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ABSTRACT The paper analyzes the matrix representation struc-
ture of the probability transition map in a 2D Markov chain and some
properties of the associated characteristic polynomial in two variables.
These allow to show how the long term behaviour depends on the in-
tersections between the variety of the characteristic polynomial and the
distinguished boundary of the unit closed bidisk.
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1. INTRODUCTION

During the last few years a considerable research effort has been devoted to
dynamical patterns that evolve in the discrete plane Z x Z, partially ordered by
the product of the orderings

(r,s) < (h,k) if r<h and s<k (1)

The causality constraints that (1) naturally induces on the dynamical patterns
imply that the configuration attained at (h, k) only depends on configurations and
input values at (r,s) < (h,k). Autonomous 2D systems [1-3] constitute the easiest
nontrivial instance of these dynamical behaviours. Here the local configuration
x(h+1,k+1) is linearly determined by the nearest past configurations x(h,k+1)
and x(h + 1, k). We therefore have the following first order updating equation

x(h+ 1,k +1) =x(h, k+ 1)A®D + x(h + 1,k) A® @

where x is an n-dimensional real valued row vector and A™, A(®) are n x n real
matrices. The separation property of classical (one-dimensional) Markov chains
is inherited by system (2) in a two-dimensional environment. Actually, the com-
putation of the local configuration at (h + 1,k + 1) does’nt require information
about system history in the “past cone” {(r, s) < (h+1,k+ 1)}, with the ex-
ception of the nearest points (h,k + 1) and (h+ 1,k). So, although no particular
probability meaning is associated with the local vector x in the general theory
of 2D systems, it seems rather natural to obtain a 2D theory of Markov chains
by introducing suitable constraints in equation (2). These must guarantee that
any pair of probability vectors x(h,k + 1) and x(h + 1,k) leads in turn to a new



probability vector at (k + 1,k + 1), so that the components of x(h + 1,k + 1) can
be viewed as probabilities of the various states at point (h + 1,k + 1).

Multidimensional Markov models (hidden Markov mesh random fields) have
been recently considered in the image processing literature, with the purpose of de-
veloping coherent approaches to both problems of image segmentation and model
acquisition [4]. In this paper we emphasize the algebraic structure of 2D Markov
chains and some properties of their characteristic polynomials, our final goal being
a general result on their asymptotic behaviour.

2. THE STRUCTURE OF A 2D MARKOV CHAIN
By a 2D Markov chain M with n states S;,5s,...,S5, we will mean:
1. an autonomous 2D system

x(h+ 1,k +1) =x(h, k + 1)A® + x(h + 1,k) A® (3)

of dimension n, with the property that x(h + 1,k + 1) is a probability row vector
for every pair of probability row vectors x(h,h + 1) and x(h + 1, k).

2. a sequence of initial probability vectors X, = fx(h, k) | (h,k) € Co,x(h,k) €
X, where Cy = {(h,k) EZXZ|h+k= 0} is a separation set in Z X Z and
z;(h,k),s = 1,2...,n, denotes the probability that S; is the state of the system
at the initial point (h, k).

A basic question concerning equation (3) is the following: if x(h,k + 1) and
x(k + 1,k) are probability vectors, but otherwise arbitrary, under what circum-
stances can one be certain that the new vector x(h+1, k+1) will also be of the same
type? It is not difficult to show that, given any pair P and Q of nxn stochastic ma-
trices and any real number a in the interval [0,1], then A) = oP , A®) = (1-4)Q
are matrices of a 2D Markov chain. The converse of this result, however, is not
true, since 2D Markov chains need not be represented by the convex combination
of a pair of stochastic matrices. In fact, suppose that an n-states 2D Markov
chain M has been given via the assignment of a one step transition probability
map 7 : X X X — X, i.e. via the restriction to X x X of a suitable linear map
from R" x R™ into R" represented by a pair of n x n matrices (A(), A®)). Then,
for any n X n matrix M with all rows the same vector, the pair (A} + M, A —M)
realizes the same transition map. Viceversa, if (A, A®)) and (A, A®?)) realize
7, then there exists a matrix M with all rows the same vector such that

A=A M, AP A0 _Mm (4)

So, given a 2D Markov chain with n states, there are infinitely many chains equiva-
lent to it (i.e. realizing the same probability map) and the natural question arises
as to what extent convex combinations are “canonical”, in the sense that each
equivalence class includes a 2D Markov chain represented by a convex combina-
tion of two stochastic matrices. This is answered by the following theorem.

Theorem 1 [5] A 2D Markov chain with n states can be represented as
x(h+1,k+1) =x(h,k+1)aP +x(h+1,k)(1 - a)Q (5)

where P and Q are n X n stochastic matrices and 0 < a < 1.



In the sequel a chain in form (5) will be called a canonical 2D Markov chain
and will be denoted as M = (a,P, Q) (note that each equivalence class needs not
include just one canonical chain).

Theorem 1 completely clarifies the class of dynamical models described by equation
(3). Actually we may visualize the process which moves from states Sy at (h,k+1)
and S; at (h+1,k) to some state at (h+1,k+ 1), according to the following rules:
1. The probability vectors x(h, k+ 1) and x(h +1, k) are thought of as giving the
probabilities for the various possible starting states. Then an experiment in two
stages takes place at (h + 1,k +1):

2. The first stage of the experiment exhibits two possible outcomes, e.g. 0(h +
1,k+1) =0 and 8(h+1,k+1) = 1, with probability @ and 1— a respectively. The
random variable #(h+1,k+1) is independent of 8(!, m), for all (I,m) # (h+1,k+1)
3. At the second stage a state transition occurs that uniquely depends on the state
at (h,k+1) if §(h+1,k+1) = 0, and on the state at (h+1,k) if (h+1,k+1) = 1.
The process moves from S; at (h,k + 1) into S, with probability Py, and from
S, at (h +1,k) into S,, with probability Qm.

3. ASYMPTOTIC BEHAVIOUR

Since the matrices of a 2D Markov chain are given by the convex combination
of a pair of stochastic matrices, it is expected that the strong spectral properties of
stochastic matrices play a central role in the theory of 2D Markov chains. To make
our intuition precise, it is convenient to introduce the 2D characteristic polynomial
and the algebraic variety of its zero set, that constitute the basic tools for much
of the internal stability analysis of general 2D systems [2,6].

Consider a 2D Markov chain with n states M given by equation (3). The
following polynomial in two indeterminates

A(zh 22) = dEt(I - zlA_{l) —_ zzA(z)) (6)

is called the characteristic polynomial of M and the solutions of the corresponding
equation A(z,2;) = 0 constitute the variety V(A) of the chain. The peculiar
structure of A1) and A(®) induces some constraints on the polynomial variety
V(A) , that are summarized in the following theorem.

Theorem 2 [5] 1) The characteristic polynomial of a 2D Markov chain with n
states factorizes into the product of a first order polynomial hy(21,22) =1 — b2y —
(1 — b)2;: and a polynomial hy(z1,22) of degree not greater than n — 1

A(z1,22) = hy1(21, 22) ha(21, 22) (7

While hy is invariant under 2D chains equivalence (4), hy 15 not, and its orbit
is obtained by varying arbitrarily the parameter b over the real numbers (over the
interval [0,1] in case of canonical Markov chains).

In a canonical 2D Markov chain M = (a,P,Q), with a(1 — a) # 0,

2) V(A) does not intersect the unit closed polydisk P, = {(21,22) : |z1] <
1,|22| <1}, except at (1,1) and, possibly, at some other points of its distinguished
boundary Ty = {(21,22); |z1| = |22| = 1}.

3) the following facts are equivalent: i) Ay = 1 is a multiple eigenvalue of
A = dP + (1 — a)Q ii) when evaluated at (1,1), dA/8z is zero iii) when
evaluated at (1,1), dA/dz, is zero



The third theorem establishes a remarkable connection between the intersec-
tion V(A) N T; and the long term behaviour of the probability vectors x(k, k). An
interesting question we shall answer in this context is the following: does there
exist a probability vector w such that x(h, k) approaches w as A+ k tends to infin-
ity? As we shall see, for certain types of 2D Markov chains there exists a unique
limiting probability vector, independently of the distribution of the probability
vectors x(h, —k) on the separation set Cy. These chains, which can be regarded as
the 2D analogue of 1D Markov chains with a single aperiodic class, have a deep
but intuitive body of theory.

In the foregoing developments we shall consider only nontrivial canonical 2D
Markov chains M = (a,P,Q), i.e. with 0 < ¢ < 1. Without loss of generality,
we assume also that the states of the 1D chain associated with the stochastic
matrix A = aP + (1 — ¢)Q have been permuted so that all the ergodic states are
listed before the transient states. This amounts to say that A, P and Q are block
triangular

E 0 Pu 0 [Qll 0
A —_— 3 P —_— ’ — 8
[R T} [le Pzz] - Qa1 Qa2 (®)
E, T are a stochastic and a substochastic matrix respectively, representing the

transition probabilities within the ergodic classes and the transition probabilities
among the transient states of a 1D Markov chain, and the polynomial det (I -

az Py — (1 - a)zzng) is devoid of zeros in P [5].

Definition Let M = (e,P, Q) be a 2D Markov chain and X; a sequence of initial
probability vectors. A probability vector w € X is a limiting probability vector
(LPV) of Xo if limptps 00 X(h, k) = w. If this property holds for all sequences X,
of initial probability vectors, w is termed global limiting probability vector (GLPV).

The strategy we follow in studying the existence of a GLPV is to derive first
some constraints on the values of its entries and on the structure of E (lemma 1).
Then we show that the variety V(A) must be regular at (1,1) (lemma 2) and, by
a perturbation argument, cannot intersect the distinguished boundary T; except
at (1,1) (lemma 4 and part of thm. 3). The above constraints on V(A) finally
provide a necessary and sufficient condition for M having a GLPV (thm. 3).

Lemma 1 (5] Let w be a GLPV of M = (a,P,Q) and assume that in (8) the
matriz T has dimension r x r. Then i) the first n — r entries of w are stricly
posttive and the last r are zero; ii) the matriz E is fully regular

As far as the structure of V(A) is concerned, we show first that it is impossible
to find a GLPV for a chain M = (a,P,Q) when its characteristic polynomial
exhibits repeated roots at (1,1).

Lemma 2 Let M = (a,P,Q) have a GLPV. Then the variety V(A) of its char-
acteristic polynomial is regular at (1,1).

PROOF Suppose (1,1) be a singular point of V(A). By thm.2, A\ = 1is a
multiple eigenvalue od A and consequently E cannot be fully regular. By lemma
1, this would contradict the existence of a GLPV.



Next we consider the possibility that the variety V(A) and the distinguished
boundary T; have intersections other than (1,1) or, equivalently, the matrix I —
azP — (1 — a)Q may be not full rank at (e™:,e™2) # (1,1). To discuss this
property, we need the following technical lemma

Lemma 3 [5] Suppose that I—az,P — (1—a)z,Q is not full rank at (e™1,e?) #
(1,1). If v = [v1 v2...v,] € C" satisfies v[I — ae™ P — (1 — a)e"2Q] = 0 then its
enlries sum up to zero, t.e. Y p_ Vg =0

In view of the above lemma, our original assumption on the existence of an
intersection between V(A) and T3\ {(1,1)} can be restated as follows: there exists
a complex valued nonzero vector v =[v; vz -+ v,_.|, with 2}2] vy =0 that
satisfies v (I—ae‘f"lPll —(1 ——a)e‘“*Qll) = 0. If we partition the probability vectors
conformably with the block structure of (8), i.e. x(h,k) = [x1(h,k) X*a(h,k)] and
assume that the initial probability vectors satisfy x2(h,—h) = 0, h € Z, then the
first n — r entries of x(-,-) evolve according to the equation of a 2D Markov chain
with n — r states

Xl(h & l,k + 1) = Xl(h,k -+ l)aPu +X(h + 1, k)(]. = G)Qll. (9)

Suppose, for the moment, that in (10) all x;s are allowed to be complex valued
vectors and consider the sequence 1o = {xi(k,—h) = vet, h € Z}, with w =
we—wy. It is clear that the updating equation (9) produces at (h, k), with A+k > 0,
a vector x;(h,k) = ve ™i1h~i2k and. consequently, the vector sequence ¥, on
Cm = {(R,k) | 4k = m} is given by X, = {x,(h,—h +m) = ve“r~ivzm h c Z}.

When v is expressed in polar form v = [p1e*  pye' ... Pr-rePm=r], the
sequence X, breaks apart into a real and an imaginary sequence o= fDR + :'f(;'

fUR = {[p1cos (81 + hw) pzcos(Bs + hw) -+ pn_, cos (Bn_r + hw)],h € Z} (10)
f{{ = {[p1sin (81 + hw) posin(B; + hw) -+ py,sin (Ba_r + hw)],h € Z}

Since the transition matrices aPy; and {1 — ¢)Qy; are real valued, assuming IE
or X{ as initial conditions will produce separately

f,’: = {[p1cos (B1 + hw — mwy) -+ - Pr—r €05 (Bn—r + hw — mw,)|,h € Z}
fr{; = {[p1sin (B1 + hw — mws) -+ -+ Prr Sin (Bn—r + hw — mw,)], h € Z}

(11)

Owing to assumption v £ 0 , ftfz and ,fof cannot be simultaneously zero. Fur-
thermore, the property 3", v4 = 0 implies that the entries of every real vector of
the sequences f,’,f and f,’,f sum up to zero.

Suppose now to start the chain from fg‘i # 0. Then the sequences fﬁ cannot
converge to zero as m goes to infinity. Actually, if wy/27 is rational the sequences
Iﬁf vary periodically with m; if not, there are sequences ,f,f arbitrarily close to
XE for arbitrarily large values of m. The above discussion is surmmarized in the
following lemma.

Lemma 4 Let det(I —azP — (1 - a)ng) =0 ab [21,2) = [£"1,6%1] £ (1,1).
Then there exists a nonzero sequence of real vectors

Xo = {x(h,~h) = [x1 | 0], h€ 2} (12)

n—r



and two positive real mumbers | < L with the following properties: the vectors
we obtain from X, according to (5) satisfy i) z;(h,k) =0, n—r <j <n ii
Z?:l zi(h'l k) =0 iii) ”rm“ = SUPpez ”x(h"fh+ m)”w € [[1 L]

We are now in a position for giving the main result of this section.

Theorem 3 Let M = (a,P,Q) be a 2D Markov chain. Then M admits a GLPV
if and only if (1,1) is a regular point of V(A) and is the unique intersection of
V(A) with the distinguished boundary T;.

PROOF For the sufficiency part the interested reader is referred to [5]. To
prove the necessity part, we only need to show that V(A)n T, = {(1,1)}. So,
assume that w = [w; | 0] is the GLPV of M and suppose that V(A) intersects

——

n—r

T, at (e™1,e2) # (1,1) . Then n —r > 1 and, by lemma 1, m; := minjcpcn—r Wh
as well as m := minj<pgn—r (1 — wp) are strictly positive quantities. If we assume
Xy = {x'(h,—h) =w, h € Z} as a sequence of initial probability vectors of M, we
obtain x'(h, k) = w, for any (h,k) with h + k£ > 0.

Consider now the sequence of initial vectors X, = XJ + 7 Xo, with X and
L defined in lemma 4 and p := min(m;, m;). The perturbation term # Xo is
small enough to guarantee that all vectors of the sequence Ig are nonnegative.
Moreover property ii) of lemma 4 implies that the entries of each vector in b2
sum up to 1, so that IO" may be considered as a sequence of probability vectors.
The corresponding dynamical evolution of M is obtained as the superposition of
x'(h, k), that provides a constant pattern in the half plane {(h,k) : h + k > 0},
and the evolution induced by (12), scaled down by £, that does not converge to
zero as k + h — 0. This shows that w is not a LPV of X
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