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Abstract

In this paper, different primeness definitions and factorization properties, arising
in the context of nD Laurent polynomial matrices, are investigated and applied to a
detailed analysis of nD finite support signal families produced by linear multidimen-
sional systems. As these families are closed w.r.t. linear combinations and shifts along
the coordinate axes, they are naturally viewed as Laurent polynomial modules or, in
a system theoretic framework, as nD finite behaviors. Correspondingly, inclusion re-
lations and maximality conditions for finite behaviors of a given rank are expressed in
terms of the polynomial matrices involved in the algebraic module descriptions.

Internal properties of a behavior, like local detectability and various notions of ex-
tendability, are finally introduced, and characterized in terms of primeness properties
of the corresponding generator and parity check matrices.
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1 Introduction

Since the sixties (1D) polynomial matrices have constituted a fundamental tool for inves-
tigating the dynamics of a linear system and for designing feedback control laws [1]. The
behavioral approach to system analysis, introduced by J.C.Willems during the eighties [2],
has fruitfully resorted to the algebra of Laurent polynomial matrices, and actually almost
every notion of Willems theory has proved to mirror into a particular algebraic property
of the Laurent polynomial matrices adopted for the behavior description.
Behaviors viewpoint is presently adopted in convolutional coding, where the interest is in
the code produced by an encoder rather than in the machinery that underlies its genera-
tion. Moreover, it turns out to be of great relevance in failure detection, where the output
signals are the only information available to check whether a system operates correctly.
As a consequence, many questions connected with the realization of decoders and residual
generators can be correctly answered if codewords and system signals are represented as
behavior trajectories and hence as images or kernels of polynomial matrices.

In a 1D context, the polynomial matrix algebra one applies for solving the aforemen-
tioned problems is rather simple, and efficient algorithms, based on elementary transfor-
mations, allow for a complete analysis of the system dynamics.

The use of polynomial matrices in 2D system analysis and control began in the late
seventies [3, ?, 5], while more recently P.Rocha and J.C.Willems [6] resorted to polynomial
matrices in two variables for introducing 2D behaviors. As expected, the richer structure
a family of trajectories on Z×Z is endowed with has a natural counterpart in the higher
complexity that 2D polynomial rings and matrices exhibit in comparison with their 1D
analogs.

Somehow unexpectedly, however, the transition from 2D to nD still deserves a con-
spicuous interest. From a mathematical point of view, when n is greater than 2 new
phaenomena arise involving the primeness definitions of polynomial matrices (as pointed
out by D.C.Youla in [7]), and many decomposition techniques of the 1D and 2D cases
are no longer effective. In fact, at least four not equivalent notions of polynomial prime-
ness are worth to be considered: zero-primeness, variety-primeness, minor-primeness and
factor-primeness. This constitutes an important warning that nD behaviors should admit
a finer description based on new internal features, which make their appearance only for
n > 2.
Moreover, up to now no algebraic algorithm is available to check factor-primeness, thus
making this property rather elusive. Last but not least, the complexity of virtually all
nD algorithms represents a serious drawback when trying to get an intuition on possible
solutions of open problems.

The aim of this comunication is twofold: to investigate the primeness properties and
factorization results holding for nD (Laurent) polynomial matrices, and to relate the
structure of nD trajectories with the algebra of the polynomial matrices involved in their
generation. For sake of simplicity, we confine ourselves to families of finite support nD
trajectories. This subject, indeed, seems quite interesting on its own, and provides non-
trivial examples of how the hierarchy among the primeness notions reflects into a similar
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hierarchy among extendability properties, which express the possibility of interpolating
nD signals under different operating conditions.

The paper is organized as follows. In the next section we analyse different primeness
notions in a general nD context, and provide some examples showing that they are not
equivalent, (in particular, that factor prime matrices are not always minor prime). Section
3 introduces the basic definitions for finite support behaviors and reduces their analysis
to the theory of Laurent polynomial modules. Several factorization results for nD polyno-
mial matrices find a natural counterpart in terms of behavior inclusions and maximality
conditions.

In sections 4 and 5 trajectories recognition and signal extension problems are afforded.
As it is immediately apparent, the possibility of recognizing behavior trajectories by means
of a finite set of compact support parity checks is quite appealing. In algebraic terms,
this happens if and only if the behavior can be described as the kernel of a polynomial
matrix, a property which has been investigated in the previous sections. When a signal
is not completely know or corrupted by noise, and hence satisfies the parity checks of
the behavior only in certain regions of Zn, it is natural to look for legal trajectories that
interpolate the available data on these regions. The conditions guaranteeing the existence
of such interpolating trajectories depend both on the shape of the regions where parity
checks are fulfilled and on the algebraic structure of the generator matrices.

2 Primeness properties of nD L-polynomial matrices

Let F be a field and denote by z the n-tuple (z1, z2, ..., zn) and by zci the (n − 1)-
tuple (z1, z2, ..., zi−1, zi+1, ..., zn), so that F[z, z−1] and F[zci , (z

−1
i )c] are shorthand nota-

tions for the Laurent polynomial (L-polynomial) rings in the indeterminates z1, ..., zn and
z1, ..., zi−1, zi+1, ..., zn, respectively, and F(z) denotes the field of rational functions with
coefficients in F.

A matrix G ∈ F[z, z−1]p×m has rank r if it has a nonzero r-th order minor, whereas all
its higher orders minors are zero. The rank of a matrix coincides with the dimensions of the
F(z)-spaces generated either by its rows or by its columns. By referring to the maximal
order minors, we can introduce the following right-primeness notions. The analogous
definitions of left-primeness (`P) are obvious.

Definition An L-polynomial matrix G ∈ F[z, z−1]p×m is
• right minor prime (rMP) if p ≥ m and all the L-polynomials in the ideal IG, generated
by its maximal order minors, are devoid of (nontrivial) common factors;
• right variety prime (rVP) if p ≥ m and the ideal IG includes (nonzero) L-polynomials
in F[zi, z−1

i ], for every i = 1, 2, ..., n;
• right zero prime (rZP) if p ≥ m and the ideal IG is the ring F[z, z−1] itself. In particular,
when p = m, a right (and hence left) zero prime matrix is called unimodular.

Clearly
rZP ⇒ rVP ⇒ rMP.
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Moreover, when G is rMP, in every factorization G = ḠT , with Ḡ ∈ F[z, z−1]p×m and
T ∈ F[z, z−1]m×m, T has to be unimodular. So, a rMP matrix is right factor prime (rFP),
as its unique right (matrix) factors are the trivial ones.
It is well-known that in the 1D case all properties of the above definition collapse and are
equivalent to right factor primeness [8], whereas for 2D L-polynomial matrices only factor,
minor and variety primeness coincide [3]. When n is greater than 2, instead, none of the
implications

rZP ⇒ rVP ⇒ rMP ⇒ rFP

can be reversed [7].

Example 1 It is a matter of simple computation to show that the matrix

G1 =

 (z1 + 1)(z2 + 1) 0
0 z2 + 1

z3 + 2 z1 + 1

 ∈ R[z1, z2, z3, z−1
1 , z−1

2 , z−1
3 ]3×2

is factor prime, as it has no right L-polynomial factors, except for the unimodular ones.
However, G1 is not minor prime as the g.c.d. of its maximal order minors is z2 + 1.
Also,

G2 =

 (z−1
1 + 1)(z2 − 2)

(z−1
1 + 1)(z2

3 + 1 + z1z2)
(z2 − 2)(z−2

2 z1 + 2

 ∈ R[z1, z2, z3, z−1
1 , z−1

2 , z−1
3 ]3×1

is rMP but not rVP. Finally,

G3 =

 z1 + 1
z−1
2 + 1
z3 + 2

 ∈ R[z1, z2, z3, z−1
1 , z−1

2 , z−1
3 ]3×1

is rVP but not rZP.

When n is greater than 2, factor primeness does not reduce to a condition on the ideal
IG of the maximal order minors and, to our knowledge, a general algorithm for recognizing
nD factor prime matrices is not available, yet.
For the other primeness properties several characterizations, based on Bézout equations,
matrix completions and input/output primeness relations are available. As we shall see,
rMP and rVP properties reduce to zero primeness on suitable extensions of the original
Laurent polynomial ring, and therefore it seems more convenient to discuss first zero
primeness and then exploit the results for the analysis of the other properties.

Proposition 2.1 Let G = [gij ] ∈ F[z, z−1]p×m, p > m. The following statements are
equivalent:

i) G is right zero prime;

ii) G can be column-bordered into a p× p unimodular matrix [G | C];
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iii) there exists a p× p unimodular matrix U such that

U G =
[
Im
0

]
; (2.1)

iv) G has an L-polynomial left inverse, or, equivalently, satisfies the Bézout identity

X G = Im,

for some matrix X ∈ F[z, z−1]m×p;

v) for every rZP vector u ∈ F[z, z−1]m, Gu is rZP, too.

Proof i) ⇒ ii) is the Quillen-Suslin theorem [9].
ii) ⇒ iii) follows immediately upon setting U := [G | C]−1.
iii) ⇒ iv) Obvious.
iv) ⇒ i) follows from the Binet-Cauchy formula [10].
i) ⇒ v) Assume that both G and u are rZP matrices. As i) and iv) are equivalent, there
exist X ∈ F[z, z−1]m×p and r ∈ F[z, z−1]m such that XG = Im and rTu = 1, and hence
(rTX)(Gu) = 1. This proves that Gu is rZP.
v) ⇒ i) Assume, by contradiction, that IG 6= F[z, z−1]. Then IG is included in some
maximal ideal M, and F[z, z−1]/M is a field [11]. The matrix Ḡ ∈ (F[z, z−1]/M)p×m,
whose (i, j)-th element is gij +M, has not full column rank, and therefore there exists a
nonzero vector ū ∈ (F[z, z−1]/M)m such that Ḡū = 0. It is not restrictive to assume that
in

ū =


u1 +M
u2 +M

...
um +M


one of the ui’s, say uk, is 1. Consequently, the G-image of the zero prime vector u :=
[u1 u2 . . . 1 . . . um]T has all entries in M, and hence is not zero prime.

Lemma 2.2 Let G be a matrix in F[z, z−1]p×m.

i) G is rMP if and only if it is right (zero) prime in every ring F(zci )[zi, z
−1
i ], i =

1, 2, ..., n;

ii) G is rVP if and only if it is rZP in every ring F(zi)[zci , (z
−1
i )c], i = 1, 2, ..., n.

Proof i) Assume thatG is a rMP matrix in F[z, z−1]p×m, and denote by ppi(µ`) the prim-
itive part of the `-th maximal order minor of G, µ`, w.r.t. the ring F[zci , (z

c
i )
−1][zi, z−1

i ].
Notice that in this ring the only common divisors of all ppi(µ`) are units. On the other
hand, set h = g.c.d.F(zc

i )[zi,z
−1
i ]
{ppi(µ`); ` = 1, 2, ...,

( p
m

)
} and denote by d the product of

all denominators of the coefficients of h. Then, by applying Theorem 2.69 of [12] to the
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ring F[zci , (z
c
i )
−1][zi, z−1

i ], we have that ppi(hd) is a g.c.d. of ppi(µ`), ` = 1, 2, ...,
( p
m

)
in

F[z, z−1], and hence is 1. Therefore, h ∈ F(zci ), which implies that g.c.d.F(zc
i )[zi,z

−1
i ]
{µ`} is

an element of F(zci ). Consequently, G is right prime in F(zci )[zi, z
−1
i ], i = 1, 2, ..., n.

Conversely, assume that G is right prime w.r.t. F(zci )[zi, z
−1
i ], i = 1, 2, ..., n, and

suppose that all elements in IG, and, in particular, all maximal order minors of G, have
a nonunit common divisor g ∈ F[z, z−1]. Then g is not a unit in F(zci )[zi, z

−1
i ] for some i,

which contradicts the assumption.
The proof of ii) follows the same lines.

Proposition 2.3 Let G ∈ F[z, z−1]p×m be a full column rank matrix. The following facts
are equivalent:

i) G is right minor prime;

ii) for i = 1, 2, ..., n there exist matrices Ci ∈ F[z, z−1]p×(p−m) and nonzero L-polynomials
ci ∈ F[zci , (z

−1
i )c] such that

det[ G | Ci ] = ci; (2.2)

iii) for i = 1, 2, ..., n there exist matrices Ui ∈ F[z, z−1]p×p and nonzero L-polynomials
bi ∈ F[zci , (z

−1
i )c] such that

UiG = bi

[
Im
0

]
; (2.3)

iv) for i = 1, 2, ..., n there exist matrices Hi ∈ F[z, z−1]m×p and nonzero L-polynomials
ψi ∈ F[zci , (z

−1
i )c] such that

HiG = ψiIm; (2.4)

v) for every rMP vector u ∈ F[z, z−1]m, also Gu is rMP;

vi) for every u ∈ F(z)m, Gu ∈ F[z, z−1]p implies u ∈ F[z, z−1]m.

Proof Noting that

• det[ G | Ci ] = ci ∈ F[zci , (z
−1
i )c], ci 6= 0, means that [ G | Ci ] is unimodular in

F(zci )[zi, z
−1
i ];

• (2.3) is equivalent to assume that ŨiG =
[
Im
0

]
, for some Ũi, unimodular in F(zci )[zi, z

−1
i ];

• (2.4) corresponds to the existence of a left inverse of G in F(zci )[zi, z
−1
i ],

the equivalence of i) ÷ v) follows from Lemma 2.2 and Proposition 2.1.
v) ⇒ vi) Suppose, by contradiction, that there exists w ∈ F[z, z−1]p which is expressed
as w = Gu, for some u ∈ F(z)m \ F[z, z−1]m. It entails no loss of generality assuming
that u = n

d ū, for some rFP (and hence, being a vector, rMP) vector ū ∈ F[z, z−1]m and
n, d ∈ F[z, z−1] nonzero factor coprime L-polynomials, with d not a unit.
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So, G(nū) = dw, and as n and d are coprime, it follows that w = nw̄ for some L-
polynomial vector w̄. Consequently, the matrix G, when applied to the rMP vector ū,
produces a not rMP L-polynomial vector dw̄, thus contradicting assumption v).
vi)⇒ v) If there would be a rFP (rMP) vector u such that Gu = dw, with d a nonunit
L-polynomial and w ∈ F[z, z−1]p, then we would have G1

du = w, which contradicts
assumption vi).

By resorting, again, to Proposition 2.1 and Lemma 2.2 and by adopting the same
reasonings as in the proof of the above proposition, one gets the following result.

Proposition 2.4 Let G ∈ F[z, z−1]p×m be a full column rank matrix. The following facts
are equivalent:

i) G is right variety prime;

ii) for i = 1, 2, ..., n there exist matrices Hi ∈ F[z, z−1]m×p and nonzero L-polynomials
ψi(zi) ∈ F[zi, z−1

i ] such that
HiG = ψi(zi)Im; (2.4)

iii) for i = 1, 2, ..., n there exist matrices Ui ∈ F[z, z−1]p×p and nonzero L-polynomials
bi ∈ F[zi, z−1

i ] such that

UiG = bi

[
Im
0

]
;

iv) for i = 1, 2, ..., n there exist matrices Ci ∈ F[z, z−1]p×(p−m) and nonzero L-polynomials
ci ∈ F[zi, z−1

i ] such that
det[ G | Ci ] = ci;

v) for every u ∈ F[z, z−1]m rVP, also Gu is rVP.

3 Finite support nD behaviors

Given any L-polynomial matrix G ∈ F[z, z−1]p×m, the F[z, z−1]-module generated by its
columns can be naturally viewed as a family of finite support nD signals with p compo-
nents, closed w.r.t. linear combinations and shifts along the coordinate axes. To this end
one must associate every L-polynomial vector

w =
∑

h∈Zn

w(h) zh, (3.1)

where zh denotes the term zh1
1 zh2

2 ...zhn
n , with the nD sequence {w(h)}h∈Zn .

Conversely, every linear and shift-invariant family B of nD trajectories is a Noetherian
F[z, z−1]-module and hence can be represented as the image of some L-polynomial matrix
G ∈ F[z, z−1]p×m, i.e.

B = ImG := {w ∈ F[z, z−1]p : w = Gu,u ∈ F[z, z−1]m}.
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We will call B an nD (finite support) behavior and G a generator matrix of B.
From an abstract point of view nD behaviors with p components coincide with the

submodules of F[z, z−1]p, and we can expect that most of the internal features of nD
behaviors mirror into specific algebraic properties of the associated generator matrices.

As in this contribution behaviors will always be assumed “finite support”, when no
confusion arises this attribute will be dropped.

It is easy to realize that generator matrices of a same behavior B have the same rank
over the field F(z). Actually, if G1 and G2 are two such matrices, both G1 = G2P2 and
G2 = G1P1 have to hold true for appropriate Pi, i = 1, 2, with entries in F[z, z−1] ⊂ F(z).
Consequently, both the inequalities rankG1 ≤ rankG2 and rankG2 ≤ rankG1 are satisfied,
which proves rankG1 = rankG2. As a consequence, it is meaningful to define rank of B
the rank of anyone of its generator matrices.

The set of all behaviors B of rank r in F[z, z−1]p, partially ordered w.r.t. the inclusion,
will be denoted by G(p, r). The rank r of a behavior B somehow represents its complex-
ity index, as r independent trajectories can be found in B , while every r + 1-tuple of
trajectories (w1,w2, ...,wr+1) satisfies an autoregressive equation

p1w1 + p2w2 + ...+ pr+1wr+1 = 0,

where not every pi ∈ F[z, z−1] is zero.

A behavior B is free if it can be represented as the image of some full column rank L-
polynomial matrix. The set of all free behaviors of rank r in F[z, z−1]p, partially ordered
w.r.t. the inclusion, will be denoted by F(p, r).
While in the 1D case every behavior is free [11], nD behaviors, n ≥ 2, are not necessarily
free.

Example 2 Let B be the behavior of rank 1 generated by the L-polynomial matrix

G =
[
z1 + 1 z−1

2 + 1
z−1
1 − 1 (z1 − 1)(z−1

2 + 1)

]
.

If B were free, there would be a column vector ḡ ∈ F[z, z−1]2 which generates B and, in
particular, both columns of G. But then, ḡ should differ from [1 | z1 − 1]T in a nonzero
monomial, and hence could not be an element of B.

Proposition 3.1 Let B be an element of G(p, r) and let G ∈ F[z, z−1]p×m be any generator
matrix of B. B is free if and only if G factors as

G = Ḡ T, (3.2)

for suitable L-polynomial matrices Ḡ and T , with Ḡ full column rank and T `ZP.
Moreover, B admits a rFP (rMP/rVP/rZP) generator matrix if and only if in (3.2) Ḡ is
rFP (rMP/rVP/rZP).

Proof Assume that G = ḠT for some full column rank L-polynomial matrix Ḡ and some
`ZP matrix T ∈ F[z, z−1]r×m. Obviously, ImG ⊆ ImḠ. On the other hand, if T−1 is a
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right L-polynomial inverse of T , then Ḡ = G T−1, which implies ImḠ ⊆ ImG. So, B is
free, since it is generated by the full column rank matrix Ḡ.
Conversely, if B is free, it admits a full column rank generator matrix Ḡ. Consequently,
there exist two L-polynomial matrices of suitable dimensions, T and T̂ , such that ḠT = G
and GT̂ = Ḡ. Therefore Ḡ = GT̂ = ḠT T̂ . As Ḡ has full column rank, T T̂ = Ir, which
implies that T is an `ZP matrix.
The proof of the remaining part follows the same lines.

When B is a free behavior and a full column rank generator matrix is available, it is
possible to give a complete parametrization of the generator matrices of B, as shown in
the following corollary.

Corollary 3.2 Let B be an element of F(p, r) and let Ḡ ∈ F[z, z−1]p×r be a full column
rank generator matrix of B. The set of all generator matrices of B is given by

{G = ḠT : T ∈ F[z, z−1]r×m`ZP,m ∈ N}.

Given any element B in F(p, r), we may wonder whether B is a maximal element of
F(p, r) and, in case it is not, what are the maximal elements of F(p, r) that (properly)
include B. The answers to these questions depend upon the structure of the generator
matrices of B as clarified by the following proposition.

Proposition 3.3 Let B be an element of F(p, r) and let G be a full column rank generator
matrix of B.

i) B is a maximal element of F(p, r) if and only if G is rFP.

If B is not maximal

ii) B̄ = ImḠ is a maximal element of F(p, r) including B if and only if Ḡ is rFP and
G = ḠT for some nonsingular L-polynomial matrix T ;

iii) if in
G = ḠT, Ḡ rFP T nonsingular L− polynomial matrix, (3.3)

Ḡ is rMP, then the factorization (3.3) is essentially unique, i.e. all the Ḡ’s satisfying
(3.3) differ in a right unimodular factor, and the maximal element of F(p, r) including
B is unique.

Proof i) Assume that G is rFP, and suppose that B̂ := ImĜ, Ĝ ∈ F[z, z−1]p×r a full
column rank matrix, is a free behavior including B. Then G = ĜT, for some nonsingular
L-polynomial matrix T ∈ F[z, z−1]r×r. As G is a rFP matrix, T has to be unimodular and
hence B̂ = ImĜ ≡ ImG = B. This implies that B is maximal.
Conversely, suppose that B is a maximal element of F(p, r). If G were not rFP, it would
factor as G = ḠT, for suitable L-polynomial matrices Ḡ and T , with T ∈ F[z, z−1]r×r not
unimodular, and therefore B̄ := ImḠ would properly include B, a contradiction.
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ii) If B̄ has a rFP generator matrix Ḡ, by i) it is a maximal behavior in F(p, r). Moreover
as Ḡ satisfies G = ḠT , B̄ includes B. The converse can be proved in the same way.
iii) Suppose that in (3.3) Ḡ is a rMP matrix, and let G = Ḡ1T1, be another factorization
of G like (3.3). As Ḡ1 = Ḡ(TT−1

1 ), the rMP property of Ḡ and the fact that all columns
of Ḡ1 are L-polynomial vectors imply (cfr. Proposition 2.3) that U := TT−1

1 is an L-
polynomial matrix. But as Ḡ1 is a rFP matrix, U has to be unimodular, which proves
the uniqueness of the factorization. The uniqueness of the maximal behavior of F(p, r)
including B follows immediately.

Example 3 The 3× 2 L-polynomial matrix

G =

 (z1 + 1)(z2 + 1)2 −(z1 + 1)2(z2 + 1)
0 (z2 + 1)(z3 + 2)

(z2 + 1)(z3 + 2) 0


exhibits two different factorizations

G = Ḡ1T1 = Ḡ2T2, (3.4)

where

Ḡ1 =

 (z1 + 1)(z2 + 1) 0
0 z2 + 1

z3 + 2 z1 + 1

 and Ḡ2 =

 (z1 + 1)(z2 + 1) −(z1 + 1)2

0 (z3 + 2)
(z3 + 2) 0

 ,
are rFP matrices and

T1 =
[
z2 + 1 −(z1 + 1)

0 z3 + 2

]
T2 =

[
z2 + 1 0

0 z2 + 1

]
,

are full row rank L-polynomial matrices. Ḡ1 and Ḡ2 do not differ in a unimodular right
factor, and (3.4) is the only way they can be related.
As a consequence, B is included in two different maximal free behaviors of rank 2, i.e.
B̄1 = ImḠ1 and B̄2 = ImḠ2.

Remark Generally, when B is an element of F(p, r) which is not maximal, there is
more than one maximal free behavior in F(p, r) including B. This situation does not
arise when the number n of the indeterminates is less than three, as in this case factor
primeness and minor primeness are equivalent properties, and therefore every full column
rank L-polynomial matrix has an essentially unique factorization (3.3).

The general problem of embedding into a maximal free behavior of rank r an arbitrary
(not necessarily free) behavior B ∈ G(p, r) is always solvable for n ≤ 2. Actually, every
p ×m L-polynomial matrix G of rank r, in one or two indeterminates, can be expressed
in essentially a unique way as

G = ḠT,
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where Ḡ is a p × r rMP matrix, while T is an r ×m L-polynomial matrix with full row
rank. The procedure for obtaining such a factorization is the following: select in G a p× r
submatrix Ĝ, with full column rank, and write G as

G = ĜQ,

Q an r×m rational matrix (of rank r). By extracting a greatest right factor of Ĝ, represent
G as

G = ḠT, (3.7)

with Ḡ rFP, and hence rMP, and T a rational matrix. By Proposition 2.3, T is L-
polynomial. The uniqueness of the factorization can be proved as in Proposition 3.3, part
iii).

As a consequence of this factorization, every 1D or 2D behavior can be embedded
into a unique maximal free behavior of the same rank, and all maximal behaviors in
G(p, r) are free. When n is greater than 2, however, examples can be given of matrices
G ∈ F[z, z−1]p×m of rank r < m which cannot factor as G = ḠT , with Ḡ ∈ F[z, z−1]p×r

and T ∈ F[z, z−1]r×m. This makes it clear that there are behaviors in G(p, r) \ F(p, r)
which cannot be embedded into any free behavior of rank r.

Example 4 Let B be the behavior generated by the 3× 2 L-polynomial matrix

G =

 (z1 + 1)2 (z1 + 1)(z2 + 1) 0
−(z3 + 2) 0 z2 + 1

0 z3 + 2 z1 + 1


=

 (z1 + 1)(z2 + 1) 0
0 z2 + 1

z3 + 2 z1 + 1

 [
(z1 + 1)/(z2 + 1) 1 0

(−z3 − 2)/(z2 + 1) 0 1

]
=: G1T1.

As already seen in Example 1, G1 is rFP but not rMP, since the g.c.d. of its maximal order
minors is z2+1. If G could be expressed as G = ḠT , for suitable matrices Ḡ ∈ F[z, z−1]3×2

and T ∈ F[z, z−1]2×3, Ḡ should be rMP, as the g.c.d. of the 2nd order minors of G is 1.
But G1T1 = ḠT would imply G1 = Ḡ(TT−1

1 ), T−1
1 a rational right inverse of T1. Since Ḡ

is right minor prime, point vi) of Proposition 2.3 implies that TT−1
1 is L-polynomial, and

hence unimodular, otherwise G1 would have a nontrivial right factor. Thus G1 should be
rMP, a contradiction.
This shows that B cannot be embedded into a free behavior of rank 2.

Once we extend our investigation to the whole set G(p, r), and look for the maximal
elements of G(p, r) which include a given behavior B of rank r, we obtain very neat results,
as every B can be embedded into a unique maximal behavior. In order to characterize the
maximal elements of G(p, r), we introduce the notions of orthogonal B⊥ and of rational
envelope Brat of a behavior B.

Definition Given B ⊂ F[z, z−1]p its orthogonal behavior is the module

B⊥ := {p ∈ F[z, z−1]p : pTw = 0, ∀w ∈ B}. (3.5)

11



As a submodule of the Noetherian module F[z, z−1]p, B⊥ can be represented as the
image of a matrix H ∈ F[z, z−1]p×q, for some q ∈ N, namely B⊥ = ImH. Condition
pTw = 0, ∀ p ∈ B⊥, however, does not imply that w belongs to B, and in general, the
module

B⊥⊥ := {w ∈ F[z, z−1]p : pTw = 0, ∀ p ∈ B⊥}
properly includes B.

Definition Given a behavior B ⊂ F[z, z−1]p its rational envelope is the subspace of F(z)p

Brat :=
{ r∑
i=1

wiai : wi ∈ B, ai ∈ F(z), r ∈ N
}
. (3.6)

We are now in a position to provide a complete characterization of the maximal ele-
ments of G(p, r).

Proposition 3.4 Let B be an element of G(p, r). The following statements are equivalent:
(1) B is a maximal element of G(p, r);
(2) sw ∈ B ⇒ w ∈ B , for every w ∈ F[z, z−1]p and every nonzero s ∈ F[z, z−1];
(3) B = B⊥⊥;
(4) B = kerHT , for some HT ∈ F[z, z−1]q×p;
(5) B ≡ Brat ∩ F[z, z−1]p.

Proof (1) ⇒ (2) Suppose sw ∈ B, s ∈ F[z, z−1]. The behavior B′ generated by B and
w has the same rank of B, and hence, by the maximality assumption, coincides with B.
(2) ⇒ (3) As B and B⊥⊥ have the same rank r and B⊥⊥ ⊇ B , both behaviors generate
the same F(z)-subspace of F(z)p. In particular, w ∈ B⊥⊥ implies w ∈ (B⊥⊥)rat = Brat.
So, there exist pi, si ∈ F[z, z−1] and wi ∈ B , such that w =

∑r
i=1 wi pi/si, which implies

sw ∈ B , s = `.c.m.{si}. By assumption (2), also w is in B.
(3)⇒ (4) As B⊥ = ImH for some H ∈ F[z, z−1]p×q, we have B ≡ B⊥⊥ := (B⊥)⊥ = kerHT .
(4) ⇒ (5) The inclusion B ⊆ Brat ∩F[z, z−1]p is obvious. To show the converse inclusion,
let w =

∑
i aiwi, with ai ∈ F(z) and wi ∈ B, be an element of Brat ∩ F[z, z−1]p. Clearly

HTw =
∑
i ai(H

Twi) = 0, which shows that w is in B.
(5) ⇒ (1) If B′ ⊇ B and rankB′ = rankB, it is clear that B and B′ generate the same
F(z)-subspace of F(z)p and, consequently, Brat ∩ F[z, z−1]p = B′rat ∩ F[z, z−1]p. So, the
inclusions chain Brat ∩ F[z, z−1]p ⊇ B′ ⊇ B and assumption (5) together imply B′ = B,
which means that B is maximal.

By the above proposition, every behavior B in G(p, r) is included in a behavior, B⊥⊥,
which is maximal in G(p, r) and is uniquely determined by B. If G denotes any generator
matrix of B, B⊥⊥ can be represented as the kernel of any L-polynomial matrix H of rank
p− r satisfying HTG = 0, or, equivalently, as B⊥⊥ = ImF(z)G ∩ F[z, z−1]p.
Maximal elements of G(p, r) which are free are identified in the following corollary.

Corollary 3.5 Let B ∈ G(p, r) be a free behavior. B is a maximal element of G(p, r) if
and only if B = ImG for some rMP matrix G.

12



Proof Let G be a full column rank generator matrix of B. By the above proposition, B
is maximal if and only if

ImF(z)G ∩ F[z, z−1]p = ImG, (3.7)

and, by the equivalence i) ⇔ vi) of Proposition 2.3, (3.7) holds if and only if G is rMP.

The main features of maximal nD behaviors in G(p, r) can be summarized as follows
• a maximal element of G(p, r) is free if and only if it admits a rMP generator matrix;
• if n ≤ 2 all maximal elements of G(p, r) are free and hence have rMP generator

matrices;
• if n > 2 maximal elements of G(p, r) can be found which are not free.

4 Parity checks and trajectories recognition

As mentioned in the Introduction, finite support nD behaviors can be viewed as families of
trajectories of multidimensional systems or, in a communication context, as convolutional
codes produced by some finite state linear sequential machine. Recognizing legal trajec-
tories/codewords is a basic issue in failure detection and error detection. This problem
can be managed by resorting to a linear filter (residual generator or syndrome former)
that produces an identically zero output when the input is an admissible trajectory of the
behavior B.

From a mathematical standpoint, this requires to find a set of sequences endowed with
the property that their convolution with the elements of B (and those only) is zero. Such
a set obviously exists, as, for instance, the algebraic dual B∗ of B always satisfies the
above mentioned conditions. When resorting to B∗, however, we generally have to use
also infinite support sequences, which are not convenient from an algorithmic point of
view. So, it is natural to look for conditions guaranteeing that an unambiguous decision
on a given trajectory can be taken by using only parity checks represented by compact
support sequences.

For a given behavior B ⊆ F[z, z−1]p, a compact support parity check is a vector p ∈
F[z, z−1]p that satisfies pTw = 0, ∀w ∈ B. So, if G is any p ×m generator matrix of B,
the set of all the compact support parity checks (in algebraic terms, the module of the
syzygies corresponding to the row module of G) is B⊥.
It is clear that the the trajectories of B can be recognized by means of a finite set of
(compact support) parity checks if and only if B coincides with B ⊥⊥ or, equivalently, B is
the kernel of some L-polynomial matrix HT , whose rows constitute, therefore, a complete
set of parity checks for B.

As we will see, the kernel representation corresponds to the possibility of giving a
bound on the size of the windows one has to look at when deciding whether a signal
belongs to a given behavior B, and it expresses a sort of “localization” of the system laws.

Denoting by B|S := {w|S : w ∈ B} the set of all restrictions to S ⊂ Zn of behavior
trajectories, the above localization property can be formalized as follows:

13



(LD) [Local-detectability] A finite behavior B is locally-detectable if there is an integer
ν > 0 such that every signal w satisfying w|S ∈ B|S for every S ⊂ Zn with diam(S) ≤ ν,
is in B.

The equivalence between local detectability and kernel description is formally stated
in the following proposition.

Proposition 4.1 Let B be an element of G(p, r). B is locally detectable if and only if
there exist h ∈ N and an L-polynomial matrix HT ∈ F[z, z−1]h×p s.t.

B = kerHT := {w ∈ F[z, z−1]p : HTw = 0}. (4.1)

Proof Let B = ImG,G ∈ F[z, z−1]p×m, be a locally detectable behavior and assume, by
contradiction, that it is not maximal in G(p, r). Then there exist a behavior B′, maximal
in G(p, r), which properly includes B, and a sequence w′ ∈ B′ \ B. By Proposition 3.4,
w′ can be expressed as w′ = Gq, for some rational sequence, whereas no L-polynomial
sequence v satisfies w′ = Gv.
Let δ > 0 be the radius of a ball, B(0, δ), centered in the origin, such that B(0, δ) ⊃
supp(G). For any finite window S the (finite) sequence u(S), obtained by considering
those coefficients of a power series expansion of q that correspond to the terms in

Sδ := {h ∈ Zn : d(h,S) ≤ δ}, (4.2)

satisfies
w′|S = (Gq)|S ≡ (Gu(S))|S ∈ B|S,

and therefore, by the local detectability assumption, w′ should be in B, a contradiction.
Assume B = ker HT , for some L-polynomial matrix HT and let ν be the diameter of a
ball, centered in the origin, which includes the support of HT . It is clear that w ∈ B if
and only if the coefficient of zi in HTw, (HTw, zi), is zero for all i ∈ Zn and hence if and
only if

w | i− supp(HT ) ∈ B | i− supp(HT ), ∀ i ∈ Zn,

where i − supp(HT ) := {i − j : j ∈ supp(HT )}. This way the local detectability of B is
proved.

The above proposition identifies locally detectable behaviors as kernels of L-polynomial
matrices. If we consider the image representations, however, and try to distinguish locally
detectable behaviors from their generator matrices, we can obtain a complete characteri-
zation only in the case of free behaviors.

Proposition 4.2 Let B be an element of G(p, r). If B is locally detectable, the r-th order
minors of any generator matrix G of B are devoid of common factors. In particular, if B
is free, B is locally detectable if and only if it admits a rMP generator matrix.

Proof Let B be a locally detectable behavior and let G ∈ F[z, z−1]p×m be any generator
matrix of B. Suppose that Ui ∈ F(zci )[zi, z

−1
i ]p×p is a unimodular matrix in the P.I.D.

14



F(zci )[zi, z
−1
i ] that reduces G to its Hermite form w.r.t. F(zci )[zi, z

−1
i ], that is

Ui G =
[

∆i

0

]
}r
}p− r ,

with ∆i ∈ F(zci )[zi, z
−1
i ]r×m a full row rank matrix. There is no losss of generality assuming

that Ui has an L-polynomial inverse Vi. So, we get the identity

G = Vi

[
∆i

0

]
= Ṽi ∆i,

where Ṽi is an L-polynomial matrix, right prime in F(zci )[zi, z
−1
i ], and hence the g.c.d. of

its maximal order minors is a unit in F(zci )[zi, z
−1
i ].

As ∆i has full row rank, it has a (rational) right inverse ∆−1
i , and one has

G∆−1
i = Ṽi. (4.3)

As B = Im G is locally detectable, B = Brat ∩ F[z, z−1]p, and therefore an L-polynomial
matrix Φi can be found such that

G Φi = Ṽi.

Clearly, the g.c.d. of the r× r minors of G divides the g.c.d. of the maximal order minors
of Ṽi, and hence is a unit in F(zci )[zi, z

−1
i ]. But this holds true for every i = 1, 2, ..., n, and

therefore the g.c.d. of the r × r minors of G is a unit in F[z, z−1].
The second part follows immediately from Corollary 3.5.

Remark The implication in the first part of Proposition 4.2 cannot be reversed. Actually,
consider a behavior B in G(p, r) generated by some p×m matrix G, that factors as G = ḠT ,
with Ḡ a rMP matrix and T a `MP matrix, which is not `ZP. Clearly, the r-th order minors
of G are devoid of common factors. However, ImG is not locally detectable, as it is properly
included in Im Ḡ and hence is not maximal in G(p, r).

5 Signal extension

In many situations the available data represent just a portion of the complete trajectory
and are corrupted by noise and system failures. As a consequence, the parity checks, in
general, give a positive answer only on some region S of Zn, and it is natural to look for
a legal signal (i.e. a trajectory in B) that fits on S the available data.

A thorough discussion of this problem is based on the definition of what we precisely
mean by “ satisfying the parity checks” on a set S ⊂ Zn.

Definition Let B = kerHT be a locally detectable behavior. A sequence v ∈ F[z, z−1]p

satisfies the parity checks of B in h ∈ Zn if(
HTv, zi

)
= 0, ∀ i ∈ h + supp(HT ). (5.1)
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In general, if S is any subset of Zn, v satisfies the parity checks of B on S if satisfies them
in every point of S.

Letting HT :=
∑

jH
T
j zj, the above condition reduces to the following system of linear

equations ∑
j ∈ supp(HT )

HT
j v(i− j) = 0, ∀ i ∈ S + supp(HT ), (5.2)

and hence to a system of all difference equations which involve the sample v(h).

Fig. 5.1 below describes the two-dimensional case; each dashed polygon intersecting S
represents the coordinates (i1 − j1, i2 − j2) of the samples which appear in a system like
(5.2). As it is suggested by Fig. 5.1, and clearly implied by the convolutional nature of
the system laws expressed by condition HTv = 0, knowing the data on a finite windowW
allows to check the signal only on those subsets S of W satisfying the inclusion Sν ⊆ W,
ν > 0 being an integer selected according to the size of the support of HT .

-
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Even when the parity checks have been successfully performed on a sequence v in a
subset S which fulfills the above inclusion, in general the data on S cannot be extended
into a legal trajectory, namely no signal in B fits on S the available data. When the local
detectability hypothesis on B is properly strengthened, however, an integer ε > 0 can be
found, such that a positive check on Sε guarantees the existence of some w ∈ B which
coincides with v in S. Note that the amount of data we need may far exceed the part of
them we interpolate. Actually, checking v on Sε requires to know the samples of v on a
superset, say Sν+ε, of Sε, whereas the data we are able to fit are those belonging to the
set S.
The formal definition of extendability property is the following.

(E) [Extendability] A locally detectable behavior B = kerHT is extendable if there
is an integer ε > 0 such that, for every subset S ⊂ Zn and every v ∈ F[z, z−1]p, which
satisfies on Sε the parity checks of B, a trajectory w ∈ B can be found s.t. w|S = v|S.

An alternative definition of extendability refers to pairs of sequences and pairs of sets.
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(TE) [Twin-extendability] A locally detectable behavior B = kerHT is twin-extendable
if there exists an integer δ > 0 such that, for every pair of sets S1,S2 ⊂ Zn, with d(S1,S2) >
δ and every pair of signals v1,v2 ∈ F[z, z−1]p, which satisfy the parity checks of B on Sδ1
and Sδ2 , respectively, w ∈ B can be found such that

w|S1 = v1|S1, and w|S2 = v2|S2. (4.4)

Proposition 5.1 Extendability and twin-extendability are equivalent properties.

Proof (E) ⇒ (TE) Consider a positive integer ρ such that supp(HT ) ⊂ B(0, ρ) and
introduce δ := ε + 2ρ. Let v1 and v2 be two sequences that satisfy the parity checks on
the sets Sδ1 and Sδ2 , respectively, with d(S1,S2) > δ. The signal ṽ1 which coincides with
v1 on Sε+ρ1 and is zero on C(Sε+ρ1 ), the complementary set of Sε+ρ1 , satisfies the parity
checks on Sε1 ∪ C(S

ε+2ρ
1 ). By (E) there exists w1 ∈ B such that

w1|S1 = ṽ1|S1 = v1|S1

w1|C(Sδ1) = ṽ1|C(Sδ1) = 0|C(Sδ1).

In the same way one can find w2 ∈ B such that

w2|S2 = v2|S2 and w2|C(Sδ2) = 0|C(Sδ2).

The trajectory w := w1 + w2 ∈ B clearly satisfies (4.4).
(TE)⇒ (E) Given S ⊂ Zn, assume that v satisfies the parity checks on Sδ. As 0 satisfies
the parity checks on CS, there exists in B a trajectory w such that w|S = v|S (and
w|C(Sδ) = 0|C(Sδ)). So (E) holds with ε = δ.

Proposition 5.2 below characterizes extendable behaviors as those described by `ZP
parity check matrices or by rZP generator matrices, thus showing that properties (E) and
(TE) are stronger versions of local detectability and that extendability is possible only for
free behavior.

Proposition 5.2 Let B ⊆ F[z, z−1]P be a finite behavior of rank r. The following facts
are equivalent

i) B is extendable;

ii) B = kerHT , for some `ZP matrix HT ∈ F[z, z−1](p−r)×p;

iii) B = ImG, for some rZP matrix G ∈ F[z, z−1]p×r.

Proof i) ⇔ ii) Showing that the left zero-primeness of HT implies property (E) does
not depend on the finiteness of the signal supports. Hence the necessity part of the proof
mimics that given in [13] for infinite 2D behaviors and will be omitted.
The sufficiency part is quite different, and based on the following technical lemmas.
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Lemma 5.3 [13] Let HT be an element of F[z, z−1]q×p. The map HT :
F[z, z−1]p → F[z, z−1]q : w 7→ HTw is onto if and only if HT is `ZP.

Lemma 5.4 [14] Let m(z) be in F[z]. For any integer ρ > 0 there is p(z) ∈ F[z]
such that

m(z)p(z) ∈ F[zρ1 , ..., z
ρ
n].

Suppose that B satisfies property (E) for some ε > 0. As B is locally detectable, it can
be described as B = kerHT , and it is not restrictive assuming that HT is `FP. To prove
that HT is `ZP, we use the above Lemma 5.3 and show that for all vectors a in F[z, z−1]q,
equation HTx = a admits an L-polynomial solution. As HT has full row rank over F(z),
the equation has a rational solution v = n/d, n ∈ F[z]p, d ∈ F[z], and hence

HTn = d a. (5.4)

Set ρ = 2δh + 4δa, where δh and δa are the radii of two balls, with center in the origin,
including supp(HT ) and supp(a), respectively. By Lemma 5.4, there exists p(z) ∈ F[z]
such that pd belongs to F[zρ1 , ..., z

ρ
n]. Multiplying both members of (5.4) by p, we get

HT p n = pda, (5.5)

where the assumption on ρ implies that the support Q of pda is the disjoint union of
finitely many shifted copies Qi of supp(a), whose mutual distance is lower bounded by
2(ε+ δh):

Q = ∪i supp(ci zρia) = ∪i Qi. (5.6)

From equation (5.5) it follows that the sequence pn fulfills the parity checks of the behavior
on the set C(Qδh). So, by the extendability assumption, a behavior sequence w can be
found, coinciding with pn on C(Qδh+ε). As the support of the L-polynomial sequence
y := w−pn is included in ∪iQδh+ε

i , y can be rewritten as y =
∑

i yi, where yi denotes the
restriction of y to Qδh+ε

i . Also, by the choice of ρ we made, all the supports of HTyi are
disjoint, and therefore HTy = pda implies HTyi = ci zρia, thus proving that the original
equation has an L-polynomial solution.
ii) ⇔ iii) Assume first that B = ImG, for some rZP matrix G ∈ F[z, z−1]p×r. By
Proposition 2.1, then, G can be column-bordered into a square unimodular matrix U =

[ G L ]. If V :=
[
X
HT

]
is the (L-polynomial) inverse of U , we have

[
X
HT

]
[G L ] =

[
Ir 0
0 Ip−r

]
.

Being a submatrix of a unimodular matrix, HT will be `ZP, and it is easy to see that
B⊥⊥ = kerHT . As G is rZP, and hence rMP, B is maximal in G(p, r) and B = B⊥⊥ =
kerHT , which proves the result.
Conversely, if B = kerHT , for some `ZP matrix HT ∈ F[z, z−1](p−r)×p, by the same
reasoning adopted before, one can show that there exists a rZP matrix G ∈ F[z, z−1]p×r

satisfying HTG = 0.
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Clearly, B ≡ ImF(z)G ∩ F[z, z−1]p, and hence, as rZP matrices are rMP, B ≡ ImG, with
G ∈ F[z, z−1]p×r rZP.

In the definition of extendability no constraints are assumed on the shape and cardi-
nality of the set S where the parity checks are performed. As a counterpart of adopting
this general setting, only behaviors endowed with strong structural properties possess this
feature. If we agree to extend into behavior sequences only data sets which fulfill the
parity checks on particular subsets of Zn, we can partly relax the primeness requirements
on the generator matrices. The subsets of Zn we will refer to are (infinite) cylinders with
either one-dimensional or n-1-dimensional bases, enveloping a given finite set S. More
precisely, 1-cylinders enveloping S are defined as

Ci(S) := {h ∈ Zn : hi = ki, ∃k ∈ S}, i = 1, 2, . . . , n, (5.7)

while n-1-cilinders are

Cic(S) := {h ∈ Zn : hic = kic , ∃k ∈ S}, i = 1, 2, . . . , n, (5.8)

where hci denotes the n-1-tuple in (h1, h2, . . . , hn) complementary to hi.

(E1) [1-Extendability] A locally detectable behavior B = kerHT is 1-extendable if there
is an integer ε > 0 such that, for every finite subset S ⊂ Zn and every v ∈ F[z, z−1]p, if
v satisfies the parity checks of B on the 1-cylinder Ci(Sε), for some i ∈ {1, 2, . . . , n}, a
trajectory w ∈ B can be found s.t. w|S = v|S.

(En−1) [(n − 1)-Extendability] A locally detectable behavior B = kerHT is (n − 1)-
extendable if there is an integer ε > 0 such that, for every finite subset S ⊂ Zn and every
v ∈ F[z, z−1]p, if v satisfies the parity checks of B on the (n − 1)-cylinder Cic(Sε), for
some i ∈ {1, 2, . . . , n}, a trajectory w ∈ B can be found s.t. w|S = v|S.

Proposition 5.5 Let B = ImG be a free behavior, G ∈ F[z, z−1]p×r a full column rank
generator matrix.

i) G is rMP ⇔ B is 1-extendable;
ii) if G is rVP B is n-1-extendable.

Proof i) By definition, 1-extendability implies local detectability, and therefore, by
Proposition 4.2, B admits a rMP generator matrix.
If G is rMP, by Proposition 4.2 B is locally detectable. As G is rZP in F(zci )[zi, z

−1
i ],

i = 1, 2, . . . , n, the behaviors Bi := ImF(zc
i )[zi,z

−1
i ]G, i = 1, 2, . . . , n, satisfy definition (E)

for suitable εi > 0 and hence are extendable (and locally detectable) in a 1D context.
Let ε be the maximum of the εi. If we represent B as the kernel (in F[z, z−1]p) of some
L-polynomial matrix HT , then Bi ≡ kerF(zc

i )[zi,z
−1
i ]H

T = {w ∈ F(zci )[zi, z
−1
i ]p : HTw = 0}.

Consider, now, a finite set S ⊂ Zn and some v ∈ F[z, z−1]p which satisfies the parity
checks of B in Ci(Sε), for some i ∈ {1, 2, . . . , n}. As an element of F(zci )[zi, z

−1
i ]p, v

satisfies the parity checks of Bi on the one-dimensional projection Iεi of Sε onto the i-th
coordinate axis, and hence there is w̃ = Gũ, ũ ∈ F(zci )[zi, z

−1
i ]m, in Bi s.t. w̃|Ii = v|Ii.
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So, as n-dimensional sequences, v and w̃ coincide on Ci(S). If r is the radius of a ball
B(0, r) centered in the origin which includes supp(G), clearly the values of w̃ in S depend
only on the values of ũ in Sr. Thus, the finite sequence u, which coincides with ũ on Sr
and is zero elsewhere, produces a behavior sequence w = Gu which coincides with v on
S.
ii) Following an analogous reasoning one shows that G rVP implies B n-1-extendable.

It is worthwhile to notice that, as a consequence of i) of the above proposition, for free
behaviors local detectability and 1-extendability are equivalent properties.
In case of general (not necessarily free) locally detectable behaviors, sufficient conditions
for 1 and n-1 extendability are provided by the following proposition.

Proposition 5.6 Let B = kerHT be a locally detectable behavior.
i) if HT is `MP then B is 1-extendable;
ii) if HT is `VP then B is n-1-extendable.

Proof i) If HT is `MP, by Lemma 2.2, it is `ZP in F(zci )[zi, z
−1
i ], i = 1, 2, . . . , n. So, by

Proposition 5.2, the behaviors

B̂i := kerF(zc
i )[zi,z

−1
i ]H

T = {wi ∈ F(zci )[zi, z
−1
i ]p : HTwi = 0},

with elements in F(zci )[zi, z
−1
i ]p, i = 1, 2, . . . , n, can be expressed as B̂i = ImF(zc

i )[zi,z
−1
i ]Gi

for suitable L-polynomial matrices Gi, rZP in F(zci )[zi, z
−1
i ], and they fulfill the extend-

ability condition for suitable positive integers εi. Set ε := maxi εi.
Consider a finite set S of Zn, and assume that v ∈ F[z, z−1]p satisfies the parity checks of
B on Ci(Sε) for some i. Then v can be viewed as an element of F(zci )[zi, z

−1
i ]p, i.e. as a

one-dimensional sequence, which satisfies the parity checks of B̂i on the projection, Iεi , of
Ci(Sε) onto the i-th coordinate axes. By the extendability of B̂i, there exists wi = Giui,ui
with elements in F(zci )[zi, z

−1
i ]p, such that

wi|Ii = v|Ii.

Thus, if we regard wi and v as n-dimensional sequences, we get

wi|Ci(S) = v|Ci(S).

Let r be a positive integer such that B(0, r) ⊇ supp(Gi), and consider the finite support
sequence u which coincides with a power series expansion of ui on Sr and is zero elsewhere.
Then w := Giu is a finite support sequence which satisfies

w|S = wi|S = v|S,

and belongs to B, as
HTw = HTGiu = 0.

ii) The proof is essentially the same given for i).
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