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Abstract

In the paper the definition and main properties of
a 2-digraph, i.e. a directed graph with two kinds of
arcs, are introduced. Natural constrains on the com-
position of the paths connecting each pair of vertices
lead to the definition of 2-strongly connected digraph
and of 2-imprimitivity classes.
Irreducible matrix pairs, that is pairs endowed with
a 2-strongly connected digraph, are subsequently dis-
cussed. Equivalent descriptions of irreducibility, re-
ferring to the free evolution of the 2D state models
described by the pairs and to their characteristic poly-
nomials, are provided. Finally, primitivity, viewed as
a special case of irreducibility, is introduced and char-
acterized.

1 Introduction

Among the several known approaches to the theory
of discrete positive systems, one can distinguish two
basically different methods. The first one defines the
state updating via a certain set of difference equa-
tions, involving positive matrices, and hence extracts
summarizing features from the system trajectories.
The second defines the admissible state transitions
via a directed graph, and hence reduces the analy-
sis of the above features to simple conditions on its
connecting structure.
The former method is more powerful, as it provides
answers to metric questions the latter is unable to deal
with. There are problems, however, whose combina-
torial nature is better enlightened when couched in
graph theoretic terms. In this contribution we adopt
this second viewpoint to discuss some aspects of pos-
itive homogeneous 2D linear systems [1].
The notion of 2-connectedness of a graph constitutes
a natural starting point, and has the advantage of of-
fering an easy introduction to imprimitivity classes,
congruence relations etc., with which the interested
reader is likely to be familiar in the one-dimensional
context. The stress in the present approach is on
the extension of classical Perron-Frobenius theory to
matrix pairs and to their characteristic polynomials,
and on the dynamical interpretation of some conse-
quences of this theory. Moreover, the zero patterns
of 2D system trajectories, arising either from a sin-

gle initial condition or from an infinite set of initial
conditions, are easily understood and described in al-
gebraic terms when irreducible and primitive matrix
pairs are involved.

Throughout the paper, given a matrix F = [fij ] (in
particular, a vector), we write F � 0 (F strictly pos-
itive), if fij > 0 for all i, j; F > 0 (F positive), if
fij ≥ 0 for all i, j, and fīj̄ > 0 for some pair (̄i, j̄);
F ≥ 0 (F nonnegative), if fij ≥ 0 for all i, j.

2 Paths and cycles in 2-
digraphs

A 2-digraph D(2) is a triple (V,A,B), where V =
{v1, v2, . . . , vn} is the set of vertices, and A and B
are subsets of V × V whose elements are called A-
arcs and B-arcs, respectively. There is an A-arc (a
B-arc) from vi to vj if (vi, vj) is in A (in B).
If we denote by α(p) and β(p) the number of A-arcs
and B-arcs occurring in p, then [α(p) β(p)] is the
composition of p and |p| = α(p) + β(p) its length. A
path whose extreme vertices coincide, i.e. vi0 = vik ,
is called a cycle. In particular, if each vertex appears
exactly once as the first vertex of an arc, the cycle is
called a circuit.

Definition A 2-digraph D(2) = (V,A,B) is called
i) strongly connected if for every pair of vertices vi
and vj in V there is a path p connecting vi to vj , i.e.
vi −−→

p
vj ;

ii) 2-strongly connected if for every pair of vertices
vi and vj in V there are two paths vi −−→

p1
vj and

vi −−→
p2

vj , connecting vi to vj , for which the ratios

β(pi)/α(pi) ∈ R+ ∪ {+∞}, i = 1, 2, are distinct.
As D(2) is naturally associated with a 1-digraph (i.e. a
standard digraph) D(1) = (V, E), having the same ver-
tices as D(2) and E := A∪B as its set of arcs, property
i) corresponds to the fact that D(1) is strongly con-
nected, while property ii) is stronger as it constrains
also the path compositions.
In the paper all 2-digraphs are assumed strongly con-
nected with A,B 6= ∅.

We associate with the (finite) set {γ1, . . . , γt} of all



circuits in D(2) (arbitrarily ordered) the circuit matrix

L(D(2)) :=


α(γ1) β(γ1)
α(γ2) β(γ2)

...
...

α(γt) β(γt)

 ∈ Nt×2
, (1)

and denote by M(D(2)) the Z-module generated by
its rows. Since every cycle γ in D(2) decomposes into
a certain number of circuits, it follows that

[α(γ) β(γ)] = [n1 . . . nt] L(D(2)), ∃ n1, . . . , nt ∈ N.
(2)

As a submodule of Z2, M(D(2)) admits a basis con-
sisting either of one or of two elements. In the first
case M(D(2)) has only two possible bases, namely
{[` m]}, for some positive integers ` and m, and its
opposite {−[` m]}, and every circuit γj in D(2) con-
sists of kj` A-arcs and kjm B-arcs, for a suitable kj
in N. On the other hand, when L(D(2)) has rank 2,
we can consider its Hermite form over Z

H̄ :=

H
0

 =

 h11 h12

0 h22

0

 = ŪL(D(2)), (3)

Ū ∈ Zt×t unimodular, and assume (without loss of
generality) h11, h22 > 0, and 0 ≤ h12 < h22. Then
{[h11 h12], [0 h22]} represents a basis of M(D(2)), and
the rows [w11 w12] and [w21 w22] of W = UH, as
U varies over the group of unimodular matrices in
Z2×2, give all possible bases of M(D(2)). Since all
determinants det(UH) have the same modulus, which
is a g.c.d. of the second order minors of L(D(2)), the
parallelograms {ε[w11 w12]+δ[w21 w22] : ε, δ ∈ [0, 1)},
have the same area, that coincides with the number
of integer pairs they include [2, 7].

The cyclic structure of D(2) and the mod-
ule M(D(2)) provide enough information to decide
whether the 2-digraph is 2-strongly connected, as
shown in the following proposition, whose proof easily
follows from the above discussion.

Proposition 2.1 For a 2-digraph D(2) the following
facts are equivalent
i) D(2) is 2-strongly connected;
ii) there are two circuits γi and γj satisfying
β(γi)/α(γi) 6= β(γj)/α(γj);
iii) rank L(D(2)) = 2;
iv) M(D(2)) has a basis consisting of two elements.

As it is well-known, the lengths of all cycles in a
strongly connected 1-digraphD(1), with imprimitivity
index h, are multiples of h, and there exists a positive
integer T such that, for all integers t ∈ [T,+∞)∩ (h),
there is a cycle in D(1) of length t [9]. A similar
statement holds for a 2-strongly connected digraph
D(2), upon considering for each cycle γ in D(2) not

just its length, but its composition [α(γ) β(γ)]. In
this case the module (h) and the half-line [T,+∞)
have to be replaced by M(D(2)) and by a suitable
convex cone in R2

+, respectively. To prove this fact,
we need the following technical lemma, which extends
a well-known result on the subsets of N [8].

Lemma 2.2 [6] Let S be a nonempty subset of N2
,

closed under addition, and M the Z-module gener-

ated by S. If K is the convex cone generated in R2
+

by the elements of S, there exists [u w] ∈ K∩M such

that
(

[u w] +K
)
∩M ⊆ S.

Proposition 2.3 Let S := {[α(γ) β(γ)] ∈ N2 :
γ a cycle in D(2)} be the set of compositions of all
cycles of the 2-digraph D(2).
i) If M(D(2)) has rank 1 and is generated by [` m] ∈
N2

, there exists τ ∈ N s.t.

{t [` m] : t ∈ N, t ≥ τ} ⊆ S ⊆ {t [` m] : t ∈ N}. (4)

ii) If M(D(2)) has rank 2 and K denotes the solid
convex cone generated by the rows of L(D(2)), there
exists [u w] ∈M(D(2)) ∩ K such that

M(D(2)) ∩
(

[u w] +K
)
⊆ S ⊆M(D(2)) ∩ K. (5)

Proof Consider a cycle γ̄ passing through all ver-
tices of D(2) and the set S̄ of compositions of all cy-
cles having γ̄ as a subcycle. As S̄ is an additively
closed subset of S and generates M(D(2)), the left-
hand inclusions in (4) and (5) follow from the previous
lemma. The righthand inclusions are consequences of
(2).

The vertices of a strongly connected 1-digraph D =
(V, E), with imprimitivity index h, can be partitioned
into h 1-imprimitivity classes, C(1)

1 , C
(1)
2 , . . . , C

(1)
h .

Any path moves from a starting vertex through all
1-imprimitivity classes, in a definite cyclic order, and
returns to the class of the starting vertex after h arcs.
We may index the classes so that any arc originated
in C(1)

i enters C(1)
i+1 mod h, and hence any path p origi-

nated in C(1)
i ends in C(1)

i+|p| mod h. Also, if |p| is large
enough, the terminal vertex can be arbitrarily chosen
within the class C(1)

i+|p| mod h.
The above features extend to a strongly connected

2-digraph, provided that we look at the associated
1-digraph D(1), and consider also the path composi-
tions. In this case we generally obtain a finer partition
of the set V , as every 1-imprimitivity class splits into
a certain number of 2-imprimitivity classes.

Definition Let D(2) = (V,A,B) be a 2-digraph.
Two vertices vi and vj ∈ V are said ∼-equivalent
(vi ∼ vj) if for every vk ∈ V there are paths
vk −−→

pik

vi and vk −−→
pjk

vj such that [α(pik) β(pik)] =

[α(pjk) β(pjk)].



This amounts to say that it is possible to connect each
vertex of V to vi and vj by resorting to two paths with
the same composition. The equivalence relation ∼ in-
duces a partition of V into disjoint 2-imprimitivity
classes, whose number is called 2-imprimitivity in-
dex and denoted by h(2). As paths with the same
composition have the same length, vi ∼ vj implies
that vi and vj belong to the same C(1)

ν , thus show-
ing that every 2-imprimitivity class is a subset of a
1-imprimitivity class.

Lemma 2.4 [6] Let D(2) = (V,A,B) be a 2-digraph.
For every pair of vertices vi and vj in V , there exist
αji, βji ∈ N such that any path vi −−→

p
vj satisfies

[α(p) β(p)] ≡ [αji βji] mod M(D(2)). (6)

In particular, if vi and vj belong to the same ∼-
equivalence class, (6) holds for [αji βji] = [0 0].
Finally, if v` ∼ vi and vm ∼ vj , condition (6) holds
for any path connecting v` to vm.

As a consequence of (6), once a particular 2-
imprimitivity class has been selected as a reference, all
classes can be unambiguously indexed by the elements
of the quotient module Z2

/M(D(2)), in the sense that
each class is indexed by a coset [α(p) β(p)]+M(D(2)),
p being any path that reaches the class, starting from
the reference one. We may ask under what conditions
the above correspondence, mapping 2-imprimitivity
classes into cosets, is bijective. Clearly, whenM(D(2))
has rank 1, the quotient module Z2

/M(D(2)) includes
infinitely many elements, and no bijection exists be-
tween the (finite) set of 2-imprimitivity classes and
Z2
/M(D(2)).

On the other hand, when the module M(D(2)) has
rank 2, this correspondence always exists, as shown
in the following proposition.

Proposition 2.5 Let D(2) = (V,A,B) be a 2-

digraph and K the solid convex cone generated in R2
+

by the rows of L(D(2)). For every integer pair [h k]
in K there are vertices vi and vj and a path vi −−→

p
vj

s.t. [α(p) β(p)] = [h k].

Proof Possibly after reordering the rows of L(D(2)),
we can assume that the ratios β(γi)/α(γi) ∈ R+ ∪
{+∞} satisfy β(γi)/α(γi) ≤ β(γi+1)/α(γi+1), i =
1, 2, . . . , t − 1. So, [α(γ1) β(γ1)] and [α(γt) β(γt)]
determine the extremal rays of K, and for every
[h k] ∈ K we have β(γ1)/α(γ1) ≤ k/h ≤ β(γt)/α(γt).
Consider some [h k] ∈ K ∩ N2 and a path p0 =
(vi0 , vi1), (vi1 , vi2), . . . , (vih+k−1 , vih+k

) of length h+k.
If α(p0) = h, and hence β(p0) = k, we are done; if not,
suppose, for instance, α(p0) > h. We can first extend
p0 into a cycle γ̃, passing through some vertices vp of
γ1 and vq of γt, arbitrarily selected, and then extend
γ̃ into a new cycle γ, by adding n1 copies of circuit γ1

and nt copies of γt. We can select n1 and nt so that

n1β(γ1) + ntβ(γt) + β(γ̃)
n1α(γ1) + ntα(γt) + α(γ̃)

≥ k

h
≥ β(γ1)
α(γ1)

. (7)

Set N := n1

(
α(γ1) + β(γ1)

)
+ nt

(
α(γt) + β(γt)

)
+(

α(γ̃) + β(γ̃)
)

and γ = (vi0 , vi1), . . . , (vih+k−1 ,

vih+k
), . . . , (viN−1 , vi0). Consider the family of all

paths of length h + k described as pr =
(vir , vir+1), . . . , (vir+h+k−1 modN

, vir+h+k modN
), r =

0, 1, . . . , N − 1. As |α(pr)− α(pr+1)| ≤ 1 for every r,
either the family includes a path with h A-arcs, and
the proof is complete, or all paths pr have α(pr) > h

A-arcs, and hence
∑N−1
r=0 α(pr) > hN. As in γ there

are n1α(γ1) + ntα(γt) + α(γ̃) A-arcs, each of them
belonging to h+ k different paths pr, it follows that

N−1∑
r=0

α(pr) =
(
n1α(γ1) + ntα(γt) + α(γ̃)

)
(h+ k).

So, α(pr) > h for all paths pr implies
(
n1α(γ1) +

ntα(γt) + α(γ̃)
)

(h + k) > hN, and therefore(
n1α(γ1) +ntα(γt) +α(γ̃)

)
k >

(
n1β(γ1) +ntβ(γt) +

β(γ̃)
)
h, which contradicts (7).

Corollary 2.6 Let D(2) = (V,A,B) be a 2-digraph.

If M(D(2)) has rank 2, for every [h k] ∈ N2
there are

vertices vi and vj and a path vi −−→
p

vj s.t.

[α(p) β(p)] ≡ [h k] mod M(D(2)). (8)

Proof If [h k] belongs to the convex cone K, gen-
erated in R2

+ by the rows of L(D(2)), then (8) holds
by Proposition 2.5. If not, by exploiting the fact that
K is a solid cone, we can find n1, n2, . . . , nt ∈ N, such
that [h̃ k̃] := [h k]+ [n1 n2 . . . nt] L(D(2)) is
an element of K. By the above proposition, there are
vertices vi and vj and a path vi −−→

p
vj such that

[α(p) β(p)] = [h̃ k̃], and hence (8) holds true.

When M(D(2)) has rank 2 and a reference class
has been selected, there is a bijection between
2-imprimitivity classes and cosets of Z2

/M(D(2)).
Therefore, the number of 2-imprimitivity classes is
h(2) and coincides with the number of integer pairs in-
cluded in the parallelogram {ε [w11 w12]+δ [w21 w22] :
ε, δ ∈ [0, 1)}, for every basis {[w11 w12], [w21 w22]} of
M(D(2)). For instance, if we refer to the basis of
M(D(2)) obtained from the Hermite form of L(D(2)),
we can index the 2-imprimitivity classes on the set

I := {[i j] ∈ N2 : [i j] = ε [h11 h12] + δ [0 h22],
∃ ε, δ ∈ [0, 1)}

and denote each of them as C(2)
ij , [i j] ∈ I. If C(2)

00

denotes the reference class, all paths from vertices in



C
(2)
00 to vertices in C

(2)
ij have compositions congruent

to [i j] mod M(D(2)), and hence lengths congruent
to i+j mod h (the imprimitivity index of D(1)). This
implies that C(2)

ij and C
(2)
00 are included in the same

1-imprimitivity class if and only if i+ j ≡ 0 mod h.

Proposition 2.7 Let D(2) = (V,A,B) be a 2-
digraph, with rank M(D(2)) = 2, and denote by h and
h(2) its 1- and 2-imprimitivity indices, respectively.
All 1-imprimitivity classes of D(2) include the same
number q of 2-imprimitivity classes, so that h(2) = qh.

Proof Let C
(1)
ν be an arbitrary 1-imprimitivity

class. Select any 2-imprimitivity class included in
C

(1)
ν as a reference, and denote it by C

(2)
00 . As

C
(2)
ij ⊆ C

(1)
ν if and only if i+j ≡ 0 mod h, the number

of 2-imprimitivity classes included in C
(1)
ν coincides

with that of the integer pairs [i j] in I satisfying
h | (i+ j). Since this number is independent of both
the particular C(1)

ν and the 2-imprimitivity class se-
lected in it, the result holds true.

3 Irreducible pairs and 2D sys-
tems

Given a nonnegative matrix F = [fij ] ∈ Rn×n
+ , it is

possible to associate it with an essentially unique 1-
digraph, D(1)(F ), with vertices, v1, v2, . . . , vn. There
is an arc from vi to vj if and only if fji > 0. This
correspondence extends to matrix pairs, as we can
associate with every pair (A,B) of n × n nonnega-
tive matrices a 2-digraph D(2)(A,B) with vertices,
v1, v2, . . . , vn. There is an A-arc (a B-arc) from vj
to vi if and only if the (i, j)th entry of A (of B) is
nonzero 1.

The combinatorial properties of a pair (A,B) with a
2-strongly connected digraph appear as natural gener-
alizations of those of an irreducible matrix, i.e. a ma-
trix with a strongly connected digraph. Indeed, the
dynamical behavior of the 2D state model described
by (A,B) eventually exhibits a two-dimensional peri-
odic pattern, and the “extremal” zeros of its charac-
teristic polynomial are periodically distributed on a
torus. This motivates the following definition.

Definition A pair (A,B) of n× n positive matrices
is irreducible if D(2)(A,B) is 2-strongly connected.

Notice that this amounts to require that A + B is
irreducible and LA,B has rank 2. So, in particular, all
pairs (A,B) with A+B primitive are irreducible, but
the converse is not true. The irreducibility of a matrix

1As in the sequel we always refer to the 2-digraph
D(2)(A, B), associated with a specific matrix pair (A, B), we
denote the circuit matrix L(D(2)(A, B)) by LA,B and the cor-
responding module by MA,B .

pair (A,B) can be characterized by referring to the
dynamical behavior of the associated 2D system [3]

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k), (9)

h, k ∈ Z, h + k ≥ 0, where the local states x(h, k)
are elements of Rn

+ and initial conditions are given
by assigning a sequence X0 := {x(`,−`) : ` ∈ Z} of
nonnegative local states on the separation set S0 :=
{(`,−`) : ` ∈ Z}. If the initial conditions on S0 are
all zero, except at (0, 0), we have

x(h, k) = (Ah kB) x(0, 0), ∀ h, k ∈ N,

where the Hurwitz products Ah kB of A and B are
inductively defined [4] as

Ah 0B = Ah, h ≥ 0, and A0 kB = Bk, k ≥ 0,
(10)

and, when h and k are both positive,

Ah kB = A(Ah−1 kB) +B(Ah k−1B). (11)

The following lemma shows that for an irreducible
pair (A,B) the Hurwitz products belonging to a finite
window F sum up to a strictly positive matrix when
F is large enough and moves in a suitable cone of R2

+.

Lemma 3.1 [6] A pair of n × n positive matrices
(A,B) is irreducible if and only if there are a solid

convex cone K∗ and a finite set F ⊂ N2
s.t.∑

[r s]∈[h k]+F

Ar sB � 0, (12)

∀ [h k] ∈ N2 s.t. [h k] + F ⊂ K∗.
If X0 consists of a single nonzero local state at (0, 0),

condition (12) can be restated as∑
[i j]∈[h k]+F

x(i, j)� 0, (13)

for every pair [h k] ∈ N2 s.t. [h k] +F ⊂ K∗. When
there is an infinite number of nonzero local states on
S0, the state evolution possibly affects the whole half-
plane {(h, k) ∈ Z2 : h+ k ≥ 0}. We may ask whether
there is a separation set Sν = {(h, k) ∈ Z2 : h + k =
ν} such that (13) is fulfilled by all pairs [h k] beyond
Sν , i.e. satisfying h+ k ≥ ν.
This is clearly impossible if no upper bound exists on
the distance between consecutive nonzero local states
on S0. If we confine ourselves to admissible sets of
initial conditions, namely to nonnegative sequences
X0 for which there is an integer N > 0 such that∑h+N
`=h x(`,−`) > 0 for all h ∈ Z, irreducibility can

be characterized as follows.

Proposition 3.2 A pair (A,B) of n × n positive
matrices is irreducible if and only if there is a finite

set F ⊂ N2
such that for every admissible set of initial



conditions X0 a positive integer T can be found such
that∑
[i j]∈[h k]+F

x(i, j)� 0, ∀ [h k] ∈ Z2 s.t. h+ k ≥ T.

(14)

Proof Assume (A,B) irreducible and let K∗ be the
solid convex cone and F the finite set considered in
Lemma 3.1. If x(`,−`) is a nonzero state belonging to
an admissible X0, (13) holds for every [h k] ∈ Z2 such
that [h k]+F ⊆ [` −`]+K∗. As the distance between
consecutive nonzero states on S0 is upper bounded,
the union of all solid convex cones [` − `] + K∗, for
[` − `] varying over the support of X0, includes the
half-plane {[h k] ∈ Z2 : h + k ≥ T} for T large
enough, which proves the statement.
Conversely, suppose that (A,B) is not irreducible. If
A+B is reducible, we can assume, possibly by resort-
ing to a cogredience transformation,

A+B =
[
A11 +B11 A12 +B12

0 A22 +B22

]
,

A11, B11 ∈ Rr×r
+ , 0 < r < n. Then, for any admissi-

ble set of initial conditions X0 whose local state vec-
tors have the last n − r entries identically zero, con-
dition (14) is not fulfilled.
On the other hand, if A + B is irreducible and rank
LA,B = 1, there is a strip H ⊂ N2, including all pairs
[h k] corresponding to some paths in D(2)(A,B), and
hence to nonzero Hurwitz products. Consequently,
admissible sets of initial conditions can be found such
that two strips [` − `] +H, corresponding to consec-
utive nonzero local states x(`,−`), do not intersect.
For this kind of admissible sets (14) is not verified.

Up to this point, we have considered a nonnegative
matrix pair (A,B) only from the point of view of its
incidence graph. Important tools for analysing the
properties of (A,B) are its characteristic polynomial,
defined as

∆A,B(z1, z2) := det(In −Az1 −Bz2)
=

∑
h,k∈N dhkz

h
1 z

k
2 , d00 = 1,

and the associated variety V(∆A,B), i.e. the set of
points (λ, µ) ∈ C2 such that det(In − Aλ − Bµ) =
0. We aim to discuss certain connections between
supp(∆A,B) and the circuit matrix LA,B , and to show
that the support matrix

SA,B :=

h1 k1
...

...
hr kr

 (15)

and LA,B provide the same information about the ir-
reducibility of (A,B). This approach is intimately
connected with the classical Perron-Frobenius theory

for a single positive matrix, and suggests the possi-
bility of obtaining a description of irreducible pairs
in terms of the associated characteristic polynomials.
The key results we need are summarized in the next
couple of lemmas, whose proof is rather technical and
can be found in [6].

Lemma 3.3 Let A and B be positive matrices with
A + B irreducible and ρ(A + B) = r. For any θ and
ω ∈ R the following facts are equivalent:
i) (r−1eiθ, r−1eiω) belongs to V(∆A,B);
ii) for every cycle γ in D(2)(A,B), including α(γ)
A-arcs and β(γ) B-arcs,

α(γ)θ + β(γ)ω ≡ 0 mod 2π; (16)

iii) the characteristic polynomial satisfies
∆A,B(z1, z2) = ∆A,B(z1e

iθ, z2e
iω);

iv) hθ + kω ≡ 0 mod 2π for every (h, k) ∈
supp(∆A,B).

Lemma 3.4 [6] Let L and S be arbitrary integer
matrices with the same number n of columns. The
two congruences

LΘ ≡ 0 mod Z, SΘ ≡ 0 mod Z, Θ ∈Qn
, (17)

have the same set of solutions if and only if the Z-
modules ML and MS , generated by the rows of L and
by the rows of S, respectively, coincide.

Proposition 3.5 Let (A,B) be a pair of n×n posi-
tive matrices, with A+B irreducible. The Z-modules
generated by the rows of LA,B and by the rows of SA,B
coincide.

Proof As A+B is irreducible, condition (16) holds
for every cycle γ if and only if

LA,B

[
θ
ω

]
≡ 0 mod 2π. (18)

So, by Proposition 4.1, the congruence SA,B

[
θ
ω

]
≡

0 mod 2π and that in (18) have the same sets of
solutions, and the result is a direct consequence of
the previous lemma, upon replacing [θ ω]T with
Θ := [θ/2π ω/2π]T .

Perron-Frobenius theorem undoubtely constitutes
the most significative result about irreducible matri-
ces, as it clarifies their spectral structure and provides
useful information on the asymptotic behavior of the
associated state models. Interestingly enough, the va-
rieties of irreducible matrix pairs exhibit features that
appear as natural extensions of the properties enlight-
ened by Perron-Frobenius theorem, a result that fur-
ther corroborates the definition of irreducibility.

Proposition 3.6 [6] [2D Perron-Frobenius theo-
rem] Let (A,B) be an irreducible pair of n × n
positive matrices, with ρ(A + B) = r. The variety
V(∆A,B) intersects the polydisc Pr−1 := {(z1, z2) ∈



C2 : |z1| ≤ r−1, |z2| ≤ r−1} only in (r−1, r−1), and in
a finite number of points of its distinguished bound-

ary Tr−1 := {(z1, z2) ∈ C2 : |z1| = r−1, |z2| = r−1}.
Moreover, (r−1, r−1) is a regular point of the variety
and there exists w� 0 s.t.(

In − r−1A− r−1B
)

w = 0. (19)

Corollary 3.7 Let (A,B) be an irreducible pair of
n× n positive matrices with ρ(A+B) = r, and let

H̄ :=

H
0

 =

 h11 h12

0 h22

0

 ∈ Nt×2

be the Hermite form of LA,B . The variety of
∆A,B(z1, z2) intersects Pr−1 exactly in the points
(r−1eiθ, r−1eiω), one obtains by varying (θ, ω) in the
set {(

α
2π
h11

+ β
2πh12

h11h22
, β

2π
h22

)
;α, β ∈ N

}
. (20)

Consequently, the cardinality of V(∆A,B) ∩ Pr−1

coincides with the imprimitivity index of the pair.

Proof As H̄ = ULA,B for a suitable unimodu-

lar matrix U ∈ Zt×t, the congruences H
[
θ
ω

]
≡ 0

and LA,B

[
θ
ω

]
≡ 0 modulo 2π, have the same sets

of solutions which, by Lemma 3.1, coincide with
V(∆A,B) ∩ Pr−1 . It is easy to verify that the dis-
tinct pairs (modulo 2π) in (20) amounts to h11h22 =
detH = h(2).

4 Concluding remark

In [5] the notion of primitivity for a positive pair
(A,B) was introduced as a strict positivity constraint
on the asymptotic dynamics of the associated 2D
state model.
In this framework primitivity can be viewed as a spe-
cial case of irreducibility: an irreducible pair is called
primitive if its imprimitivity index h(2) is 1. As an
immediate corollary of the previous propositions, we
have that (A,B) is primitive if and only if any of the
following (equivalent) conditions holds:
i) LA,B is a primitive matrix;
ii) SA,B is a primitive matrix;
iii) MA,B coincides with Z2;
iv) there exists a strictly positive Hurwitz product;
v) there is a solid convex cone K∗ in R2

+ such that
for all (h, k) ∈ N2 ∩K∗ the Hurwitz product Ah kB
is strictly positive;
vi) for every admissible set of initial conditions there
is a positive integer T such that x(h, k) � 0 for all
(h, k) ∈ N2, h+ k ≥ 0;

vii) the variety V(∆A,B) intersects the polydisk Pr−1

only in (r−1, r−1).
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