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Abstract. When dealing with two-dimensional (2D) discrete state-space models, reachability, controllability
and zero-controllability are introduced in two different forms: a local form, which refers to single local states, and
a global form, which instead pertains the infinite set of local states lying on a separation set. In this paper, these
concepts are investigated in the context of 2D positive systems. Their combinatorial nature suggests a graph
theoretic approach to their analysis, as, indeed, to every 2D positive state-space model of dimension n with m

inputs one can associate a 2D influence digraph with n vertices and m sources.
For all these properties, necessary and sufficient conditions, which refer to the structure of the digraph, are

provided.
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1. Introduction

The interest in two-dimensional (2D) systems goes back to the early seventies [1, 7, 18], and was
initially motivated by the relevance of these models in seismology applications, X-ray image en-
hancement, image deblurring, digital picture processing, etc. More recently, some contributions
dealing with river pollution modelling [6] and the discretization of PDE’s which describe gas
absorption and water stream heating [16], naturally introduced a nonnegativity constraint in
2D system equations. Also, two-dimensional models involving only nonnegative variables were
successfully adopted for describing the diffusion process of a tracer into a blood vessel [22]. This
kind of instances stimulated, in the late nineties, a systematic analysis of “2D positive systems”,
i.e. 2D state-space models whose input, state and output variables take positive (or at least
nonnegative) values, where the results presented in [6, 16, 22] could be naturally framed.

Research efforts in this context were first oriented to extend positive matrix theory to pairs
of matrices [10, 11, 12, 21], thus leading to a satisfactory analysis of the free state evolution of
9D positive systems and a complete characterization of their asymptotic stability [20]. More
recently, research efforts in 2D positive systems have concentrated on the analysis of their struc-
tural properties, and some preliminary results about reachability and controllability have been
presented in [13, 14].

When dealing with 2D systems, the concepts of reachability, controllability and zero-con-
trollability are naturally introduced in two different forms: a weak (local) form, which refers
to single “local states”, and a strong (global) form, which pertains the infinite set of local
states lying on some “separation set” [3, 7]. In this paper, the aforementioned concepts are
introduced and investigated in the context of 2D positive systems, driven by nonnegative inputs
and described by the following state-updating equation [7]:

(1.1) x(h+1,k+1) = Ayx(h, k+ 1) + Aox(h +1, k) + Biu(h, k + 1) + Bou(h + 1, k),
(1.2) y(h, k) = Ox(h k),



3. Local/global zero-controllability

As a first step, we aim at showing that, when dealing with 2D positive systems, local zero-
controllability and global zero-controllability are equivalent properties and they both coincide

with the finite memory property [3, 10].
A standard (i.e., not necessarily positive) 2D system is said to be finite memory if for every

initial global state Xy there exists N € Z_ such that the corresponding free state evolution goes

to zero within N separation sets, namely Xy = 0.
Finite memory definition for 2D positive systems is obtained by simply introducing the
positivity constraint on the initial global state Xy. Several characterizations of finite memory

positive systems have been provided in [10].

It is immediately apparent that, when dealing with positive systems, both local and global
zero-controllability are properties which just pertain the free state evolution, as nonnegative
inputs could not make the task of obtaining a zero local or global state easier! Basing on
this simple remark, which holds true also for 1D positive systems, the proof of the following
proposition becomes almost straightforward.

PROPOSITION 3.1. Given a 2D positive system (1.1)-(1.2), of dimension n, the following
facts are equivalent:

i) the system is locally zero-controllable;
i1) the system is finite memory;

iti) the system is globally zero-controllable.

Proof. 1) = ii) Suppose that the system is locally zero-controllable and choose as &p the
positive global state whose local states x(i, —i),% € Z, are all equal to the vector 1,. For every
(h,k) € Z x 7, with h+k > 0, we have x(h, k) = (A; + A2)"**1,,. Since there exists (h, k) such
that x(h, k) = 0, we have also (A; + A2)"™* = 0, which ensures [10] the finite memory property
of the 2D system described by the positive matrix pair (A4, A).

ii) = iii) For every nonnegative Xp, just leave the system evolve freely.
iii) = ii) Obvious. O

At this point, it is clear that a 2D positive system is locally (globally) controllable if and
only if it is both finite memory and locally (globally) reachable. Since finite memory property
is very easy to check, our interest will focus on local and global reachability properties. Char-
acterizations of such properties will immediately lead to characterizations of local and global
controllability.

4. Local reachability

When dealing with standard 2D systems, local reachability is easily tested by evaluating the
column span of the reachability matrix in k steps [7], i.e.

Rk:[Bl By A1By A1Bo+ AxB; AsBo A%Bl (AllLulAQ)Bl+A%BQ Ag_lBQ}

_ i-1 7 i -1 ANB ]
[(Al w 43) By + (Ar'w 2) B 1,520, 0<i+j<k

as k varies over the set N of positive integers. Indeed, reachable states in & steps, i.e. local states
that can be reached in any assigned position of the separation set Ci, starting from Ay = 0,
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i) the system is globally reachable;

i1) there exists a permutation matriz P such that

(% + 0] 0
* 0 + 0 0
(5.5) PT(A; + A))P = |« ' : : PT(Bi+By)= |01,
; Lo+ :
[ & B g 0 0 | +

where * and + represent a nonnegative and a positive enlry, respectively, and

*
*
(5.6) PT(A x Ag)P = | . Okesatey PT(B; = By) = 0.

*

Proof. For the sake of simplicity, as positive (either 1D or 2D global) reachability does not
depend on the values of the nonzero entries of all matrices involved, within the proof all nonzero
entries will be assumed unitary.

i) = ii) If the system is globally stable then, by Lemma 5.2, the pair (A; + Az, B1 4+ Ba) is
(positively) reachable. This ensures [5] that there exists a permutation matrix P such that (5.5)
holds. Moreover, conditions (5.3)-(5.4) imply that only one among PT B, and PT B, is nonzero,
which gives the second identity in (5.6). Suppose, without loss of generality, PTB; = e, and
PTB; = 0. From

PT[(A1 w0 A42) By + (A1°wlAg) By = PT(A; + A3) By = PT(A1 4+ A2)PPT(By + By) = ey1

and conditions (5.3)-(5.4), it follows that only one among PT[(A;'w®A9)B;] and PT[(A4; Ow! 4s)
Bq] coincides with e, —1, while the other is zero. But this means that only one among (PTA;P)e,
and (PTAyP)e, is e,_1, and hence an (n — 1)th monomial vector, while the other is zero. By
proceeding in this way, we show that only one among (PT A; P)e; and (PT Ay P)e; is an (i—1)th
monomial vector, i = 2,...,n — 1,n, while the other is zero. This proves the first identity in
(5.6).

ii) = i) Conditions (5.5) and (5.6) easily imply that there exist n pairs (h;, k;) € Zip x Zy,i =
1,2,...,n, such that (5.3) and (5.4) hold. So, the 2D system is globally reachable. O

REMARKS As a consequence of the previous proposition, all pairs (h;, k;), that make (5.3)
and (5.4) satisfied, sum up to n distinct integers h; + &; and none of them exceeds n. This means
that the set of all such h; + k;,i = 1,2,...,n, coincides with the set {1,2,...,n} and hence, in
particular, the global reachability index for 2D (globally reachable) systems with scalar inputs
coincides with n. This situation is quite different from the one arising when local reachability
is concerned, since the local reachability index can far exceed the system dimension.

Even more, for systems with scalar inputs, Proposition 5.1 can be restated in terms of the
reachability matrices. Indeed, the reachability matrix (in n steps), R := R,, can always be

block-partitioned as
R=[Ry | Ry | ... | Rul,

where Ry represents the block matrix including all columns (A"~ 'w! A2)B; + (AI“Luj =LA

2)B
with (i,7) € Z, x Z, and i+ j = £. By referring to this expression of R, equations (5.

)



and (5.2) (and hence global reachability) hold if and only if, for every ¢ = 1,2,...,n, there
exists ¢; € {1,2,...,n} such that Ry, consists of all zero columns except for one which is an ith

monomial vector.
Once we have shown that, in order to have global reachability, conditions (5.1) and (5.2)

must be satisfied for suitable pairs (h;, k;) with h;+k; < ny, these two conditions lead the way to
a polynomial matrix characterization s of globally reachable positive systems with scalar inputs.

PROPOSITION 5.4. For an n-dimensional 2D positive system (1.1)-(1.2) with scalar inputs
the following facts are equivalent:

i) the system is globally reachable;
ii) the polynomial reachability matriz

R(E):= [By + Bof (A1 + Aé)(B1+ Baf) ... (At A" Y(By + Ba€) Je Ry [g]™"

can be expressed as

B
£*
R(E) =M . g M a monomial matriz, v; > 0;

g

iii) the polynomial reachability matriz R(€) is nonsingular and its inverse R(E)™T belongs to

Ry g™

Proof. i) & ii) easily follows from (5.1) and (5.2), keeping in mind that the n pairs (hj, k;)
must satisfy the two constraints: h; + ki # hj + kj fori# jand 0< hi + & <n — L :

i) & iii) Suppose that both R(£) and its inverse R(€)7! belong to R4 [€]"*". So, at each
point £ € Ry R(€) and R()~! are nonnegative matrices satisfying

Since the only nonnegative matrices endowed with a nonnegative inverse are monomial matrices

[17], this implies that R({) is a monomial matrix for every £ € R,. This is possible (if and)

only if R(£) € R, [£]"*™ satisfies ii). :
The converse is obvious. O

When dealing with systems with several inputs, Lemma 5.2 leads to a characterization of
global reachability (controllability) similar to the one given in Proposition 5.3 (in Corollary 77,
respectively). This requires, however, to consider the canonical forms available for reachable 1D
positive systems with several inputs [4, 19]. As such forms are rather complicate, except when
the 1D system matrix (A; + Ao, in this case) is devoid of zero columns, we restrict ourselves to
this special case. The proof of the following proposition can be easily obtained by resorting to
the canonical form given in [19] and the same reasonings adopted within the proof of Proposition

5.3.

PROPOSITION 5.5. For a 2D positive system (1.1)-(1.2) with m inputs and Ay + Ay devoid
of zero columns, the following facts are equivalent:



i) the system is globally reachable;

i1) there exist r € N, with r < m, and permutation matrices, P and Q, of suitable dimen-

sions, such that

Fiy Fis ... Fi,|en, 0 0 ‘
Fg]_ Fgg FQT- 0 €ny, .- 0 4
[PT(A1+A2)P | PT(B1+BQ)Q} = : : : . i . : :Grem )
Frl FT‘2 FTT‘ 0 0 e ©p, I
where
*  + 0 * 0 0
* 0 + 0 * 0 0
Fy = |« B, S, P eREF B % e RY™ for i # j,
; e ; .
= 0 ... 0 O * 0 ... 0 0

* and + represent a nonnegative and a positive entry, respectively, and Grem collects
the “unnecessary” column of G. Moreover, PT(A; % A3)P has all zero columns except,
possibly, for those corresponding to the first columns of the blocks (namely the columns

of indices 1,n1 +1,n1 +na +1,...) and PT(B; * B) H;] = 0.

6. Local and global observability

The concepts of positive global and local reachability have been formally introduced in Defi-
nitions 2.1 and 2.2 by referring to arbitrary global or local nonnegative states to be reached
(starting from zero global initial conditions) by means of nonnegative inputs. Equivalent defini-
tions can be introduced by referring to the nonzero patterns of the (global/local) states and not
to their specific nonnegative values. Indeed, the following equivalent definitions could be clearly

employed.

DEFINITION 6.1. A 2D state-space model (1.1)-(1.2) is

e locally reachable if, upon assuming Xy = 0, for every boolean vector x% € {0,1}" there
exist (h, k) € Z x Z, with h + k > 0, and a nonnegative input sequence u(:,-) such that x(h, k)
has the same nonzero pattern as Xpg;

e globally reachable if, upon assuming Xy = 0, for every sequence of n-dimensional boolean
vectors {xg(h)nez, there exist N € Z4 and a nonnegative input sequence u(-,-) such that the
sequence of local states x(h, N — h) on the separation set Cy := {(h, N — h) : h € Z} satisfies
p(x(h, N—=h)) = p(xg(h)), V h € Z, namely the nonzero patterns of the two sequences ordinately
cotncide.

Once we think of reachability in terms of nonzero patterns (of local/global states), we may
naturally introduce observability definitions based, again, on the nonzero patterns of the free
output evolutions. This solution immediately enlightens a duality relation between these prop-

erties we will later explore.

DEFINITION 6.2. A 2D state-space model (1.1)-(1.2) s
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e locally observable if, upon assuming that u(h, k) = 0,V h,k € Z, and that the initial
global state Xy consists of a single nonzero state x(0,0) = x*, the knowledge of the nonzero
pattern of the free output evolution ye(h, k) in every point (h k) € Zy x Zy allows to uniquely
determine the nonzero pattern of x*;

e globally observable if, upon assuming that u(h, k) =0,V h,k € Z, the knowledge of the
nonzero pattern of the free output evolution ye(h,k) in every point (h,k) €e Zx Z,h+k >0,
allows to unigquely determine the nonzero pattern of all local states on the separation set Co.

It is easy to see that global observability trivially implies local observability as, indeed,
among all possible initial global states one may consider those consisting of all zero local states
except in (0,0), and for that type of global states the free output evolution just pertains the
first orthant.

In order to explore local and global observability properties, we first introduce the observ-
ability matrices in k steps, i.e.

= C -
CA,
C Ay
cA? o
O = | et ag) | = [ClAwW 42)
C A}

4,j20, 0<it+j<k

cakt |

as k varies over the set N of positive integers.

PROPOSITION 6.3. Given a 2D system (1.1)-(1.2) the following facts are equivalent:
i) the system is locally observable;

i) there existn pairs (hi, ki) € ZyxLy,i1=1,2,...,m, and n indices j = 7(3) € {1,2,...,m}}
such that e;-'-"C(AlhiLukiAg) is an ith monomial vector;

iii) there exists k € N such that the observability matriz in k steps has a monomial submatriz.

Proof. i) = ii) Suppose, by contradiction, that the system is locally observable but ii)

does not hold. This means that there exists £ € {1,2,...,n} such that none of the rows of the

observability matrix in k steps is an £th monomial vector, for every k € N. Tt is easy to verify

that the initial states x(0,0) = Y.7 e’ and x(0,0) = 3 % €; have different nonzero patterns
i#L

but produce free output evolutions endowed with the same nonzero patterns. As a consequence,
the system cannot be locally observable.

ii) = i) Of course, if i) holds true, the ith entry of the local state x(0,0) is nonzero if and
only if e?yg(hi, k) #0,i=1,2,...,n. Consequently, the system is locally observable.

The equivalence of i) and iii) is obvious. 0

Notice that when dealing with 2D systems with scalar output, the aforementioned con-
dition i) simply becomes: there exist n pairs (hiyki) € Zy x Lyyi = 1,2,...,m, such that
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C(A;"~1w* Ay) is an ith (row) monomial vector. Notice, also in this case, that all pairs (hs, k;)
are necessarily distinct, but the case may occur that h; + k; = h; + k; for i # j.

We aim, now, at addressing global observability for the special case of 2D system with scalar
outputs. We preliminarily provide the following lemma.

LEMMA 6.4. If the 2D system (1.1)-(1.2) with scalar output is globally observable then the
1D positive system described by the pair (A1 + Ao, C) is (positively) observable and hence [15]
there exists a permutation matriz P such that

0 + 0
0 0 + 0

(6.1) PT(A;1 + A)P= |0 Y e & CP=[+ 0 0 0],
; +
* K * *

where + and + represent a nonnegative and a positive enlry, respectively,

. Proof. Global observability must be preserved, in particular, when initial global states Ay
consist of all equal vectors, namely

Xo = {x(i,—i) =% >0,V h e Z}.

But in this situation the 2D system behaves as the 1D positive systems (A; + Ag, C), since
on every separation set Cj all free output vectors yg(i,k — i) coincide with C(A4; + Ap)¥x.
Consequently, global observability of the 2D system requires the observability of the 1D positive
system (A; + Ay, C). O

By exploiting the previous lemma, we may now provide the following characterization.

PROPOSITION 6.5. A 2D system (1.1)-(1.2) with scalar output is globally observable if and
only if there exist n pairs (hi ki) € Zy x Zy,i=1,2,...,n, such that

6.2) C(Alh"mkiAg) 18 an ith monomial vector,
C(AM*A49) =0,V (B k) # (hs, ki) with b+ k = by + k.

Proof.  Suppose that the system is globally observable and hence, by Lemma 6.4, the
positive pair (A; + A, C) is observable. Also, it entails no loss of generality assuming that
the state components have been suitably permuted in order to obtain the previous canonical
form for the 1D positive system (A; + A, C). Of course, this ensures that n distinct pairs
(hiki) €2y x Zy,i=1,2,...,n, withO0< hy+k; <n—1and h; +k; # hj + k; for i # j can
be found such that (6.2) holds. Showing that (??) holds is equivalent to proving that

0 0 0
0 0 0 0
ApxAy =10 o Ta,
: 0
* X ... x K



So, we aim at showing that if there exists 7 € {1,2,...,n—1} such that [A1]iis1* [A2)iir1 # 0,
then two initial global states can be found with different nonzero patterns but producing free
output evolutions endowed with the same nonzero patterns. Set

Xy = {x(h,—h) = €41,V h € Z} and Xy = {x(h,—h) =ei+1,Vh € Zeven,x(h,—h) =0,Y h € Zodd} |

This is obvious if either [A1]ni+1 = [A2]n,i+1 = 0 or [A1]ni+1 * [A2]ni+1 7 0, since the output
is the same on the first separattion set and starting from the separation set C; the two global
states produce global states endowed with the same nonzero patterns.

If, for instance [A;]ni+1 = 0 and [A2]ni+1 = 0 then......

*kkckkRkkdkkk The converse is obvious. U

FIN QUI **#*#xf5 Of course, by the same reasonings adopted in section 5, the canoni-
cal form derived for observable 1D scalar outputs positive systems [15] immediately lead to a
canonical form for 2D globally observable systems with scalar outputs. A similar result could
be obtained for the multi-output case. Moreover, as for global reachability, it is immediately
seen that global observability can be checked within n steps. This ensures, in particular, that
in order to determine the nonzero pattern of Xy we simply need to know the nonzero pattern of
the free output evolution on the first n separation sets Ce,k=01,...,n—1.

To conclude, we present the following result, whose proof follows the same lines of the proof
of Proposition 5.4.

PROPOSITION 6.6. For an n-dimensional 2D positive system (1.1)-(1.2) with scalar outputs
the following facts are equivalent:

i) the system is globally observable;

i) the polynomial observability matriz

&
C(A1 + Asf) —
o) = : e R [¢™"
C(A; + Axe)" ™!
can be expressed as
£
v
olEy=M 5 ; M a monomial matriz;

5

#1) the polynomial observability matriz R(¢) is nonsingular and its inverse R(€)™! belongs

to R+ [&]nxn‘
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