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Abstract. Two-dimensional (2D) positive systems are 2D state space models whose variables
take only nonnegative values and, hence, are described by a family (A, B, M, N, C, D) of nonnegative
matrices. In the paper the notions of asymptotic and simple stability, corresponding to arbitrary set
of nonnegative initial conditions, are introduced and related to the spectral properties of the matrix
sum A + B. Some results concerning the positive realization problem for 2D rational functions are also
presented.

2D compartmental models are introduced as 2D positive systems which obey some conservation law,
and consequently are characterized by the property that the matrix pair (A, B), responsible for their
state-updating, has substochastic sum. A canonical form, to which every 2D compartmental model
can be reduced, is here derived, thus leading to obtain interesting results about stability and positive
realizability problems. The relevance of these models is illustrated by means of a couple of examples.
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1. Introduction

The interest in 2D systems goes back to the early seventies [?, ?, ?], and was initially
motivated by the relevance of these models in seismology applications, X-ray image
enhancement, image deblurring, digital picture processing, etc. More recently, some
contributions dealing with river pollution modelling [?] and the discretization of PDE’s
which describe gas absorption and water stream heating [?], naturally introduced a
nonnegativity constraint in 2D system equations. Also, two-dimensional models in-
volving only nonnegative variables were succesfully adopted for describing the diffusion
process of a tracer into a blood vessel [?].

This kind of instances stimulated, in the last few years, a systematic analysis of 2D
positive systems, i.e. 2D state-space models whose input, state and output variables
take positive (or at least nonnegative) values, where the results presented in [?, ?, ?]
could be naturally framed. Research efforts in this context were first oriented to extend
“positive matrix theory” to pairs of matrices. As a consequence, Perron-Frobenius
theorem [?] and the notions of irreducibility [?] and primitivity [?], as well as some
interesting interpretation of these notions in terms of graphs, are now available also for
nonnegative matrix pairs.

Although these results allow for a satisfactory analysis of the free state evolution of
2D positive systems and for a complete characterization of their asymptotic stability
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[?, ?, ?, ?, ?], a number of interesting issues remains still unexplored, and will be
addressed in this paper.

Our objective is twofold. First, we aim to supply a unified discussion of several
topics that can be grouped around the concepts of internal and external stability of
2D systems and the related notion of stable realization. Second, the results we present
are intended to serve as a motivation for the study of 2D compartmental systems, the
central theme of this contribution.

During the last decades compartmental modelling techniques have been increasingly
applied to the analysis of biological and chemical processes, and, more generally, for
investigating dynamical systems to which the law of conservation of matter (of energy,
etc.) applies [?]. As a rule, compartmental models consist of a finite number of com-
partments with specified interconnections among them that either represent fluxes of
materials from one site to another or chemical transformations or both. Consequently,
their behavior is described by a finite set of ordinary differential equations or, in the
discrete case, by one-dimensional (1D) difference equations.

There are situations, however, where the physics of the phenomenon one aims to
model has an intrinsic multidimensional nature, as both time and spatial coordinates
are involved. Actually, if the propagation time cannot be neglected, lumped parameter
models are inadequate to describe the system behavior, and we have to resort to partial
differential equations or to multidimensional (nD) discrete systems.

In this paper we start introducing 2D compartmental models by means of some
simple physical examples (section 4). The structure of the resulting equations induces
quite naturally a definition of a 2D compartmental model as a 2D positive system with
the property that its state updating matrices have a substochastic sum. This con-
straint, although rather weak, entails far rich consequences on the stability properties
of the system. Moreover, it allows to derive a canonical form for 2D compartmental
models which gives deep insights in their asymptotic behavior and, in particular, on the
asymptotic contents of the various compartments, when no external input is applied
(section 5).

Finally, some preliminary results on the realization problem by means of 2D com-
partmental models are presented.

Before proceeding, it is convenient to introduce some notation. In order not to
digress too far, the notions of cone, polyhedral cone, positive matrix and directed
graph are only briefly reviewed for notational purposes: adequate information can be
found e.g. in [?, ?, ?]. Also, in the attempt to gain the basic information on the subject
as economically as possible, no detailed account is included on the basics of 2D system
theory and of classical complex analysis; the interested reader is referred, for instance,
to [?, ?, ?] and [?], respectively.

Throughout the paper we let Rν
+ denote the nonnegative orthant, namely the set

of all nonnegative vectors in the ν-dimensional Euclidean space Rν . A set K ⊂ Rν is
said to be a cone if αK ⊂ K for all α ≥ 0; a cone is convex if it contains, with any
two points, the line segment between them.
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A convex cone K in Rν is said to be polyhedral if it can be expressed as the set of
nonnegative linear combinations of a finite set of generating vectors. This amounts to
saying that a positive integer ` and an ν × ` matrix K can be found, such that K
coincides with the set of nonnegative combinations of the columns of K. When so, we
adopt the notation K := Cone(K).

If M = [mij ] is a matrix (in particular, a vector), we write M � 0 (M strictly
positive), if mij > 0 for all i, j; M > 0 (M positive), if mij ≥ 0 for all i, j, and mhk > 0
for at least one pair (h, k), and M ≥ 0 (M nonnegative), if mij ≥ 0 for all i, j. The
spectral radius of a matrix M is the maximal among the moduli of its eigenvalues and
is denoted by ρ(M), while its index [?] is the smallest nonnegative integer k for which
ker(ρ(M)I −M)k = ker(ρ(M)I −M)k+1.

To every ν × ν positive matrix M we make it correspond [?] a directed graph (di-
graph), D(M), of order ν, with vertices indexed by 1, 2, . . . , ν. There is an arc from
vertex i to vertex j if and only if mij > 0.
We say that vertex j is accessible from i if there exists a positive integer h such that
the (i, j)th entry of Mh, [Mh]ij , is positive. Vertices i and j are said to communicate
if each is accessible from the other. The concept of communicating vertices allows to
partition the totality of ν vertices in D(M) into communicating classes, such that each
vertex within a class communicates with every other vertex in the class, and with no
other vertex. The spectral radius of a class C is the spectral radius of the submatrix of
M whose rows and columns are indexed by the vertices in C.

A chain of classes in D(M) is a collection of classes such that each class in the
collection has access to, or from, every other class in the collection. The length of a
chain is the number of classes in the chain whose spectral radius coincides with ρ(M).
In the paper, we indicate by

Pr := {(z1, z2) ∈ C2 : |z1| < r, |z2| < r}

the open polydisc of radius r and by P̄r its closure. Given a polynomial d(z1, z2) ∈
R[z1, z2], the variety of d, denoted by V (d), is the set of all points (α, β) of C2 such
that d(α, β) = 0.

For a pair of ν × ν matrices, (A,B), the characteristic polynomial is defined as
∆A,B(z1, z2) := det(Iν−Az1−Bz2), and the Hurwitz products, Ah kB, are inductively
defined as

Ah 0B = Ah, h ≥ 0, and A0 kB = Bk, k ≥ 0,(1.1)

and, when h and k are both positive,

Ah kB = A(Ah−1 kB) +B(Ah k−1B).(1.2)

It is easily seen that Ah kB is the sum of all matrix products that include the factors
A and B, h and k times, respectively.
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2. Stability properties of 2D positive systems

A 2D positive system is defined [?, ?, ?] as a discrete quarter-plane causal 2D state
model [?]

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k),(2.1)
+ Mu(h, k + 1) +Nu(h+ 1, k)

y(h, k) = Cx(h, k) + Eu(h, k)(2.2)
h, k ∈ Z, h+ k ≥ 0,

Σ = (A,B,M,N,C,E) for short, where the doubly indexed local states x(h, k), the
outputs y(h, k) and the inputs u(h, k) are elements of Rν

+, Rp
+ and Rm

+ , respectively,
and A,B,M,N,C and E are nonnegative matrices of suitable dimensions. Further-
more, initial conditions are given by assigning a sequence X0 := {x(`,−`) : ` ∈ Z} of
nonnegative local states on the separation set S0 := {(`,−`) : ` ∈ Z}.

Stability issues for 2D positive systems are naturally concerned with the unforced
state evolutions determined by arbitrary assignements of nonnegative initial conditions
on the separation set S0. In the special case when the initial conditions on S0 are all
zero, except at (0, 0), the unforced state evolution at point (h, k) is given by

x(h, k) = (Ah kB) x(0, 0), ∀ h, k ∈ N,

while for an arbitrary set of initial conditions X0, the local state in an arbitrary point
(h, k) ∈ Z2, h+ k ≥ 0, can be obtained by linearity as

x(h, k) =
∑
`

(Ah−` k+`B) x(`,−`),(2.3)

where the Hurwitz product Ah−` k+`B is assumed zero when either h − ` or k + ` is
negative.

Intuitively speaking, a 2D system will be considered positively asymptotically sta-
ble if the free state evolution corresponding to an arbitrary set of nonnegative initial
conditions uniformly extinguishes on the separation sets St := {(`, t− `) : ` ∈ Z}, as t
goes to infinity, while for positive stability we only require that all free state trajectories
generated by nonnegative initial conditions remain bounded as t goes to infinity.

It is clear, however, that a sequence of unbounded initial conditions on S0 usually
determines a free evolution which fulfills neither of these requirements, as local state
vectors on each separation set constitute an unbounded sequence, except in the case of
finite memory systems. So, it is convenient to restrict the family of admissible initial
conditions, by assuming that the initial local states x(`,−`) on S0 satisfy

0 ≤ x(`,−`) ≤ v, ∀ ` ∈ Z,(2.4)

for some suitable vector v ∈ Rν
+. Under this assumption, stability definitions are

naturally formalized as follows.
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Definition 2.1. The 2D positive system (2.1)÷(2.2), or equivalently the pair
(A,B) of ν × ν nonnegative matrices, is said to be

• positively asymptotically stable if every set X0 of bounded nonnegative initial
conditions determines a free evolution which asymptotically extinguishes, i.e.

x(h, k)→ 0 as h+ k → +∞;

• positively stable if for every ε > 0 there exists δ > 0 such that any sequence
of initial conditions satisfying 0 ≤ x(`,−`) < δuν , with uν denoting the ν-
dimensional vector [1 1 . . . 1]T , determines a free evolution for which

0 ≤ x(h, k) < εuν , ∀ h, k ∈ Z, h+ k ≥ 0.

The characterization of asymptotic stability given in the following proposition was
first derived in [?], while point ii) provides a complete characterization of simple stability
which refers to the structure of the digraph D(A+ B) associated with the sum of the
two (one-step) transition matrices.

Proposition 2.2. Consider a 2D positive system (2.1)÷(2.2), with state transition
matrices A,B ∈ Rν×ν .

i) (A,B) is positively asymptotically stable if and only if ρ(A + B) < 1, (i.e.
A+B is the state transition matrix of an asymptotically stable 1D system);

ii) (A,B) is positively stable if and only if ρ(A+B) ≤ 1 and ρ(A+B) = 1 implies
that in the directed graph D(A+ B) there are no chains of length greater than
1, (i.e. A+B is the one-step state transition matrix of a stable 1D system).

The proof depends upon the following two lemmas.

Lemma 2.3. Consider the 1D system

z(t+ 1) = Mz(t),(2.5)

with M a ν × ν positive matrix. System (2.5) is

i) asymptotically stable if and only if all state evolutions corresponding to non-
negative initial conditions z(0) asymptotically extinguish, and

ii) stable if and only if all state evolutions corresponding to nonnegative initial
conditions z(0) are bounded.

Proof. i) and ii) The “only if” parts are obvious. The “if” parts follow from linearity
and the fact that every initial condition z(0) can be expressed as the difference of two
nonnegative vectors: z(0) = z+(0)− z−(0), for some z+(0), z−(0) ≥ 0.

Lemma 2.4. Consider a 2D positive system (2.1)÷(2.2), with state transition
matrices A,B ∈ Rν×ν . Then (A,B) is
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i) positively asymptotically stable if and only if the 1D system

z(t+ 1) = (A+B)z(t)(2.6)

is asymptotically stable;

ii) positively stable if and only if system (2.6) is stable.

Proof. i) If (A,B) is asymptotically stable, then for every set of nonnegative
initial conditions X0 the corresponding free dynamics asymptotically goes to zero. In
particular, when the initial local states x(−`, `) are all equal, namely x(−`, `) = x0 ≥ 0
for all ` ∈ Z, then x(h, t− h) → 0 as t → ∞. But x(h, t− h) = (A+ B)tx0, and thus
stability implies (A+B)tx0 → 0 as t goes to infinity, for every nonnegative x0. By the
previous lemma, this allows to say that (2.6) is asymptotically stable.
Conversely, assume that (2.6) is asymptotically stable. If X0 is an arbitrary set of
initial global conditions satisfying (2.4), for some suitable v ∈ Rν

+, then

x(h, t− h) =
∑
`

(Ah+` t−h−`B)x(−`, `) ≤
∑
`

(Ah+` t−h−`B)v

= (A+B)tv −−−−→
t→∞

0,

which proves that (A,B) is positively asymptotically stable.
ii) Follows the same lines of part i).

We are now in a position to prove Proposition 2.2.

Proof. Part i) follows immediately from the previous lemma. As far as part ii) is
concerned, by the previous lemma (A,B) is positively stable if and only if A + B is
stable, but this amounts to saying that ρ(A+B) ≤ 1 and if ρ(A+B) = 1 then A+B
has unitary index. By a result due to Rothblum [?], the index of a nonnegative matrix
coincides with the length of the longest chain in the associated digraph, and this proves
the result.

3. The positive realization problem for 2D rational functions

Since the publication of the celebrated paper by Maeda and Kodama [?] in 1981, the
positive realization problem for (1D) proper rational functions has been the object of a
wide-spread interest in the literature: just to cite some fundamental contributions on
this subject, we shall mention [?, ?, ?, ?, ?]. The problem statement is a very simple
one, namely that of finding, for a given transfer function, a state equation in which the
state and the output variables take nonnegative values whenever the initial states and
the inputs are nonnegative. Despite its simplicity, it was only recently that Anderson,
Farina et al. [?, ?] gave a fundamental contribution to the solution of this problem, by
providing an iterative algorithm for testing the positive realizability of a given rational
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function w(z), based on the analysis of the spectral properties of a family of functions
suitably derived from w(z).

Apart from its theoretical importance, the interest for this problem was largely
motivated by its possible applications, as pointed out in several contributions [?, ?, ?, ?].
As 2D positive systems are also adopted for modelling physical systems in the context
of biology, bioengineering, chemistry, etc., when the variables involved are functions of
a pair of independent variables (generally time and space or two spatial coordinates),
the relevance of the realization problem in the context of 2D rational functions is
immediately apparent.

In this section, we will restrict our attention to strictly proper 2D transfer functions,
namely rational functions w(z1, z2) ∈ R(z1, z2) satisfying w(0, 0) = 0. These functions
are those and those only that can be realized by means of a 2D state-space model
with E = 0. The analogous results for proper rational functions follow immediately,
upon expressing each function w(z1, z2) as the sum of its strictly proper part and of
E := w(0, 0). Also, dealing with strictly proper SISO systems, we will adopt the special
notation Σ = (A,B,m, n, cT ).

The first step toward the solution of the realization problem for 2D rational functions
is given by the following proposition, that strictly reminds of a well-know result of
Maeda and Kodama [?] (see, also, [?]) for the 1D case.

Proposition 3.1. Let w(z1, z2) ∈ R(z1, z2) be a strictly proper 2D rational trans-
fer function. A necessary and sufficient condition for the existence of a nonnegative
realization of w(z1, z2) is that there exist a realization Σ = (A,B,m, n, cT ) of w(z1, z2)
and a polyhedral cone K such that the following conditions hold true:

i) AK ⊆ K and BK ⊆ K;

ii) the reachability cone R(Σ) = Cone(m,n,Am,An + Bm,Bn, ....), generated by
the vector coefficients of the power series expansion of (I−Az1−Bz2)−1(mz1 +
nz2), is included in K;

iii) c belongs to the dual cone of K [?], i.e. cTv ≥ 0 for every v ∈ K.

Proof. [Necessity] If there exists a positive realization of w(z1, z2), Σ̄ = (Ā, B̄, m̄, n̄,
c̄T ), and ν denotes its dimension, then conditions i)÷iii) hold true for Σ := Σ̄ and
K = Rν

+.

[Sufficiency] Assume that there exist both a realization Σ = (A,B,m, n, cT ) and a
polyhedral cone K such that i)÷iii) hold true. If ν is the dimension of Σ and K is an
ν× ` matrix generating the cone, i.e., K = Cone(K), then condition i) guarantees that
nonnegative matrices Ā and B̄ can be found such that AK = KĀ and BK = KB̄.
On the other hand, ii) implies, in particular, m,n ∈ K, and hence both m = Km̄
and n = Kn̄ hold true for suitable vectors m̄, n̄ ≥ 0. Finally, condition iii) leads to
c̄T := cTK ≥ 0.
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We aim to prove that the nonnegative 2D state-space model Σ̄ = (Ā, B̄, m̄, n̄, c̄T ) re-
alizes w(z1, z2). This amounts to saying that c̄T (I − Āz1 − B̄z2)−1(m̄z1 + n̄z2) ≡
cT (I −Az1 −Bz2)−1(mz1 + nz2), or, equivalently, that the power series expansions of
the two functions coincide. So, it is sufficient to verify the following identity

c̄T
[
(Āh−1 kB̄)m̄+ (Āh k−1B̄)n̄

]
= cT

[
(Ah−1 kB)m+ (Ah k−1B)n

]
(3.1)

for every pair of nonnegative integers h and k, h+ k > 0.
It is easy to show, by induction, that for every pair of nonnegative integers, i and j,
we have K(Āi jB̄) = (Ai jB)K. Consequently, one gets

c̄T
[
(Āh−1 kB̄)m̄+ (Āh k−1B̄)n̄

]
= cTK

[
(Āh−1 kB̄)m̄+ (Āh k−1B̄)n̄

]
= cT

[
(Ah−1 kB)Km̄+ ( Ah k−1B)Kn̄

]
= cT

[
(Ah−1 kB)m+ (Ah k−1B)n

]
,

thus proving (3.1).

The above proposition deserves some comments. Although it may appear just as
the two-dimensional analogue of the result presented in [?], it turns out to be a weaker
characterization of positively realizable 2D functions. Indeed, given a positively realiz-
able function f(z) and anyone of its state-space realizations (F, g, hT ) (for instance, a
minimal one), a polyhedral cone can be found satisfying the 1D analogue of conditions
i)÷iii). In the 2D case, instead, not every 2D state-space realization of a positively
realizable function admits a polyhedral cone K for which conditions i)÷iii) hold true.
This is quite unpleasant, as it rules out the possibility of solving the realization problem
by analysing one of its realizations, but it is absolutely natural once we think of how
the set of all realizations of a 2D proper rational functions is organized.

Actually, the state-space realizations of a rational function f(z) can be thought of as
constituting a tree structure, whose root is the (essentially unique) minimal realization,
and every other realization can be obtained by the minimal one by suitably increasing
the unobservable and/or uncontrollable parts. In the 2D case, the realizations of a given
function w(z1, z2) are naturally viewed [?] as constituting infinitely many different tree
structures, each one representing the set of realizations corresponding to a particu-
lar noncommutative power series having w(z1, z2) as commutative image. Of course,
noncommutative power series that exhibit some negative coefficients have no positive
realization, and conditions i)÷iii) cannot be fulfilled by anyone of their state-space re-
alizations. As every function w(z1, z2) is the commutative image of a noncommutative
power series with some negative coefficients, the testing procedure suggested in the
above proposition necessarily fails for some realizations of w(z1, z2). More precisely, if
we consider the realizations of the same noncommutative version of w(z1, z2), either for
all of them or for none of them polyhedral cones K can be found satisfying the three
requirements. This situation is better understood by means of the following simple
example.
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Example Consider the strictly proper rational function w(z1, z2) = z1z2. It is imme-
diately seen that

(A,B,m, n, cT ) =
([

0 0
0 0

]
,

[
0 0
1 0

]
,

[
1
0

]
,

[
0
0

]
, [ 0 1 ]

)
is a positive realization of w(z1, z2). On the other hand, once we think of w(z1, z2) as the
commutative image of the noncommutative power series τ = 2ξ1ξ2 − ξ2ξ1, by applying
a modified version of the Ho’s algorithm [?] we easily get the following realization of τ
and hence of w(z1, z2):

(F1, F2, g1, g2, h
T ) =

 0 1 0
0 0 0
0 0 0

 ,
 0 0 1

0 0 0
0 0 0

 ,
 0

0
−1

 ,
 0

2
0

 , [ 1 0 0 ]

 .
We aim to show that no polyhedral cone in R3 can be found satisfying points i)÷iii)
of Proposition 3.1, w.r.t. the realization (F1, F2, g1, g2, h

T ). Suppose, by contradiction,
that such a polyhedral cone K exists, and let

K =

 kT1kT2
kT3

 , ki ∈ R`, i = 1, 2, 3,

be a generating matrix of K. Condition iii) guarantees k1 ≥ 0, while condition i)
implies that both k2 and k3 must be nonnegative, and therefore K must be included in
the positive orthant R3

+. But then, as g1 is not in R3
+, condition ii) cannot be satisfied.

As a consequence of the situation now described, the problem of determining when
a given 2D rational function w(z1, z2) admits a positive realization is much more com-
plicated than the analogous one-dimensional. Interestingly enough, however, when
w(z1, z2) is positively realizable, then, in particular, a positive realization (A,B,m, n,
cT ) can be found for which the variety of the characteristic polynomial ∆A,B(z1, z2)
satisfies the following special constraint: if n(z1, z2)/d(z1, z2) is an irreducible represen-
tation of w(z1, z2), and hence V (d) represents the set of all singularities of w, then

min{r ∈ R+ : P̄r ∩ V (d) 6= ∅} ≡ min{r ∈ R+ : P̄r ∩ V (∆A,B) 6= ∅} ≡ (R,R), R ∈ R+.(3.2)

This is a quite interesting result, as it extends to the 2D case a theorem due to Anderson
et al. [?], saying that any positively realizable function f(z) has a real positive pole r
with maximum modulus, and it admits a positive realization (F, g, hT ) with ρ(F ) = r.
The proof of this proposition depends upon a couple of technical lemmas.

Lemma 3.2. Let f(z) be a rational transfer function, whose power series expansion∑+∞
i=0 fiz

i has nonnegative coefficients. If R is the radius of convergence [?] of the
series, then R is a pole of f(z).
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Proof. As f(z) is a rational function, its power series expansion
∑+∞
i=0 fiz

i converges
(absolutely and locally uniformly) in every open disc centered in the origin, B(0, r),
whose radius r satisfies r < min{|p| : p a pole of f(z)}. Consequently,

R = min{|p| : p a pole of f(z)} = |p0|,

for some possibly complex pole p0 of f(z). We aim to show that |p0| is a pole of f(z),
too. For every real α satisfying 0 < α < 1, by exploiting the nonnegative assumption
on the fi’s, one gets

|f(αp0)| = |
+∞∑
i=0

fiα
ipi0| ≤

+∞∑
i=0

fiα
i|p0|i = f(α|p0|).(3.3)

As the leftthand side of (3.3) diverges, as α approaches 1, then f(α|p0|) −−−−→
α→1

∞, and,

consequently, |p0| is a pole of f(z).

Lemma 3.3. Let w(z1, z2) ∈ R(z1, z2) be a proper rational 2D transfer func-
tion, n(z1, z2)/d(z1, z2) an irreducible representation of w(z1, z2) and

∑+∞
h,k=0whkz

h
1 z

k
2

a power series expansion of w(z1, z2) within a suitable open polydisc, centered in the
origin. If all coefficients whk of the power series expansion are nonnegative and R :=
min{r ∈ R+ : P̄r ∩ V (d) 6= ∅}, then

i) f(z) := w(z, z) has a pole of minimum modulus in z = R;

ii) w(z1, z2) has a (nonessential) singularity in (R,R).

Proof. i) Observe, first, that the power series expansion
∑+∞
h,k=0whkz

h
1 z

k
2 is abso-

lutely convergent in every point (z, z), with |z| ≤ r < R. Consequently, the 1D power
series

∑+∞
ν=0

(∑
h+k=ν whk

)
zν converges for every z with |z| < R and hence f(z) is an-

alytic in the open disc B(0, R). If f(z) had not a pole at z = R, then, by Lemma 3.2,
it would be devoid of singularities within the closed disk B̄(0, R), and there would be
some ε > 0 such that R+ ε is the radius of convergence of f(z). In this case, we would
have

+∞∑
ν=0

( ∑
h+k=ν

whk
)(
R+

ε

2

)ν
<∞,(3.4)

and hence
+∞∑
h,k=0

whk
(
R+

ε

2

)h(
R+

ε

2

)k
<∞.(3.5)

This implies that the power series expansion of w(z1, z2) is convergent in PR+ ε
2
, thus

contradicting the assumption that R is the radius of convergence of w(z1, z2).

ii) As f(z) = w(z, z) has a pole in R, then w(z1, z2) has a singularity in (R,R), which
is nonessential by the rationality assumption.
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Proposition 3.4. Let w(z1, z2) ∈ R(z1, z2) be a strictly proper rational 2D trans-
fer function, which is positively realizable, and let n(z1, z2)/d(z1, z2) be an irreducible
representation of w(z1, z2). If R := min{r ∈ R+ : P̄r∩V (d) 6= ∅}, there exists a positive
realization Σ = (A,B,m, n, cT ) with ρ(A+B) = 1/R, and when so

R ≡ min{r ∈ R+ : P̄r ∩ V (∆A,B) 6= ∅}.(3.6)

Proof. Let Σ̄ := (Ā, B̄, m̄, n̄, c̄T ) be a positive realization of w(z1, z2). If the spectral
radius of Ā+ B̄ does not coincide with 1/R, it must be ρ(Ā+ B̄) > 1/R. Clearly, Σ̄1 :=
(Ā+ B̄, m̄+ n̄, c̄T ) is a positive realization of the 1D rational function f(z) := w(z, z),
whose minimal modulus pole is located in R, as a result of the previous lemma. From
the inequality ρ(Ā+ B̄) > 1/R, it follows that the eigenvalue ρ(Ā+ B̄) belongs either
to the unreachable or to the unobservable part of Σ̄1. Suppose, for instance, that
ρ(Ā + B̄) is not observable. Then, there exists a nonnegative eigenvector v of Ā + B̄,
corresponding to ρ(Ā + B̄), such that Hv = 0. Without loss of generality, we can
reorder the entries of the state vector of Σ̄1 so that

c̄T = [c̄T1 0 0]

vT = [0 0 vT3 ]

with c̄T1 and v3 strictly positive vectors. Let

Ā+ B̄ =

A11 +B11 A12 +B12 A13 +B13

A21 +B21 A22 +B22 A23 +B23

A31 +B31 A32 +B32 A33 +B33

 .
Because (Ā+ B̄)v = ρ(Ā+ B̄)v, the zeros in v force A13 +B13 = 0 and A23 +B23 = 0,
and therefore all matrices A13, A23, B13 and B23 are zero. But then the zero blocks in
c̄T and Ā+ B̄ mean that an unobservable part is displayed, and a lower dimension, but
still positive realization of f(z) is provided by([

A11 +B11 A12 +B12

A21 +B21 A22 +B22

]
,

[
m1 + n1

m2 + n2

]
, [ c̄T1 0 ]

)
.

Correspondingly,([
A11 A12

A21 A22

]
,

[
B11 B12

B21 B22

]
,

[
m1

m2

]
,

[
n1

n2

]
, [ c̄T1 0 ]

)
constitutes a lower dimension positive realization of w(z1, z2). Similarly, if ρ(Ā + B̄)
belongs to the unreachable part, we can obtain lower dimension positive realizations
both of f(z) and of w(z1, z2).

So, starting with an arbitrary positive realization of w(z1, z2), and hence of f(z),
we can reduce it until obtaining a positive realization of f(z), Σ1 = (A+B,m+ n, cT )
with ρ(A + B) coinciding with 1/R. Consequently, Σ = (A,B,m, n, cT ) will be the
desired positive realization of w(z1, z2).
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We are remained to show that when ρ(A + B) = 1/R, then (3.6) holds true. The
result has already been proved in [?] for the case of A+B irreducible. So, suppose now
that A+B is a reducible matrix, and reduce it to (upper triangular) Frobenius normal
form [?]

P T (A+B)P =


A11 +B11 A12 +B12 . . . A1h +B1h

A22 +B22 . . . A2h +B2h
. . .

Ahh +Bhh

,

(3.7)

with Aii+Bii irreducible blocks, by means of a suitable permutation matrix P . Clearly,
there exists some index k such that ρ(Akk+Bkk) = 1/R, and hence, by the irreducibility
of Akk +Bkk,

R ≡ min{r ∈ R+ : P̄r ∩ V (∆Akk,Bkk) 6= ∅}.

On the other hand, one has

min{r ∈ R+ : P̄r ∩ V (∆Akk,Bkk) = min{r ∈ R+ : P̄r ∩ V (∆A,B) 6= ∅},

which proves the result.

By combining together the results of Proposition 2.2 and Proposition 3.4, we get the
following result, which provides a necessary and a sufficient condition for the existence
of a positively (asymptotically) stable positive realization.

Corollary 3.5. Let w(z1, z2) ∈ R(z1, z2) be a positively realizable rational func-
tion and let n(z1, z2)/d(z1, z2) be one of its irreducible representations.

i) If V (d) ∩ P̄1 = ∅, then there exists a positively asymptotically stable positive
realization of w(z1, z2);

ii) if V (d)∩P1 6= ∅, then no stable realization of w(z1, z2) can be found and hence,
in particular, there exist no positively stable positive realizations.

Proof. i) If V (d)∩ P̄1 = ∅ and w(z1, z2) is positively realizable, then, by Proposition
3.4, there exists a positive realization (A,B,m, n, cT ) with ρ(A + B) < 1, which is
positively asymptotically stable, as a consequence of Proposition 2.2.
ii) Follows immediately from the fact that for every realization (A,B,m, n, cT ) of
w(z1, z2), V (d) ⊆ V (∆A,B).

4. 2D compartmental systems

4.1. Some examples of 2D compartmental systems

2D compartmental models are 2D positive systems satisfying additional constraints
which represent the mathematical formalization of some conservation laws. Before
explicitly investigating the properties of this class of systems, it may be useful to
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have a couple of physical applications in mind, as examples of the sort of phenomena
we aim to model. In both cases, the derivation involves making many simplifying
assumptions and 2D difference equations we end up provide only crude descriptions.
We will concentrate, instead, on some aspects that illustrate how these examples can
be viewed as paradigms of a broad class of dynamical behaviors, that can be potentially
investigated by applying 2D compartmental systems techniques.

Example 1 [Single-carriageway traffic flow] Our aim is to represent, by
means of a discrete model, the traffic flow along one carriageway of a motorway. To
this end we introduce the following assumptions:

a) The road is partitioned into elementary stretches of length L and the time into
elementary intervals of duration T .

b) At time instant tT, t ∈ Z, the set of cars inside the stretch [`L, (`+ 1)L), ` ∈ Z,
is partitioned into groups of equal speed span, say V km/h. This amounts to say that
the first group consists of all cars whose speed belongs to the interval (0, V ], in the
second group there are all cars with speed in (V, 2V ], and so on. Also, one more group
is considered, which includes all cars that at time tT are temporarily stopping at a
gas station, or in a parking place etc. The groups are sequentially indexed from 0
through ν, with 0 denoting the class of stopping cars, 1 the lowest speed group and ν
the highest. If vi(·, ·) represents the number of cars belonging to the i-th group, then
the “state” at time tT of the `-th stretch, [`L, (`+ 1)L), is given by the vector

v(`, t) =


v0(`, t)
v1(`, t)

...
vν(`, t)

 .
c) The number of vehicles is large enough to allow for assuming that the vi’s are

continuous, rather than integer, variables.

d) Inputs and outputs at motorway intersections are modelled apart. Typically,
only some stretches exhibit an intersection, and it is obvious that the output levels in
[tT, (t+1)T ) cannot exceed the number of cars running through those stretches in that
time interval.

e) Car drivers belonging to the i-th group at time tT exhibit a propension (prob-
ability) pji to istantaneously move to the j-th speed class at the beginning of the next
time interval, and to drive at that speed during (tT, (t+ 1)T ]. Clearly,

∑ν
j=0 pji = 1.

f) The length L of a road stretch satisfies L > νV T . Consequently, every car that
belongs to the `-th stretch at time tT , at time (t + 1)T belongs either to the same
stretch or to the (` + 1)-th. If we assume that there are r cars moving within the
i-th speed class during the time interval [tT, (t + 1)T ), and that at time tT they are
uniformly distributed along the stretch [`L, (`+ 1)L), then, only gir of them, with

gi :=
(2i− 1)V T

2L
,
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reach the following stretch before (t+ 1)T . The remaining (1− gi)r cars are still in the
original stretch at time (t+ 1)T .

As a consequence of the above assumptions, and disregarding outflows and inflows
at the interconnections, we get the following model:

v(`+ 1, t+ 1) = GPv(`, t) + (Iν+1 −G)Pv(`+ 1, t),(4.1)

where G = diag{0, g1, g2, . . . , gν}, P = [pij ] and Iν+1 is the identity matrix of size ν+1.
Finally, by resorting to the following transformation

T : Z2 → Z2 : (`, t) 7→ (h, k) = (`, t− `)

and assuming
x(h, k) := v

(
T−1(h, k)

)
= v(h, h+ k),

we can rewrite (4.1) as

x(h+ 1, k + 1) = GPx(h, k + 1) + (Iν+1 −G)Px(h+ 1, k).(4.2)

Example 2 [Streeter-Phelps discrete model for river pollution] [?] In
modelling the self-purification process of a polluted river, we introduce the following
assumptions:

a) The variety of pollutants dissolved in the river can be reduced to one class of
oxidizable substances, whose concentration is measured by the amount of oxygen (BOD
= biological oxygen demand) needed for their complete biochemical oxidation.

b) The selfpurification process is essentially due to dissolved oxygen (DO) which
oxidizes polluting materials and eventually convert them into abiotic substances and
heat.

c) As the variations of BOD and DO concentrations on river cross sections can
be reasonably considered less significative than the longitudinal ones, we assume for
the river a (spatially) one-dimensional model. Moreover, hydrological variables and, in
particular, the stream velocity V , are supposed constant all over the river.

d) The river is divided into elementary reaches of length L. The time step T and
the elementary reach L are connected through the stream velocity V by the equation

T =
L

V
,

so that the water element centered in `L at time tT will be centered in (`+ 1)L at time
(t+ 1)T .
We denote by β(`, t) and δ(`, t) the concentration of BOD and the deficit of DO w.r.t.
the saturation level, respectively, in the elementary reach centered in `L at time tT .
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BOD and DO values at
(
(`+ 1)L, (t+ 1)T

)
are obtained on the basis of a discretized

balance equation accounting for different contributions. In fact:

• Diffusion is modelled by assuming that the BOD content of the elementary water
volume, centered in `L at time tT , undergoes in [tT, (t+ 1)T ) a variation proportional
to the differences β(`− 1, t)−β(`, t) and β(`+ 1, t)−β(`, t). Same assumption is made
for the DO diffusion process.

• Self-purification: in the time interval [tT, (t+ 1)T ) the BOD concentration in the
`-th river reach is decreased by the same amount

a1Tβ(`, t)

the DO deficit is increased.

• Reaeration takes place at the water-atmosphere interface. We assume that in
[tT, (t+ 1)T ) the DO deficit is reduced of an amount given by

a2Tδ(`, t).

• BOD sources: effluents, local run-off, etc., modifying the BOD concentration,
determine an exogenous input to the system, which is denoted by uβ(·, ·).

By making the above assumptions, we obtain the following model:[
β(`+ 1, t+ 1)
δ(`+ 1, t+ 1)

]
= S

[
β(`, t)
δ(`, t)

]
+D

[
β(`− 1, t)
δ(`− 1, t)

]
+D

[
β(`+ 1, t)
δ(`+ 1, t)

]
+
[
M̃
0

]
uβ(`, t),(4.3)

where

S = [sij ] =
[

1− a1T − 2DβT 0
a1T 1− a2T − 2DδT

]
D = [dij ] =

[
DβT 0

0 DδT

]
.

Notice that, as M̃, a1, a2, Dβ and Dδ are positive and T is small, all matrices in the
above equation are positive.
The model (4.3) can be reduced to an equivalent one having the structure of (4.2).
Actually, upon defining

z(`, t) :=


β(2`, t)

β(2`+ 1, t)

δ(2`, t)
δ(2`+ 1, t)

 and ũ(`, t) :=
[

u(2`, t)
u(2`+ 1, t)

]
,

we get
z(`+ 1, t+ 1) = Az(`, t) +Bz(`+ 1, t) +M ũ(`, t),(4.4)

where

A :=

 d11 s11
0 d11

0 0
0 0

0 s21
0 0

d22 s22
0 d22

 B :=

 d11 0
s11 d11

0 0
0 0

0 0
s21 0

d22 0
s22 d22

 M :=


M̃ 0
0 M̃
0 0
0 0

 .
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Finally, by applying the same coordinate transformation T as in Example 1, and letting

x(h, k) := z
(
T−1(h, k)

)
= z(h, h+ k)

u(h, k) := ũ
(
T−1(h, k)

)
= ũ(h, h+ k),

we get the following equation

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k) +Mu(h, k + 1).(4.5)

4.2. Structure of 2D compartmental systems

Both processes analysed in the previous section have been modelled by means of a
2D positive system, described as in equation (2.1)÷(2.2). Models (4.2) and (4.5),
moreover, exhibit an additional property: the sums of the state transition matrices,
namely GP + (I − G)P in the first example and A + B in the second, are (column)
substochastic, i.e. the sum of the entries in each column of GP + (I − G)P and of
A + B does not exceed one. This property represents the mathematical formalization
of the fact that the number of cars as well as the amounts of chemical components
cannot increase unless external inputs are applied. More precisely, the i-th component,
xj(h, k), of the state x(h, k) influences only the states in (h+ 1, k) and (h, k + 1), and
its contributions, aijxj(h, k) in (h + 1, k) and bijxj(h, k) in (h, k + 1), i = 1, 2, . . . , ν,
cannot sum up to a quantity greater than the original xj(h, k). A complete conservation
corresponds to a stochastic matrix sum, whereas leakages or losses motivate the fact
that some columns in the matrix sum are not stochastic.

It is clear that this kind of systems represent the two-dimensional analogue of dis-
crete time 1D compartmental models, thus motivating the following definition.

Definition 4.1. A 2D compartmental system is a 2D positive system (2.1)÷(2.2)
with A+B substochastic.

Although this requirement on A + B does not give any information on the zero-
patterns of A and B, it introduces, however, strong constraints on the spectral proper-
ties of the pair (A,B) we aim now to investigate. To this end, it is convenient to make
the (not restrictive) assumption that the matrix sum A + B is in Frobenius normal
form

A+B =


M11 M12 . . . M1r

M22 M2r
. . .

...
Mrr

 ,(4.6)

with irreducible diagonal blocks Mii, i = 1, 2, . . . , r.

Proposition 4.2. Let A + B ∈ Rν×ν
+ be a substochastic matrix, with the block-

triangular structure given in (4.6). Then

i) ρ(Mii) ≤ 1 for every i ∈ {1, 2, . . . , r} and ρ(A+B) ≤ 1;
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ii) if ρ(Mii) = 1, then Mii is stochastic, Mji = 0 for every j 6= i, and the maximal
modulus eigenvalues of A + B are simple roots of the minimal polynomial of
A+B.

Proof. i) If M is any substochastic matrix, there exists a nonnegative matrix ∆
such that M + ∆ is stochastic, and hence ρ(M), the spectral radius of M , satisfies
ρ(M) ≤ ρ(M + ∆) = 1. Since A+B is substochastic, and this property is inherited by
all diagonal blocks Mii, then ρ(A+B) ≤ 1 and ρ(Mii) ≤ 1 for all i ∈ {1, 2, . . . , r}.
ii) Assume ρ(Mii) = 1, and suppose, by contradiction, that Mii is not stochastic.
Then there exists a nonnegative matrix ∆ 6= 0 such that Mii + ∆ is stochastic, and the
irreducibility of Mii guarantees [?] that ρ(Mii) < ρ(Mii + ∆) = 1, a contradiction. So,
as each column of Mii has already a unitary sum, all entries in the blocks Mji, j 6= i,
must be zero. As a consequence, by applying a suitable cogredience transformation [?],
we can always assume that A+B has the following structure



M11

M22

. . .
Mss

∗ ∗ ∗

0

Ms+1s+1 Ms+1s+2 . . . Ms+1r

Ms+2s+2 Ms+2r

. . .
...

Mrr


=
[
A11 +B11 A12 +B12

0 A22 +B22

]
(4.7)

where the Mii’s, i = 1, 2, . . . , s, are irreducible stochastic matrices, while the Mii’s,
i = s+ 1, s+ 2, . . . , r, are irreducible substochastic matrices with ρ(Mii) < 1.
Finally, in order to prove that every unitary modulus eigenvalue ejθ of A+B is a simple
root of the minimal polynomial, it is sufficient to show that

ker(ejθI −A−B) ≡ ker(ejθI −A−B)2.

Clearly, as (ejθI−A22−B22) is a nonsingular matrix, all vectors in ker(ejθI−A−B)2,
and consequently in ker(ejθI − A − B), have the second block of entries, namely the
one corresponding to (ejθI − A22 − B22), identically zero. On the other hand, since
all blocks Mii, i = 1, 2, . . . , s, are irreducible and stochastic, then ker(ejθI −Mii) =
ker(ejθI −Mii)2, which proves the result.

A 2D compartmental system (2.1)÷(2.2) described by a pair (A,B) whose sum has
the structure and the properties of matrix (4.7) is said to be in canonical form. This
form suggests some interesting remarks that further motivate the name of compart-
mental models for 2D positive systems with A+B substochastic.
Consider, first, the 1D compartmental system associated with the matrix sum A+ B,
block partitioned as in (4.7),

z(t+ 1) = (A+B)z(t).(4.8)
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Each class of compartments corresponding to some irreducible stochastic block Mii,
i ∈ {1, 2, . . . , s}, presents no losses, by this meaning that the total content of the
compartments in that class cannot decrease as time goes by. On the other hand, the
contents of the remaining compartments decrease to zero, partly due to losses and
partly due to transfers to lossless compartments.
As a consequence, for every initial assignement z(0) of the compartment contents, only
the components corresponding to stochastic blocks can be nonzero in the state vector
z(t) as t goes to infinity.

When considering 2D models, it is convenient to think of local states on the same
separation set St := {(`, t−`), ` ∈ Z} as representing the contents at time t of compart-
ments x1, x2, . . . , xν at the different space locations ` ∈ Z. The content xi(`, t−`) of the
i-th compartment at time t and location ` distributes at time t+1, possibly with losses,
among the compartments at locations ` and `+ 1, with rates given by the i-th column
of B and A, respectively. By recursively applying this reasoning, it is easy to see that
xi(`, t− `) at time t+N distributes (with losses) among the compartments at locations
`, `+ 1, . . . , `+N , and its total contribution to the contents of these compartments is
expressed by

(A+B)Neixi(`, t− `),

where ei denotes the i-th canonical vector in Rν . Again, as t goes to infinity, all com-
partments corresponding to nonstochastic blocks are progressively emptied, whereas
those corresponding to stochastic blocks accumulate the whole content, apart from
losses, of xi(`, t− `).
Similar results hold true, by linearity, when taking into account the simultaneous con-
tribution of all local states on St, thus making clear in what sense the conservation laws
hold true when spatial diffusion processes have to be taken into account. As we can
expect, the conservation laws which govern the state updating of 2D compartmental
models entail interesting consequences in terms of stability properties.

Corollary 4.3. A 2D compartmental system with state transition matrices A
and B is always positively stable, and is positively asymptotically stable if and only if
ρ(A+B) < 1.

Proof. Since A+B is substochastic, its spectral radius never exceeds 1. Moreover,
as A + B is cogredient to the Frobenius normal form (4.7), there cannot be chains of
length greater than 1. So, both conditions of point ii) in Proposition 2.2 are met, and
all 2D compartmental systems are stable. The second statement of the corollary has
already been proved in Proposition 2.2.

To conclude, we aim to solve the following problem: suppose that w(z1, z2) is a
positively realizable function, under what conditions w(z1, z2) can be realized also by
means of a 2D compartmental model? Obviously, as a consequence of Corollary 3.5 and
Corollary 4.3, the variety of the singularities of w(z1, z2) must not intersect the open
unitary polydisc. This condition, however, is by no means sufficient. For instance, the
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rational function w(z1, z2) = (1−z1)(z1+z2)+z22
(1−z1)2

admits the positive realization

Σ =
([

1 0
0 1

]
,

[
0 1
0 0

]
,

[
1
0

]
,

[
0
1

]
, [ 1 1 ]

)
,

and the variety of its singularities does not intersect the open polydisc P1. However,

f(z) = w(z, z) =
(1− z)2z + z2

(1− z)2
=

2z − z2

(1− z)2

has a pole of multiplicity 2 at z = 1, and hence cannot be realized by any stable 1D
system. Consequently, w(z1, z2) cannot be realized by means of a 2D compartmental
model (which should be positively stable).
The following proposition provides a sufficient condition for problem solvability.

Proposition 4.4. Let w(z1, z2) ∈ R(z1, z2) be a strictly proper rational 2D trans-
fer function, which is positively realizable, and let n(z1, z2)/d(z1, z2) be an irreducible
representation of w(z1, z2). If V (d) ∩ P1 = ∅, then

i) there exists a positive realization Σ = (A,B,m, n, cT ) with ρ(A+B) ≤ 1;

ii) if in the Frobenius normal form of A+B

M := PT (A+B)P =


M11 M12 . . . M1r

M22 M2r

. . .
...

Mrr

 , Mii irreducible,(4.9)

with P a permutation matrix, ρ(Mii) = 1 implies Mji = 0 for all j < i, then
w(z1, z2) can be realized via a 2D compartmental system.

Also in this case, we need two preliminary lemmas.

Lemma 4.5. Let M be a positive ν × ν matrix, with ρ(M) ≤ 1. A necessary and
sufficient condition for the existence of a diagonal matrix D = diag{d1, d2, . . . , dν},
di > 0, such that D−1MD is substochastic, is that some vector v � 0 can be found
satisfying vTM ≤ vT .

Proof. Clearly, D−1MD is substochastic, i.e.,

[ 1 1 . . . 1 ] (D−1MD) ≤ [ 1 1 . . . 1 ]

if and only if
[ 1
d1

1
d2

. . . 1
dν

]MD ≤ [ 1 1 . . . 1 ] ,

or, equivalently, [ 1
d1

1
d2

. . . 1
dν

]M ≤ [ 1
d1

1
d2

. . . 1
dν

], which proves the result.

Lemma 4.6. Let M be a positive ν×ν matrix, in Frobenius normal form (4.9), with
ρ(Mii) ≤ 1, i = 1, 2, . . . , r. A necessary and sufficient condition for the existence of a
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diagonal matrix D = diag{d1, d2, . . . , dν}, di > 0, such that D−1MD is substochastic,
is that ρ(Mii) = 1 implies Mji = 0 for all j < i.

Proof. Assume that M is similar to a substochastic matrix, by means of a positive
diagonal matrix. By the previous lemma, there exists v� 0 such that vTM ≤ vT , and
we can express v, according to the block partition of M , as vT = [ vT1 vT2 . . . vTr ],
vi � 0. Let Mii, i > 2, be a diagonal block with ρ(Mii) = 1. If there would be an
index j < i such that Mji > 0, then vTj Mji > 0 and hence viMii < vTi . But as Mii is
irreducible, this would imply ([?], pag.28) ρ(Mii) < 1, thus contradicting the original
assumption.

Conversely, suppose that corresponding to ρ(Mii) = 1 we have Mji = 0 for all j < i.
It is not restrictive to assume that the diagonal blocks of M are ordered in such a way
that

M =



M11

M22
. . .

M``

M1`+1 M1`+2 . . . M1r

M2`+2 M2r

. . .
M`r

M`+1`+1 M`+1`+2 . . . M`+1r

M`+2`+2 M`+2r
. . .

Mrr


,(4.10)

with ρ(Mii) unitary if i = 1, 2, . . . , `, and less than unitary for i = `+ 1, `+ 2, . . . , r.
We aim to explicitly construct a strictly positive vector v = [ vT1 vT2 . . . vTr ] sat-
isfying vTM ≤ vT . For each irreducible block Mii, let v̄Ti � 0 be a left eigenvector of
Mii corresponding to the spectral radius ρ(Mii). For i = 1, 2, . . . , `, set vi := v̄i, while
for i ≥ `+ 1 construct vectors vi by iteratively applying the following procedure:

- set wT
i :=

∑i−1
j=1 v̄Tj Mji;

- consider any real number αi > 0 such that αi(1−ρ(Mii))v̄Ti ≥ wT
i . The existence

of such an αi is guaranteed by the fact that v̄Ti is strictly positive;
- assume, now, vTi := αiv̄Ti .

It is easy to verify that vector v obtained in this way, satisfies the desired condition,
thus proving that M is similar to a substochastic matrix, via some positive diagonal
matrix.

Proof. i) follows immediately from Proposition 3.4.
ii) If we assume that all blocks Mji, j 6= i, in (4.9) are zero when ρ(Mii) = 1, then M can
be described as in (4.10), with ρ(Mii) unitary if i = 1, 2, . . . , `, and strictly smaller than
1 for i = `+ 1, `+ 2, . . . , r. This implies that there exists a nonsingular diagonal matrix
D > 0 such that D−1MD is substochastic. But then

(
(PD)−1A(PD), (PD)−1B(PD),

(PD)−1m, (PD)−1n, cT (PD)
)

is a 2D compartmental model realizing w(z1, z2).

20



5. Final remarks and conclusions

In this paper, internal and external stability of 2D positive systems have been considered
and the related problem of obtaining a positive stable realization for a given BIBO stable
rational function analysed. The above issues have been later investigated in the special
case of 2D compartmental systems, i.e. 2D positive systems with the property that
their state updating matrices have a substochastic sum. A couple of examples has also
been considered, enlightening concrete applications of the rich body of 2D theory in
this area. A distinguishing feature, with respect to procedures based the discretization
of ODEs or PDEs models, is that a first principle derivation of the discrete model is
obtained, based on balance equations among different compartments.
Some theoretical results here presented have only been touched upon and deserve fur-
ther investigation; in particular, a complete characterization of the spectral properties
of minimal positive realizations is still lacking. Future researches should also take into
account state reconstruction and feedback control, hopefully leading to satisfactory
algorithms for monitoring and control of 2D positive systems.
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