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2-D Partial Fraction Expansions and Minimal
Commutative Realizations

MAURO BISIACCO, ETTORE FORNASINIL, AND
GIOVANNI MARCHESINI

Abstract —This paper analyzes the class of rational functions in two
variables which are realized by 2-D state-space models satisfying the
commutativity assumption 4,4, = A,A,. A complete characterization of
these transfer functions is given in terms of the existence of a suitable
partial fraction expansion. It is shown that, under the commutativity
assumption, minimal realizations are unique modulo algebraic equivalence,
and that minimality is equivalent to local observability and reachability.

I. INTRODUCTION

Consider a single-input single-output 2-D system (4,, 45, B, C)
described by the following state equation:

x(h+1,k+1) =Ax(h, k+1)+ A, x(h+1,k)
+ Bu(h+1,k+1)
y(h,k)y=Cx(h,x) (1)

where x(h, k) € R".

The 2-D transfer function w(z,, z,) associated to the above
system is easily derived and is expressed by a rational function of
the following form:

W(erzz)=C([_A121“A222)_JB- (2)

It is well known [1]-[3] that as 4,, 4,, B, and C vary,
w(zy, z,) covers the class of causal rational functions in two
variables, that is all rational functions whose denominators have
a nonzero constant term. In other words, by updating (1), any
causal rational function in two variables can be realized by a 2-D
system. In general, it should be expected that any constraint we
assume on the structure of the pair (A4, 4,) translates into a
restriction on the class of transfer functions which can be realized
by (1). In this paper we shall concentrate our attention on pairs
(A}, A5) of commutative matrices.

The main feature of the transfer functions obtainable from
model (1) when A4, and 4, commute, is that their denominators
factor completely in the complex field into linear factors [5]. As
we shall see, this structural property is not sufficient to guarantee
that a transfer function can be realized by a 2-D system with
A Ay = A, A, it becomes sufficient if the commutativity assump-
tion is weakened in the sense that A4, and A, are assumed to be
simultaneously triangularizable.

One of the main results of this paper is the complete character-
ization of the class of rational transfer functions which are
realizable by 2-D systems (1) with 4, 4, = 4, 4,. This is based on
the existence of a partial fraction expansion of w(z,, z,), whose
structure is related to the spectral decomposition of the state
space as a direct sum of (A, 4,)-invariant subspaces.
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The idea of considering commutative matrices was first investi-
gated by Attasi [5], with reference to the special class of models
given by the following updating equations:

x(h+1,k+1)=A,x(h k+1)+ A, x(h+1,k)
— A Ay x(h,k)+ Bu(h, k)
y(h, k) =Cx(h, k)

with A, A, = A, 4,.

The transfer functions realizable by the Attasi’s models are the
so called “separable” rational functions, having the form
n(z,2,)/p(2)q(z,) where n € R[z,2,), pER[z], g € R[z)]
and, conversely, any (causal) separable transfer function is realiz-
able in the class of Attasi’s models.

More recently the realization problem of separable transfer
functions has been considered also in [6] and [7], dropping the
commutativity assumption and adopting a 2-D state space model
of Roesser’s type

x(h+1,k+1)=[“’61 Aéz]x(h,k+1)
0 0
+1,k
+[A21 Azz]x(h k)

+[%‘]u(h,k+1)+{80]u(h+1,k)

2

y(hk) =[G Glx(h. k)

with A4, =0. It turns out that also in this case the class of
realizable transfer functions coincides with the set of separable
rational functions.

However, since in this paper we are interested in 2-D models
with commuting state updating matrices and with first-order
recursive structure, the results presented here are quite different
from those obtained in [6], [7] and [5] and, in particular, refer to
transfer functions that need not be separable.

It is well known that the general problem of obtaining 2-D
minimal realizations is still open, despite partial solutions have
been obtained [5]-[9] by restricting the class of transfer functions
to be realized and /or assuming state space models having partic-
ular structures.

As we shall see, differently from the general case, in a commu-
tative context the solution of the minimal realization problem is
quite similar to that obtained in the 1-D case.

By far, the most useful device for investigating the structure of
the set of minimal 2-D commutative realizations is the Hankel
matrix. In fact the existence of commutative realizations and
their minimal dimension depend on the rank of a suitable Hankel
matrix, whose elements are obtained from the power series ex-
pansion of the transfer function. Furthermore, Ho's linear algo-
rithm for computing the matrices 4,, 4,, B, and C of a minimal
realization applies.

Finally, minimality of commutative realizations is proved to be
equivalent to local observability and reachability, so that we can
use reduction algorithms based on these properties to compute a
minimal realization.

II. PARTIAL FRACTION EXPANSIONS AND COMMUTATIVE
REALIZATIONS

The aim of this section is to obtain a complete characterization
of 2-D transfer functions that admit a “‘commutative realization,”
i.e., are realized by 2-D systems (A4, A,, B, C) with 4,4, = 4, 4,.
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For this purpose, we summarize in the following two theorems
the basic properties of commutative matrices [10] that are rele-
vant to the solution of our problem.

Theorem I: Let A, and A, be a pair of commutative matrices.
Then A4, and A, can be simultaneously reduced to triangular
form by a similarity transformation over the complex field C.

Theorem 2: Let (A, 4,) be a pair of commutative matrices.
Then there exists a similarity transformation given by a complex
matrix T that simultaneously reduces A, and A4, to block diago-
nal forms

T7'A T =diag { Ay, 4ypy w5 Aie }

T7'4,T =diag { Ay, Az, o5 Ay} (3)
where each submatrix 4, has a unique eigenvalue a, , i=1,2;
Jj=12,.--,¢

To prove Theorem 2, let us first analyze the structure exhibited
by any matrix M that commutes with a Jordan form

T=diag{ (A, L), 5 (X))
A;# A, for i # j. It turns out that M is block diagonal
M =diag { My, My, -+ M, }
and M, has the same dimension as J(A;), i=12,---¢q.

Consider now a pair (A, 4,), with A, 4, = A, 4;. Because of
the above observation, there exists a matrix P that reduces A4, to
its Jordan form and A4, to a conformably partitioned block
diagonal matrix, ie.,

P_lAlP:diag{Jl(‘\l)?‘B(Az)" : "Jq(}\a)}
P, P=diag{ M,, M,,---, M, }.

Similarly, since M, and J,(A,;} commute, there exists a matrix
Q, that reduces M, to its Jordan form and J/(A,) to a con-
formably partitioned block diagonal matrix

07 'M,Q, =diag { J,(m), Ja(pa)s s
Q(_lJ!(A'l)Ql =d1ag{ ]Vfl' M’Z" iy Mr}
where N, N, -+, N, have the same eigenvalue A,.

T ()}

7

Consequently, the product of the similarity transformations

induced by P and

Q=diag{Q1,Qza' ) 'qu}
reduces simultaneously A, and A, to the block diagonal structure
(3) with T= PQ.

The properties summarized by Theorems 1 and 2 can be
exploited for analyzing the structure of the transfer function
w(z),z;) of a 2-D system (4, 4,,B,C) with A A, = Ay Ay
Since w(z,,z,) is invariant under algebraic equivalence and, by

Theorem 1:
det(I— Az, — A,2,) = |1
i=1,2,---,n

(1 ~Rudy— wz) (4

the denominator d(z,, z,) factorizes into linear factors.
Theorem 2 allows us to get a more refined characterization of
w(z,, z,). In fact, by suitably partitioning B and C, we have

W(zl!zz) ZZQ(I*AUzl_Azjzz)_lBj
;
nj ,I!ZZ)

~ det(7— Ay - 45,7)

-T

”,(21132)

iy d
(J.* Crl’,;l o= f‘zﬁz)

(5
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Moreover, for any pair (o, a, ;) # (0,0) we have degn; <v, =
dim 4, ;.

Comparing (4) and (5) we see that there are v; pairs (A, p;) in
(4) that assume the same value (o, a; ).

Remark: The last sum in (5) gives us the partial fraction
expansion of the transfer function of a 2-D system that satisfies
the commutativity assumption 4,4, = 4, 4,.

Now, it is known that, given a rational function in two vari-
ables, in general it does not admit a partial [raction expansion
whose terms correspond to the irreducible factors of the denomi-
nator. So, the effect produced by the commutativity assumption
on A; and A4, on the transfer function w(z;, z,) of (4;, 45, B,C)
is that:

i) the irreducible factors of the denominator of w(z,,z,) are
polynomials of the first degree in z; and z, of the form 1— o, ;2
eyt

ii) there exists a partial fraction expansion of w(z,z;) with
structure (5).

What makes the above conditions very significant from a
system theoretic point of view, is that they are also sufficient for
the existence of a commutative 2-D realization of w(z,, z,). The
proof of this fact is constructive and is a consequence of the
following lemmas.

Lemma I: The rational function z /(1 — az)"** with k> 0,
admits a commutative realization,

Proof: A commutative realization of dimension # + k is
given by
(h+1)x(h+1)

2 |
a |
I
a F
A= a |
_______________ Fommmm e
I
I
L : a |
(k—1)x(k-1)
[0 -1 ! ] [0]
0 -1 | 0
‘ .
0 -1 0
A= 0! B=|1
0 0
I
L | 0] | 0]
c=[1 o - 0 olo - o] (6)

Lemma 2: The rational function z{zj/(1—az)"**** with
k > 0, admits a commutative realization.
Proof: Assume first a # 0 and write z{ as a linear combi-
nation of powers of (1— az;):
A=Yt ull—an)+ ¢ +y(l-az).
Then we have

21

(1—az)

2 :
A

'4-\‘+.Y +r+.5 -
(1-az) " 1(1..,021) oot

-

ty

S| S

yres N0

il
5

oty rw vyl
'(l—azl)i ’ )

so that, because of Lemma 1, (7) can be realized as a direct sum
of 2-D systems with structure (6).
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Let now a =0 and consider the 1-D realizations of z; and z3
given by

(r+1)x(r+1)
0 1 0
0 1 . _ |9
k= 0 G = 0
' 1
H=[0 0 0 1].
and
(s+1)x(s+1)
0 1 0
0 1 0
F= 0 G, = 0
é 1
H=[0 0 0 1].
A 2-D commutative realization of z{z3 is given by
4, =Fel,,,
Ay =1,,8F
B=G,8G,
C=H1®H2(rjs)ml. (8)

In fact, the coefficient of z{z{ in C(I— A;z;— A,z,)"'B is
given by (r f“”)CA{A{_B and, using (8), we have
1
CA A4 B=(Ho ) (Fel) (I9F)(G,8G,)
=(HeH)(Fel)(IeF)(6,8G,)
=(H1®Hz)(]?1f®gl)(61®62)
=[(mR)e(H,H)]|(6,9G,) = HFGeH,FG,
= (B FG,)(H,FG,) =1
if (i, j) =(r,s) and 0 otherwise.
The commutativity of the matrices 4, and A, defined by (8) is
easily proven as a consequence of the following identities:
(Fen(1eR)=(RI)e(IR) = (IR)8(A)
- (18F)(Rel).
Lemma 3: The transfer function p(z;, z,)/(1 — az, — bz,)" ¥,

h=degp and k > 0, admits a commutative realization.

Proof: If ab=0, the proof is a direct consegquence of
Lemma 2, once p(z;, z,) has been expressed as a linear combina-
tion of monemials in 2z, and z,. Assume now ab # 0 and intro-

duce the change of variables given by
w, = az, + bz, Wy =2z, (9)

Thus (6) becomes

P’(“"l:wz)/(]_wl)hEk-def.%P’:h (10)
and, by the first part of the proof, (10) admits a realization
(R, F,B,C) with {F,=FF. It is easy to check that the
commutative 2-D system ( 4,, A5, B, C) with:

A, = aF, Ay = F + bF,

realizes the transfer function.
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Now, combining the above lemmas with the condition (5) on
the structure of the transfer function, we obtain the following
result.

Theorem 3: A 2-D transfer function w(zj, z,) € R(z,z;) is
realizable by a commutative 2-D system if and only if it admits a
partial fraction expansion of the following form:

=no(n, )+ L

j=1,-0,1

w( z, 22)

(11)

with n,(z, 2,) € [z, z,], degn,; > »;, 1< j<rand ny(z,2;) €

R(z, z,].

The rational functions with structure (11) constitute a proper
subset of the set of rational functions whose denominators can be
factored into a product of first order polynomials with nonzero
constant terms.

Actually, given a polynomial d(z,z,) that factors into linear
terms

(1—Aa'zl—szz) (12)

)= I1

i=1,2
and a positive integer k, the set of polynomials
N={n(z,z,): degn<k, n/d has structure (11) }

is a subspace of the space R [z, z,] of polynomials with degree
less than k. Note that N is a proper subspace of R, [z, 2,]
unless in (12) all factors coincide (ie., A, =X, and p; = p; for all
i,j)and k<h,

To prove this, let us first consider the simplest case, given by a
transfer function of the following form:

w(z,2) = n(z,2,)/(1-

f—“zzzz)y2

(13)

where degn < », +»,, and assume that w(z, z,) admits a partial
fraction expansion:

i Bl n(2,7) ny(2,2,)
1:202) =
’ (1_01131*‘“2132)Vl (l"ﬂuzl'ﬂzzzz)

with degn, <», and degn, <, Equating (13) and (14) we
obtain
n (2, z;)(1-
F nz(zb 32)(1 —aph — ax2;) e n( z, ). (15)

Letting n,(z,2,) and n,(z,z,) vary over C, [zl, 7,] and
C, [z], z,], the polynomials n(z, z;) given by (15) span a proper
subSpace of C], 5 {7, z,] of dimension not greater than »(»; +
1)/24+ v (v, +1)/2

In particular, if 1— a;,z, — @52, and 1—a;,2 — a5z, vanish
on (z,9, Zzg), then n(zjg, z;p) =0 for any pair of polynomials
(m.n2).

This implies that if (13) is realizable by a commutative 2-D
system, the variety of the numerator n(z,, z,) includes the com-

mon zero of the linear factors in the denominator.
Similar arguments can be developed in the general case.

1
a3z — 02122) (1-apz—

7 (14)

¥a
ay22) = Ay 7y)

Remark 1: The property expressed in Theorem 1, i.e., that any
pair of commutative matrices is simultaneously diagonalizable,
provides a necessary commutativity condition.

However there are pairs of (lower) triangular matrices that do
not commute. This suggests that simultaneously triangularizable
matrices allow to realize a class of transfer functions which is
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wider than (11). In fact it has been proved in [4] that 2-D systems
with (lower) triangular matrices realize any transfer function
whose denominator factors into linear terms, as in (12).

Remark 2: The matrices 4; and A, of the Roesser's model
with A,, = 0 considered in [6], [7] can be simultaneously reduced
to lower triangular form by a similarity transformation preserv-

1 ,, ing the Roesser’s structure. It is interesting to note that the class
”J(Zl, 22)/( — a0~ az;zz)

of separable transfer functions realized in this way is properly
included in the class of transfer functions whose denominators
factor into linear terms.

III. HANKEL MATRICES AND MINIMAL
COMMUTATIVE REALIZATIONS

The results of the previous section, that provide a necessary
and sufficient condition for the existence of commutative realiza-
tions, are based on the preliminary factorization (12) of a 2-D
polynomial into linear factors.

In this section we shall introduce a different approach to
commutative realizations, that exploits the representation theory
of separable rational functions. As we shall see, many important
realization problems can be formulated in terms of formal power
series expansions of these functions and then solved by linear
methods.

Let

¥ wyriz] (16)
i

be the power series expansion of a rational transfer function
w(z;, 2,) and introduce the series

E w22y = w'(z,2;)
i,

o1
; 8]
WU=( i ) Wi (18)

Assume that w(z,, z,) has a commutative realization (4, 4,
B,C). Then from

(17)

where

w(zy,2,) = C(I— Az — Ay2,) 'B= E(I+1)CAAJBz1zJ

(19)
we have
w'(z,2,) = Y, CA{ A} Bzjz{ = C(I — Az) N(I-A,2,)7'B
if
(20)

so that w'(z,,z,) is the power series expansion of a separable
rational function. The quadruplet 4;, 4,, B, and C, 4,4, =
A, A,, is called a representation of w'(zy, z,).

Vice versa, assume w'(z;, z,) to be the expansion of a separa-
ble rational function. Then w'(z, z;) can be represented as in
(20),(see [11]), with 4,4, = 4,4, and we go back to (19) follow-
ing the previous steps in the reverse order.

The above discussion shows that the set of commutative real-
izations of w(z,, z,) coincides with the set of representations of
w'(z;, 23)-

In particular, w(z;, z,) admits a commutative realization if and
only if w'(z;,z,) is the expansion of a separable transfer func-
tion. Moreover, minimal commutative realizations of w(z}, z;)
coincide with minimal representations of w'(z),z;). Conse-
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quently the algorithms for testing separability of w'(z, z,) and
computing minimal representations apply directly to solve the
problem of constructing minimal commutative realizations of
w(zy, Z3).

The basic tool for checking the separability property of
w’(zy,z;) and for obtaining its minimal representation is pro-
vided by Hankel matrices. The Hankel matrix H(w") of a power
series w’ 1s an infinite matrix, whose rows and columns are
indexed by the monomials z!zJ. The matrix element indexed b
(zz}, z{z}) is the coefficient w/, , ;,  of the monomial z{**z{"*.

The following facts are relevant in connecting the properties of
H(w") with the representations of w’ [11]:

i) w’ is the expansion of a separable rational function if and
only if rank H(w’) < o0;

ii} rank H(w') gives the dimension of minimal representa-
tions (20) of w';

iii) all minimal representations of w’ are algebraically equiva-
lent.

As a consequence of iii), the minimal commutative realizations
of w(z, z,) are essentially unique, modulo a change of basis in
the local state space.

Since noncommutative minimal realizations of w(z, z;) need
not be algebraically equivalent [1], the nature of solutions to the
problem of realizing w(z,, z,) by state-space models (1) of mini-
mal dimension essentially depends on the preliminary assump-
tion of commutativity of 4, and A,.

The firite rank condition i) on H(w") gives us a different way
to prove that the structure of the denominator of a transfer
function does not contain enough information to conclude about
the existence of commutative realizations. This is illustrated by
the following rational function:

w(z,2) =1/(1-2)(1- 25— 3,). (21)
Its power series expansion in a neighborhood of the origin is

W=Z(j+j+1)2{25-

j+1
So, by (18), we have
w'=3Y (i+j+1)/(j+1)zz.
i J

In the associated Hankel matrix

D) | (aXz) | (@) zz)E)
W _ | Ho ! Hy | Hn
(z) J : f
HIO : Hu ; Hu :
O P R A
Hw)= (z}) : | |
(z12,) | Hyp : Hy : Hy :
(z | | |
the nth diagonal block matrix is
H, =(2n+1)
1 1/2 1/3 1/(n+1)
1/2 1/3 1/4 1/(n+2)
1/(n+1) 1/(n+2) 1/(2n+1)

Now notice that H,,, /(2n+1), n=0,1,2,--- are the (n +1) X
(n+1) submatrices appearing in the upper left-hand corner of
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the Hankel matrix associated with the nonrational power series
—log(l—x)=%L,x"/n.

Letting » go to infinity on both sides of rank H(w’) >
rank H,,, we obtain rank H(w’) =co. This implies that (21)
cannot be realized using commutative matrices 4; and A4,,
despite the denominator of (21) is a product of linear factors.

Note that the same conclusion can be drawn on the basis of
Theorem 3. In fact there are no 4 and B such that the equality
(1-z) 1=z —2,) ' =AQ0-2z)" '+ B(1— z — z,)"! holds.

For the explicit computation of a minimal representation of
w’, and hence of a minimal realization of w, we can resort to a
modified Ho’s algorithm [2]. As an alternative procedure, we can
introduce the infinite matrices O and R defined by

&
CA,

CA,
CA?
CA A,
CA}

R=|B AB A,B A’B A A,B AiB---|. (22
1 2 1 § Gt 2

Because of the commutativity of 4, and A4,, the columns of
R span the local reachability subspace and the rows of @ span
the orthogonal complement of the unobservable subspace of
(A, 4,5, B,C). In fact the columns of the local reachability
matrix of (4, A5, B, C) have the structure [1], [2]

(Aiw ‘4,)B, i, j=0,1,2---.

(23)
where the matrices 4, ' ‘4, are inductively defined as

Awd, =47, AAwd, = 45

ADwras = A (A WA, ) + A, (A,

By the commutativity assumption, we have
. i+ 7\
(Ajwid,) B= (’ g J)A;Ags

which shows that the columns of R coincides with the columns of
the reachability matrix, except for a nonzero multiplicative scalar.
A similar argument applies to the rows of 0.

Since the Markov parameters are given by

w,; =CA A4 B
we have

H(w') = OR (24)

and the same arguments used in the 1-D case show the equiva-
lence between minimality and local reachability and observability
in the commutative 2-D case. So, if we start with a nonminimal
commutative realization (A4, A,, B,C), we can use linear algo-
rithms [13] to eliminate the unreachable and the unobservable
parts and thus obtain a minimal commutative realization.

Finally, it is worthwhile to observe that the set of commutative
realizations of a given transfer function is properly included in
the set of its (commutative and noncommutative) realizations. So,
in general, it is possible to have minimal realizations with dimen-
sion smaller than minimal commutative realizations. In some
cases, as shown by the following example, the difference is quite
considerable.
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Example: Consider the polynomial transfer function

W)= L L wd

{Zi’, Wrrm __'é 0‘ (25)
i=1,2,---m j=1,2,--+n

The dimension of its minimal commuitative realizations is given
T, i , .
' / z;z4. Taking into account

by rank H(w"), where w/; =(
the positions occupied by the coefficients of the maximum degree
monomial in H(w"), it is easy to see that rank H(w')=(m+1)
(n+1). Thus the Ho’s algorithm directly provides a minimal
commutative realization of dimension (m +1)(n +1).

On the other side, a minimal noncommutative realization of

w(z;, z,) is the following:

(m+1)x(m+1)

— 0 L0
va Wi Wl—mro 1
Ai=1 %o Wn Wap | 01
. | 1
) ! 0
WHO wnl wnmt
nxn
F o : _ &R
1 0 : 0
[} 3
Ae=] 1___5_9 B= 0
Woi Wore 0]
0
0 0 |
| . | | E—
C=[mp 0 - 001 0 - 0]

whose dimension is m+nr+1. In [9], using a Roesser’s type
model, a minimal realization of dimension m + n has been pre-
sented. The difference of one unit depends on the fact that the
Roesser’s state updating equation introduces a one step delay
between input and state values.

IV. CoONCLUDING REMARKS

In this paper we have investigated the class of 2-D transfer
functions which are realized by 2-D systems (4;, A,, B, C) whose
state updating equations have structure (1) and the pair (A;, 4;)
satisfies the commutativity assumption A4; 4, = A, A,. A peculiar
property of this class is that the minimal commutative realization
of a transfer function is locally reachable and observable as well
as essentially unique (modulo a similarity transformation). Thus
in some sense the commutativity assumption leads to a class of
2-D systems whose behaviour reminds the dynamics of 1-D

- systems.

Moreover, the check for the existence of commutative realiza-
tions of a transfer function w(z,z,) and the procedure for
obtaining the matrices characterizing a minimal realization are
essentially based on the properties of an associated Hankel
matrix.

There are further points of tangency between 1-D theory and
the theory of 2-D commutative systems [14].

For instance, consider a 1-D system (A4, B,C) where 4 is in
Jordan from and the column vector B is conformably partitioned
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Then the system is reachable if and only if J;, J,,- -+, J, have
no common eigenvalues and each pair (J;, B;) is reachable.

An analogous reachability condition holds for a 2-D commuta-
tive system ( 4,, A,, B,C), where 4, and A, have been reduced
to the block diagonal forms (3) and B has been conformably
partitioned. In fact, referring to this structure, local reachability
is equivalent to the following pair of conditions:

i) there are no repeated pairs of eigenvalues (ay,, oy, ) relative
to the pairs (A;, 45,;), i=1,2,---,1;
ii) the subsystems ( A4y, A,,, B;) are locally reachable.

Also when we deal with modal analysis of 2-D systems the
commutativity assumption plays an essential role and enables us
to work out a long term behavior analysis which reminds very
closely the well-known 1-D theory of dominant modes.

Let (ay,a;), j =1,2,---,1, be the pairs of eigenvalues corre-
sponding to the block diagonal form (3) of the commutative
matrices 4, and A4,. Assume that

J#1 oy = o, J#1 (26)

leg| > fay 1,

and that the diagonal blocks A;; and A, have dimension 1.
Then the pair (ay;, ay;) of greatest magnitude plays the role of
“dominant pair,” since it largely determines the asymptotic dy-
namics of the free evolution corresponding to a single initial local
state x(0,0).

In fact, suppose that {e,;}, {ey.em s e},
{eq, €2, ", €, ) are bases of the 4;, A,-invariant subspaces cor-
responding to the block diagonal representations (3) and refer 4,
and A, to the basis {e; ey, " ey i€, € )

Then the value of the local state in (k, k) produced by x(0.0)
=vyey +2,_15...,2,Y,¢, can be expressed as

X(h k) = (h : ") A 45 %(0,0)

and, as h + k goes to infinity, it can be approximated by

h+k\ »
x(h, k)= ( )"fl“él?eu- (27)

k
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