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a b s t r a c t

We consider Boolean control networks (BCNs), and in particular Boolean networks (BNs), in the
framework of symbolic dynamics (SD). We show that the set of state-space trajectories of a BCN is a
shift space of finite type (SFT). This observation allows us to extend two important analysis tools from
SD, namely, the Artin–Mazur zeta function and the topological entropy, to BNs and BCNs. Some of the
theoretical results are illustrated using a BCN model of the core network regulating the mammalian cell
cycle.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Boolean network (BNs) are useful modeling tools for dynam-
ical systems whose state variables can attain two possible val-
ues. Examples include artificial neural networks with threshold
function type neurons (see, e.g., Hassoun, 1995), and models for
the interactions and the emergence of social consensus between
simple agents (see, e.g., Green, Leishman, & Sadedin, 2007). BNs
have recently been attracting considerable attention as computa-
tional tools in systems biology, and, in particular, as models for ge-
netic regulation networks. Here each gene is either expressed (ON)
or not expressed (OFF) (Chaos et al., 2006; Kauffman, Peterson,
Samuelsson, & Troein, 2003; Li, Long, Lu, Ouyang, & Tang, 2004).
Kauffman (1969) has studied the behavior of large, randomly
constructed nets of these binary genes. His pioneering ideas stim-
ulated research in the theoretical analysis of the dynamics of large-
scale BNs, especially using tools from the fields of complex systems
and statistical physics (see, e.g., Albert & Barabasi, 2000, Aldana,
2003, Drossel, Mihaljev, & Greil, 2005, Kauffman, 1993).
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BNs have also been used to model various cellular processes.
Specific examples include: the complex cellular signaling network
controlling stomatal closure in plants (Li, Assmann, &Albert, 2006),
the molecular pathway between two neurotransmitter systems,
the dopamine and glutamate receptors (Gupta, Bisht, Kukreti,
Jain, & Brahmachari, 2007), carcinogenesis, and the effects of
therapeutic intervention (Szallasi & Liang, 1998).

Many biological systemshave exogenous inputs and it is natural
to extend BNs to Boolean control networks (BCNs) by adding
Boolean inputs. For example, in a BCNmodeling the progression of
a disease, a binary inputmay representwhether a certainmedicine
is administered or not at each time step.

Cheng, Qi, and Li (2011) have developed an algebraic state-
space representation (ASSR) of BCNs (and, in particular, of BNs). This
representation has proved useful for studying control-theoretic
questions, as they reduce BCNs to linear switched systems whose
input, state and output variables are canonical vectors. A drawback
of the ASSR is its computational complexity, as the ASSR of a BN
with n state variables includes a 2n

×2n matrix. Thus, any algorithm
based on the ASSR has an exponential time complexity. A natural
question is that of whether better algorithms exist. Zhao (2005)
has shown that determining whether a BN has a fixed point is NP-
complete. Akutsu, Hayashida, Ching, and Ng (2007) has shown that
several control problems for BCNs are NP-hard. Laschov,Margaliot,
and Even (2013) have shown that the observability problem for
BCNs is alsoNP-hard. Thus, unless P = NP, these analysis problems
for BCNs cannot be solved in polynomial time.

We develop a new approach to the analysis of BCNs based on
symbolic dynamics (SD) (Lind & Marcus, 1995). The main objects of
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study in SD are shift spaces. We show that the set of all possible
trajectories of a BCN is a shift space. Consequently, many results
and analysis tools from SD are immediately applicable to BCNs.
We demonstrate this by defining and computing the zeta function
and the topological entropy of a BCN. The zeta function stores the
number of limit cycles of a dynamical system and their lengths,
while the topological entropy is a nonnegative real number that
measures how rich the control is. We illustrate some of the
theoretical results using a BCN model of an important biological
process: the regulation of the mammalian cell cycle.

The remainder of this note is organized as follows. Section 2
reviews BNs, BCNs, and some definitions and tools from SD.
Section 3 includes our main results. Section 4 details the biological
example.
Notation. We consider Boolean vectors and matrices, with entries
in S := {0, 1}, and the usual logical operations (AND: ∧; OR:
∨; negation: ·). [A]ℓj is the (ℓ, j)th entry of the matrix A. The
canonical vector δi

N ∈ SN , i = 1, . . . ,N , is the ith column of the
identity matrix IN . A matrix Lwhose columns are canonical vectors
is called a logical matrix. Note that Lmaps any canonical vector into
a canonical vector. A permutation matrix P is a nonsingular square
logical matrix. An N ×N permutation matrix is cyclic if it takes the
form


δ2
N δ3

N · · · δN
N δ1

N


.

The semi-tensor product (STP) (Cheng et al., 2011) of A ∈ Rm×n

and B ∈ Rp×q is

A n B := (A ⊗ Iα/n)(B ⊗ Iα/p) ∈ R(mα/n)×(qα/p),

where ⊗ denotes the Kronecker (or tensor) product, and α is the
least common multiple of n and p. If n = p, then A n B = (A ⊗ I1)
(B ⊗ I1) = AB. Hence, the semi-tensor product is a generalization
of the standardmatrix product that provides away tomultiply two
matrices with arbitrary dimensions.

A matrix A ∈ SN×N is associated with a directed graph
G(A) = (V , E) in the following way (Brualdi & Ryser, 1991). V =

{1, . . . ,N} is the set of vertices, while E ⊆ V ×V is the set of edges
(or arcs). There is an arc (j, ℓ) from j to ℓ if and only if [A]ℓj = 1. A
sequence j1 → j2 → · · · → jr → jr+1 in G(A) is a walk of length r
from j1 to jr+1 provided that (j1, j2), . . . , (jr , jr+1) are arcs of G(A).
A closed walk is called a cycle. A cycle γ with no repeated vertices
is called elementary, and its length |γ | coincides with the number
of (distinct) vertices appearing in it.

Conversely, with every directed graph G = (V , E), with V =

{1, 2, . . . ,N}, we associate an adjacency matrix A ∈ SN×N with
[A]ℓj = 1 if and only if (j, ℓ) ∈ E.

2. Preliminaries

A BCN is a discrete-time logical dynamical system

X1(k + 1) = f1(X1(k), . . . , Xn(k),U1(k), . . . ,Um(k)),
...

Xn(k + 1) = fn(X1(k), . . . , Xn(k),U1(k), . . . ,Um(k)),

where Xi,Ui ∈ S, and each fi is a Boolean function, i.e. fi : Sn+m
→

S. It is useful to write this in vector form as

X(k + 1) = f (X(k),U(k)). (1)

A BN is a BCN without inputs, i.e.

X(k + 1) = f (X(k)). (2)

D. Cheng et al. have developed an algebraic state-space represen-
tation of BCNs using the semi-tensor product of matrices. In this
setup, any Boolean variable Xi, taking values in S, is associatedwith
the vector xi :=


Xi X̄i

⊤, taking values in {δ1
2, δ

2
2}. The definition

of the STP implies that x := x1 n x2 n · · · n xn is a vector in S2n
Fig. 1. Vertex graph of the golden mean shift.

that includes all the minterms of the Xis. Note that, being a vec-
tor of distinct minterms, x is a canonical vector. Any Boolean func-
tion f : Sn

→ S can be represented as a sum of minterms, and this
implies that the STP can be used to provide an ASSR of BCNs.

Theorem 1 (Cheng & Qi, 2010). Consider the BCN (1). Set x(k) :=

x1(k) n · · · n xn(k), and u(k) := u1(k) n · · · n um(k). There exists
a unique logical matrix L ∈ S2n×2n+m

, called the transition matrix of
the BCN, such that

x(k + 1) = L n u(k) n x(k). (3)

Algorithms for converting a BCN from the form (1) to its ASSR
(3), and vice versa, may be found in Cheng et al. (2011). Similarly,
the BN (2), with n Boolean variables, may be represented in the
ASSR

x(k + 1) = Lx(k), (4)

where x(k) ∈ S2n and L ∈ S2n×2n . Note that the fact that a BN
may be represented in a linear form using the vector of minterms
has been known for a long time (see, e.g., Cull, 1971, 1975), but
the ASSR provides an explicit algebraic form that is particularly
suitable for control-theoretic analysis. For example, it can be used
to derive an ASSR of the adjoint control system (see Laschov &
Margaliot, 2011, in press).

Given the ASSR (4) of a BN, we can associate it with the directed
graph G(L) = G(V , E), where V = {δ1

2n , . . . , δ
2n
2n }, and there is a

directed edge from vertex δ
j
2n to vertex δi

2n if and only if [L]ij = 1.
We now describe some basic ideas from SD (Lind & Marcus,

1995). Given an alphabetA (e.g. the binary alphabet S), and a set of
strings F with symbols in A, let XF denote the set of (one-sided)
infinite sequences of symbols that do not contain any string in F .
The shift operator σ : XF → XF , defined by σ(.x0x1x2 . . .) :=

·x1x2x3 . . . , shifts any (one-sided) infinite sequence one position
to the left. If F is a finite set, then the dynamical system (XF , σ )
is called a shift of finite type (SFT). If XF can be defined by means
of a finite set of forbidden strings, all of which have length k + 1,
then (XF , σ ) is called a k-step SFT.

Alternatively, a k-step SFTmay be described by its set of allowed
strings of length k + 1. This leads to a useful graph-theoretic
representation, called the vertex graph. By restricting our attention
to one-step SFTs, we can associate with any such SFT a vertex
graph whose vertices correspond to the possible symbols in A,
and there is a directed edge from vertex j to vertex i if and only
if ji is an allowed string. Each vertex graph with N vertices can be
represented by its adjacency matrix A ∈ SN×N .

For example, if A = S then X{11} is the set of all binary
sequences that do not contain the string 11. (X{11}, σ ) is called the
golden mean shift (GMS) (Williams, 2004). Alternatively, it can be
characterized by the set of its allowed strings of length 2, namely,
{00, 01, 10}. The associated vertex graph has two vertices (0 and 1,
or, equivalently δ2

2 and δ1
2), and is depicted in Fig. 1. Every element

of X{11} corresponds to an (infinite) walk on this vertex graph, and
vice versa. The adjacencymatrix corresponding to the vertex graph
of X{11} is A =


1 1
1 0


.

For an SFT (XF , σ ), let pi denote the number of period i
sequences, i.e. sequences x such that σ i(x) = x. The Artin–Mazur
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zeta function ζ : R → R is a bookkeeping device for storing all
the pis, defined by

ζ (t) := exp


∞
i=1

pi
t i

i


. (5)

This implies that given ζ , one can easily obtain every pi as

pi =
1

(i − 1)!
di

dt i
ln(ζ (t))


t=0

. (6)

The next result provides an algebraic expression for the zeta
function in terms of the adjacency matrix of the vertex graph.

Theorem 2 (Bowen–Lanford formula (Lind & Marcus, 1995)). Sup-
pose that (XF , σ ) is an SFT over an alphabet with N symbols. Let G
be its vertex graph and A ∈ SN×N the associated adjacency matrix.
Then

ζ (t) = (tNPA(1/t))−1, (7)

where PA(s) := det(sIN − A).

The topological entropy of a shift space (XF , σ ) is

h := lim
ℓ→∞

1
ℓ
log(Nℓ), (8)

where Nℓ is the number of allowed strings of length ℓ. In other
words, h is the ‘‘growth rate’’ of the number of allowed blocks of
a given length. Existence of the limit in (8) follows from combining
the fact that Nℓ+h ≤ NℓNh with Fekete’s Lemma (see e.g. van Lint &
Wilson, 2001).

Example 1. Recall that the GMS consists of all the binary se-
quences with no consecutive 1’s. The number of allowed strings
of length ℓ satisfies the recursion

Nℓ+2 = Nℓ+1 + Nℓ, (9)

with N1 = 2,N2 = 3. Indeed, we can form an allowed string of
length (ℓ + 2) by either adding 01 to an allowed string of length ℓ,
or by concatenating 0 to every allowed (ℓ + 1) string. Eq. (9) im-
plies that Nℓ−2 = Fℓ, the ℓth Fibonacci number. It is well-known
that Fℓ grows exponentially as cγ ℓ, for some constant c , where
γ := (1 +

√
5)/2 ≈ 1.618 is the golden mean (Williams, 2004).

Hence, the topological entropy of the GMS is

lim
ℓ→∞

1
ℓ
log(cγ ℓ+2) = log(γ ).

Suppose that (XF , σ ) is an SFT over an alphabet with N
symbols, and let A be the N ×N adjacency matrix of the associated
vertex graph. The number of allowed ℓ-strings of the SFT is Nℓ =N

i,j=1[A
ℓ−1

]ij. Combining this with the Perron–Frobenius theory
(Lind & Marcus, 1995, Chapter 4) yields

h = log λA, (10)

where λA is the Perron root of A.

3. Main results

Given a BCN, define its set of state trajectories as

AS := {X(0)X(1) · · · : X(k + 1) = f (X(k),U(k)),
U(k) ∈ Sm, X(0) ∈ Sn

},

i.e., the state trajectories over all possible controls and initial
conditions. Note that for a BN this becomes

{X(0)X(1) · · · : X(k + 1) = f (X(k)), X(0) ∈ Sn
}.

The next result shows that the set of trajectories of a BCN (and
hence that of a BN) is a one-step SFT.
Theorem 3. In the ASSR (3), the set of state trajectories of a BCN is a
one-step SFT over the alphabet {δ1

2n , . . . , δ
2n
2n }.

Proof. Set Li := L n δi
2m , i = 1, . . . , 2m, where L is the transition

matrix of the BCN, and define

M := L1 ∨ L2 ∨ · · · ∨ L2m . (11)

Consider the SFT (XFS , σ ), where

FS := {δi
2nδ

j
2n : [M]ji = 0}. (12)

Note that FS = {δi
2nδ

j
2n : [M n v]ji = 0, ∀v ∈ {δ1

2m , . . . , δ2m
2m }}.

Suppose thatw = .δ
i0
2nδ

i1
2nδ

i2
2n · · · ∈ AS . Then for any k there exists a

j = j(k) such that δik+1
2n = Ljδ

ik
2n . Thus, [Lj]ik+1 ik = 1, so [M]ik+1 ik = 1.

By (12), this implies that w is a string of the SFT. Conversely, sup-
pose that w = ·δ

i0
2nδ

i1
2nδ

i2
2n . . . is a string of the SFT. By the definition

of F , this implies that [M]ik+1ik = 1 for all k. Thus, there exists
a j = j(k) such that [Lj]ik+1 ik = 1, i.e. δk+1

2n = L n δ
j
2m n δk

2n , so w is
a trajectory of the BCN. �

Note thatM is the adjacencymatrix of the graph associatedwith
the allowed strings of length 2 in the SFT. The next result follows
from Theorem 3 on replacingM with L.

Corollary 1. The set of trajectories of a BN in the ASSR (4) is a one-
step SFT over the alphabet {δ1

2n , . . . , δ
2n
2n }.

Note that not all one-step SFTs over a finite alphabet can be
represented as the set of trajectories of a BN. For example, the GMS
includes an infinite number of distinct sequences, whereas any BN
has a finite number of distinct trajectories.

3.1. The zeta function of a Boolean control network

Since a BCN (1) induces an SFT and thematrixM is the adjacency
matrix of the corresponding graph, the Bowen–Lanford formula
yields the following result.

Corollary 2. The zeta function of a BCN satisfies ζ (t) = (t2
n
PM

(1/t))−1, where PM(s) := det(sI2n − M) is the characteristic
polynomial of M.

Corollary 3. The zeta function of a BN with ASSR (4) satisfies

ζ (t) = (t2
n
PL(1/t))−1. (13)

Example 2. Consider the BN

X1(k + 1) = (X1(k) ∧ X2(k)) ∨ (X1(k) ∧ X3(k))
∨(X̄1(k) ∧ X̄2(k) ∧ X̄3(k)),

X2(k + 1) = X1(k) ∨ (X2(k) ∧ X3(k)),
X3(k + 1) = (X1(k) ∧ X̄2(k)) ∨ (X2(k) ∧ X̄3(k)).

Here n = 3 and L = [δ2
8 δ1

8 δ1
8 δ5

8 δ6
8 δ7

8 δ8
8 δ4

8] ∈ S8×8. A calculation
yields

PL(s) = s8 − s6 − s3 + s. (14)

So, by (13),

ζ (t) =
1

t8(t−8 − t−6 − t−3 + t−1)
=

1
t7 − t5 − t2 + 1

.

Hence, ln ζ (t) = − ln(t7 − t5 − t2 + 1). Thus,

p1 =
1
0!

d ln ζ (t)
dt


t=0

= 0, p2 =
1
1!

d2 ln ζ (t)
dt2


t=0

= 2,

and proceeding in this fashion yields p3 = 0, p4 = 2, and p5 = 5.
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Fig. 2. State-transition graph for the BN in Example 2.

Fig. 2 depicts the graph associated with this BN. It may be seen
that there are no equilibrium points (corresponding to period 1
sequences), so p1 = 0. Also, there are two period 2 sequences,
namely, ·δ1

8δ
2
8δ

1
8δ

2
8 . . . and ·δ2

8δ
1
8δ

2
8δ

1
8 . . . . Each of them is also a

period 4 sequence. Finally, each vertex in the cycle of length 5 is
the initial state of a period 5 sequence.

The concept of period ν sequences is closely related to
that of limit cycles. An ordered ν-tuple of distinct Boolean
vectors (X i1 , X i2 , . . . , X iν ) is called a limit cycle of length ν of the BN
if: (1) X(0) = X ij implies that X(1) = X ij+1 for j = 1, 2, . . . , ν − 1;
and (2) X(0) = X iν implies that X(1) = X i1 . Clearly, a limit cycle
of length ν corresponds to ν sequences of period ν, and also to
ν sequences of period 2ν, ν sequences of period 3ν, etc. For an
integer ν > 0, let D(ν) denote the set of proper divisors of ν
(i.e., excluding ν itself). Let qν denote the number of distinct limit
cycles of length ν. Then q1 = p1, and for ν > 1,

qν =


pν −


j∈D(ν)

pj


ν. (15)

For the BN in Example 2, (15) yields q1 = p1 = 0, q2 = (p2 −

p1)/2 = 1, q3 = (p3 − p1)/3 = 0, q4 = (p4 − p1 − p2)/4 = 0,
and q5 = (p5 − p1)/5 = 1.

The state-transition graph of a BN can be partitioned into
isolated components, each of them consisting of a limit cycle and a
number of states accessing it. On the basis of this observation, the
following useful expression for PL(s) was derived.

Proposition 1 (Fornasini & Valcher, 2013). Given a BN, let L ∈

S2n×2n be the transition matrix of the associated ASSR (4). There exist
r ∈ N and a permutation matrix P such that

P⊤LP = blockdiag{D1,D2, . . . ,Dr},

with Di :=


Ni 0
Ti Ci


∈ Sni×ni , (16)

where Ci ∈ Ski×ki , ki ≥ 1, is a cyclic matrix and Ni ∈ S(ni−ki)×(ni−ki)

is a nilpotent matrix. Consequently,

PL(s) =

r
i=1

PDi(s) = s(2
n
−
r

i=1 ki) ·

r
i=1

(ski − 1). (17)

Example 3. Consider the BN in Example 2. The ASSR is given
by n = 3, L =


δ2
8 δ1

8 δ1
8 δ5

8 δ6
8 δ7

8 δ8
8 δ4

8


. For the

permutation matrix P =

δ3
8 δ2

8 δ1
8 δ4

8 δ5
8 δ6

8 δ7
8 δ8

8


,

P⊤LP =

δ3
8 δ3

8 δ2
8 δ5

8 δ6
8 δ7

8 δ8
8 δ4

8


, which is in the

form (16) with r = 2, n1 = 3, k1 = 2, n2 = 5, and k2 = 5.
Combining Proposition 1 with Corollary 3 yields the following

result.

Corollary 4. The zeta function of a BN satisfies

ζ (t) =

r
i=1

ζi(t), (18)
where ζi(t) := (1 − tki)−1 is the zeta function of the ith (isolated)
component of the BN (consisting of all states that access the ith limit
cycle), and k1, k2, . . . , kr are the lengths of the distinct limit cycles of
the BN. Moreover, as qv = |{i : ki = v}|, v ∈ N, then

ζ (t) =

max{kj}
i=1

(1 − t i)(−qi).

Example 4. Consider again the BN in Example 2. The characteristic
polynomial of L factorizes as PL(s) = s(s2 − 1)(s5 − 1). By
Proposition 1, the BN has one limit cycle of length 2, and one
limit cycle of length 5. Equivalently, its zeta function is ζ (t) =

ζ1(t)ζ2(t), with ζ1(t) :=
1

1−t2
and ζ2(t) :=

1
1−t5

.

3.2. Topological entropy of a Boolean control network

Definition 1. The topological entropy of the BCN (1) is

hS := lim
j→∞

1
j
log |A

j
S |, (19)

where A
j
S is the set of state trajectories of length j.

In a BCN with n state variables, the number of distinct state
trajectories of length j is bounded above by 2nj. Hence,

hS ≤ lim
j→∞

1
j
log 2nj

= n log 2.

This upper bound is attained, for example, by the (trivial) BCN
X(k + 1) = U(k).

Example 5. Consider the BCN

X(k + 1) = U(k) ∨ (Ū(k) ∧ X̄(k)).

For U(k) = 1 [U(k) = 0], we have X(k + 1) = 1 [X(k + 1) =

X̄(k)]. The possible state trajectories of length 1 are, of course, 0
and 1, so |A1

S | = 2. To determine A2
S , we calculate all possible

sequences of length 2. This yields A2
S = {11, 10, 01}, so |A2

S | = 3.
More generally, from the two possible subsystems we see that all
sequences, except for those that contain two consecutive zeros, can
appear. This is analogous to the GMS case, so |A

j+2
S | = |A

j+1
S | +

|A
j
S |, and hS = log γ .

Our main result in this subsection, obtained by combining
Theorem 3 and (10), provides a simple way of computing hS using
the ASSR.

Corollary 5. The topological entropy of a BCN satisfies

hS = log λM , (20)

with M defined as in (11).

Example 6. Consider the BCN in Example 5. The ASSR is given by
(3) with n = m = 1, and L =


1 1 0 1
0 0 1 0


. Thus, L1 = L n δ1

2 =
1 1
0 0


, L2 = L n δ2

2 =


0 1
1 0


, and M = L1 ∨ L2 =


1 1
1 0


. The

eigenvalues of thismatrix are (1±
√
5)/2, so (20) yields hS = log γ .

Corollary 6. The topological entropy of a BN is h = 0.

Proof. By (17), any eigenvalue λ of L satisfies either λ = 0 or
|λ| = 1. Since the state space of a BN is finite, there must be at
least one limit cycle, so r in (17) satisfies r ≥ 1. Hence, 1 is always
an eigenvalue, so λL = 1. �
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Indeed, the entropy measures how the number of admissible
strings grows with the length of the string. A BN is an autonomous
system, whose trajectories are uniquely determined by the initial
condition. Since the number Nℓ of distinct trajectories of length ℓ
is a constant, independent of ℓ, h is necessarily zero.

The next result shows how Corollary 5 can be used to obtain
more general results.

Proposition 2. Consider the BCN

X1(k + 1) = X2(k),
...

Xn−1(k + 1) = Xn(k),
Xn(k + 1) = U(k).

The topological entropy of this ‘‘nth-order shift-register’’ is hS = log 2
for every n.

Proof. Fix arbitrary A, B ∈ Sn. There exists a unique control
sequence that steers the BCN from X(0) = A to X(n) = B, namely,
U(i) is bit i + 1 of B, i = 0, 1, . . . , n − 1. In the ASSR, [Mn

]ij is the
number of distinct state trajectories with n+ 1 symbols beginning
with δ

j
2n and ending with δi

2n , so we conclude that Mn
= 12n,2n ,

where 1v,w denotes the v × w matrix with all entries equal to 1.
The Perron root ofMn is 2n (corresponding to the eigenvector 12n,1),
so hS = log λM = log 2. �

4. Regulation of the mammalian cell cycle

The cell cycle is a temporal sequence of molecular events that
take place in a cell, leading to its division andduplication. This is the
process bywhich a single-cell fertilized egg develops into amature
organism, aswell as the process bywhichhair, skin, blood cells, and
some internal organs are renewed.

The cell cycle is divided into several phases. DNA replication
occurs during the synthesis (or S) phase. Growth stops and cellular
energy is focused on the orderly division into two daughter cells
at the mitosis (or M) phase. The S and M phases are separated by
two gap phases, G1 (between M and S) and G2 (between S and
M). A fifth phase, called G0, corresponding to a quiescent state,
can be reached from G1 in the absence of stimulation. Gap phases
enable the cell tomonitor its environment and internal state before
committing to the S or M phase.

Mammalian cell division is tightly controlled, as it must be
coordinated with the overall growth of the organism, and to
address specific needs, e.g. wound healing. Faults in this control
process can either kill a cell through apoptosis or cause mutations
thatmay lead to cancer. Cell cycle coordination is achieved through
extra-cellular positive and negative signals whose balance decides
whether a cell will divide or remain in the G0 resting phase.

The positive signals or growth factors ultimately elicit the
activation of Cyclin D (CycD) in the cell. Faure, Naldi, Chaouiya,
and Thieffry (2006) developed a BCN model for the core network
regulating the mammalian cell cycle. The model includes a single
Boolean input corresponding to the activation/inactivation of CycD
in the cell. The model also includes nine Boolean state variables
X1(t), . . . , X9(t) representing the activity/inactivity at time t of
nine different proteins: Rb, E2F, CycE, CycA, p27, Cdc20, Cdh1,
UbcH10, and CycB, respectively. The BCN model is

X1(t + 1) = (Ū(t) ∧ X̄3(t) ∧ X̄4(t) ∧ X̄9(t))
∨(X5(t) ∧ Ū(t) ∧ X̄9(t)),

X2(t + 1) = (X̄1(t) ∧ X̄4(t) ∧ X̄9(t))
∨(X5(t) ∧ X̄1(t) ∧ X̄9(t)),

X3(t + 1) = X2(t) ∧ X̄1(t),
X4(t + 1) = (X2(t) ∧ X̄1(t) ∧ X̄6(t) ∧ (X7(t) ∧ X8(t)))
∨(X4(t) ∧ X̄1(t) ∧ X̄6(t) ∧ (X7(t) ∧ X8(t))),

X5(t + 1) = (Ū(t) ∧ X̄3(t) ∧ X̄4(t) ∧ X̄9(t))
∨(X5(t) ∧ (X3(t) ∧ X4(t)) ∧ Ū(t) ∧ X̄9(t)),

X6(t + 1) = X9(t),
X7(t + 1) = (X̄4(t) ∧ X̄9(t)) ∨ X6(t) ∨ (X5(t) ∧ X̄9(t)),
X8(t + 1) = X̄7(t)

∨(X7(t) ∧ X8(t) ∧ (X6(t) ∨ X4(t) ∨ X9(t))),

X9(t + 1) = X̄6(t) ∧ X̄7(t). (21)

Thismodel is based on a logical regulatory graph of the interactions
between the different proteins; see Faure et al. (2006) and the
references therein for the details.

Faure et al. (2006) consider the case where either U(t) ≡

1 (i.e. in the presence of CycD) or U(t) ≡ 0, so the BCN
yields two possible BNs denoted as BN1 and BN0, respectively.
Their simulations show that BN1 admits a globally attracting
periodic trajectory composed of seven states. The sequence of state
transitions along this trajectory qualitatively matches cell cycle
progression. BN0 admits a single state that is globally attracting.
This state corresponds to the G0 phase.

Since n = 9 and m = 1, L ∈ S512×1024. Set Li := L n δi
2, i =

1, 2. A calculation shows that det(sI − L2) = s511(s − 1), so
Proposition 1 implies that BN0 admits a single cycle with length 1
(i.e., an equilibrium point). Similarly, det(sI − L1) = s505(s7 − 1),
so Proposition 1 implies that BN1 admits a single cycle with length
7. This cycle is

δ416
512 → δ477

512 → δ469
512 → δ498

512 → δ378
512 → δ316

512 → δ284
512 → δ416

512 .

A calculation yieldsλM = 1.8522, so the topological entropy of this
BCN is log 1.8522. More work is needed in order to understand the
meaning of entropy in BCNs that model biological systems.
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