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Abstract.

Local reachability of two-dimensional (2D) positive systems, by means
of positive scalar inputs, is addressed by means of a graph theoretic ap-
proach. Some results concerned with equivalent conditions for local reach-
ability as well as upper and lower bounds on the reachability indices are
provided.

1 Introduction

Recent years have seen a growing interest in two-dimensional (2D) systems
that are subject to a positivity constraint on their dynamical variables [2, 3,
4, 5]. There are actually several different motivations for this interest, coming
from various domains of science and technology. Positive 2D systems arise,
for instance, when discretizing pollution and self-purification processes along
a river stream, or when providing a discrete model for the traffic flow in a
motorway. More generally, the positivity assumption is a natural one when
describing distributed processes whose variables represent quantities that are
intrinsically nonnegative, like pressures, concentrations, population levels, etc.

In this paper we address the positive local reachability property for 2D pos-
itive systems with scalar inputs. To this end, we assume a combinatorial point
of view. 2D influence graphs (namely direct graphs which exhibit two types of
arcs and two types of input flows [3, 4]) are the appropriate tools for formalizing
and solving the problem. The results presented here are preliminary and the
general solution of the problem seems nontrivial.

2D positive systems considered in this paper are described by the following
state-updating equation [1]:

x(h+1, k+1) = A1x(h, k+1)+A2x(h+1, k)+B1u(h, k+1)+B2u(h+1, k), (1)

where the local states x(·, ·) and the scalar input u(·, ·) take nonnegative values,
A1 and A2 are nonnegative n × n matrices, B1 and B2 are nonnegative n-
dimensional column vectors, and the initial conditions are assigned by specifying
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the nonnegative values of the state vectors on the separation set C0 := {(h, k) :
h, k ∈ Z, h+ k = 0}, namely by assigning all local states of the initial global
state X0 := {x(h, k) : (h, k) ∈ C0}.

Hurwitz products of two n× n matrices A1 and A2 are inductively defined as

A1
i jA2 = 0, when either i or j is negative,

A1
i 0A2 = Ai1, for i ≥ 0, A1

0 jA2 = Aj2, for j ≥ 0,
A1

i jA2 = A1(A1
i−1 jA2) +A2(A1

i j−1A2), for i, j > 0.

A 2D influence graph D(2) is a sextuple (s, V,A1,A2,B1,B2), where s is
the source, V = {v1, v2, . . . , vn} is the set of vertices, A1 and A2 are subsets of
V × V whose elements are called A1-arcs and A2-arcs, respectively, meanwhile
B1 and B2 are subsets of s× V whose elements are called B1-arcs and B2-arcs,
respectively. To every 2D positive system (1), of size n, with scalar inputs we
associate a 2D influence graph D(2)(A1, A2, B1, B2) of source s, with n vertices,
v1, v2, . . . , vn. There is an A1-arc (an A2-arc) from vj to vi iff the (i, j)th entry
of A1 (of A2) is nonzero. There is a B1-arc (a B2-arc) from s to vi iff the ith
entry of B1 (of B2) is nonzero.

A path p in D(2)(A1, A2, B1, B2) is a sequence of adjacent arcs and, in par-
ticular, an s-path is a path which originates from the source s. A path (in
particular, an s-path) p is specified by assigning its vertices and the type of arcs
they are connected by. If we denote by |p|1 the number of A1-arcs and B1-arcs,
and by |p|2 the number of A2-arcs and B2-arcs occurring in p, then [|p|1 |p|2]
is the composition of p and |p| = |p|1 + |p|2 its length. A path whose extreme
vertices coincide is a cycle. In particular, if each vertex appears exactly once
as the first vertex of an arc, the cycle is a circuit. A 2D influence graph is
strongly connected is for any two vertices vi and vj there is a path (of arbitrary
composition) connecting vi to vj . D(2)(A1, A2, B1, B2) is strongly connected iff
A1 +A2 is an irreducible matrix.

Two matrices M and N , of the same size, are said to have the same nonzero
pattern if mij 6= 0 implies nij 6= 0 and viceversa. A vector v is said to be an
ith monomial vector if it can be expressed as αiei, where ei denotes the ith
canonical vector and αi is some positive real coefficient. A monomial matrix
is a nonsingular (square) matrix whose columns are monomial vectors.

2 Reachability and positive reachability defini-
tions

A 2D state-space model (1) is positively locally reachable [1] if, upon as-
suming X0 = 0, for every x∗ ∈ Rn

+ there exists (h, k) ∈ Z ×Z with h + k > 0
and a nonnegative input sequence u(·, ·) such that x(h, k) = x∗. When so, we
will say that x∗ is reached in h+ k steps.

As for standard (i.e., not necessarily positive) 2D systems, positive local
reachability analysis can be reduced to the analysis of the reachability matrix
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in k steps [1]

Rk = [B1 B2 A1B1 A1B2 +A2B1 A2B2 A2
1B1 . . . Ak−1

2 B2 ]
=

[
(A1

i−1 jA2)B1 + (A1
i j−1A2)B2

]
i,j≥0, 0<i+j≤k

as k varies over the set of positive integers. In fact, the set X+
k of all local states

that can be reached in k steps, by means of nonnegative inputs and starting
from initial zero conditions, obviously coincides with the set of all nonnegative
combinations of the columns of Rk, namely X+

k = ConeRk.
As for 1D positive systems, the chain of reachability cones does not neces-

sarily reach stationarity and, indeed, certain positive states can be reached only
asymptotically. Moreover, positive local reachability is trivially equivalent to
the possibility of reaching (starting from zero initial conditions) every vector
of the canonical basis in Rn by means of nonnegative inputs, which in turn
amounts to saying that there exists some k ∈ N such that the reachability ma-
trix in k steps, Rk, includes an n × n monomial submatrix. This is, of course,
a structural property of the system, by this meaning that it only depends on
the nonzero patterns of the system matrices and not on the specific values of
their nonzero elements. However, differently from the 1D positive case, the
reachability index IR of a (locally reachable) 2D positive system, namely the
minimum index k such that X+

k = ConeRk = Rn
+, is not bounded by n.

Example 1 Consider the following 2D positive system: (A1, A2, B1, B2) =(
[ 0 e3 e1 0 e6 e7 e4 ] , [ e2 0 0 e5 0 0 0 ] , [ e1 + e4 ] , [ 0 ]

)
, which cor-

responds to the 2D graph of Fig. 2.1, where thick lines represent A1-arcs and
B1-arcs, while thin lines A2-arcs and B2-arcs.
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Fig. 2.1 D(2)(A1, A2, B1, B2) corresponding to Example 1

In this case, the reachability index proves to be 13 while the system dimen-
sion is n = 7. The above structure can be generalized. If the 2D influence graph
of a 2D positive system consists of two loops, including n1 vertices and n1 + 1
vertices, respectively, connected by two arcs of type 2, while all the remaining
are of type 2, just like in Fig. 2.1, IR turns out to be of the same order as
n1 · (n1 + 1), namely of the same order as n2/4, since n = n1 + (n1 + 1).

Example 1 has proved that for a locally reachable 2D positive system the
reachability index may reach the value n2/4. It seems reasonable to conjecture
that n2/4 represents an upper bound for the reachability index of every 2D

3



positive system, however, up to now a formal proof of this result is not available.
A necessary condition for positive reachability is the following one.

If the positive system (1) is positively locally reachable then the matrix
[A1 A2 B1 B2 ] includes an n× n monomial submatrix.

If the system is locally reachable, there exist n pairs (hi, ki) ∈ Z+×Z+, i =
1, 2, . . . , n, such that (A1

hi−1 kiA2)B1 + (A1
hi ki−1A2)B2 is an ith monomial

vector. If hi + ki = 1, the ith monomial vector is a column of B1 or of B2,
otherwise, if hi + ki > 1, it is a column of A1 or of A2 (possibly both).

As for 1D positive systems, local reachability property admits an interesting
and useful characterization in terms of the 2D influence graph associated with
the system. Indeed, saying that (A1

hi−1 kiA2)B1 + (A1
hi ki−1A2)B2 is an

ith monomial vector just means that every s-path p of composition [|p|1 |p|2] =
[hi ki] necessarily reaches the vertex vi alone. If so, we will say that the vertex
vi is deterministically reached by all s-paths of composition [hi ki]. As
a consequence, the 2D system (1) is positively locally reachable iff for every
i ∈ {1, 2, . . . , n} the vertex vi is deterministically reached by all s-paths of a
given composition [hi ki]. Moreover, IR coincides with

max
i

min
hi,ki

{hi + ki : all s-paths of composition [hi ki] deterministically reach vi}.

In the sequel, we will confine our attention to 2D positive systems (1) having
one of the two input-to-state matrices which is zero, and assume w.l.o.g. B2 = 0
and, consequently, denote B1 as B, for the sake of simplicity. These systems
are described by the following equation:

x(h+ 1, k + 1) = A1x(h, k + 1) +A2x(h+ 1, k) +Bu(h, k + 1), (2)

where A1, A2 are in Rn×n
+ and B is in Rn

+.

3 2D influence graphs devoid of cycles

In this section we consider 2D positive systems (2) whose 2D influence graph is
devoid of cycles. This amounts to saying that the system (1) is finite memory
or, equivalently [2], by the positivity assumption, that A1 +A2 is nilpotent.

Given a 2D positive system (1), its 2D influence graph D(2)(A1, A2, B1, B2)
is devoid of cycles iff the system is finite memory.

Observe, first, that since the source exhibits no incoming arcs, D(2)(A1,
A2, B1, B2) is devoid of cycles iff D(2)(A1, A2, 0, 0) is. On the other hand, if γ is a
cycle inD(2)(A1, A2, 0, 0) and the vertex vi belongs to γ, then [(A1+A2)m·|γ|]ii >
0 for every positive integer m. So, if (1) is finite memory, namely A1 + A2 is
nilpotent, then (A1 + A2)k = 0, ∀ k ≥ n. Therefore, no cycle γ can exist in
D(2)(A1, A2, 0, 0). Conversely, if there is a cycle γ in D(2)(A1, A2, 0, 0) then
condition (A1 +A2)k = 0 for every k ≥ n cannot be satisfied.

If a 2D positive system (2), with 2D influence graph D(2)(A1, A2, B, 0)
devoid of cycles, is positively locally reachable then
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i) B is a canonical vector, and

ii) the reachability index IR satisfies min
{
k ∈ N :

∑k
i=1 i ≥ n

}
≤ IR ≤ n.

i) Since A1+A2 is (positive and) nilpotent, it entails no loss of generality [2]
assuming that A1 +A2 (and hence A1 and A2, separately) is in upper triangular
form with zero diagonal. So, if A1 and A2 have the structure 0 + +

.. . +
0


and the system is positively locally reachable, then, by Proposition 1, in [A1 A2 B 0 ]
there must appear also the nth canonical vector en. This necessarily implies
B = en.

ii) Since (A1 +A2)n = 0, all Hurwitz products A1
i jA2 are zero whenever

i + j ≥ n. So, X+
n+1 = X+

n , and, in general, X+
k = X+

n ,∀ k ≥ n. If B = en, it
is easily seen that after one step the only outgoing arc from the source reaches
vertex vn. On the other hand, due to the fact that only two types of arcs are
available, paths of length 2 with a common initial arc (from the source to vertex
vn) and distinct compositions may reach deterministically at most two vertices.
Again, paths of length 3 with a common initial arc and distinct compositions
may deterministically reach at most three vertices, and so on. This means that
the minimum number of steps required to deterministically reach each vertex is
the smallest positive integer k such that 1 + 2 + . . .+ k ≥ n.

4 2D influence graphs consisting of either one
or two disjoint circuits

In this section we consider, first, systems (2) with 2D influence graphs consisting
of a single circuit, by this meaning that all vertices v1, v2, . . . , vn belong to a
circuit (and each pair of adjacent vertices is connected by one single arc). This
assumption amounts to saying that A1 + A2 is a permutation matrix, while
A1 ∗ A2 = 0, where ∗ denotes the Hadamard product. So, by resorting to a
suitable permutation of the state components we can always obtain

A1 +A2 =


0 + 0 0
0 0 + 0

. . .
. . .
. . . +

+ 0 0

 , (3)

where + represents a strictly positive entry and each nonzero entry + appears
only in one of the two matrices A1 and A2. Notice that vertex vi+1 accesses
vertex vi, for i = 1, 2, . . . , n− 1, while vertex v1 accesses vn.
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Differently from the 1D case, the positive local reachability of such a system
(A1, A2, B, 0) does not requireB to be a monomial vector. WhenD(2)(A1, A2, B, 0)
consists of a single circuit, every monomial vector B makes (A1, A2, B, 0) pos-
itively locally reachable with reachability index IR = n. When B exhibits k
nonzero entries and the system is locally reachable, the reachability index may
take quite smaller values.

Consider a 2D positive system (2) such that D(2)(A1, A2, B, 0) consists of
a single circuit and assume w.l.o.g. that A1 + A2 is expressed as in (3) with
A1 ∗ A2 = 0. If the system is positively locally reachable and B has k > 1
nonzero entries, say 1 ≤ i1 < i2 < . . . < ik ≤ n, then

IR ≥ max{i2 − i1, i3 − i2, . . . , ik − ik−1, n− ik + i1}+ 1.

Suppose, for the sake of simplicity, that max{i2−i1, i3−i2, . . . , ik−ik−1, n−
ik+i1} = i2−i1. By the ordering assumptions introduced on the system vertices
and on the labels i1, i2, . . . , ik, it is clear that the minimum h1 +k1 such that all
s-paths of composition [h1 k1] deterministically reach vi1 (keeping in mind that
at the first step we get B and hence not a monomial vector) coincides with the
length of the s-path that, starting from the source, reaches vertex vi2 at the first
step and later enters vertex vi1 without passing through the other vertices vi` for
` 6= 1, 2. Such an s-path has length i2−i1+1. Condition IR = maxi minhi,ki

{hi+
ki : all s-paths of composition [hi ki] deterministically reach vi,} ≥ i2 − i1 + 1
completes the proof.

In particular, when k = 2 the minimum value of max{i2− i1, i3− i2, . . . , ik−
ik−1, n − ik + i1} = max{(i2 − i1), n − (i2 − i1)} is just n/2 and therefore the
minimum value of the reachability index is n

2 + 1.

For a 2D influence graph consisting of two disjoint circuits we have the
following result.

Let (A1, A2, B, 0) be a 2D positive system such that D(2)(A1, A2, 0, 0) con-
sists of two disjoint circuits γ and γ′ of length n and n′, respectively. If B has
only two nonzero entries, one for each cycle, then

IR ≤ l.c.m{n, n′}+ max{n, n′}.

Assume that the vertices in γ are (ordinately) v1, v2, . . . , vn, the vertices in γ′

are (ordinately) v′1, v
′
2, . . . , v

′
n′ , and that the two nonzero entries in B correspond

to the vertices v1 and v′1, as depicted in Figure 4.2.m

m m

m m m m

m m... - -

�� -�

6
...

6

... - -

�� -�

6
...

6

? ?

v2

v3

v1

vn

s v′1 v′
n′

v′2 v′3

Fig. 4.2 D(2)(A1, A2, B, 0) in Proposition 5

6



Due to the previous assumptions, any vertex vj ∈ γ (v′j ∈ γ′) is periodically vis-
ited after j, j + n, j + 2n, . . . steps (j, j + n′, j + 2n′, . . . steps, respectively).
Moreover, for every k ∈ N there exist exactly two s-paths of length k in
D(2)(A1, A2, B, 0), and they reach vertices vk mod n in γ and v′k mod n′ in γ′,
respectively. Such vertices are reached deterministically iff the two s-paths have
distinct compositions.

Set N := l.c.m.{n, n′} and suppose that none of the paths of length j, j +
n, . . . , j+N deterministically reaches vj . Since after j+N steps we reach, at the
same time and with the same composition, vj and v′j just like after j steps, the
subsequent evolution will periodically repeat the same nonzero pattern, thus
preventing the possibility of deterministically reaching vj . As this reasoning
applies to all vertices of γ and γ′ (in particular to vn and v′n′), the given bound
immediately follows.

5 Strongly connected 2D influence graphs in-
cluding only two circuits

In this section we aim at addressing 2D positive systems with a strongly con-
nected 2D influence graph that includes only two circuits, γ1 and γ2. Even
though these assumptions are undoubtedly restrictive, an extension to the gen-
eral case of 2D positive systems with a strongly connected 2D influence graph
seems reasonable. On the other hand, when D(2)(A1, A2, B, 0) is not strongly
connected, which amounts to saying that the matrix A1 +A2 is not irreducible,
possible bounds on the reachability index of the system (A1, A2, B, 0), based on
the reachability indices of the irreducible subsystems of D(2)(A1, A2, B, 0), can
be obtained.

We first derive a lemma, whose proof is omitted for the sake of brevity.

If D(2)(A1, A2, B1, B2) is a strongly connected 2D influence graph with n
vertices and that it includes only two circuits, say γ1 and γ2, then

i) every vertex belongs either to γ1 or to γ2;

ii) there exists at least one vertex which belongs both to γ1 and to γ2;

iii) each path p, with |p| ≥ |γ1|, includes at least one vertex v2 ∈ γ2 and,
conversely, each path p, with |p| ≥ |γ2|, includes at least one vertex v1 ∈ γ1;

iv) N := |γ1|+ |γ2| ≥ n+ 1.

Let (A1, A2, B, 0) be a 2D positive system such that D(2)(A1, A2, B, 0) is
strongly connected and includes only two circuits γ1 and γ2. If (A1, A2, B, 0) is
positively locally reachable, then IR ≤ N := |γ1|+ |γ2|.

Suppose, by contradiction, that there exists some vertex r which is determin-
istically reached by all s-paths of composition [h+ 1 k], with h+ 1 + k ≥ N + 1,
and cannot be reached deterministically in a smaller number of steps. This
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amounts to saying that (A1
h kA2)B is an r-monomial vector and for every i, j,

with i+ j < h+ k, (A1
i jA2)B is not an r-monomial vector.

All paths of composition [h k] from the vertices corresponding to the nonzero
entries of B to the vertex r have length greater than or equal to N ≥ n + 1.
This implies that each of these paths contains at least one circuit. We can
assume w.l.o.g. that there exists one such path p the vertex r of which includes
the circuit γ1. It is easily seen that there exists a path p′, from at least one
vertex corresponding to the nonzero entries of B to the vertex r of composition
[h−α1(γ1) k−α2(γ1)]. Since (A1

h−α1(γ1) k−α2(γ1)A2)B is not an r-monomial
vector, it means that there exists also a path q′, of composition [h−α1(γ1) k−
α2(γ1)], from at least one vertex corresponding to the nonzero entries of B to
some other vertex s. Since |q′| = (h+k)−|γ1| ≥ N−|γ1| = |γ2|, this implies that
at least one vertex of q′ belongs to γ1. But then, by suitably adding a circuit
γ1, we can obtain from q′ a new path q, from some vertex corresponding to the
nonzero entries of B to the vertex s, of composition [h k]. This implies that in
(A1

h kA2)B both the rth and the sth entries are nonzero, thus contradicting
the original assumption. Therefore h+ k < N .
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