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ABSTRACT

The possibilities of modifying the dynamical behavior of 2D state-space models by
output feedback compensation are investigated, and a complete characterization of
the closed-loop polynomial varieties is given. It turns out that-plant hidden modes and
rank singularities of the transfer function are the unique constraints we have to cope
with in the compensator synthesis. The proof of this result is based on algebraic
manipulations of 2D MFDs and on a coprime realization algorithm.

1. INTRODUCTION

The first contributions [1-3] that discussed the problem of defining
dynamical systems with input, output, and state functions depending on two
independent variables appeared nearly 15 years ago. In principle, they were
motivated by the necessity of investigating recursive structures for processing
two-dimensional data.

This processing has essentially been performed for a long time using
discrete filters given by ratios of polynomials in two indeterminates or by
algorithms assigned via difference equations. Thus the idea of input-output
description of systems by transfer functions in two indeterminates, as well as
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the design and analysis techniques based on the frequency response and on
the two-dimensional z transform, has been well known for many years.

The new idea that originated research on 2D systems consisted in
considering these algorithms (i.e., transfer functions and difference equations
in two indeterminates) as external representations of dynamical systems and
hence in introducing for such systems the concepts of state and its updating
equations. It turns out that the models obtained in this way are suitable for
providing state-space descriptions for a large class of processes which depend
on two independent variables. Typically, they apply to two-dimensional data
processing in various fields, as seismology, X-ray image enhancement, image
deblurring, digital picture processing, etc. Also, 2D systems constitute a
natural framework for modelling multivariable networks, large-scale systems
obtained by interconnecting many subsystems, and, in general, physical
processes where both space and time have to be taken into account.

In this paper we shall be concerned with the effects of output feedback
compensators on 2D systems. We shall approach this subject from the point
of view of classical system theory, by connecting the structural properties of
the state-variable description with the possibility of assigning the closed-loop
characteristic polynomial via output feedback.

The analysis will be developed on the basis of 2D polynomial matrix
algebra. 2D matrix fraction descriptions (MFDs) provide a very convenient
tool to investigate how input-output maps (characteristic of the classical
methods in filter theory) are associated with internal representations (adopted
in control problems) and to obtain the transfer matrices of compensators by
solving Bézout polynomial equations in two variables.

A few observations might serve to motivate this detailed reexamination of
feedback theory in the 2D context. Recently there has been increasing
interest in studying 2D control problems, and mainly two different ap-
proaches have been pursued.

The first approach is essentially reductionist, in the sense that 2D systems
are viewed as 1D systems over the ring of polynomials in one variable, while
the second fully exploits the partial ordering of the 2D structure and data
processing is not connected with any preferred direction.

In pursuing the first approach [4,5], compensators have been introduced
that preserve quarter-plane causality as well as compensators that do not.
However, in the former case the feedback performance that can be obtained
is not so good as for 2D compensators with unconstrained structure. More-
over, most results apply to Roesser models only,

Following the second approach, some authors [6] dealt with an input-out-
put analysis of 2D systems, based on a factorization of the plant and
compensator transfer matrices in two variables; others [7, 8] dealt with
state-space models and 2D PBH controllability and reconstructibility criteria.
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The unquestioned success of the input-output and the state-space compensa-
tion methods in 1D theory mainly relies on the canonical properties of
minimal realizations, allowing for a polynomial-matrix (i.e. input-output)
solution of control problems and for a subsequent synthesis of the compen-
sator transfer matrix that does not introduce unwanted hidden modes in the
feedback loop. However, since the equivalence between minimal and reach-
able and observable realizations no longer holds in the 2D case, the extension
of classical techniques has presented a lot of difficulties.

One of our objectives in this paper is to formulate a realization procedure
which leads to 2D systems free of hidden modes without pursuing the
state-space minimization. The results are then applied to the analysis of
closed-loop characteristic polynomials of 2D systems in state-space form.
More specifically, we shall give necessary and sufficient conditions for the
existence of a compensator that produces a closed-loop characteristic polyno-
mial having a preassigned complex variety.

Finally, some algorithms are presented for deciding whether a given
algebraic curve is assignable as the closed-loop characteristic variety of a 2D
system and for computing the compensator transfer matrix which produces
the desired variety.

9. PRELIMINARY NOTATION AND STATEMENT
OF THE PROBLEM

A 2D system = =(A,, Ay, B, B,,C,D)isa dynamical model [9]
x(h+1,k+1)=Ax(h k+1)+ Ayx(h+1,k)
+ Bu(h,k+1)+ Byu(h+1,k), (1)

y(h,k)=Cx(h,k)+ Du(h, k),

where the local state x is an n-dimensional vector over the real field R; input
and output functions take values in R™ and R?; and A, A,, By, By, C, and
D are matrices of suitable dimensions with entries in R. When D =0, Z is
called strictly proper.

Denoting by

+ o0

&= Z o = i,i)zl_iz;
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the global state on the separation set
Co={(i,j):i+j=0},
and by

X(zp,2,) = L (i, j)zizd,

i+j>0

U(zl’ 32) = Z u(i, ])ziz%,

i+j=0

Y(lezz): Z y(i,j)z{zé

i+j=0
the state, input, and output functions, one gets from (1)
(I—Az,— Ay25)X (21, 25) — (Byzy + Byz,y) U2y, 25) = %, (2)

and

Y(2y,25) =CX(zy, 25)+ DU( 24, 25). (3)
So, assuming zero initial conditions X, = 0, the rational transfer matrix
W(2,,2,) =C(I — Az, — Ayz,) (Byz, + Byzy) + D (4)
gives the input-output map
Y(zy,25) = W(zy, 25)U(2y, 2,).
The polynomial
A(zq,2,) =det(I — Az, — Ayz,) (5)

is called the characteristic polynomial of X.
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Suppose now that a 2D strictly proper plant £= (A4, Ay, By, B,,C) has
been given, and consider the feedback connection (see Figure 1) with a
compensator =, = (Fy, Fy, GGy, H,J)

x’(h+1,k+1)=le’(h,k+1)+F2x’(h+l,k)
+Gy(h, k+1)+ Gyy(h+1,k),
(6)
y'(h, k)= Hx'(h, k) + Jy(h, k),
u(h, k)= —y'(h,k)+o(h, k),
where vo(h, k) is the external input at (h, k).

The local state x®x’ of the resulting closed-loop system S updates
according to the following transition matrices:

. [l BIE -BlH}’ AEZ[AQ—BQIC —BQH}, )

T G F, GO F,

and the corresponding closed loop characteristic polynomial of S,

~

Az, 25) = det(I—Alzléﬁzzg), (8)
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depends on the matrices of the compensator. We say that a polynomial
¢(zy, z9) is assignable if it can be assumed as the closed-loop characteristic
polynomial of the feedback connection of = and X, for a suitable compen-
sator 2 .

Given X, the set of assignable polynomials is a proper subset of R[z,, z,].
A first obvious constraint on assignable polynomials is that the constant term
must be one. Depending on the structure of Z, further constraints can arise,
relative either to the plant transfer matrix or to the particular statespace
model that realizes it. Referring to that, our objectives are the following:

(i) for a given plant, analyze the subset of assignable polynomials;
(i) derive the conditions to be fulfilled in order that the subset above
may include all polynomials in two variables with unit constant term;
(iii) given any specific ¢(z,, z,) in R[z,, z,], decide about the assignabil-
ity of its variety v(c);
(iv) if v(c) is assignable, give algorithms for realizing the compensator
b
The 2D matrix fraction description (MFD) approach provides the natural
setting for studying these problems. In Section 3, elementary properties of
MFDs will be briefly recalled and some new results will be presented to
support the feedback analysis and the synthesis procedures of Sections 4-6.

3. SOME PROPERTIES OF 2D MFDs

Let A(z},zy) and B(zy, z,) be matrices with entries in R[z,, z,], of
dimensions h X h and h Xk respectively, and assume det A(z,, z,) # 0.
Denote by m,, m,,..., m, the maximal-order minors of

[A(lezz) 3(31752)], (9)

and by J(A, B):=(my, my,...,m,) the ideal generated by m,, m,,..., m,.
Clearly, the matrix (9) is full—iank except in the points of the complex
variety

b(A, B):=v(J(A,B)),
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where the maximal-order minors of (9) simultaneously vanish. When b(A, B)
— @, A and B are called left zero coprime (l.z.c.). A necessary and sufficient
condition for left zero coprimeness is that the Bézout equation

AX +BY=1I, (10)

admits a 2D polynomial matrix solution in X and Y.
An h X h polynomial matrix Q(z z,) is called a common left divisor of
A and B if

A=QA, B=0QB, (11)

where A and B are polynomial matrices. A and B are left factor coprime
(1f.c.) if det Q is a nonzero constant for all Q satisfying (11).

If A and B are not Lf.c., a greatest common left divisor (GCLD) can be
extracted using either the primitive-factorization algorithm [10] or other
procedures [11]. Left factor coprimeness is implied by, but does not imply,
left zero coprimeness. In fact, 1.f. coprimeness is equivalent to the finite
cardinality of v(A, B).

Let W(z,, z,) be an h Xk rational matrix in two variables, and suppose
that the above polynomial matrices A and B satisfy

W=A"'B. (12)

Then A~ !B is a left MFD of W. If further A and B are Lf.c.,then A"'Bisa
left coprime MFD of W.

W(z,, z,) is proper if any one of the following equivalent conditions
holds:

(i) W admits a L.e. MFD A~1B with A(0,0)=1;
(ii) for any L.c. MFD A~ 1B =W, det A(0,0) # 0;
(i) the entires of W are proper rational functions.

In the sequel, when dealing with proper left coprime MFDs, we shall
assume A(0,0) = I.

Right MFDs can be introduced with the obvious changes. In particular,
given a right MFD W = CA~!, we denote by J(C, A) the ideal generated by
the maximal-order minors of [AT(z}, z5) 0% zyza )l

The following theorem shows that the ideals generated by the maximal-
order minors of a coprime MFD of W(zy, z,) do not depend on the
particular representation (left or right).
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TueoreM 1. Let N;Dy'= D, 'N, be two coprime MFDs of W. Then
3(Ng, Dg) = 3(D,, Ny ).

The proof depends on two technical lemmas.

Lemma 1 [10]. Under the hypotheses of Theorem 1, det D; = det Dy.
Moreover, if C, A, and B are 2D polynomial matrices such that CA™1B =W,
then

(i) det D, |det A;
(il) det D; =det A if and only if CA~' and A~ 'B are factor coprime
MEDs.

LemmMa 2. Consider the polynomial matrix

U= [g “XC], (13)

where X and A are square matrices and det A is a nonzero polynomial. Then
any right MFD N D' of the rational matrix CA~'B satisfies the following
equation:

det A
detU= det( XDy + YNg). (14)

det D,

The proof of Lemma 2 is an immediate consequence of the determinantal
formula for block matrices.

Proof of Theorem 1. Putting A=D;, B=N,, C=1 in Lemma 2 and
recalling Lemma 1, one gets

X =Y

det{NL D, ] = det(XDp + YNR). (15)

Assume that [X — Y] is any permutation of the columns of [I 0]. Then,
except for the sign, the right- and left-hand sides of (15) are maximal-order
minors of [N, D;]and [Dy Ng] respectively. Moreover, as [X — Y] varies
over the set of all permutations, we get a bijective correspondence between
the maximalorder minors of [N, D;] and [D; Ng]. So X(D,,N,)=
3(Np, Dy). &
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Consequently, there is no ambiguity in defining the transfer-matrix ideal
X(W) as the ideal of the maximal-order minors associated with an arbitrary
right or left coprime MFD of W. The corresponding transfer-matrix variety
p(W):=0(J(W))isa (possibly empty) finite set, whose points are called the
rank singularities of W.

Remark. D(W) is empty if and only if the factor coprime MFDs of
W(z,, z5) are zero coprime. This makes a substantial difference with respect
to 1D transfer matrices, where zero coprimeness and factor coprimeness are
equivalent concepts, and b(W) is always empty. As we shall see, the
existence of rank singularities plays an essential role in the closed-loop
polynomial assignability problem.

TaeoreMm 2.  Assume that C, A, B, Ny, Dy are 2D polynomial matrices
of suitable sizes with

W(z,, 25) = CA™'B= Ny Dg'
and that NyDz ' is a r.c. MFD. Then
o(A, B)Ub(C, A)=0(W)Un(h)
where

h =det A /det Dy

is a 2D polynomial (by Theorem 1).

In proving Theorem 2, we need the following Lemma 3, which provides
some additional properties of the matrix U introduced in Lemma 2.

Lemma 3. Let (29, 23) € C XC. The matrix U(z9, z9) is singular for
any X and Y if and only if at least one of the matrices [A B] and [AT CT]
is singular when evaluated at (zf, 23)-

Proof. Since all matrices are evaluated at the same point (z9, z3), in the
notation for the matrices (20, zJ) will be omitted. The “if " part of the lemma
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is trivial. For the converse, assume that [A B] and [AT CT] are both
full-rank. Then matrices M, N, P, Q of suitable dimension exist such that

AM+BN=I, QA+PC=1. (16)

Moreover, by choosing a basis in the orthogonal complement of the row span

of [A B], we obtain a full-rank matrix [ﬂ and matrices R, S satisfying

AG+BF=0, RF+SG=I. (17)

Letting

_[F N L _
V_[G M], X=R-SQB, Y=5P

and recalling (16) and (17), we obtain that in

XF-YCG XN-YCM (18)

Uv=[ 0 I

the block XF — YCG is the identity matrix. This proves that U is nonsingular
for some X and Y. B

Proof of Theorem 2. By Lemma 3, we have
(21,2,) €0(A,B)UD(C,A) = detU(z),2,)=0 VXY, (19)
and, applying Lemma 2,
detU(z),2,) =0 < hdet(XDg+YNy)(z,,z,)=0. (20)
Next observe that

(21,25) €0(W) o det(XDz+YNy)(2,,2,)=0  VX,Y. (21
1> %2 1
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This follows directly from the equivalence of the statements below:

(1) (21, 29) & D(W);
” Dg(2, 32)
i \:NR(ZD Z5)

(iii) there exist constant matrices X% Y such that

} is full-rank at (z2°, z5);

XODp(20, 23) + YONg(2), 23) = I (22)

(iv) there exist polynomial matrices X and Y such that X(z{,z3)= X",
Y(z$,29) = Y and (22) holds.

Finally, using (19), (20), and (21), one gets that (23, z9) is in v(A, B)U
p(C, A) if and only if (22, 29) belongs to v(h)U n(W). ]

4. COPRIME REALIZATIONS

As we shall see in greater detail in the next section, the compensator
synthesis is performed in two steps. The first one consists in solving a 2D
Bézout equation, whose coefficients are determined by the plant transfer
matrix and by some requirements on the structure of the characteristic
polynomial of the closed-loop system. The solution provides us with an
input-output representation of the compensator, and the second step calls for
a state-space realization of it.

A problem which naturally arises in connection with the realization
procedure is how to avoid the inclusion of unwanted “hidden modes” in the
closed-loop polynomial. In order to introduce a concrete definition of the
concept of “hidden modes” in 2D state-space models, we consider two
complex varieties, associated with the polynomial matrices of the PBH
controllability and reconstructibility criteria, and establish some connections
between these varieties and the rank singularities of the transfer matrix.
Interestingly, a 2D realization of W(z,, z,) is free of hidden modes if and
only if the join of the above varieties coincide with p(W). So the natural
question arises whether such a realization does exist and how may it be
computed. The realization algorithm, presented at the end of this section,
gives a positive answer to this question and provides a constructive realiza-
tion procedure.
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In designing state feedback laws and observers of a 2D system ==
(AL, Ay, By, By, C), the following two matrices have proved to be of remark-
able importance [7]:

R = [I_AIZI_AZZQ Bz, + Byz, ], (23)
@:[I“Alzé‘f‘ﬁzz _ (24)

In fact, the controllability and reconstructibility properties of = can be
translated into terms of rank conditions on % and 9, which therefore will be
called PBH controllability and PBH reconstructibility matrices.

Denote for short by b(#) and v(D) the complex varieties v(I — Az, —
AyZg, Biz1+ Byzy) and 0(C, I — A z) — Ayz,), and assume that NyDg! is
any r.c. MFD of the system matrix. Then Theorem 2 can be easily rephrased
in terms of N and O and

det(I — Az, — A,z
h: ( 1~1 22)’ (25)
det Dy

giving
b(R)UDB(D)=v(h)Un(W). (26)

Of course, if we assume that h is a nonzero constant, the finite cardinality
of the right-hand side in (26) implies the factor coprimeness of C(I — Az, —
Ayzy) ' and (I — Az, — Ayz,) Y(Byz, + Byz,). Viceversa, if h is a non-
constant polynomial, i and/or © are not fullrank along the algebraic
curves associated with the irreducible factors of A. In this case, the uncontrol-
lable and the unreconstructible modes (collectively, hidden modes) refer to
the irreducible factors of h that appear as common factors of the maximal-
order minors of R and O respectively.

By definition, a realization X of W(z|, z,) is coprime if 3 is free of
hidden modes. As a matter of fact, there are many equivalent definitions of
coprime realizations. These are summarized in the following corollary, whose
proof is a straightforward consequence of (26).
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CoroLLARY. Let 2=(A, A,, By, B,,C) be a realization of W(z,, z5),
and assume that NyDg' is a r.c. MFD of W(zy, z,). Then the following
statements are equivalent:

(i) det Dp =det(I — A z; — Ay2,);

(i) CI — Az — Agzy) ™! and (I— Az, — Ayz,) Y(Byz; + Byzy) are
right and left f.c. MFDs respectively;

(iii) b(R)H)U p(D)=0(W);

(iv) £ is a coprime realization.

Remark. Coprime realizations are not necessarily minimal, since their
local state space need not have minimal dimension. For instance, the coprime

realization

A1=A2:[8 ?] B1=Bzz[ﬂ, c=[o 1], D=0

of the transfer function (z, + z5)/(1 — 2, — 2) is nonminimal. Even more, it
is easy to show that whenever a transfer matrix admits a coprime realization,
then it admits coprime realizations of arbitrary large dimension.

The question of the existence of coprime realizations for any proper
transfer matrix is positively answered by a corollary of Theorem 3, which
provides also an explicit realization procedure.

Tueorem 3. Let NyDi ! be a right MFD of the transfer matrix W(z,, 2 2)
satisfying Dg(0,0) = I. Then there exists a 2D system 2=(A,, Ay, B, By, C)
that realizes W and satisfies the following conditions:

(i) N(zy, 7o) is full rank in CXC;
(ii) det(I — Az, — Ayz,) = det Dp.

Proof. There is no restriction in assuming Wi(z,, z,) strictly proper, so
that N,(0,0) = 0. Denote by k;, i =1,2,....m, the column degree of the ith

column of
Ny
B

that is the degree of the maximal-order polynomial in the ith column. We can



208 M. BISIACCO, E. FORNASINI, AND G. MARCHESINI

write
Dgp=1,— Dy V¥
where
T3¢ mymht ghi glimd 4% :23 0 Oi O
“I'T(zl 7p) = i F
1 |
O 1o 01 :é :1:,‘, ! :f‘ Né e T5 T
D Dy, D, N = Ny Nim
T D D,.| il N,
D Dy, D, N Ny Ny
el R R R R T , Ngr=| """ crv- T. -,
Dml Dmm Npl z\pm

and D,; and N,; are row vectors whose elements are the coefficients of the
(i, j)-indexed polynomial in — Dy +I,, and in Nj.
Introduce now the following matrices:

I M, 0
M, | 0
Al — , B(M — ’
10 1M2 1
o - - - ol |0
| 0 0 1 ]
" N, . g T
N,_, 0
A(gho): "3 . BM = . ’
A i 0
0 - - T 0 1
._O O i L 0 -
with
0 0 0 0 1 0 0 0
M= I, ] = [ 0, :
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and define
Ayp= diag{ A(lkol), Ala) A(k,,)}
A= dlag{ A(éfol), A(gg), , A(k,,,)}
B, = ding{ B, BH, ..., B ),
B;= diag{Békl), B, ..., B ,)}

It is a matter of simple computation to show that
=
(I- Az — Apzy) (Biz+ Byz,) = V.

Assuming now

we have
(I-%) '8 =(I—-%y— BDyy) B
" —1
={[1_§BDHT(I_QIO) 1](14%[0)} B
=(I_%[o)_l[lf%DHT(I_%Io)ill7158
—1 -1 -1
— (1= %) B [I = Dyp(1-%,) ' 9]
=‘P(Ziazz)(IﬁDHT‘I')q:\I’DEl-
Since

NRD? = NHT‘I’DEI = NHT(I - S)I) 71’:8
!
=Nyr[I-(Ap+ By D by —{ Aigpt ByDyr )z, ~ (Byz,+ Byzs),

the matrices A = Ao+ B Dy, Ag= Agy+ ByDyy, B,, By, C furnish a
realization of NyDg .
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The PBH controllability matrix is full-rank in C X C. In fact
rank[ I — AB] = rank[I — Ay — BD,,i B ] = rank[I — Ayt B
= rank[diag{ I—- A%z, — A%z, i = 1,2,...,m}
Xdiag{ Bz, + Bz, i=1,2,...,m }]
is full for every (z,, z,), since the matrices
[1- Az, — A%z, B2+ BY,],  i=12,...m,

have full rank for every (z,, z,).

It remains to prove that det(] — Az, — A,z,) =det Dy. This follows
from the identities

det Dp =det(I — D, ¥ ) =det(I — ¥D,,)
and
det(I— %) =det(I - %, — BD,,)
= det(I — %,)det| I~ (I - %,) 'BD,;| = det(I- ¥D,,). m

CoroLLary. If NpDgp'is ar.c. MFD of W(z,, z,), the system 3 given
in Theorem 3 is a coprime realization of W(z,, z,).

5. ASSIGNABILITY OF THE CLOSED-LOOP
CHARACTERISTIC POLYNOMIAL

At the end of Section 2 we posed the problems (i)—(iv) relative to the
system. of Figure 1, obtained by interconnecting a strictly proper plant
2=(A,, A, By, B,,C) and a compensator 2, =(F,F,G,G, H,J). Our
aim now is to give a solution to these problems.

Let W(z, z,) and Wz, z,) be the transfer matrices of = and 3_
respectively, and consider two MFDs PQ ! and X ™'Y satisfying

W(z,2,)=PQ7",  detQ=det(I— Az, — Ayz,), (27)

W,(z,2,) =X, detX=det(I - Fz,— F,z,). (28)
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Then the closed-loop characteristic polynomial (8) is given by
A(z,, 2,) = det(XQ + YP) (29)

On the other hand, by Theorem 3 any left MFD X~'Y with X(0,0)=1
admits a realization 3_ = (F,, F,, G}, Gy, H, J) that satisfies the condition

det X(z,, 25) = det(I — Fiz; — F52,).

So, as (X,Y) varies over the set of polynomial matrix pairs with X(0,0) =1,
(29) produces all assignable closed-loop polynomials for the given plant 2.
Let E be a GCRD of P and Q. Then

P = N,E, Q = DRE, (30)
and NyDg ' is ar.c. MFD of W. As a consequence of (25) and (27), we have

det(I — Az, — Ayzy)
h(zy, 25) = o = detE, (31)
R

and (29) becomes
A(z,, 7,) = hdet( XDy + YNg). (32)

The above formula clearly shows that h(z,, z,), which represents the
hidden modes of X, is an invariant factor of A(z,, z5) with respect to
feedback compensation. In other words, as far as fixed modes are concerned,
2D systems behave exactly in the same way as 1D systems do. However, a
deep difference between 2D and 1D systems comes out when we consider
the factor det(XDgy+YNg). In fact, as we established in the proof of
Theorem 2, this factor must vanish for any choice of X and Y on the set
p(W) of rank singularities. Such a restriction does not exist in the 1D case,
where the solvability of the Bézout equation XDy + YN, =1I and hence the
complete assignability of the polynomial det(XDjy + YN,) are consequences
of the coprimeness of Ny and Dp. .

The next theorem shows how the conditions that A vanishes on b(h) and
p(W) and A(0,0) =1 represent the only constraints imposed on the closed-
loop polynomial variety by the structure of the plant.
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TueOREM 4. Let 2 =(A,, Ay, By, By, C) be a realization of the transfer

matrix W(z,, z,). For any compensator Z_, the closed-loop polynomial
variety v(A) satisfies the inclusion

b(A) 20(h)Un(W),

where h is given by (31) and v(W) is the set of rank singularities of W.
Viceversa, given any algebraic curve € that includes b(h)U v(W) and
excludes the origin, a compensator 2 exists such that v(A) = C.

Proof. The first part of the theorem has already been proved. For the
second, let M, be the submatrices of maximal order in [PT Q7] that
correspond to the minors m,, i =1,2,..., ¢t. Then there exist constant matri-
ces L, and K, that satisfy M,=L.Q+ K,P, i=1,2,...,¢t, and we have

m,I = (adjM, )M, = (adjM,)L.Q + (adjM,)K,P. (33)
Consider a 2D polynomial ¢ such that
b(c)=€, ¢(0,0)=1.
The inclusion
b(c)20(W)Ub(h)="0(Ng, Dg)Ub(E)=0(P,Q)
and Hilbert's Nullstellensatz imply

e = Z mg; %(P:Q) (34)

i=1

for a suitable integer r and suitable polynomials g,. Tying (33) and (34)
together yields

I=XQ+YP (35)

t
c'l= ( Z m,g,

.
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with

X=Zgi(adei)Li= X(O:O):Ié Y:Zgi(adei)Ki‘

By Theorem 3 we are able to construct a compensator 2. =
(F,, Fy, G, Gy, H, T) that realizes X 1Y under the constraint det( — F,z; —
F,z,) = det X. Thus the corresponding closed-loop polynomial is given by

A(zy, 2,) = det(XQ +YP) =c™,

and © is the variety of A.

When dealing with MISO and SIMO systems, an alternative characteriza-
tion of the feedback action is available in terms of polynomial ideals, instead
of polynomial varieties. Assignable polynomials of a strictly proper MISO
system = are easily characterized as the elements with unit constant term in
the ideal h(W). For, let g be the characteristic polynomial of X, and
[P 192,...,;:9;0](1"1 its transfer matrix; and consider any polynomial ¢ in
(@, P> Pos---» Pg) = hI(W) and satisfying ¢(0,0) =1. Then there exist 2D
polynomials 7, s, $3,-.-, 8, such that

c=qr+ Zpisi

1

and r(0,0)=1. Clearly any 2D realization S, =(F, F, GGy, H, J) of
¥ ey Bogee 3 sP]T that satisfies 7(z,, zo) = det(I — Fyz; — Fyz,) gives
¢(z,, z5) as the closed-loop characteristic polynomial. The same property can
be shown for SIMO systems, using dual reasoning.

We are now in the position for deriving a set of necessary and sufficient
conditions for the complete assignability of the closedloop characteristic
polynomial or, equivalently, of its variety. These are a direct consequence of
Theorem 4 and are summarized in the following corollary.

CororrLary. Let 2 =(A,, A, By, By, C) be a strictly proper 2D sys-
tem. The following are equivalent:

(i) the closed-loop characteristic polynomial is arbitrarily assignable;

(ii) there exists a compensator Z, (dead-beat controller) such that the
closed-loop characteristic polynomial is Az, 25) =1;

(iii) p(R)=0v(D)=92 (i.e, the plant is PBH controllable and recon-
structible);
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(iv) the set of rank singularities of the plant is empty, and h(zy, z5)=1.

Proof. The equivalence (iii) < (iv) is a consequence of (26). Further-
more, assuming € =@ in Theorem 4, the equivalence (ii) < (iv) follows
immediately.

In order to prove (if) = (i), let X and Y satisfy the Bézout equation (35)
with ¢(z}, z5) =1. Given any polynomial g(z,, z,) and a matrix M(z,, z5)
with det M = g, the pair (X,Y) = (MX, MY) satisfies q = det(XQ + YP). m

In the above proof the closed-loop characteristic polynomial has been
obtained by introducing hidden modes in the compensator. It turns out that
in the compensator synthesis hidden modes could have been avoided, since
the equation det(XQ + YP) = g admits left zero coprime solutions.

In fact, assume that the number of inputs m is not greater than the
number of outputs p, and consider a solution (X, )?) of the equation
XQ +YP =1,. Then the general solution of the equation

XQ+YP=M with detM=gq
is given by

[X Y]=M[X Y]+T[S —R]=[Mm T][)SE f], 7

where R7!'S is a left zero coprime MFD of PQ_l, T is an arbitrary

A

X Y

polynomial matrix, and [ is unimodular [9].

When choosing T = [I,, 0], the matrix [X ! Y] in (36) is full-rank in C X C.
The case m > p can be solved in a similar way through a left MFD of the
plant and a right MFD of the controller.

Remark 1. Equations (15) and (35) show that any 2D polynomial matrix
[Dy Np] with N; and D, left zero coprime can be row bordered up into a
square unimodular matrix, i.e., there exist X and Y such that

X Y]=1

det [ D, N, (36)
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This is easily shown using the following procedure:

(i) Construct a zero coprime right MFD PQ~" of D/ IN;.
(ii) According to the corollary of Theorem 4, compute X and Y that
satisfy the equation

1= det(XQ + YP).

Because of (15), X and Y satisty (36).
Note that this constitutes a simple derivation of the Quillen-Suslin theo-
rem for polynomial matrices in two indeterminates [12].

Remark 2. For any choice of the compensator X, the set of rank
singularities b(W) is included in the closed-loop characteristic polynomial
variety; actually it is the subset of this variety which is invariant under
compensation.

Nevertheless, the set of rank singularities of the closed-loop transfer
function does not necessarily include p(W). This can be easily seen by
taking, for instance

31(1 — 2z, — zlz)

W(z,,2,) = ; (37)
b2 1+2z,
5
W.(z,, R e — 38
The closed-loop transfer function
w
W(zl’ZQ):m:zl (39)

is devoid of rank singularities, while (W) =0(W,) = {0, — ¥,

Note that, whatever the realizations of W(z,, z,) and W,(z,, z;) may be,
the resulting closed-loop system is internally unstable. In fact, independently
of the internal description = and =, of W and W,, the variety of the
closed-loop characteristic polynomial A(zl, z,) must include v(W) [and
p(W,)], and Az 1» Z5) is a hidden mode of the closed-loop system.
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6. ALGORITHMS FOR COMPENSATOR DESIGN

In this concluding section we shall outline some algorithms connected
with the solution of the points (iii) and (iv) in Section 2.

The first problem which naturally arises is to decide whether a given
algebraic curve @€, described by a polynomial equation c(z, z,) =0, is
assignable (i.e. can be viewed as the closed-loop polynomial variety of the
system depicted in Figure 1). By Theorem 4, the procedure will consist in
verifying if

(0,0)& G, (40)
b(h)C G, (41)
(W) cG. (42)

Checking (40) is trivial, and once the polynomial h(z,, z,) has been com-
puted, we can easily verify (41) using any linear algorithm to see if i divides
ceh The condition (42) can be checked by first computing a set of
generators of J(W') and successively exploiting them for constructing a pair
of commutative matrices M, and M, with the property

?9(751} 32) S %(W) = P(Mla Mz) ={)

Thus v(W)C € if and only if ¢(M,, M,) is a nilpotent matrix. For the
construction of M, and M, the reader is referred to [14].

So it remains to show how to compute the polynomial h and a set of
generators for J(W) starting from the system matrices A,, A,, B;, B,, C.
For this, let

[Cadi(I- Az — Ay2,) (B2, + Byz,) ][ 1, det(I— Az, — Agzy)] =AD"

be a MFD of the transfer matrix W(z,, z,). The generator set _can be
obtained by evaluating the maximal-order minors m, my,...,m, in [NT D7]
and then eliminating their g.c.d. d(z;, z,). Thus h is given by

det(I— Az, — Ayz,) det(]— Az, — Ayz,)d(z), 2,)
B det Dy B det D '
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Assume now that a variety € =b(c) that fulfills the conditions (40)

through (42) has been given, and suppose we want to synthesize a compen-
sator =, that produces a closed-loop polynomial A whose variety is €. The
procedure can be summarized as follows:

1. Evaluate a r.c. MFD N,Dj;! of W. This can be performed by using the
primitive factorization algorithm [10] or other algorithms that do not
require primitive factorizations [11].

9. Compute the maximal-order minors m,, my,...,m, of [Ny Dg].

3. Compute an integer 7 and a Grobner basis g, gs,..., &, such that
¢"=Y.m,g, A technique for performing this step has been presented
in [14].

4. Solve the Bézout equation ¢'I,, = XDy + YN, as in the proof of Theo-
rem 4.

5. Exploit the realization algorithm of Theorem 3 for computing a coprime
realization X of X~ 'Y.

The correctness of the procedure is easily seen from the following chain of
equalities:
v(A)=v(h)Un(det(XDy+YNg)) by (32)
=v(h)uo(c,)
=v(h)Un(c) by (41)
=v(c)=C.
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