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Abstract

In this note we first characterize the periodic trajectories (or, equivalently, the limit cycles) of a Boolean network, and their
global attractiveness. We then investigate under which conditions all the trajectories of a Boolean control network may be
forced to converge to the same periodic trajectory. If every trajectory can be driven to such a periodic trajectory, this is
possible by means of a feedback control law.
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1 Introduction

Boolean networks (BNs) are state-space models whose
state variables attain two possible values (0 and 1, true
or false) and whose update is governed by logic functions.
The recent interest in BNs is motivated by the large
number of natural and artificial systems whose describ-
ing variables display only two distinct configurations.
Originally introduced to model simple neural networks,
BNs recently proved to be suitable to describe and sim-
ulate the behavior of genetic regulatory networks [9,15].
In addition, BNs are fruitfully used to describe the inter-
actions among agents and hence to investigate consen-
sus problems [8,14]. Boolean control networks (BCNs)
were subsequently introduced in the literature to keep
into account that many biological systems have exoge-
nous inputs. So, by adding Boolean inputs to a BN, it is
possible to formally define a BCN. Indeed, a BCN can
be seen as a switched system, switching among different
BNs.

In addition to the increasingly large number of applica-
tions where BNs and BCNs proved their effectiveness,
another reason for their recent success is the powerful
algebraic framework, developed by D. Cheng and co-
authors [2,3,5], where both BNs and BCNs can be re-
cast. The main idea underlying this approach is that a
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Boolean network with n state variables exhibits 2n pos-
sible configurations, and if any such configuration is rep-
resented by means of a canonical vector of size 2n, all
the logic maps that regulate the state-updating can be
equivalently described by means of 2n×2n Boolean ma-
trices. As a result, every Boolean network can be de-
scribed as a discrete-time linear system. In a similar fash-
ion, a Boolean control network can be converted into a
discrete-time bilinear system or, more conveniently, it
can be seen as a family of BNs, each of them associated
with a specific value of the input variables.

In this paper, we investigate the periodic structure of the
state trajectories of BNs and BCNs. In detail, we first
characterize the periodic trajectories (or, equivalently,
the limit cycles) of a Boolean network, and their global
attractiveness. We then investigate under which condi-
tions all the trajectories of a BCN may be forced to con-
verge to the same periodic trajectory. If this is the case,
this goal can be achieved by means of a feedback con-
trol. The stabilization problem to an equilibrium point,
a topic first investigated in [4,6] (see also [12,13] for re-
cent contributions about the stability and stabilizabil-
ity problems for BCNs and BNs with impulsive effects),
follows as a special case.

Notation. Given two nonnegative integers k, n, with
k ≤ n, by the symbol [k, n] we denote the set of integers
{k, k + 1, . . . , n}. We consider Boolean vectors and ma-
trices, taking values in B = {0, 1}, with the usual log-
ical operations (And ∧, Or ∨, Negation −). δik denotes
the ith canonical vector of size k, Lk the set of all k-
dimensional canonical vectors, and Lk×n ⊂ Bk×n the set
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of all k × n matrices whose columns are canonical vec-
tors of size k. Any matrix L ∈ Lk×n can be represented
as a row vector whose entries are canonical vectors in
Lk, namely L =

[
δi1k δi2k . . . δink

]
, for suitable in-

dices i1, i2, . . . , in ∈ [1, k]. [A]`j is the (`, j)th entry of
the matrix A. A permutation matrix P is a nonsingular
square matrix in Lk×k. In particular, a matrix

P = C = [ δ2k δ3k . . . δkk δ1k ] (1)

is a k × k cyclic (permutation) matrix. Given a matrix
L ∈ Bk×k (in particular, L ∈ Lk×k), we associate with it
[1] a digraph D(L), with vertices 1, . . . , k. There is an arc
(j, `) from j to ` if and only if the [L]`j = 1. A sequence
j1 → j2 → . . .→ jr → jr+1 in D(L) is a path of length r
from j1 to jr+1 provided that (j1, j2), . . . , (jr, jr+1) are
arcs ofD(L). A closed path is called a cycle. In particular,
a cycle γ with no repeated vertices is called elementary,
and its length |γ| coincides with the number of (distinct)
vertices appearing in it. Note that a k× k cyclic matrix
has a digraph that consists of one elementary cycle with
length k.

There is a bijective correspondence between Boolean
variables X ∈ B and vectors x ∈ L2, defined by the re-
lationship

x =
[
X
X

]
.

We introduce the (left) semi-tensor product n between
matrices (and hence, in particular, vectors) as follows
[5,10]: givenL1 ∈ Rr1×c1 andL2 ∈ Rr2×c2 (in particular,
L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2), we set

L1nL2 := (L1⊗IT/c1)(L2⊗IT/r2), T := l.c.m.{c1, r2}.

The semi-tensor product represents an extension of the
standard matrix product, by this meaning that if c1 =
r2, then L1 n L2 = L1L2. Note that if x1 ∈ Lr1 and
x2 ∈ Lr2 , then x1 n x2 ∈ Lr1r2 . By resorting to the
semi-tensor product, we can extend the previous cor-
respondence to a bijective correspondence [5] between
Bn and L2n . This is possible in the following way: given
X = [X1 X2 . . . Xn ]> ∈ Bn set

x :=
[
X1

X1

]
n
[
X2

X2

]
n . . .n

[
Xn

Xn

]
.

This amounts to saying that

x =


X1X2 . . . Xn−1Xn

X1X2 . . . Xn−1 Xn

X1X2 . . . Xn−1Xn

...
X1X2 . . . Xn−1Xn

 .

2 Limit cycles of a Boolean Network

A Boolean Network (BN) is described by the following
equation

X(t+ 1) = f(X(t)), t ∈ Z+, (2)

where X(t) denotes the n-dimensional state variable at
time t, taking values inBn. f is a (logic) function, namely
a map f : Bn → Bn. Upon representing the state vector
X(t) by means of its equivalent x(t) in L2n , the BN (2)
can be described [5] as

x(t+ 1) = Ln x(t) = Lx(t), (3)

where L ∈ L2n×2n is a matrix whose columns are canon-
ical vectors of size 2n.

Definition 1 An ordered sequence of distinct vectors
(δi12n , δ

i2
2n , . . . , δ

ik
2n) is a limit cycle C of the BN (3) if

x(0) = δi`2n for some ` ∈ [1, k] ensures that the cor-
responding state trajectory x(t) is periodic of period k

and, for every t ∈ Z+, x(t) = δ
ij
2n , where j ∈ [1, k] and

j ≡ (t + `) mod k. A limit cycle of unitary length is an
equilibrium point of the BN.

Definition 2 A limit cycle C of the BN (3) is globally
attractive if for every x(0) ∈ L2n there exists τ ∈ Z+

such that x(t) is a state of C for every t ∈ Z+, t ≥ τ .

Clearly, a BN has a globally attractive limit cycle if and
only if all its state trajectories converge in a finite num-
ber of steps to the same periodic trajectory. In order
to provide a characterization of globally attractive limit
cycles, we introduce the following result.

Proposition 1 [7] Given a BN (3), there exist r ∈ N
and a permutation matrix P ∈ L2n×2n such that

P>LP = blockdiag{D1, D2, . . . , Dr}, (4)

with Di =
[
Ni 0
Ti Ci

]
∈ Lni×ni

, (5)

whereNi is a (ni−ki)×(ni−ki) square nilpotent matrix,
and Ci is a ki × ki cyclic permutation matrix.

The permutation matrix P corresponds to a so called
change of basis in the vector space of the logic functions
of x1, x2, . . . , xn [5]. The previous proposition relates a
number of properties of the BN to the algebraic struc-
ture of L: in the general case, a BN has r limit cycles.
Every limit cycle (in particular, every equilibrium point)
has a domain of attraction, namely a set of initial condi-
tions x(0) that originate trajectories entering the cycle
in a finite number of steps. The block structure of P>LP
clarifies the domain of attraction of each limit cycle. Fi-
nally, the number Tr := maxi∈[1,r](ni−ki) represents an
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upper bound on the transient time, namely on the max-
imum number of steps after which x(t) steadily belongs
to a limit cycle. Note that after Tr steps, every trajec-
tory is periodic with (not necessarily minimum) period
Tp := l.c.m.{ki, i ∈ [1, r]}.

The previous comments immediately lead to the follow-
ing characterization.

Proposition 2 Given a BN (3), an ordered set of dis-
tinct canonical vectors C = (δi12n , δ

i2
2n , . . . , δ

ik
2n) is a glob-

ally attractive limit cycle of the BN if and only if there ex-
ists a permutation matrix P ∈ L2n×2n such that P>LP
can be described as in (4)-(5) for r = 1, with C1 a cyclic
permutation matrix of size k and, possibly upon a circu-
lar permutation of the indices i`, P>δi`2n = δ2

n−k+`
2n , for

every ` ∈ [1, k].

By Proposition 1, the characteristic polynomial of the
matrix L takes the form

∆L(z) := det(zI2n − L) =
(
z2n−

∑r

i=1
ki

) r∏
i=1

(zki − 1).

Consequently, we have the following corollary.

Corollary 1 A BN (3) has a globally attractive limit
cycle (of length k) if and only if ∆L(z) = z2n−k(zk − 1).

3 Boolean Control Networks: basic definitions
and stabilizability to a limit cycle

A Boolean Control Network (BCN) is described by the
following equation

X(t+ 1) = f(X(t), U(t)), t ∈ Z+, (6)

whereX(t) andU(t) are the n-dimensional state variable
and the m-dimensional input variable at time t, taking
values in Bn and in Bm, respectively, and f is a logic
function, i.e. f : Bn × Bm → Bn. By resorting to the
semi-tensor product n, the BCN (6) can be described as
[5]

x(t+ 1) = Ln u(t) n x(t), t ∈ Z+, (7)

where L ∈ L2n×2n+m . For every choice of the input vari-
able at time t, namely for every u(t) = δj2m , Ln u(t) =:
Lj is a matrix in L2n×2n . So, we can think of the BCN
(7) as a Boolean switched system,

x(t+ 1) = Lσ(t)x(t), t ∈ Z+, (8)

where σ(t), t ∈ Z+, is a switching sequence taking values
in [1, 2m]. For every j ∈ [1, 2m], we refer to the BN

x(t+ 1) = Ljx(t), t ∈ Z+, (9)

as the jth subsystem of the Boolean switched system (8).

Definition 3 [5] Given a BCN (7), we say that xf = δi2n

is reachable from x0 = δj2n if there exists τ ∈ Z+ and an
input u(t), t ∈ [0, τ − 1], that leads the state trajectory
from x(0) = x0 to x(τ) = xf . The BCN is controllable if
xf is reachable from x0, for every choice of x0,xf ∈ L2n .

A state xf = δi2n is reachable from x0 = δj2n if and only
if [5] there exists τ ∈ Z+ such that the Boolean sum of
the matrices Lν , ν ∈ [1, 2m], namely

Ltot :=
2m∨
ν=1

Lν ,

satisfies [Lτtot]ij = 1. Consequently, by the theory of pos-
itive matrices [1], the BCN is controllable if and only if
Ltot is an irreducible matrix (see, also [11]), or, equiva-
lently, the Boolean matrix

L :=
2n−1∨
i=0

(Ltot)i (10)

has all unitary entries. In the sequel, we will denote the
set of states reachable from x0 as R(x0).

Definition 4 A BCN (7) is stabilizable to the elemen-
tary cycle C = (δi12n , δ

i2
2n , . . . , δ

ik
2n) if for every x(0) ∈ L2n

there exist u(t), t ∈ Z+, and τ ∈ Z+ such that x(t) = δ
ij
2n

for every t ≥ τ , where j ∈ [1, k] and j ≡ (t−τ+1) mod k.

The proof of the following result is quite straightforward.

Proposition 3 A BCN (7) is stabilizable to the elemen-
tary cycle C = (δi12n , δ

i2
2n , . . . , δ

ik
2n) if and only if the fol-

lowing two conditions hold

1) for every (i`, i`+1), ` ∈ [1, k], (with ik+1 = i1) there
exists δj`2m such that δi`+1

2n = Ln δj`2m n δi`2n = Lj`δ
i`
2n ;

2) δi12n is reachable from every initial state x(0), which
amounts to saying that

δi12n ∈
⋂

x(0)∈L2n

R(x(0)).

Corollary 2 A BCN (7) is stabilizable to the state xe :=
δi2n ∈ L2n if and only if the following two conditions hold

1) xe is an equilibrium point of the jth subsystem (9), for
some j ∈ [1, 2m];

2) xe is reachable from every initial state x(0), i.e., xe ∈
∩x(0)∈L2nR(x(0)).
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To understand what are the states to which we may
stabilize a BCN (7), we have first to look into the set
of all equilibrium points of the various subsystems. This
requires to determine all the indices i ∈ [1, 2n] such that
there exists j ∈ [1, 2m] for which coli(Lj) = δi2n .Once we
have identified the set Xe of all such canonical vectors,
we have to verify which of them are reachable from any
initial state. This amounts to checking which rows of L
have all unitary entries. So, to conclude, the BCN will
be stabilizable to all vectors δi2n ∈ Xe such that the ith
row of L is all unitary.

4 Feedback stabilization to a limit cycle

In the previous section we have investigated the stabi-
lization problem to some cyclic trajectory. This problem
has been addressed by assuming that at every time in-
stant t ∈ Z+ the input variable u(t) can be freely cho-
sen in L2m . We want to show now that this stabiliza-
tion problem can be solved by means of a feedback law,
by this meaning that at every time instant t the input
u(t) can be expressed as u(t) = Kx(t), for some matrix
K ∈ L2m×2n . We provide the following result, whose
proof is based on some ideas appearing in [5] (see page
358, Theorem 15.2).

Proposition 4 If a BCN (7) is stabilizable to some ele-
mentary cycle C = (δi12n , δ

i2
2n , . . . , δ

ik
2n), then it is stabiliz-

able by means of a feedback law.

Proof. If the BCN is stabilizable to C, then conditions
1) and 2) of Proposition 3 hold. We want to make use of
these two conditions to define the columns of K, one by
one. We first consider the indices i1, i2, . . . , ik ∈ C. By
condition 1), we know that, for every x = δi`2n , ` ∈ [1, k],
there exists u = δj`2m , j` ∈ [1, 2m], such that δi`+1

2n =
Ln δj`2m n δi`2n = Ln u n x (where ik+1 = i1), and hence
it is sufficient to impose

u = δj`2m = Kδi`2n = Kx, ∀ ` ∈ [1, k],

which amounts to imposing coli`(K) := δj`2m .

Let St, t ∈ Z+, denote the set of all states δi2n , i ∈ [1, 2n],
whose minimum distance from the cycle C is t, by this
meaning that the length of the shortest part from the
state δi2n to any state of C is just t. Clearly, S0 = C, and
St+1 6= ∅ implies St 6= ∅. On the other hand, for every
t > 2n − k, St = ∅. Finally, by assumption 2),

S0 ∪ S1 ∪ S2 ∪ . . . ∪ S2n−k = L2n ,

and all sets St are disjoint. Since for every x = δi2n ∈
St+1 there exists u = δj2m such that Lnδj2m nδi2n ∈ St, it
is easy to see that by assuming coli(K) := δj2m , for every
δi2n ∈ S1 ∪ S2 ∪ . . . ∪ S2n−k, we assign all the remaining

columns ofK. Therefore, the feedback law u(t) = Kx(t)
allows to converge to C and to remain therein. 2

Example 1 Consider a BCN (7), with n = 3 and m =
1, and suppose that

L1 :=Ln δ12 = [ δ28 δ38 δ48 δ58 δ28 δ78 δ88 δ38 ] ,
L2 :=Ln δ22 = [ δ58 δ18 δ68 δ28 δ48 δ78 δ88 δ88 ] .

The BCN can be described by the following digraph, where
the 23 = 8 states of the BCN are represented by vertices,
blue continuous arcs correspond to the unitary entries of
L1, while red dashed arcs to entries of L2.

1	   2	   3	   4	  

5	   6	   7	   8	  

Fig. 1. Digraph corresponding to the BCN of Example 1.

A possible limit cycle is C = (δ28 , δ
3
8 , δ

4
8). The transition

from δ28 to δ38 and from δ38 to δ48 is due to blue continuous
arcs (and hence to L1),while the transition from δ48 to δ28
to a red dashed arc (to L2). Accordingly we have that

Kδ24 = δ12 , Kδ34 = δ12 , Kδ44 = δ22 .

If we consider now the vertices that have distance t from
C, we find

i) S1 = {δ18 , δ58 , δ88};
ii) S2 = {δ78};

iii) S3 = {δ68}.

Keeping in mind what are the arcs that belong to the
shortest paths from each of these vertices to C, we obtain
as possible feedback matrices all matrices

K = [ δ12 δ12 δ12 δ22 ∗ ∗ ∗ δ12 ] ,

where ∗ denotes columns that can be either δ12 or δ22.

Corollary 3 Given a controllable BCN (7), for every
elementary cycle C = (δi12n , δ

i2
2n , . . . , δ

ik
2n) appearing in

D(Ltot), there exists a state-feedback matrix KC that
drives all state trajectories to C.

Proof. If C is an elementary cycle in D(Ltot), for every
pair of vertices (i`, i`+1) ∈ D(Ltot), there is an arc con-
necting them. This means that for every pair of states
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(δi`2n , δ
i`+1
2n ), ` ∈ [1, k], with ik+1 = i1, there exists a

value of u(t), say δj`2m , that allows the transition from
x(t) = δi`2n to x(t+ 1) = δ

i`+1
2n . On the other hand, con-

trollability ensures that δi12n is surely reachable from ev-
ery x(0). Since both conditions 1) and 2) of Proposition
3 are satisfied, by proceeding as in the previous proof,
we can explicitly construct one such matrix KC . 2

If the BCN is not controllable, the matrix Ltot is not ir-
reducible, and hence D(Ltot) is not strongly connected.
Consequently, D(Ltot) can be partitioned into commu-
nication classes, and the BCN can be stabilized to some
limit cycle if and only if there exists a communication
class that is accessible from every other class of D(Ltot).

Remark 1 If we stabilize a BCN (7) to some elemen-
tary cycle by means of a feedback law u(t) = Kx(t), the
resulting BCN can be described as

x(t+ 1) = LnK n x(t) n x(t) = LnK n Φ n x(t),

where Φ ∈ L(2n)2×2n is the group power reducing matrix
[5] acting as x(t) n x(t) = Φx(t). The effect of the sta-
bilization is that the matrix LnK n Φ ∈ L2n×2n can be
reduced, by means of a permutation matrix to the form[

N 0
T C

]
,

whereC is a cyclic permutation matrix, andN a nilpotent
matrix.
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