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1. INTRODUCTION

During the last few years, a considerable research effort has been devoted to dynamical patterns that evolve in the
discrete plane Z2, partially ordered by the product of the orderings, i.e. (r, s) ≤ (h, k) iff r ≤ h and s ≤ k. The
easiest nontrivial instance of these dynamical behaviours is provided by autonomous 2D systems, where the local
configuration at (h+ 1, k + 1) linearly depends only on the nearest past configurations at (h, k + 1) and (h+ 1, k).
This is formalized by the following first order recursive equation [2]

x(h+ 1, k + 1) = A1x(h, k + 1) +A2x(h+ 1, k), (1.1)

where the “local state” x is an n-dimensional vector over the real field R, and A1, A2 are n×n real matrices. Initial
conditions are usually given by the so called “initial global state”, namely the set {x(i,−i), i ∈ Z}.
The nature of the pair (A1, A2) strongly influences the dynamics of the system. In particular, the characteristic
polynomial

∆A1,A2(z1, z2) := det(I −A1z1 −A2z2) (1.2)

plays a fundamental role in the analysis of some properties, such as finite memory, separability, asymptotic stability
etc.[3 ÷ 5], which give valuable insights into the qualitative pattern of the trajectories.

On the other hand, ∆A1,A2(z1, z2) does not summarize all relevant information on the system dinamics. Actu-
ally two pairs of matrices with the same characteristic polynomial may have different sizes and, even when their
dimensions coincide, they are not necessarily related by a similarity transformation.

The scope of this paper is twofold. In the next two sections we feature some classes of 2D systems which
admit a nice description in terms of their characteristic polynomials. This requires a detailed investigation of the
equivalence relation existing between pairs of matrices (A1, A2) with the same characteristic polynomial, and involves
the construction of suitable families of complete invariants.

In the last section we investigate how some spectral properties of the pair (A1, A2) reflect into the dynamical
behaviour of the corresponding 2D system. As we shall see, these properties need not be captured by the cha-
racteristic polynomial, and require a finer analysis of the structure of the pair. Special attention will be deserved
to the possibility of characterizing properties P and L, by resorting to suitable power series in commuting and
noncommuting variables.

2. CHARACTERISTIC POLYNOMIAL AND TRACES OF A MATRIX PAIR

For any matrix A ∈ Cn×n, assigning the traces of A, A2, ..., An is equivalent to give the polynomial det(I−Az) and,
consequently, the spectrum of A. In this section we aim to extend this result to a pair of n × n matrices (A1, A2)
with elements in C. More precisely, we will investigate the correspondence between the characteristic polynomial of
the pair and the traces of some elements of the matrix algebra generated by A1 and A2.
To that purpose, we need a standard property of matrices, we shall often refer to in the sequel.

Lemma 2.1 [6] Let A be in Cn×n and assume det(I −Az) = 1− d1z − d2z
2 − ...− dnzn. Then we have

trA− d1 = 0trA2 − d1trA− 2d2 = 0 · · · trAn − d1trAn−1 − . . .− ndn = 0 (2.1)
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and, for k > 0,
trAn+k − d1trAn+k−1 − . . .− dntrAk = 0 (2.2)

The following proposition provides a set of equivalent conditions guaranteeing that two pairs of matrices (A1, A2) ∈
Cn×n ×Cn×n and (Â1, Â2) ∈ Cn̂×n̂ ×Cn̂×n̂ have the same characteristic polynomial. These involve

a) the linear combinations αA1 + βA2, α, β ∈ C and the set Λ0(αA1 + βA2) of the nonzero eigenvalues;
b) the matrix coefficients of the power series expansion of (I − A1z1 − A2z2)−1, i.e. the matrices A1

i jA2,
(i, j) ∈ N2, inductively defined as

A1
i 0A2 = Ai1, A1

0 jA2 = Aj2 (2.3)

and, when i and j are both greater than zero,

A1
i jA2 = A1(A1

i−1 jA2) +A2(A1
i j−1A2), (2.4)

and the corresponding matrices for the pair (Â1, Â2).

Proposition 2.2 The following statements are equivalent:
i) ∆A1,A2(z1, z2) = ∆Â1,Â2

(z1, z2);
ii) Λ0(αA1 + βA2) = Λ0(αÂ1 + βÂ2), ∀α, β ∈ C;
iii) tr(αA1 + βA2)k = tr(αÂ1 + βÂ2)k,∀α, β ∈ C, k > 0;
iv) tr(A1

i jA2) = tr(Â1
i jÂ2), ∀ (i, j) 6= (0, 0).

Proof i)⇔ ii) As both i) and ii) are equivalent to
det[I − (αA1 + βA2)z] = det[I − (αÂ1 + βÂ2)z], ∀α, β ∈ C, they are equivalent each other, too.
i)⇔ iii) It’s an immediate consequence of Lemma 2.1.
iii) ⇔ iv) Because of the linearity of the trace operator, we have tr(αA1 + βA2)k =

∑k
i=0 α

iβk−itr(A1
i k−iA2).

Therefore condition iii) is equivalent to

k∑
i=0

αiβk−i[tr(A1
i k−iA2)− tr(Â1

i k−iÂ2)] = 0,

for all α, β ∈ C, which, in turn, is equivalent to iv)

The equivalences stated in Prop.2.2 are better understood by investigating the recursive equations which connect
the set {tr(A1

i jA2)} with the coefficients of the characteristic polynomial ∆A1,A2(z1, z2). These relations can be
viewed as an extension to the 2D case of Lemma 2.1, which relates the traces of the powers of a matrix A with the
coefficients of det(I −Az).
Consider the polynomial

∆(z1, z2) = 1−
n∑
h=1

( ∑
i+j=h

dijz
i
1z
j
2

)
= 1−

n∑
h=1

δh(z1, z2) (2.5)

where δh(z1, z2) denotes the homogeneus component of degree h in ∆. Assume that (A1, A2) is a matrix pair whose
characteristic polynomial coincides with ∆(z1, z2), and let z1 = αz and z2 = βz. Then we have

det[I − (αA1 + βA2)z] = 1−
n∑
h=1

δh(α, β)zh.

Denoting by τh(α, β) the trace of (αA1 + βA2)h

τh(α, β) =
∑
i+j=h

tr(A1
i jA2)αiβj , (2.6)

equations (2.1) and (2.2) become

τ1(α, β)− δ1(α, β) = 0τ2(α, β)− δ1(α, β)τ1(α, β)− 2δ2(α, β) = 0 (2.7) · · · τn(α, β)− δ1(α, β)τn−1(α, β)− . . .− nδn(α, β) = 0

and, for all k > 0,

τn+k(α, β)−
n∑
i=1

τn+k−i(α, β)δi(α, β) = 0. (2.8)



As (2.7) and (2.8) hold for every α, β ∈ C, by zeroing the coefficients of every monomial in α and β, and using (2.5)
and (2.6), one gets

tr(A1
i jA2) =

∑
0<r+s<i+j

drstr(A1
i−r j−sA2) + (i+ j)dij (2.9)

where drs = 0 for r + s > n and A1
r sA2 is the zero matrix whenever r or s is negative.

Equation (2.9) has some simple but useful consequences. First of all, it provides an algorithm for recursively
computing the traces of A1

i jA2 from the coefficients of the characteristic polynomial. On the other hand, once
these traces are given, also the converse, i.e. the computation of the coefficients of ∆, is possible. Actually, if an
upper bound n̄ on the degree of ∆ is known, assigning tr(A1

i jA2) for i+ j ≤ n̄ allows to obtain both ∆A1,A2 and
the traces of A1

i jA2 for i+ j > n̄.

Remark Consider the set M of all pairs of square matrices (A1, A2) with elements in C, where A1 and A2 have
the same dimension, and introduce in M the equivalence (A1, A2) ∼ (Ā1, Ā2) ⇔ ∆A1,A2(z1, z2) = ∆Ā1,Ā2

(z1, z2).
The above proposition shows that both {tr(A1

i jA2), i+ j > 0} and {tr(αA1 + βA2)k, k > 0, α, β ∈ C} constitute
complete families of invariants for ∼.

Given a matrix pair (A1, A2), we associate the doubly indexed sequence {tij}i+j>0 := {tr(A1
i jA2)}i+j>0 with

the following “trace series” in the commutative va-riables z1 and z2

T :=
∞∑

(i,j)6=(0,0)

tijz
i
1z
j
2. (2.10)

Every characteristic polynomial, and, consequently, every equivalence class in M, is biuniquely associated with a
trace series. As the coefficients of T satisfy the recursive equations (2.9), it’s easy to realize that T is a rational power
series. In the remaining part of this section we aim to make explicit the rational structure of T and its connections
with the characteristic polynomial.

Proposition 2.3 Let ∆(z1, z2) = 1−
∑r
h=1 δh(z1, z2) be the characteristic polynomial of the matrix pair (A1, A2).

The corresponding trace series T can be expressed as

T =
δ1(z1, z2) + 2δ2(z1, z2) + . . .+ nδn(z1, z2)

∆(z1, z2)
. (2.11)

Proof Consider the linear system defined on the ring of polynomials in the indeterminates α, β, C[α, β],

xi+1 = Fxi + gui yi = Hxi,

with

F =


0 1 · · · 0
0 0 · · · 0

... 1
δn(α, β) δn−1(α, β) · · · δ1(α, β)

 , g =


0
0
...
1

 , H = [ 0 0 0 · · · 1 ] .

Assuming x0 = 0 and

ui =
{

(i+ 1)δi+1(α, β) i = 0, 1, . . . n-1
0 otherwise,

it’s a matter of direct computation to check that the corresponding output is given by yi = τi(α, β), i = 1, 2, ...
As the system transfer function is

H(I − zF )−1gz =
z

1−
∑n
i=1 δi(α, β)zi

,

the input U(z) = u0 + u1z + . . .+ un−1z
n−1 produces the output

Y (z) =
∞∑
i=0

τi(α, β)zi =
∑n
i=1 iδi(α, β)zi

1−
∑n
i=1 δi(α, β)zi

(2.12)

and, letting z1 = αz and z2 = βz, one gets

T =
∑n
i=1 iδi(z1, z2)

1−
∑n
i=1 δi(z1, z2)



The representation (2.11) of T is not necessarily irreducible; its special structure, however, makes it quite easy
to obtain an irreducible representation. To this purpose, consider the injective homomorphism φ : C[α, β] →
C[α, β, z] :

∑n
i=0 δi(α, β) 7→

∑n
i=0 δi(α, β)zi where, as usual, δi(α, β) denotes an homogeneus polynomial of degree

i, and introduce the derivation map

Dz : C[α, β, z]→ C[α, β, z] :
∑m
i=0 pi(α, β)zi 7→

∑m
i=0 ipi(α, β)zi. (2.13)

Clearly (2.12) can be rewritten as

Y (z) =
−Dz(φ(∆(α, β)))

φ(∆(α, β))
. (2.14)

Assuming that ∆ factorizes as ∆ =
∏t
i=1 ∆i(z1, z2)νi , where ∆i are irreducible distinct factors and ∆i(0, 0) = 1,

i = 1, 2, ..., t, one easily gets

Y (z) =
t∑
i=1

νi
−Dz(φ(∆i(α, β)))

φ(∆i(α, β))
. (2.15)

Thus, letting z1 = αz and z2 = βz, we have proved the following

Proposition 2.4 Let ∆(z1, z2) =
∏t
i=1 δi(z1, z2)νi , with ∆i(z1, z2) = 1−

∑ri

j=1 δ
(i)
j (z1, z2), i = 1, 2, ..., t irreducible

distincts polynomials. For every pair of matrices (A1, A2) such that ∆A1,A2(z1, z2) = ∆(z1, z2), the corresponding
trace series is given by

T =
t∑
i=1

νi

∑ri

j=1 jδ
(i)
j (z1, z2)

1−
∑ri

j=1 δ
(i)
j (z1, z2)

(2.16)

Equation (2.16) represents the trace series T as a partial fraction expansion, whose i-th term is the trace series of
the irreducible factor ∆i(z1, z2), weighted by the corresponding multiplicity νi. So the characteristic polynomial ∆
can be uniquely recovered from the partial fraction expansion. Moreover, in any irreducible representation of T the
denominator factorizes into the product of all ∆i’s, i = 1, 2, ..., t, each of them with multiplicity one.

3. INFLUENCE OF THE CHARACTERISTIC POLYNOMIAL ON 2D STATE DYNAMICS

In this section we aim to analyse more closely how the local states update in a 2D system and which is the role played
by the characteristic polynomial in influencing the structure of the state evolution. To that purpose, we associate
to the doubly indexed sequence of local states {x(h, k)} induced by a global initial state X0 =

∑
i x(i,−i)zi1z−i2 , the

formal power series

X(z1, z2) =
∑
h,k x(h, k)zh1 z

k
2 = (I −A1z1 −A2z2)−1X0 =

∑∞
i,j=0(A1

i jA2 z
i
1z
j
2)X0.

The linear subspace of Rn×n generated by the matrices A1
i jA2 satisfies some interesting properties, which can

be viewed as an extension of Cayley-Hamilton theorem.

Proposition 3.1 [4] Let ∆A1,A2(z1, z2) = 1−
∑
i+j≤n dijz

i
1z
j
2 be the characteristic polynomial of the n× n matrix

pair (A1, A2). Then for all pairs (h, k) with h+ k ≥ n
i) A1

h kA2 =
∑
i+j≤n dij A1

h−i k−jA2

(where A1
r sA2 is assumed to be nonzero whenever r or s is negative);

ii) A1
h kA2 ∈ span{A1

i jA2; i ≤ h, j ≤ k, i+ j < n}.
Moreover
iii) span{A1

h kA2;h, k ≥ 0} = span{A1
h kA2, h, k < n}

The recursive properties of the pair (A1, A2), as expressed by Proposition 3.1, hold independently of the structure
of the matrices A1 and A2 and, in particular, of their characteristic polynomial. We restrict now our attention to
polynomials ∆(z1, z2) whose supports are subsets of straight lines, i.e. there exists (l,m) 6= (0, 0) in N2 such that
supp(∆) ⊂ {(kl, km), k ∈ N}. A 2D system having ∆ as characteristic polynomial exhibits several features which
strictly resemble those of a 1D system. Indeed, the dynamics induced by a local state x(0, 0) is zero except on a
“strip” that includes the straight line {(kl, km), k ∈ Z}. So each local state x(h, k) is always determined by a finite
subset of the initial global state, whose cardinality does not exceed a fixed integer N , no matter how far is (h, k)
and how we choose the initial conditions.

Proposition 3.2 Let A1, A2 be a pair of n × n matrices with elements in C and (l,m) a pair of nonnegative
integers with g.c.d.(l,m) = 1. The followings are equivalent



i) ∆A1,A2(z1, z2) = 1−
∑r
h=1 dhz

lh
1 z

mh
2 ;

ii) there exist c1, c2, ..., cn in C such that, for every α, β in C and every (l +m)-th root of αlβm,

Λ(αA1 + βA2) =
(
c1(αlβm)

1
l+m , ..., cn(αlβm)

1
l+m

)
;

iii) there exist c1, c2, ..., cn ∈ C such that

Λ(νmA1 + ν−lA2) = (c1, c2, ..., cn)

for every integer ν ∈ [1, (l +m)n+ 1];

iv) tr(A1
i jA2) = 0, for all (i, j) 6= (kl, km), k > 0;

v) for all α, β and for suitable bk in C

tr(αA1 + βA2)k =
{
bk(αlβm)ν if k = (l +m)ν
0 otherwise;

vi) A1
i jA2 = 0 for all (i, j) out of the strip

Sn := {(i, j) ∈ N2 : | mi− lj |< n}.

Proof i)⇒ ii) As ∆A1,A2(z1, z2) ∈ C[zl1z
m
2 ], there exist λ1, ..., λr ∈ C such that ∆A1,A2(z1, z2) =

∏r
h=1(1−λhzl1zm2 )

and, consequently,

det(zI − αA1 − βA2) = zn−r(l+m)
r∏

h=1

(zl+m − λhαlβm).

Let (λh)
1

l+m and (αlβm)
1

l+m be arbitrary (l+m)-th roots of λh and αlβm respectively, and ε a primitive (l+m)-th
root of 1. The spectrum of (αA1 + βA2) is given by Λ(αA1 + βA2) =

(
c1(αlβm)

1
l+m , ..., cn(αlβm)

1
l+m

)
, where

crν+h = (λh)
1

l+m εν , for h = 1, ..., r and ν = 1, ..., l +m, while cµ = 0 if µ > (l +m)r.

ii)⇒ iii) Obvious.

iii)⇒ iv) For all integers ν ∈ [1, (l +m)n+ 1]
tr(νmA1 + ν−lA2)h =

∑h
i=0 ν

(l+m)i−hltr(A1
i h−iA2) =

∑n
i=1 c

h
i =: fh, h = 1, 2, ...,

which implies
∑h
i=0 ν

(l+m)itr(A1
i h−iA2)−fhνhl = 0. As in the polynomials ph(x) :=

∑h
i=0 x

(l+m)i tr(A1
i h−iA2)

−fhxhl the number of the zeros exceeds the degree, for h = 1, 2, ..., n, all their coefficients have to be zero. We
distinguish two cases.

• Case 1: k(l + m) = hl, for some k ∈ N. As g.c.d.(l,m) = 1, there exists t > 0 such that k = lt and h − k = mt.
Therefore tr(A1

i h−iA2) coincides with fh if (i, h− i) = (tl, tm), and is zero otherwise.

• Case 2: k(l +m) 6= hl for all h ∈ N. Then, for 0 ≤ i ≤ h, tr (A1
i h−iA2) = 0.

iv)⇒ v) Obvious.

v)⇒ i) Equations (2.7) and (2.8) show that the homogeneus components δk of the characteristic polynomial satisfy
δk(α, β) = dνα

lνβmν , if k = (l +m)ν, and are zero otherwise.

i)⇒ vi) Note that
∑∞
i,j=0A1

i jA2z
i
1z
j
2 = (I −A1z1 −A2z2)−1 = adj(I −A1z1 −A2z2)/(1−

∑r
h=1 dhz

lh
1 z

mh
2 .

As
supp(adj(I −A1z1 −A2z2)) ⊆ {(i, j) ∈ N2; i+ j ≤ n− l}supp((1−

∑r
h=1 dhz

lh
1 z

mh
2 )−1) ⊆ {(i, j) ∈ N2;mi = lj},

it’s clear that supp((I −A1z1 −A2z2)−1) ⊆ Sn.

vi)⇒ i) Consider the injective ring homomorphism
φ : C[[z1, z2]]→ C[[η, ξ, ξ−1]] obtained by linearly extending the map that associates zi1z

j
2 with ηkξh, where[

h
k

]
=
[
−m l

0 1

] [
i
j

]
.

φ maps any series in C[[z1, z2]] with support in Sr into an element of the ring C[[η]][ξ, ξ−1] of Laurent polynomials
[10] in the indeterminate ξ, with coefficients in C[[η]]. By assumption, supp

(
(I − A1z1 − A2z2)−1

)
⊆ Sn and

therefore supp
(

det(I −A1z1 −A2z2)−1
)
⊆ Sn2 .



Applying the map φ on both sides of the identity 1 = det(I −A1z1 −A2z2)−1∆A1,A1(z1, z2) one gets

1 = φ(det(I −A1z1 −A2z2)−1φ(∆A1,A2(z1, z2)). (3.1)

As both factors on the right hand side of (3.1) can be viewed as elements of C[[η]][ξ, ξ−1], we have that φ(∆A1,A2)
is a unit of the ring, i.e. φ(∆A1,A2) = ξhs(η) for some h ∈ Z and s(η) ∈ C[[η]].
Condition ∆A1,A2(0, 0) = 1 implies h = 0 and, therefore, ∆A1,A2 is a polynomial in zl1z

m
2

An immediate consequence of property ii) in Prop. 3.2 is the following

Corollary 3.3 Consider A1, A2 in Cn×n. If supp(∆A1,A2) is a subset of a straight line, different from the coordinate
axes, then both A1 and A2 are nilpotent

A 2D system is called “finite memory” [8] if there exists an integer N > 0 such that, for any initial global state
X0, x(h, k) = 0 when h+k ≥ N . Obviously the finite me-mory property corresponds to assume (I−A1z1−A2z2)−1

polynomial or, equivalently, ∆A1,A2(z1, z2) = 1.
As supp(∆A1,A2) is a subset of both {(i, 0); i ∈ N} and {(0, j); j ∈ N}, finite memory systems are those which satisfy
properties i)÷ vi) of Prop. 3.2 both for (l,m) = (1, 0) and (l,m) = (0, 1). This immediately implies

Corollary 3.4 [Finite memory systems] Let A1, A2 be in Cn×n. The following statements are equivalent
FM1) ∆A1,A2(z1, z2) = 1;
FM2) Λ(αA1 + βA2) = (0, 0, ..., 0), ∀α, β ∈ C;
FM3) Λ(νA1 +A2) = Λ(A1 + νA2) = (0, 0, ..., 0), for ν = 1, ..., n+ 1;
FM4) trA1

i jA2 = 0, ∀ (i, j) 6= (0, 0);
FM5) A1

i jA2 = 0, for i+ j ≥ n

The results of Prop. 3.2 partially extend to the case of a characteristic polynomial which factorizes into irreducible
factors, each of them having support included in a straight line. For sake of simplicity, we confine ourselves to the
case when ∆(z1, z2) factorizes as ∆ = ∆1∆2 where

∆i(z1, z2) = 1−
ri∑
j=1

d
(i)
j (zli1 z

mi
2 )j , (3.2)

and g.c.d.(li,mi) = 1, for i = 1, 2. If (A1, A2) is an n× n matrix pair with characteristic polynomial ∆,
i) there exist two positive integers ρ and σ, ρ + σ ≤ n, and ρ + σ complex numbers c1, ..., cρ, d1, ..., dσ, such that,
for all α, β ∈ C

Λ(αA1 + βA2) =
(
c1(αl1βm1)

1
l1+m1 , ..., cρ(αl1βm1)

1
l1+m1 ,

d1(αl2βm2)
1

l2+m2 , ..., dσ(αl2βm2)
1

l2+m2 , 0, ..., 0
)

;

ii) tr(A1
i jA2) 6= 0 implies either (i, j) = (kl1, km1) or (i, j) = (hl2, hm2), for some h, k ∈ N+.

Viceversa, each of the above properties guarantees that ∆ factorizes as ∆ = ∆1∆2 with ∆i, i = 1, 2, as in (3.2).

The previous extension of Prop.3.2 provides a fairly complete description of 2D systems whose characteristic
polynomials factorize into the product of a polynomial in z1 and a polynomial in z2. Such systems are called
“separable” and are usually thought of as the simplest example of I.I.R. 2D systems. Actually, many properties one
may hope to extrapolate from an understanding of 1D systems carry over to separable systems [4,7].

Corollary 3.5 [Separable systems] Let A1, A2 be in Cn×n. The following statements are equivalent
i) ∆A1,A2(z1, z2) = r(z1)s(z2);
ii) there exist two appropriate orderings of the spectra of A1 and A2, Λ(A1) = (λ1, ..., λρ, 0, ..., 0, 0, ..., 0) and
Λ(A2) = (0, ..., 0, µ1, ..., µσ, 0, ..., 0), such that, for every α, β ∈ C

Λ(αA1 + βA2) = (αλ1, ..., αλρ, βµ1, ..., βµσ, 0, ..., 0);

iii) tr(A1
i jA2) = 0 if both i and j are nonzero;

iv) tr(αA1 + βA2)k = tr(αA1)k + tr(βA2)k, ∀α, β ∈ C, k > 0

4. PROPERTIES P AND L



In this section we assume a point of view somehow complementary to that of the previous sections, where the
behaviour of a 2D system has been related to the properties of its characteristic polynomial, and consider particular
classes of matrix pairs, which can be described in terms of their spectral properties.

The matrix pairs (A1, A2) we analyse are those endowed with property L or property P [11], which correspond
to the possibility of ordering the eigenvalues of A1 and A2 into two n-tuples

Λ(A1) = (λ1, λ2, . . . , λn) Λ(A2) = (µ1, µ2, . . . , µn) (4.1)

such that

i) [PROPERTY L] for every α, β ∈ C

Λ(αA1 + βA2) = (αλ1 + βµ1, . . . , αλn + βµn) (4.2)

ii) [PROPERTY P] for every polynomial P(ξ1, ξ2) in the noncommuting indeterminates 1 ξ1 and ξ2,

Λ(P(A1, A2)) = (P(λ1, µ1), . . . ,P(λn, µn)). (4.3)

It’s clear from the definition itself that property P implies property L. However examples can be given showing
that the converse is not true [11]. Property L is shared by several important classes of 2D systems, in particular
finite memory systems, 2D systems with characteristic polynomials in R[z1] or in R[z2], separable systems and, more
generally, systems whose characteristic polynomials split into a product of linear factors. The following proposition
provides a set of conditions equivalent to property L.

Proposition 4.1 [6] Let A1, A2 be in Cn×n, and consider the orderings of their spectra given in (4.1). The followings
are equivalent:
L) (A1, A2) has property L (w.r.t. the orderings (4.1));
L1) ∆A1,A2(z1, z2) =

∏n
i=1(1− λiz1 − µiz2);

L2) tr(αA1 + βA2)k =
∑n
i=1(αλi + βµi)k, ∀ α, β ∈ C and k ∈ N;

L3) tr(A1
h kA2) =

(h+ k
h
)∑n

i=1 λ
h
i µ

k
i , ∀ (h, k) ∈ N2;

L4) T =
∑
h+k>0 thkz

h
1 z

k
2 =

∑n
i=1

λiz1 + µiz2
1− λiz1 − µiz2

.

Proof The matrix pair Ā1 = diag{λ1, λ2, . . . , λn}, and Ā2 = diag{µ1, µ2, . . . , µn} fulfills all conditions L) ÷ L4) of
the proposition. Any other pair (A1, A2), of the same dimension with property L w.r.t. the orderings (4.1) satisfies
Λ(αA1 + βA2) = Λ(αĀ1 + βĀ2), which corresponds to ii) of Prop. 2.2. Therefore all equivalent statements in Prop.
2.2 hold true

Unlike property L, property P cannot be completely described neither in terms of characteristic polynomial nor
in terms of the trace series (2.10). Non commutative polynomials and power series [1] turn out to be the appropriate
tools for analysing the structure of matrix pairs with property P.

Proposition 4.2 Let A1, A2 be in Cn×n, and consider the orderings of the spectra given in (4.1). The followings
statements are equivalent:
P) (A1, A2) has property P (w.r.t. the orderings (4.1));

P1) tr(w(A1, A2)) =
∑n
i=1 λ

|w|1
i µ

|w|2
i , for any w ∈ Ξ∗;

P2) the noncommutative power series whose coefficients are the traces of the matrices w(A1, A2),

T :=
∑

w∈Ξ∗\∅

tr(w(A1, A2))w,

is recognizable [1] and represented as

T =
n∑
i=1

(λiξ1 + µiξ2)(1− λiξ1 − µiξ2)−1; (4.4)

1We shall denote by Ξ∗ the free monoid generated by the alphabet Ξ = {ξ1, ξ2} and, for every word w ∈ Ξ∗, by |w|i the number of
occurrencies of ξi in w, i = 1, 2.

C〈ξ1, ξ2〉 and C〈〈ξ1, ξ2〉〉 are the algebras of polynomials and formal power series in the noncommuting indeterminates ξ1 and ξ2,
respectively. For each pair of matrices A1, A2 in Cn×n, the map ψ : Ξ → Cn×n : ξi 7→ Ai, i = 1, 2, uniquely extends to an algebra
morphism of C〈ξ1, ξ2〉 into Cn×n. The ψ-image of a polynomial P(ξ1, ξ2) ∈ C〈ξ1, ξ2〉 is denoted by P(A1, A2).



P3) det(zI − w(A1, A2)) =
∏n
i=1(z − λ|w|1i µ

|w|2
i ), for any w ∈ Ξ∗.

Proof P) ⇒ P1) If |w|1 = h and |w|2 = k, definition of property P implies Λ(w(A1, A2)) = (λh1µ
k
1 , . . . , λ

h
nµ

k
n).

Therefore tr(w(A1, A2)) =
∑n
i=1 λ

h
i µ

k
i .

P1)⇒ P ) Consider any noncommutative polynomial P =
∑
w pww ∈ C〈ξ1, ξ2〉. For all h > 0 we have tr(P(A1, A2))h

= tr(
∑
w pw(A1, A2))h. So, letting Q = Ph =

∑
w qww, one gets

tr(Ph(A1, A2)) =
∑
w

qwtr(w(A1, A2)) =
∑
w

qw

n∑
i=1

λ
|w|1
i µ

|w|2
i =

n∑
i=1

Q(λi, µi) =
n∑
i=1

Ph(λi, µi).

Thus Λ(P(A1, A2)) = (P(λ1, µ1), . . . ,P(λn, µn)).

P1)⇔ P2) Assuming P1, we get T =
∑
w∈Ξ∗\{∅} tr(w(A1, A2)w =

∑n
i=1

∑
w∈Ξ∗\{∅} λ

|w|1
i µ

|w|2
i w. On the other hand,

n∑
i=1

(λiξ1 + µiξ2)(1− λiξ1 − µiξ2)−1 =
n∑
i=1

+∞∑
j=1

(λiξ1 + µiξ2)j =
n∑
i=1

+∞∑
j=1

∑
w∈Ξ∗

|w|1+|w|2=j

λ
|w|1
i µ

|w|2
i w =

n∑
i=1

∑
w∈Ξ∗\{∅}

λ
|w|1
i µ

|w|2
i w

which proves (4.4). The converse can be shown in the same way.

P1) ⇒ P3) Given w ∈ Ξ∗, we have tr(w(A1, A2))h =
∑n
i=1 λ

h|w|1
i µ

h|w|2
i =

∑n
i=1(λ|w|1i µ

|w|2
i )h for all h ∈ N. As h is

arbitrary, (λ|w|11 µ
|w|2
1 , . . . , λ

|w|1
n µ

|w|2
n ) is the spectrum of w(A1, A2), which proves P2).

P3)⇒ P1) Obvious

Remark 1 As a consequence of P1), property P can be stated by referring only to the words of the free monoid
Ξ∗, instead of C〈ξ1, ξ2〉. Actually, (A1, A2) has property P if and only if, for all w ∈ Ξ∗, we have

Λ
(
w(A1, A2)

)
= (λ|w|11 µ

|w|2
1 , . . . , λ|w|1n µ|w|2n ),

where (λ1, λ2, . . . , λn) and (µ1, µ2, . . . , µn) are the spectra of A1 and A2, suitably ordered.

Remark 2 A celebrated result of McCoy [9] is the equi-valence of property P with simultaneous triangularizability.
So, implications P) ⇒ Pi), i = 1, 2, 3, can be alternatively derived after reducing A1 and A2 to triangular form.
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