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Abstract
In this paper, (local/global) reachability and ob-

servability [2] are introduced in the context of two-
dimensional (2D) positive systems. While local reach-
ability and observability are naturally characterized by
resorting to state space techniques [5], their global ver-
sions are better investigated via a polynomial approach.
Necessary and sufficient conditions for the existence of
these properties are provided and, in particular, polyno-
mial canonical forms for globally reachable/observable
positive systems with scalar inputs/scalar outputs are
provided.

1 Introduction

“2D positive systems”, i.e. two-dimensional state-space
models whose input, state and output variables take
only nonnegative values, have been introduced in the
nineties. The aim was that of providing a unifying the-
oretical framework to a family of interesting problems
involving, in their mathematical descriptions, 2D sys-
tem equations under a nonnegativity constraint. Re-
search efforts were first oriented to extend positive ma-
trix theory to pairs of matrices [3, 4], thus leading to the
analysis of the free state evolution and the asymptotic
stability of 2D positive systems. More recently, reacha-
bility and controllability have been addressed and some
results have been presented in [5, 6, 7], by assuming a
traditional state-space approach.

The 2D positive systems we consider in the paper are
described by the following state-updating equation [2]:

x(h + 1, k + 1) = A1x(h, k + 1) + A2x(h + 1, k) (1)
+ B1u(h, k + 1) + B2u(h + 1, k)

y(h, k) = Cx(h, k), (2)

where the n-dimensional local states x(·, ·), the m-
dimensional inputs u(·, ·) and the p-dimensional out-
puts y(·, ·) take nonnegative values, A1, A2, B1, B2 and
C are nonnegative matrices of suitable sizes. The ini-
tial conditions are assigned by specifying the (nonneg-
ative) values of the state vectors on the separation
set S0 := {(h,−h) : h ∈ Z}, namely by assigning all
local states of the initial global state X0 := {x(h, k) :
(h, k) ∈ S0}.

Any global state Xk := {x(h, k−h) : h ∈ Z}, consist-
ing of all local states lying on Sk := {(h, k−h) : h ∈ Z},
can be represented either by means of a 2D power se-
ries Xk(z1, z2) =

∑
h∈Z x(h, k − h)zh

1 zk−h
2 or (if Sk

is known) by means of a 1D power series Xk(ξ) =∑
h∈Z x(h, k − h)ξh, and the state updating along the

separation sets can be described, in turn, in 1D or 2D
polynomial terms.

As we will see, while local reachability and observ-
ability refer to single local states and hence lead to
a “point by point” analysis in the discrete grid [5],
their global counterparts refer to the infinite set of lo-
cal states lying on a “separation set”, and hence are
naturally investigated by resorting to the polynomial
descriptions now provided for the global states.

Before proceeding, we introduce some basic defini-
tions and concepts. The Hurwitz products of two
n×n matrices A1 and A2 are inductively defined [2] as

A1
i jA2 = 0, if either i or j is negative,

A1
i 0A2 = Ai

1, if i ≥ 0,
A1

0 jA2 = Aj
2, if j ≥ 0,

and, if i, j > 0,
A1

i jA2 = A1(A1
i−1 jA2) + A2(A1

i j−1A2).
Given a nonnegative vector v ∈ Rn

+, we define its



nonzero pattern as the set p(v) := {i ∈ {1, 2, . . . , n} :
vi 6= 0}. Notice that p(v1+v2) = p(v1)∪p(v2). Similar
definitions and remarks extend to nonnegative n × n
matrices or to (possibly infinite) families of nonnegative
vectors {vj}j∈J ,vj ∈ Rn

+. In the first case, the nonzero
pattern is a subset of {1, . . . , n} × {1, . . . , n}, in the
second case a subset of {1, . . . , n} × J .

We denote by 1n the n-dimensional real vector with
all entries equal to 1.

A polynomial vector v(z1, z2) ∈ R+[z1, z2] is said
to be an i-th p-monomial vector if v(1, 1) has
the same nonzero pattern as the i-th canonical vec-
tor ei, i.e., p(v(1, 1)) = {i}, and its nonzero entry is
a monomial czh

1 zk
2 in R+[z1, z2]. A p-monomial ma-

trix is a nonsingular (square) matrix whose columns
are p-monomial vectors. P-monomial vectors and p-
monomial matrices in R+[ξ] are defined in an analo-
gous way. Standard monomial vectors and monomial
matrices in R+ can be seen as special cases of their
general polynomial versions.

2 Local and global reachability

Definition 2.1 A 2D state-space model (1)-(2) is
• (positively) locally reachable [2] if, upon as-

suming X0 = 0, for every x∗ ∈ Rn
+ there exist (h, k) ∈

Z × Z, with h + k > 0, and a nonnegative input se-
quence u(·, ·) s.t. x(h, k) = x∗. When so, we will say
that x∗ is (locally) reachable in h + k steps;
• (positively) globally reachable [2] if, upon as-

suming X0 = 0, for every global state X ∗ with entries
in Rn

+, there exist k ∈ Z+ and a nonnegative input se-
quence u(·, ·) s.t. the global state Xk = {x(h, k − h) :
h ∈ Z} coincides with X ∗. When so, we will say that
X ∗ is (globally) reachable in k steps.

In the following, the specification “positively” will
be omitted when no ambiguities arise. Clearly, global
reachability ensures local reachability.

Introduce the reachability matrix in k steps [2],
k ∈ N, i.e.

Rk:=
[
(A1

i−1 jA2)B1 + (A1
i j−1A2)B2

]
i,j≥0, 0<i+j≤k

.

The reachable set in k steps, i.e. the set of local states
that can be reached in any assigned position of the
separation set Sk, starting from X0 = 0 and by applying
nonnegative input sequences, obviously coincides with
the set of all nonnegative combinations of the columns
of Rk, namely with Cone(Rk). Consequently, a system
is locally reachable if and only if there exists N ∈ N
s.t. Cone(RN ) = Rn

+.
Positive local reachability is trivially equivalent to

the possibility of reaching (starting from zero initial

conditions) every vector of the canonical basis in Rn by
means of nonnegative inputs, which amounts to saying
that there exists N ∈ N s.t. the reachability matrix in
N steps, RN , includes an n× n monomial submatrix.

Proposition 2.2 [5] Given a 2D system (1)-(2) the
following facts are equivalent:

i) the system is locally reachable;
ii) there exist n pairs (hi, ki) ∈ Z+ × Z+, i =

1, 2, . . . , n, and n indices j = j(i) ∈ {1, 2, . . . ,m} s.t.

p
(
(A1

hi−1 kiA2)B1ej + (A1
hi ki−1A2)B2ej

)
= {i};

(3)
iii) there exists N ∈ N such that the reachability ma-

trix in N steps RN has an n×n monomial submatrix.

Let us now address global reachability. When deal-
ing with a polynomial description of the forced state
evolution, the global state on the k-th separation set
Xk(z1, z2) =

∑
h∈Z x(h, k−h)zh

1 zk−h
2 can be expressed

in terms of the input sequences on the separation sets
St, 0 ≤ t ≤ k − 1, as follows

Xk(z1, z2) = Rk(z1, z2)


Uk−1(z1, z2)
Uk−2(z1, z2)

...
U0(z1, z2)

 , (4)

where
Rk(z1, z2) = [(B1z1 + B2z2) (A1z1 + A2z2)(B1z1 + B2z2)

. . . (A1z1 + A2z2)
k−1(B1z1 + B2z2)]

(5)
and Ut(z1, z2) =

∑
h∈Z u(h, t − h)zh

1 zt−h
2 , t = 0, 1,

. . . , k−1. Starting from this 2D polynomial description,
we obtain a characterization of global reachability.

Proposition 2.3 The 2D system (1)-(2) is globally
reachable if and only if there exists some index N ∈ N
such that the 2D polynomial matrix RN (z1, z2) given
in (5) includes an n× n p-monomial submatrix, i.e.

M · diag{zµ1
1 zν1

2 , zµ2
1 zν2

2 , . . . , zµn

1 zνn
2 }, (6)

for some monomial matrix M and some µi, νi ≥ 0.

Proof Clearly, it suffices to ensure the reachability
of the “elementary global states” consisting of all zero
(local) states except for one of them, which coincides
with the monomial vector ei, i ∈ {1, 2, . . . , n}. Conse-
quently, the 2D system (1)-(2) is globally reachable if
and only if, for every i ∈ {1, 2, . . . , n}, there are ki ∈ N
and hi ∈ Z such that Xki

(z1, z2) = eiz
hi
1 zki−hi

2 is a
global state reachable in ki steps. This means that

eiz
hi
1 zki−hi

2 = Rki
(z1, z2)


U

(i)
ki−1(z1, z2)

U
(i)
ki−2(z1, z2)

...
U

(i)
0 (z1, z2)

 ,



for some U
(i)
t (z1, z2), t = 0, 1, . . . , ki − 1. By the

nonnegativity assumption, there is no loss of gener-
ality assuming that each U

(i)
t (z1, z2) has finite sup-

port, namely it is a Laurent polynomial. On the other
hand, the nonnegativity of the coefficients of all poly-
nomial matrices and vectors involved ensures that the
above condition holds true if and only if there exists
at least one column of Rki

(z1, z2) taking the struc-
ture eiciz

µi

1 zνi
2 , ci ∈ R+. So, the proposition statement

holds for N = max{k1, k2, . . . , kn}.
Remark The characterization of Proposition 2.3

may be restated in terms of polynomial reach-
ability matrices in the single variable ξ. In-
deed, the 2D system (1)-(2) is globally reach-
able if and only if there exists N ∈ N such
that RN (ξ) = [(B1 + B2ξ) (A1 + A2ξ)(B1 + B2ξ) . . .
(A1 + A2ξ)N−1(B1 + B2ξ)] includes an n × n p-
monomial submatrix.

As a corollary of the previous result, we get

Corollary 2.4 If the 2D system (1)-(2) is globally
reachable then [A1 + A2ξ B1 + B2ξ ] includes an n×
n p-monomial matrix.

Proof The nonnegativity of the coefficients, to-
gether with the fact that the product of two polyno-
mials is a monomial if and only if they are both mono-
mials, allows to saying that

(A1 + A2ξ)ki−1(B1 + B2ξ)ej = ei · (ci · ξµi) (7)

ci ∈ R+, µi ∈ Z+, implies either that the j-th column
of B1 + B2ξ is an i-th p-monomial vector (if ki = 1) or
that some column of A1 + A2ξ is an i-th p-monomial
vector (if ki > 1). Since (7) must be verified for every
i ∈ {1, 2, . . . , n}, the result immediately follows.

The following lemmas lead the way to further char-
acterizations of global reachability.

Lemma 2.5 If the 2D system (1)-(2) is globally
reachable then the 1D positive system described by the
pair (A1 + A2, B1 + B2) is (positively) reachable.

Proof By the previous Proposition 2.3, the 2D sys-
tem (1)-(2) is globally reachable if and only if there
exists N ∈ N such that the polynomial matrix RN (ξ)
includes an n×n p-monomial submatrix as in (6). Since
this condition holds true for an arbitrary ξ, it must
hold true for ξ = 1. This means that the reachability
matrix in N steps of the pair (A1 + A2, B1 + B2) in-
cludes the monomial submatrix M and hence the pair
(A1 + A2, B1 + B2) is positively reachable.

Lemma 2.6 If there exist an integer ` ∈ Z+ and a
nonzero polynomial p(ξ) ∈ R+[ξ] such that

(A1 + A2ξ)`(B1 + B2ξ)ej = p(ξ)ei, (8)

for some i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, then
there exists ¯̀∈ Z+, 0 ≤ ¯̀≤ n−1, and a nonzero p̄(ξ) ∈
R+[ξ] such that (A1 + A2ξ)

¯̀(B1 + B2ξ)ej = p̄(ξ)ei.

Proof We associate with the polynomial matrix pair
(A1 + A2ξ, B1 + B2ξ) a directed graph with n vertices
and m sources: there is an arc connecting vertex j to
vertex i if and only if the (i, j)-th entry of A1 + A2ξ
is nonzero and, similarly, there is an arc connecting
source j to vertex i if and only if the (i, j)-th entry of
B1+B2ξ is nonzero. Each arc is thus weighted by some
nonzero polynomial c + dξ, c, d ∈ R+.

In graph theoretic terms, condition (8) holds for
some nonzero polynomial p(ξ) ∈ R+[ξ] if and only if
there exists a “deterministic path” [1] from the j-th
source to the i-th vertex in the directed graph asso-
ciated with the pair (A1 + A2ξ,B1 + B2ξ), namely
a path starting from the j-th source and reaching,
after ` + 1 steps, the vertex i and no other vertex.
Such a condition holds, in turn, if and only if there
exists a deterministic path from the j-th source to
the i-th vertex in the directed graph associated with
(A1 + A2, B1 + B2). But then, we may resort to the
result obtained by Coxson and Larson in [1] and say
that if such a path exists, then there exists a path from
source j to vertex i of length not larger than n. This
amounts to saying that (A1 + A2)

¯̀(B1 + B2)ej = c · ei

holds true for some ¯̀ < n and c > 0 and hence that
(A1 + A2ξ)

¯̀(B1 + B2ξ)ej = p̄(ξ)ei holds true for some
¯̀< n and p̄(ξ) ∈ R+[ξ] \ {0}.

Proposition 2.7 The 2D system (1)-(2) of size n is
globally reachable if and only if the polynomial matrix
Rn(ξ) includes an n× n p-monomial submatrix.

Proof By Proposition 2.3, the system is globally
reachable if and only if there exists some N ∈ N
such that the polynomial matrix RN (ξ) includes an
n × n p-monomial submatrix. However, by the previ-
ous Lemma 2.6, if (A1 + A2ξ)`(B1 + B2ξ)ej = c · ξνiei,
for some nonzero monomial c · ξνi ∈ R+[ξ], then there
exists ¯̀∈ Z+, 0 ≤ ¯̀≤ n−1 and a nonzero p̄(ξ) ∈ R+[ξ]
such that (A1 + A2ξ)

¯̀(B1 + B2ξ)ej = p̄(ξ)ei. This im-
plies, in particular, that

(A1 + A2ξ)`−¯̀
[
(A1 + A2ξ)

¯̀(B1 + B2ξ)ej

]
=

(A1 + A2ξ)`−¯̀ [p̄(ξ)ei] = c · ξνiei.

Therefore the i-th column of (A1 +A2ξ)`−¯̀ must be an
i-th p-monomial vector, p̄(ξ) is necessarily a monomial,
and Rn(ξ) has an i-th monomial column p̄(ξ)ei.



A nice polynomial canonical form can be obtained
for globally reachable systems with scalar inputs.

Proposition 2.8 For a 2D system (1)-(2) of dimen-
sion n with scalar inputs the following facts are equiv-
alent:

i) the system is globally reachable;
ii) there exists a permutation matrix P such that

PT (A1 + A2ξ)P =


? a12 0
? 0 a23 0

?
. . . . . .

...
...

. . . an−1,n

? 0 . . . 0 0

 ,

PT (B1 + B2ξ) =


0
0
0
...

bn

 (9)

where ai,i+1, bn ∈ R+[ξ] are nonzero monomials and ?
denotes a polynomial in R+[ξ] of degree at most 1;

iii) Rn(ξ) ∈ R+[ξ]n×n is a p-monomial matrix;
iv) Rn(ξ) is nonsingular and Rn(ξ)−1 ∈

R+[ξ−1]n×n.

Proof ii) ⇒ iii) ⇒ i) are obvious. i) ⇒ ii)
By Corollary 2.4, global reachability ensures that the
n× (n + 1) polynomial matrix [A1 + A2ξ B1 + B2ξ ]
includes an n × n p-monomial matrix. Suppose that
B1 + B2ξ is not a p-monomial vector. Since it cannot
be zero, then it must either have at least two nonzero
entries (case 1) or be a vector of the following type
p(ξ)ei, for some polynomial p(ξ) of lag 1 (case 2). On
the other hand, since the block matrix must include
an n × n p-monomial matrix, such a matrix must be
A1 + A2ξ. It is easily seen that, under these hypothe-
ses, both in case 1 and in case 2, none of the vectors
(A1+A2ξ)k(B1+B2ξ) can be p-monomial. So, B1+B2ξ
is necessarily a p-monomial vector. It entails no loss of
generality assuming B1 + B2ξ = en. In fact, we can
always reduce ourselves to this case by permuting ei-
ther the vector components or the matrices B1 and B2,
possibly both. Clearly, at most one column of A1+A2ξ
is not p-monomial and the set of the remaining n − 1
columns of A1 + A2ξ includes an i-th p-monomial vec-
tor for i = 1, 2, . . . , n−1. Suppose that the last column
of A1 + A2ξ is not p-monomial. This implies that, on
the one hand, all remaining columns of A1 + A2ξ are
p-monomial, on the other hand (A1 + A2ξ)(B1 + B2ξ)
is not p-monomial. For these reasons, both in case
(A1 + A2ξ)(B1 + B2ξ) has at least two nonzero en-
tries (case 1) and in case it is a vector like p(ξ)ei, for

some polynomial p(ξ) of lag 1 (case 2), also the fol-
lowing powers (A1 + A2ξ)i(B1 + B2ξ), i > 1, are not
p-monomial. Suppose now that (A1 + A2ξ)(B1 + B2ξ)
is a p-monomial vector. Clearly the nonzero entry can-
not be in the last (namely n-th) position, otherwise all
powers (A1 + A2ξ)i(B1 + B2ξ) would have the same
structure, and it entails no loss of generality assuming
that the only nonzero entry lies in the n − 1-th row.
We can now repeat the same reasoning we just applied
to the last row and claim that if the n − 1-th column
would not be p-monomial then all the other columns
in A1 + A2ξ would not be, and hence all remaining
powers (A1 + A2ξ)i(B1 + B2ξ), i ≥ 2, would not be p-
monomial. In this way we have proven that (upon a
suitable permutation) we can assume that all columns
of A1 + A2ξ, except possibly for the first one, have to
be p-monomial vectors and

A1 + A2ξ =


? a12 0
? 0 a23 0

?
. . .

. . .
...

.

..
. . . an−1,n

? 0 . . . 0 0

B1 + B2ξ =


0
0
0
.
..

bn


(10)

where ai,i+1, bn ∈ R+[ξ] are nonzero monomials and
the entries denoted by ? are polynomials in R+[ξ] (of
degree at most 1).

iii) ⇔ iv) Suppose that Rn(ξ) belongs to R+[ξ]n×n

and its inverse Rn(ξ)−1 to R+[ξ−1]n×n. So, at each
point ξ̄ ∈ R+ Rn(ξ̄) and Rn(ξ̄)−1 are nonnegative ma-
trices satisfying In = Rn(ξ̄)Rn(ξ̄)−1. Since the only
nonnegative square matrices endowed with nonnega-
tive inverses are monomial, this implies that Rn(ξ̄) is
monomial for every ξ̄ ∈ R+. This is possible (if and)
only if Rn(ξ) ∈ R+[ξ]n×n is p-monomial and hence
satisfies iii). The converse is obvious.

3 Local and global observability

Global and local reachability definitions, given in
section 2, could have been equivalently introduced
by referring to the nonzero patterns both of the
(global/local) states to be reached and of the input
sequences, instead of considering their specific nonneg-
ative values. On the other hand, if we aim at intro-
ducing observability definitions starting from the free
output evolutions of 2D positive systems, and pretend
that they provide reasonable dual properties w.r.t. lo-
cal and global reachability, a nonzero pattern approach
is somehow unavoidable.

Definition 3.1 A 2D state-space model (1)-(2) is



• locally observable if, upon assuming that the
initial global state X0 consists of a single nonzero lo-
cal state x(0, 0), the knowledge of the nonzero pattern
of the free output evolution y`(h, k) at each (h, k) ∈
Z+×Z+ allows to uniquely determine the nonzero pat-
tern of x(0, 0);
• globally observable if the knowledge of the

nonzero pattern of the free output evolution y`(h, k) at
each (h, k) ∈ Z ×Z, h + k ≥ 0, allows to uniquely de-
termine the nonzero pattern of X0.

Global observability trivially implies local observ-
ability. In order to explore this latter, we introduce
the observability matrix in k steps, i.e.

Ok =



C
CA1

CA2

CA2
1

C(A1
1 1A2)

CA2
2

...
CAk−1

2


=

[
C(A1

i jA2)
]
i,j≥0, 0≤i+j<k

where k is a positive integer. As a first step, we provide
a characterization of local observability.

Proposition 3.2 Given a 2D system (1)-(2) the fol-
lowing facts are equivalent:

i) the system is locally observable;
ii) there exist n pairs (hi, ki) ∈ Z+ × Z+, i =

1, 2, . . . , n, and n indices j = j(i) ∈ {1, 2, . . . , p} s.t.

p
(
eT

j C(A1
hi kiA2)

)
= {i}; (11)

iii) there exists N ∈ N s.t. the observability matrix
in N steps ON has an n× n monomial submatrix.

Proof i) ⇒ ii) Suppose, by contradiction, that the
system is locally observable but ii) does not hold. This
means that there exists q ∈ {1, 2, . . . , n} s.t. none of
the rows of the observability matrix in k steps, for any
k ∈ N, is a q-th monomial vector. It is easy to verify
that the initial states x(0, 0) = 1n and x(0, 0) = 1n−e`

have different nonzero patterns but produce free output
evolutions endowed with the same nonzero patterns.
Thus the system cannot be locally observable.

ii) ⇒ i) If ii) holds true, the i-th entry of the local
state x(0, 0) is nonzero if and only if eT

j y`(hi, ki) 6= 0,
i = 1, 2, . . . , n. So, the system is locally observable.

The equivalence of ii) and iii) is obvious.
When dealing with 2D systems with scalar outputs,

condition ii) above simply becomes: there exist n pairs
(hi, ki) ∈ Z+ ×Z+, i = 1, 2, . . . , n, s.t. C(A1

hi kiA2)

is an i-th (row) monomial vector. Notice that, also in
this case, all pairs (hi, ki) are necessarily distinct, but
the case may occur that hi + ki = hj + kj for i 6= j.

In order to address global observability by means
of polynomial techniques, we express the free output
evolution on each separation set St by means of a power
series, Yt(z1, z2) =

∑
h∈Z y(h, t− h)zh

1 zt−h
2 , and relate

it to the global initial conditions X0 as follows

Yt(z1, z2) =
∑

h∈Z Cx(h, t− h)zh
1 zt−h

2

=
∑

h∈Z C
∑t

`=0(A1
` t−`A2)x(h− `, `− h)zh

1 zt−h
2

= C
∑t

`=0(A1
` t−`A2)z`

1z
t−`
2 X0(z1, z2)

= C(A1z1 + A2z2)tX0(z1, z2).

Consequently Y0(z1, z2)
...

Yk−1(z1, z2)

 = Ok(z1, z2)X0(z1, z2) (12)

where

Ok(z1, z2) :=


C

C(A1z1 + A2z2)
...

C(A1z1 + A2z2)k−1

 . (13)

Starting from this 2D polynomial description, we can
obtain a characterization of global observability.

Proposition 3.3 The 2D system (1)-(2) is globally
observable if and only if there exists some nonnegative
index N such that the 2D polynomial matrix ON (z1, z2)
given in (13) includes an n×n p-monomial submatrix.

Proof Of course, if there exists some index N ∈ N
such that the observability matrix ON (z1, z2) includes
an n×n p-monomial submatrix, then there exists a suit-
able selection of separation sets Sk1 ,Sk2 , . . . ,Skn , ki ∈
N and a corresponding suitable choice of output com-
ponents j1, j2, . . . , jn ∈ {1, 2, . . . , p} such that

eT
j1Yk1(z1, z2)

eT
j2Yk2(z1, z2)

...
eT

jn
Ykn(z1, z2)

 = M ·diag{zµ1
1 zν1

2 , . . . , zµn
1 zνn

2 }X0(z1, z2).

Since we have already seen that a p-monomial ma-
trix in R+[ξ]n×n exhibits an inverse (in R+[ξ−1]n×n)
having the same structure, it follows that

diag{z−µ1
1 z−ν1

2 , . . . , z−µn

1 z−νn
2 }M−1 ·


eT

j1
Yk1(z1, z2)

eT
j2

Yk2(z1, z2)
...

eT
jn

Ykn
(z1, z2)





= X0(z1, z2).

This allows an entry by entry identification of all local
components of the initial global state, and hence the
identification of the nonzero pattern of X0.

Conversely, suppose by contradiction that the sys-
tem is globally observable but there exists some index
` ∈ {1, 2, . . . , n} such that none of the rows of the ob-
servability matrix in k steps Ok(z1, z2), for any k ∈ N,
is an `-th p-monomial vector. Two cases may occur:
either every row having a nonzero `-th entry has also
other nonzero entries, or all rows whose only nonzero
entry is the `-th one, exhibit a polynomial of strictly
positive lag in the `-th position. If so, we denote by
L > 0 the smallest such lag. In the first case, it is easy
to see that the initial global states

X0(z1, z2) =
∑
h∈Z

1nzh
1 z−h

2

X̄0(z1, z2) =
∑
h∈Z

(1n − e`) zh
1 z−h

2

have different nonzero patterns but produce free output
evolutions endowed with the same nonzero patterns,
thus contradicting global observability. Similarly, in
the second case, the initial global states

X0(z1, z2) =
∑
h∈Z

1nzh
1 z−h

2

X̄0(z1, z2) =
∑
h∈Z

(1n − e`) zh
1 z−h

2 +
∑
h∈Z

e`z
h(L+1)
1 z

−h(L+1)
2

have different nonzero patterns but produce free out-
put evolutions endowed with the same nonzero pat-
terns, contradicting again global observability.

Remark The 2D system (1)-(2) is globally observ-
able if and only if there exists N ∈ N such that

ON (ξ) =


C

C(A1 + A2ξ)
...

C(A1 + A2ξ)N−1


includes an n× n p-monomial submatrix

Corollary 3.4 If the 2D system (1)-(2) is globally

observable then
[

A1 + A2ξ
C

]
includes an n × n p-

monomial matrix.

Starting from Proposition 3.3, it is straightforward
to apply the same type of reasonings adopted in section
2 for global reachability, thus obtaining

Proposition 3.5 The 2D system (1)-(2) of size n is
globally observable if and only if the polynomial matrix
On(ξ) includes an n× n p-monomial submatrix.

A polynomial canonical form can be obtained for
globally observable systems with scalar outputs, by re-
sorting to the results derived in this section and to the
reasonings adopted within the proof of Proposition 2.8.

Proposition 3.6 For a 2D system (1)-(2) of size n
with scalar outputs the following facts are equivalent:

i) the system is globally observable;
ii) there exists a permutation matrix P such that

PT (A1 + A2ξ)P =


? ? ? . . . ?

a21 0 0 0

0 a32
. . . . . .

...
...

. . . 0
0 0 . . . an,n−1 0


CP = [ 0 0 0 . . . cn ]

where ai,i−1 ∈ R+[ξ] are nonzero monomials, cn ∈
R+, cn > 0, and ? denotes a polynomial in R+[ξ] of
degree at most 1;

iii) On(ξ) ∈ R+[ξ]n×n is a p-monomial matrix;
iv) On(ξ) is nonsingular and On(ξ)−1 ∈

R+[ξ−1]n×n.
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