P Yiv

such that U, V € R[z,, z,]. If this is not possible STOP; in fact, (6) is not
solvable even in R(z)) [z2].
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Step 2) Perform the division (in R(z)) [z2])

V-lY=P+H 25
to get a “‘polynomial’’ (in R(z,) [z]) part P and a strictly proper part H.

Step 3) Set F(zy, 25) = X — UP and G(z1,25) = Y — VP. Ifeither F
& Rlz;, 22l or G & R[z,, 2] then STOP; in fact, (6) has no solution,

This procedure is numerically efficient as it needs only unimodular
operations in a Euclidean ring. When comparing it to the method
employed in [4], [5], which is based on checking the rank condition (7)
and consists in computing the zeros of 2-D polynomials, our method is
more attractive.

Example: Consider the system I given by

£ 1 R T R ) )

Note that the A, invertibility assumption is satisfied.
Step 1) By elementary column operations, reduce the matrix

I —(z1+2z) z

1-A41z-Asz; Bizy+ Byz, — I 0
I 0 = 1 0 0
0 I 0 1 0
0 0 I
to the following structure
1 0 0
0 1 0 I 0
1 L+2 -2 =] X U
2 1+z(zi+zy) —Z3 Y v
itz (L+2)? 1+zhzi+20)

Step 2) In the ring R(z,) [z,], divide Y on the left by ¥V

2
voly=[o -+ [ 212 b4g gk | gy
l-21;-2] 1-z1z-22
So one gets
P=[0 -1].

Step 3) Compute the matrices

M’=X—UPﬁ[l Z'J
2 1+Z|Zz

N'=Y-VP=(z,+2, 1+z2 4 712,].

Since the entries of M and N” are polynomials, we obtained a solution
in R[z,, z,] of the Bezout equation (6). By (12), the transfer matrix of a
deadbeat controller is

Wi =-N'M"'s[-z —1]. (26)
I
The locally controllable and causally reconstructible realization %’ of
(26), given by
A=A;=[01 C'=[1] B/{=[-10] B;=[00] D=[0 -1
?
is a deadbeat controller for %, ;
In fact, it is easy to check that the state transition matrices F, and F, of !
the whole system of Fig. | are
A+BD’ B,C 44 0
F= B 4 = 000
: : -1 0 0
A +B:D B,C 001
FZ = B 47 = 1 0 0
2 2 0 00
b
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and det (f — Fz) — F>2;) = 1. This confirms that the whole system is
finite memory.

Remark: Local controllability is stronger than global controllability. In
fact, by linearity and shift invariance, zero controllability of local states
implies zero controllability of global states, but the viceversa is not true,
as shown by the following counterexample. Consequently, globally
controllable 2-D systems exist whose states cannot be driven to zero in a
finite number of steps by means of a causal feedback law.

Example: Consider the system Z given by the following matrices:

A =8,=[1]
A,=B,=C=D=[0]

Z is globally controllable, since any initial global state %, = Sx(k,
— h)zhz;* is driven to zero in one step by the input function
_ Y —x(h-1,k+1) ifh+k=0
uth, k)= {0 otherwise. @n
However, (6) is not solvable in R[z;, z,], so that T is not locally
controllable. In other words, Z is open, but not closed-loop controllable.
This is easy to explain. In fact, the input function (27) does not
“‘causally’’ depend on the state; in particular, the single local-state x(0, 0)
is driven to zero by the input
_ ) —x(0,00  if(h k)=(, -1)
k)= { 0 otherwise

where the *‘time points’’ (0, 0) and (1, — 1) are not causally related.

Actually, input functions with support in the future of (0, 0) cannot
control x(0, 0) to zero in a finite number of steps. Therefore, a feedback
controller that causally processes the states of T is not a deadbeat
controller.

Reconstructibility and Observers

Analogously to 1-D case, causal reconstructibility means the possibility
of determining the local-state x(0, 0) when the input and output values are
known on a finite set of points in the past.

In [5], the formal definition is given, and it is known that it is equivalent
to a rank condition and to a Bezout identity ‘‘dual’’ to (5) and (6).

Furthermore, the causal reconstructibility property is equivalent to the
existence of an exact observer that furnishes a state estimation whose
estimate error vanishes after a finite number of steps, and the observer
matrices are easily computed once this Bezout identity is solved.

So, in order to check the reconstructibility and/or to construct an exact
observer, it suffices to solve a Bezout equation.

This equation can be solved in a way similar to the algorithm presented
in the last section.

This procedure again depends on unimodular operations in the
Euclidean ring R(z,) [z;] and is, therefore, computationally attractive.
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n— D Polynomial Matrix Equations
MICHAEL SEBEK

Abstract—Linear matrix equations in the ring of polynomials in »
indeterminates (n-D) are studied. General- and minimum-degree solu-
tions are discussed. Simple and constructive necessary and sufficient
solvability conditions are derived. A new algorithm to solve the equations
with general n-D polynomial matrices is presented. It is based on
elementary reductions in a greater ring of polynomials in one indetermi-
nate, having as coefficients polynomial fractions in the other n-1
indeterminates, which makes the use of Euclidean division possible.

INTRODUCTION

When solving various control problems for standard systems, linear
equations with polynomials in one indeterminate (1-D) are often
employed. Facing the same problems for some nonstandard systems
which are described by polynomials in more than one indeterminate (-D)
(such as delay-differential systems, multidimensional digital filters,
systems depending on parameters, and systems described by partial
differential equations), one naturally encounters similar equations in n-D
polynomials.

Although 1-D polynomial equations are now, at least theoretically, well
understood (see, e.g., [6]), their n — D counterparts (especially the matrix
ones) were not systematically studied until recently. Hence, let us first
briefly review existing methods of solution of 1-D polynomial equations
in the light of their possible generalization for n-D polynomial matrices.

The classical indeterminate coefficients method depends heavily on
our ability to foretell the degrees of an expected solution. Such degree
bounds have recently been found in [7], [8] for scalar 2-D equations
which makes it possible to apply this method. In contrast, no such
estimates are available for the matrix equations so that attempts to employ
the method [2] for them are not successful. Namely, whenever we fail to
calculate a solution up to a certain degree, we can hardly infer whether the
equation possesses a solution of a higher degree or if it is not solvable at
all (see [7]).

The polynomial reductions via elementary operations do not work in
general in the ring of n-D polynomials as this ring is not Euclidean. Even
endeavors to apply them, at least for zero coprime left-hand side [3], [4],
fail as shown recently in [9]. On the other hand, an algorithm of reduction
for scalar 2-D equations [7], [8] makes the Euclidean division possible as
it allows operations with polynomial fractions in one of the two
indeterminates. This procedure has been successfully generalized for a
special matrix equation in [10].

Finally, the methods based on certain state-space realizations [1], [12]
could be essentially generalized also for #-D matrices (recursively if n >
3). However, this has not yet been explicitly done up to now. Besides, the
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