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Abstract

Pairs of linear transformations on a finite dimensional vector space are of
great relevance in the analysis of two-dimensional (2D) systems evolutions.
In this paper, special properties of matrix pairs, such as finite memory,
separability, property L and property P, as well as their dynamical inter-
pretations, are investigated. Practical criteria for testing property L and
property P in a finite number of steps are also presented.

The nonnegativity requirement on a matrix pair allows for much stronger
characterizations of finite memory and separability, which in fact prove to
be structural properties. Finally, the irreducibility and primitivity notions
of positive matrix pairs are discussed, and connected with the dynamical
behavior of the associated 2D systems.

1 Introduction

The theory of pairs and, more generally, k-tuples of linear transformations on
a finite dimensional vector space dates from about the end of the last century.
Nevertheless, in spite of its relatively long history, important general results, such
as the invariant theory of n× n matrices (see [16] and the references therein) and
a wealth of more specialized topics, recently appeared in mathematical journals,
showing the permanent fertility of this field.

1D system theory has often taken advantage of these results (e.g. in Fliess’
representation of bilinear systems) and, conversely, problems arising in modelling
and control have provided a permanent source of new mathematical questions
involving two or more linear transformations. Even more interestingly, system
theoretic methods opened new vistas on purely algebraic problems on matrix sets,
as in the case of matrix pairs with common eigenvectors [18].

In 2D system theory, virtually all the problems of modelling, realization and
control involve a pair of linear transformations, whose spectral and combinatorial
properties characterize the pattern of dynamical trajectories. Furthermore, 2D
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systems endowed with special structures, such as finite memory, separability, posi-
tivity etc., bring into focus special classes of matrix pairs, that deserve on their own
a careful investigation. As several definitions and problems that one might hope
to extend from 1D dynamical models do, in fact, carry over to 2D models, clas-
sical system theoretic concepts often suggest the guideline for tackling with pairs
of linear transformations. It should be stressed, however, that the mathematical
tools needed in the analysis of matrix pairs are substantially more difficult, and
the mechanics of the proofs more involved, than most others occurring in Linear
Algebra.

This paper deals with the circle of ideas that includes the theory of matrix pairs,
two-dimensional signals and 2D state space models. In the next section the main
properties of the characteristic polynomial and trace series of an unconstrained
matrix pair are summarized. In section 3 some special classes of pairs, as well as
their connections with the dynamical behavior of 2D state models, are investigated.
Section 4 is devoted to nonnegative 2D systems and pairs. Detailed proofs of the
results presented in sections 2 and 3 can be found in [6, 7], while for positive pairs
we refer the interested reader to [8, 9]. The concluding section presents some open
problems and further issues on matrix pairs arising from current researches.

2 Characteristic polynomials and trace series

2D systems theory connotes a large collection of problems and methods held to-
gether by a central theme: the analysis and control of processes and devices whose
dynamics depends on two independent variables. In this note, however, we re-
strict our attention to the very special class of quarter plane causal unforced 2D
state models, whose description essentially depends on a pair of square matrices
associated with the shift operators along the coordinate axes [4]:

x(h+ 1, k + 1) = A1x(h, k + 1) + A2x(h+ 1, k). (1)

The local states x(h, k) are defined on (a suitable region of) the discrete plane
Z × Z and take values in R

n, A1 and A2 are real n × n matrices and the initial
conditions are usually assigned by specifying all local state values x(−ℓ, ℓ) on the
separation set C0 := {(−ℓ, ℓ) : ℓ ∈ Z}. Upon resorting to formal power series,
initial conditions are represented by the global state X0 :=

∑+∞

ℓ=−∞
x(−ℓ, ℓ)z−ℓ

1 zℓ
2

and the induced sequence of local states in the half-plane {(h, k) : h + k ≥ 0} is
described by

X(z1, z2) =
∑

h,k

x(h, k)zh
1 z

k
2 = (I −A1z1 −A2z2)

−1X0 =





∞
∑

i,j=0

A1
i jA2 z

i
1z

j
2



X0.

where the Hurwitz products A1
i jA2, i, j ∈ N, are the matrix coefficients of the

power series expansion of (I−A1z1−A2z2)
−1. Each Hurwitz product decomposes as



A1
i jA2 =

∑

ν1,ν2,...,νi+j

Aν1
Aν2

...Aνi+j
, the summation being extended to all products

that include the factors A1 and A2, i and j times respectively. In particular, when
assuming x(−ℓ, ℓ) = 0 for every ℓ 6= 0, the state in (h, k) is given by

x(h, k) =
∑

ν1,ν2,...,νi+j

Aν1
Aν2

...Aνi+j
x(0, 0), (2)

and it can be interpreted as the sum of the elementary contributions along all
paths connecting (0, 0) to (h, k) in the two-dimensional grid.

Most analytic and combinatorial properties of the pair (A1, A2) obviously reflect
into the behavior of (1), and it is often useful to translate an abstract question
on the pair into a dynamical problem for the corresponding state model. This is
well illustrated by the characteristic polynomial and the trace series of (A1, A2),
defined as

∆A1,A2
(z1, z2) := det(I −A1z1 − A2z2)

and

TA1,A2
(z1, z2) :=

∞
∑

h=1

(

∑

i+j=h

tr(A1
i jA2)z

i
1z

j
2

)

,

respectively. Like the characteristic polynomial of a single matrix, which in gen-
eral does not capture its Jordan structure, ∆A1,A2

does not identify the similarity
orbit of the pair and hence does not provide a complete information on the un-
derlying linear transformations. Nevertheless, important aspects of the 2D motion
completely rely on it. There is, first of all, the internal stability of system (1),
which depends only on the variety of the zeros of ∆A1,A2

. Additional insights into
the structure of 2D systems come from the factorization of the characteristic poly-
nomial. Actually, properties like finite memory and separability, and interesting
features of the spectrum of αA1 + βA2, such as property L, can be restated as
conditions on the factors of ∆A1,A2

.
We shall not dwell here with stability issues, and concentrate instead on the

remaining topics.

Proposition 2.1 Let ∆A1,A2
(z1, z2) = 1−

∑n
h=1 δh(z1, z2) and TA1,A2

(z1, z2) =
∑

∞

h=1 τh(z1, z2), with δh(z1, z2) and τh(z1, z2) homogeneous forms of degree h, be
the characteristic polynomial and trace series, respectively, of the n × n matrix
pair (A1, A2). Then

i) the homogeneous components δh(z1, z2) and τh(z1, z2) satisfy

τ1(z1, z2) − δ1(z1, z2) = 0
τ2(z1, z2) − δ1(z1, z2)τ1(z1, z2) − 2δ2(z1, z2) = 0

· · ·
τn(z1, z2) − δ1(z1, z2)τn−1(z1, z2) − . . .− nδn(z1, z2) = 0

(3)

and, for all k > 0,

τn+k(z1, z2) −
n
∑

i=1

τn+k−i(z1, z2)δi(z1, z2) = 0; (4)



ii) the traces of A1
i jA2 and the coefficients dij of ∆A1,A2

(z1, z2) satisfy

tr(A1
i jA2) =

∑

0<r+s<i+j

drstr(A1
i−r j−sA2) + (i+ j)dij, (5)

where drs = 0 for r + s > n, and A1
r sA2 is the zero matrix whenever r or s is

negative.

Equation (5) has some simple, but useful consequences. First of all, it provides
an algorithm for recursively computing the traces of A1

i jA2 from the coefficients
of the characteristic polynomial. On the other hand, once the traces are given,
also the converse, i.e. the computation of the coefficients of ∆A1,A2

(z1, z2), is made
possible. Actually, if an upper bound n̄ on the degree of ∆A1,A2

(z1, z2) is known,
then assigning tr(A1

i jA2) for i + j ≤ n̄ allows to recover both ∆A1,A2
(z1, z2)

and the traces of A1
i jA2 for i + j > n̄. Finally, it is easy to realize that TA1,A2

is a rational power series, since its coefficients satisfy the recursive relation (5).
Further connections of TA1,A2

with the structure of the characteristic polynomial
are enlightened by the following proposition.

Proposition 2.2 Let ∆A1,A2
(z1, z2) = 1−

∑n
h=1 δh(z1, z2) be the characteristic

polynomial of the matrix pair (A1, A2). The corresponding trace series TA1,A2
can

be expressed as

TA1,A2
(z1, z2) =

δ1(z1, z2) + 2δ2(z1, z2) + . . .+ nδn(z1, z2)

∆(z1, z2)
. (6)

Moreover, if ∆A1,A2
factorizes as ∆(z1, z2) =

∏t
i=1 ∆i(z1, z2)

νi, with ∆i(z1, z2) =

1−
∑ri

j=1 δ
(i)
j (z1, z2) irreducible distinct factors, νi ∈ N and δ

(i)
j (z1, z2), i = 1, 2, ..., t,

homogeneous polynomials of degree j, then

TA1,A2
(z1, z2) =

t
∑

i=1

νi

∑ri

j=1 j δ
(i)
j (z1, z2)

∆i(z1, z2)
. (7)

In (7) the trace series TA1,A2
(z1, z2) is expressed as a partial fraction expansion,

whose i-th term is the trace series of the irreducible factor ∆i(z1, z2), weighted
with the corresponding multiplicity νi. Thus the denominator of every irreducible
rational function which represents a trace series factorizes into irreducible factors
with multiplicity one. On the other hand, when an irreducible rational function
T (z1, z2) has been given, (7) suggests a way to check whether T (z1, z2) can be
expanded into a trace series.

Finally, consider the set of all matrix pairs M = {(A1, A2) : A1, A2 ∈ C
n×n,

n ∈ N}, and introduce in M the equivalence relation

(A1, A2) ∼ (Â1, Â2) ⇔ ∆A1A2
(z1, z2) = ∆Â1Â2

(z1, z2).



Basing on the previous results, useful sets of complete invariants for the equivalence
relation ∼ are easily derived, involving Hurwitz products and linear combinations
of the matrix pairs, as illustrated in the following proposition.

Proposition 2.3 Let (A1, A2) and (Â1, Â2) be two (complex-valued) matrix
pairs, possibly of different size. The following statements are equivalent:

i) ∆A1,A2
(z1, z2) = ∆Â1,Â2

(z1, z2);

ii) for all α, β ∈ C, Λ0(αA1 + βA2) = Λ0(αÂ1 + βÂ2), where Λ0(A) denotes
the set of nonzero eigenvalues of the matrix A, each of them counted according
with the corresponding algebraic multiplicity;

iii) for all α, β ∈ C and k ∈ N+, tr(αA1 + βA2)
k = tr(αÂ1 + βÂ2)

k;
iv) for all (i, j) 6= (0, 0), tr(A1

i jA2) = tr(Â1
i jÂ2).

v) TA1,A2
(z1, z2) = TÂ1,Â2

(z1, z2);

3 Pairs of matrices with special structure

In this section we aim to specifically focus on matrix pairs endowed with property
L or property P. Pairs with property L occur quite frequently in the applications:
indeed, the important classes of finite memory and separable 2D systems are de-
scribed by pairs with this property. A pair of n × n matrices with entries in C,
(A1, A2), has property L if the eigenvalues of A1 and A2 can be ordered into two
n-tuples

Λ(A1) = (λ1, λ2, . . . , λn) and Λ(A2) = (µ1, µ2, . . . , µn) (8)

such that, for all α, β in C, the spectrum of Λ(αA1 + βA2) is given by

Λ(αA1 + βA2) = (αλ1 + βµ1, . . . , αλn + βµn). (9)

Clearly matrices Â1 = diag{λ1, λ2, . . . , λn} and Â2 = diag{µ1, µ2, . . . , µn} consti-
tute a pair with property L. Any other pair (A1, A2) of the same dimension, with
property L w.r.t. the orderings (8), satisfies, by Proposition 2.3, Λ(αA1 + βA2) =
Λ(αÂ1 + βÂ2). A straightforward consequence is the chain of equivalences listed
in the following proposition.

Proposition 3.1 Let A1 and A2 be in C
n×n. The following statements are

equivalent:
L) (A1, A2) has property L w.r.t. the orderings (8) of their spectra;
L1) ∆A1,A2

(z1, z2) =
∏n

i=1(1 − λiz1 − µiz2);
L2) for all α, β ∈ C and k ∈ N, tr(αA1 + βA2)

k =
∑n

i=1(αλi + βµi)
k;

L3) for every (h, k) ∈ N × N, tr(A1
h kA2) =

(

h+k

h

)

∑n
i=1 λ

h
i µ

k
i ;

L4) TA1,A2
(z1, z2) =

∑

h+k>0 tr(A1
h kA2)z

h
1 z

k
2 =

∑n
i=1

λiz1 + µiz2
1 − λiz1 − µiz2

.

Hankel matrix theory provides a direct method to check, in a finite number
of steps, whether a given pair (A1, A2) is endowed with property L. To reach this



goal, we introduce [3] the infinite Hankel matrix H(s) of a formal power series s
in the commuting variables z1 and z2. If s :=

∑

h,k〈s, z
h
1 z

k
2 〉z

h
1 z

k
2 , with 〈s, zh

1 z
k
2 〉

denoting the coefficients of the monomial zh
1 z

k
2 in s, we have

H(s) :=















〈s, 1〉 〈s, z1〉 〈s, z2〉 〈s, z2
1〉 〈s, z1z2〉 〈s, z2

2〉 . . .
〈s, z1〉 〈s, z2

1〉 〈s, z1z2〉 〈s, z3
1〉 〈s, z2

1z2〉 . . . . . .
〈s, z2〉 〈s, z1z2〉 〈s, z2

2〉 . . . . . . . . . . . .
〈s, z2

1〉 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .















.

Rows and columns of H(s) take indices in the multiplicative monoid of the terms
T := {zh

1 z
k
2 : h, k ∈ N}. For all M ′,M ′′ ∈ N, we denote by HM ′×M ′′(s) the

submatrix, appearing in the upper left corner of H(s), whose rows (columns) are
indexed by the terms of homogeneus degree not greater than M ′ (M ′′).
We are now in a position to state the following criterion.

Proposition 3.2 Let (A1, A2) be a pair of matrices in C
n×n and consider the

power series

RA1,A2
(z1, z2) :=

∞
∑

i,j=0

tr(A1
i jA2)

(

i+ j

i

)−1

zi
1z

j
2.

(A1, A2) has property L if and only if

rank H(n−1)×(n−1)(RA1,A2
) = rank Hn×n(RA1,A2

) ≤ n.

The results of Proposition 3.1 provide a convenient framework for understand-
ing the internal dynamics of finite memory and separable 2D state models. A 2D
system (1) that reaches the zero (global) state within a finite number of steps,
independently of its initial conditions, is called finite memory [5, 6]. It is almost
immediate to show that the finite memory (FM) property corresponds to assume
that (I − A1z1 − A2z2)

−1 is a polynomial matrix or, equivalently, that the char-
acteristic polynomial of the pair (A1, A2) is unitary. The following proposition
summarizes a useful set of different characterizations of the FM property.

Proposition 3.3 Let A1 and A2 be matrices in C
n×n. The following facts are

equivalent
FM1) ∆A1,A2

(z1, z2) = 1;
FM2) Λ(αA1 + βA2) = (0, 0, ..., 0), ∀α, β ∈ C;
FM3) Λ(νA1 + A2) = Λ(A1 + νA2) = (0, 0, ..., 0), for every ν = 1, ..., n+ 1;
FM4) tr(A1

i jA2) = 0, ∀ (i, j) 6= (0, 0);
FM5) A1

i jA2 = 0, for i+ j ≥ n.

2D systems whose characteristic polynomials factorize into the product of a
polynomial in z1 and a polynomial in z2 are called separable [5, 6], and are usually
thought of as the simplest examples of 2D systems with infinite impulse response.



Actually, many properties one may hope to extrapolate from an understanding of
1D systems carry over to separable systems, and just the knowledge that the system
is separable allows one to make fairly strong statements about its behaviour. In
particular, internal stability can be quickly deduced from the general theory of
discrete time 1D systems, as the long term performance of separable systems is
determined by the eigenvalues of A1 and A2.

Proposition 3.4 Let A1 and A2 be matrices in C
n×n. The following state-

ments are equivalent
S1) ∆A1,A2

(z1, z2) = r(z1)s(z2);
S2) A1 and A2 satisfy property L w.r.t. the orderings of the spectra Λ(A1) =

(λ1, ..., λρ, 0, ..., 0, 0, ..., 0),Λ(A2) = (0, ..., 0, µ1, ..., µσ, 0, ..., 0), so that Λ(αA1+βA2)
= (αλ1, ..., αλρ, βµ1, ..., βµσ, 0, ..., 0) for every α, β ∈ C;

S3) tr(A1
i jA2) = 0 whenever i and j are both nonzero;

S4) tr(αA1 + βA2)
k = tr(αA1)

k + tr(βA2)
k, ∀α, β ∈ C, k ∈ N+.

Before turning to the discussion of property P, we have to introduce some back-
ground notations on polynomials and series in noncommutative variables. Given
an alphabet Ξ = {ξ1, ξ2}, the free monoid Ξ∗ with base Ξ is the set of all words
w = ξi1ξi2 · · · ξim, m ∈ N, ξih ∈ Ξ. The integer m is called the length of w
and denoted by |w|, while |w|i represents the number of occurencies of ξi in w,
i = 1, 2. If v = ξj1ξj2 · · · ξjp

is another element of Ξ∗, the product is defined by
concatenation wv = ξi1ξi2 · · · ξimξj1ξj2 · · · ξjp

. This produces a monoid with 1 = ∅,
the empty word, as unit element. Clearly, |wv| = |v| + |w| and |1| = 0.
C〈ξ1, ξ2〉 and C〈〈ξ1, ξ2〉〉 are the algebras of polynomials and formal power series
respectively in the noncommuting indeterminates ξ1 and ξ2. For each pair of
matrices (A1, A2) in C

n×n, the map ψ defined on {1, ξ1, ξ2} by the assignments
ψ(1) = In and ψ(ξi) = Ai, i = 1, 2, uniquely extends to an algebra morphism of
C〈ξ1, ξ2〉 into C

n×n. The ψ-image of a polynomial P(ξ1, ξ2) ∈ C〈ξ1, ξ2〉 is denoted
by P(A1, A2).

A pair of n × n matrices (A1, A2) with elements in C is said to have property

P if the eigenvalues of A1 and A2 can be ordered into two n-tuples

Λ(A1) = (λ1, λ2, . . . λn), Λ(A2) = (µ1, µ2, . . . µn), (10)

such that, for every polynomial P(ξ1, ξ2) ∈ C〈ξ1, ξ2〉,

Λ(P(A1, A2)) = (P(λ1, µ1),P(λ2, µ2), . . . ,P(λn, µn)). (11)

According to a celebrated result of Mc Coy [12], property P is equivalent to si-
multaneous triangularizability, a feature that allows for good insights into the
geometry of system (1), which can be viewed as a cascade of 2D systems hav-
ing dimension one. Moreover, when considering state models with inputs and
outputs, triangular matrix pairs provide a class of 2D systems large enough for
realizing all transfer functions p(z1, z2)/q(z1, z2) with denominators of the form



q(z1, z2) =
∏

j(1 − λjz1 − µjz2) and, in particular, all transfer functions with sep-
arable denominators [2]. It should be stressed that the same is not true, however,
if we consider only commutative matrix pairs.

As property P trivially implies property L, while examples can be given [14, 15]
disproving the converse, the set of all pairs with property P is properly included in
the set of pairs with property L. On the other hand, we have seen in Proposition 3.1
that a pair is endowed with property L if and only if its characteristic polynomial
factorizes into a product of linear terms, and it is obvious that any such polynomial
corresponds also to some matrix pair with property P. Consequently, no possibility
is left of describing property P basing only on the characteristic polynomial. The
appropriate tools are, instead, certain noncommutative polynomials and power
series associated with the pair, as well as the corresponding Hankel matrices.

Proposition 3.5 Let A1 and A2 be n × n matrices with entries in C, and
consider the orderings of their spectra given in (10). The following statements are
equivalent:

P1) (A1, A2) has property P w.r.t. the orderings (10);
P2) for any w ∈ Ξ∗, with |w|1 = h and |w|2 = k, tr(w(A1, A2)) =

∑n
i=1 λ

h
i µ

k
i ;

P3) the noncommutative power series N =
∑

w ∈ Ξ∗ tr(w(A1, A2))w can be
represented as N =

∑n
i=1(1 − λiξ1 − µiξ2)

−1, and hence is recognizable [3];
P4) for any w ∈ Ξ∗, with |w|1 = h and |w|2 = k, det(zI − w(A1, A2)) =

∏n
i=1(z − λh

i µ
k
i ).

An effective method for testing property P depends on the Hankel matrix [3, 17]
H(N ) of the noncommutative power series N , i.e. the infinite matrix whose rows
and columns are indexed by the words of Ξ∗, and whose element with indexes u
and v is equal to 〈N , uv〉. The words in Ξ∗, and consequently the row and column
indexes in H(N ), are ordered according to their length, while the lexicographical
order is adopted for words of the same length. For all M ′,M ′′ ∈ N, we shall denote
by HM ′×M ′′(N ) the submatrix appearing in the upper left corner of H(N ), whose
rows (columns) are indexed by words of length not greater than M ′ (M ′′).

Proposition 3.6 Let A1 and A2 be n×n matrices with entries in C, and con-
sider the associated noncommutative power series N =

∑

w ∈ Ξ∗ tr(w(A1, A2))w.
The following statements are equivalent:

i) (A1, A2) has property P;
ii) rank H(n2−1)×(n2−1)(N ) = n̄ ≤ n and, for all pairs of words w, w̄ with length

not greater than 2n̄,

|w|i = |w̄|i, i = 1, 2 ⇒ tr(w(A1, A2)) = tr(w̄(A1, A2)); (12)

iii) (12) holds for all pairs of words w, w̄ with length not greater than 2n2.



4 Nonnegative matrix pairs

The interest in nonnegative matrix pairs is largely motivated, apart from theoreti-
cal reasons, by their possible applications in building discrete models of dynamical
systems that involve only nonnegative variables, such as pressures, concentrations,
levels of population etc.[10, 11, 19].

The results so far obtained have extended to positive pairs the available charac-
terizations of finite memory, separability and property L. Furthermore, some basic
notions of positive matrix theory, like irreducibility, primitivity and the Perron-
Frobenius theorem, particularly meaningful for their relevance in (1D) positive
system dynamics, have been generalized to the 2D case.
In this section the following notation will be adopted: given a matrix A = [aij ], we
will write A ≫ 0 (A strictly positive), if aij > 0 for all i, j; A > 0 (A positive), if
aij ≥ 0 for all i, j, and ahk > 0 for at least one pair (h, k); A ≥ 0 (A nonnegative),
if aij ≥ 0 for all i, j.

4.1 Nonnegative pairs with special properties

Introducing the nonnegativity assumption allows to obtain more penetrating char-
acterizations of finite memory and separable matrix pairs. In particular, finite
memory and separability turn out to be “structural properties” of a pair, in the
sense that they depend only on the zero patterns of the matrices and not on the
specific values their nonzero entries take.

This is a quite interesting feature. Indeed, in many cases the information
available on the physical process one aims to model allows to assume that no
interaction exists among certain variables, and, consequently, that some entries
of the matrices A1 and A2 are exactly 0, whereas the others can be assumed
nonnegative, and known with some level of uncertainty. This is always the case of
compartmental models [10], where nonzero entries correspond to the existence of
flows between different compartments, and physical or biological reasons guarantee
that some pairs of compartments have no direct interaction at all.

Proposition 4.1 For a pair of n × n nonnegative matrices (A1, A2), the
following statements are equivalent

i) ∆A1,A2
(z1, z2) = 1;

ii) A1 + A2 is a nilpotent (and, a fortiori, a reducible) matrix;
iii) A1

i jA2 is nilpotent, for all (i, j) 6= (0, 0);
iv) w(A1, A2) is nilpotent, for all w ∈ Ξ∗ \ {1};
v) there exists a permutation matrix P such that P T (A1 + A2)P is upper

triangular with zero diagonal entries.

Notice that in the general case, when the matrix entries assume both positive and
negative values, condition ii) is necessary, but not sufficient, for guaranteeing the
finite memory property, which depends on the nilpotency of all linear combinations



αA + βA2, α, β ∈ C. On the contrary, examples can be given [8] showing that
conditions iii) and iv) are sufficient, but not necessary, for the finite memory
property. Moreover, while for a general finite memory pair (A1, A2) we can only
guarantee that the Hurwitz products Ai jA2 are zero when i + j ≥ n, in the
nonnegative case this property extends to all matrix products w(A1, A2), w ∈ Ξ∗

and |w| ≥ n.

In analyzing nonnegative separable pairs we end up with some results that
strictly parallel those obtained in the finite memory case. A fairly complete spectral
characterization of separability is summarized in the following proposition.

Proposition 4.2 For a nonnegative matrix pair (A1, A2), the following state-
ments are equivalent:

i) ∆A1,A2
(z1, z2) = r(z1)s(z2);

ii) det[I − (A1 + A2)z] = det[I −A1z] det[I − A2z];
iii) A1

i jA2 is nilpotent for all (i, j) with i, j > 0;
iv) w(A1, A2) is nilpotent, for all w ∈ Ξ∗ such that |w|i > 0, i = 1, 2;
v) there exists a permutation matrix P such that P TA1P and P TA2P are

conformably partitioned into block triangular matrices

P T A1P =











[A1]11 ∗ ∗ ∗
[A1]22 ∗ ∗

. . . ∗
[A1]tt











P T A2P =











[A2]11 ∗ ∗ ∗
[A2]22 ∗ ∗

. . . ∗
[A2]tt











,

(13)

with [A1]ii 6= 0 implying [A2]ii = 0;
vi) there exists a nonsingular matrix T ∈ C

n×n such that Â1 = T−1A1T and
Â2 = T−1A2T are upper triangular matrices, and the Hadamar product A1 ∗ A2

has zero diagonal entries.

The characterizations given in points v) of Propositions 4.1 and 4.2 have a
combinatorial nature and make it clear that finite memory and separability are
preserved under all perturbations of the positive entries. Property L and prop-
erty P, instead, are not structural ones, as examples can be given [8] showing that
they depend on the specific values assumed by the nonzero entries.

4.2 Irreducibility and primitivity

In positive matrix theory, irreducibility property of a matrix A can be introduced
in combinatorial terms: indeed, irreducible matrices are those that cannot be re-
duced, by means of cogredience transformations, to block-triangular form [13].
Several equivalent descriptions are also available: algebraic ones, which connect
irreducibility to the zero-patterns of the powers of A, and graph-theoretic and
system theoretic characterizations, which relate it to the structure of the corre-
sponding directed graph D(A) and to the behavior of the associated state model.



More precisely, a positive matrix A ∈ R
n×n is irreducible if and only if positive

integers h and T can be found, such that

t+h
∑

i=t+1

Ai ≫ 0, for every t ≥ T, (14)

or equivalently, if and only if for every pair of vertices i and j in D(A) there
exists a path connecting i to j or, finally, if and only if for every positive initial
condition x(0) > 0 the dynamical model x(t + 1) = Ax(t), t = 0, 1, . . . , produces
state vectors satisfying

t+h
∑

i=t+1

x(i) ≫ 0, (15)

for sufficiently large values of t.
Searching for a natural extension of the irreducibility definition to positive

matrix pairs, we can try to generalize anyone of the above characterizations. For
instance, we can look for a two-dimensional extension of (15), and refer to the state
evolution of the 2D system (1), corresponding to an arbitrary set X0 of nonnegative
local states. Working on the discrete grid Z × Z, it seems reasonable to replace
the interval [t+ 1, t+ h] appearing in (15) with some finite set F ⊂ Z × Z and to
define irreducible any nonnegative pair (A1, A2) for which a finite set F ⊂ Z × Z

can be found such that for every nonnegative X0 the following condition

∑

[i j]∈[h k]+F

x(i, j) ≫ 0, ∀ [h k] ∈ Z × Z s.t. h+ k ≥ T, (16)

holds true for some suitable positive integer T . If X0 consists of a finite number of
nonzero local states, however, or no upper bound exists on the distance between
consecutive nonzero local states on C0, condition (16) can be satisfied only for
T → +∞. So, in order to make our definition more consistent, we confine ourselves
to admissible sets of initial conditions, namely to nonnegative sequences X0 such
that

∑h+N
ℓ=h x(ℓ,−ℓ) > 0 holds true for some N > 0 and every h ∈ Z. Irreducibility

can now be characterized as follows.

Definition A pair (A1, A2) of n× n positive matrices is irreducible if there is
a finite set F ⊂ Z×Z such that for every admissible set of initial conditions X0 a
positive integer T can be found such that

∑

[i j]∈[h k]+F

x(i, j) ≫ 0, ∀ [h k] ∈ Z × Z s.t. h+ k ≥ T. (17)

An alternative description of irreducible matrix pairs can be obtained by re-
placing in (14) the power matrices with the Hurwitz products, and the half-line
[T,+∞) with a suitable solid convex cone. In fact, intuitively speaking, a posi-
tive matrix pair (A1, A2) should be thought of as irreducible if there are a finite



“window” and a solid convex cone such that, independently of the window posi-
tion within the cone, the sum of all Hurwitz products A1

r sA2 corresponding to
integer pairs in the window, is strictly positive.

Proposition 4.5 A pair of n × n positive matrices (A1, A2) is irreducible if
and only if there are a solid convex cone K∗ ⊂ R

2
+ and a finite set F ⊂ N

2 such
that

∑

[r s]∈[h k]+F

A1
r sA2 ≫ 0, ∀ [h k] ∈ N

2 s.t. [h k] + F ⊂ K∗. (18)

The minimal value of the cardinality of a set F for which anyone of the above
equivalent conditions, (17) or (18), holds true is called the imprimitivity index of
the pair (A1, A2). This index can be related to the number of points in which
the variety V(∆A1,A2

) of the characteristic polynomial ∆A1,A2
(z1, z2) intersects the

polydisc Pr−1 := {(z1, z2) ∈ C
2 : |z1| ≤ r−1, |z2| ≤ r−1}, with r = ρ(A1 + A2) the

spectral radius of A1 + A2. More precisely, it has be shown [9] that V(∆A1,A2
)

intersects Pr−1 only in (r−1, r−1), and in a finite number of points (r−1eiθ1 , r−1eiθ2)
of its distinguished boundary Tr−1 := {(z1, z2) ∈ C

2 : |z1| = r−1, |z2| = r−1}, where
the pairs (θ1, θ2) satisfy the congruence relations hθ1 + kθ2 ≡ 0 (mod 2π), for all
(h, k) ∈ supp(∆A,B). This result can be viewed as the two-dimensional analogue
of the Perron-Frobenius theorem.

For sake of completeness, we mention that irreducibility property of a ma-
trix pair admits also a graph-theoretic interpretation, based on the notion of 2D-
directed graph, i.e. a directed graph with two classes of arcs, corresponding to the
nonzero entries of A1 and A2, respectively. For more details, the interested reader
is referred to [9].

A primitive pair of positive matrices is an irreducible pair with unitary imprim-
itivity index. The following proposition illustrates an interesting set of equivalent
primitivity conditions that motivate the above definition.

Proposition 4.7 Let (A1, A2) be an irreducible pair of n×n positive matrices,
with ρ(A1 + A2) = r. The following facts are equivalent:

i) (A1, A2) is primitive;
ii) there exists a strictly positive Hurwitz product;
iii) there is a solid convex cone K∗ in R

2
+ such that for all (h, k) ∈ N

2 ∩K∗ the
Hurwitz product A1

h kA2 is strictly positive;
iv) for every admissible set of initial conditions there is a positive integer T

such that x(h, k) ≫ 0 for all (h, k) ∈ N
2, h + k ≥ T ;

v) the variety V(∆A1,A2
) intersects the polydisk Pr−1 only in (r−1, r−1).



5 Concluding remarks

In this paper we have presented an outline of some results about matrix pairs, in
particular nonnegative ones, and of their relevance in the analysis of 2D systems.
Further reasearch will, it is to be hoped, better clarify the connections between the
spectral and combinatorial properties of a pair and the dynamics of the associated
state model. An interesting question, for instance, concerns the existence of a
dominating vector representing the asymptotic direction of all local states x(h, k)
as h+k goes to infinity. Preliminary results have been obtained in the scalar case,
in the case of 2D Markov chains and when (A1, A2) is a k-commuting pair.

The positive realization problem for 2D rational functions provides a wide
set of research issues involving positive matrix pairs. In particular, basing on
the 1D analogue, it is reasonable to expect that the singularities of a positively
realizable transfer function fulfil some regularity constraints, inherited from the
Perron-Frobenius structure of the peripheral spectrum of a positive pair.

Finally, an interesting topic of research is the investigation of the structure of
matrix pairs over finite fields, which arise in the synthesis of encoders and decoders
for 2D convolutional codes.
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