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Optimal control of Boolean control networks

Ettore Fornasini and Maria Elena Valcher

Abstract

In this paper we address the optimal control problem for Boolean control networks (BCNs). We first

consider the problem of finding the input sequences that minimize a given cost function over a finite time

horizon. The problem solution is obtained by means of a recursive algorithm that represents the analogue

for BCNs of the difference Riccati equation for linear systems. We prove that a significant number of

optimal control problems for BCNs can be easily reframed into the present set-up. In particular, the cost

function can be adjusted so as to include penalties on the switchings, provided that we augment the

size of the BCN state variable. In the second part of the paper, we address the infinite horizon optimal

control problem and we provide necessary and sufficient conditions for the problem solvability. The

solution is obtained as the limit of the solution over the finite horizon [0, T ], and it is always achieved

in a finite number of steps. Finally, the average cost problem over the infinite horizon, investigated in

[30], is addressed by making use of the results obtained in the previous sections.

I. INTRODUCTION

Boolean networks (BNs) have recently witnessed a renewed interest, as they constitute an

effective tool for representing a number of phenomena whose describing variables display only

two operation levels. This is the case of genetic regulation networks [17], that can be successfully

modeled as BNs, due to the fact that each gene can be naturally described as a binary device

that displays only two states: “transcribed” or “quiescent”, namely “on” or “off”. BNs have

also been used to describe the interactions among agents, and hence to investigate consensus

problems [15].

Modeling a biological system involves considerable uncertainty, due to perturbations that affect

the biological system and inaccuracies of the measuring equipment. Incorporating this uncertainty
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in the modeling stage leads to Probabilistic Boolean Networks (PBNs) [28]. A PBN is a collection

of (deterministic) BNs combined with a probabilistic switching rule determining which network

is active at each time instant. In this set-up, the optimal control problem, applied to genetic

networks, has been the object of an extensive literature. Indeed, gene regulatory systems have

been modeled via PBNs, and both optimal finite horizon and infinite horizon control policies

have been proposed (see, e.g. [9], [25], [26], [27], [29]).

On the other hand, many biological systems have exogenous inputs and it is natural to extend

BNs to Boolean Control Networks (BCNs) by adding Boolean inputs. In this respect, a BCN can

be seen as a family of BNs, each of them associated with a specific value of the input variables.

For example, when modeling the progression of a disease, a binary input may represent whether

a certain medicine is administered or not at each time step, and BCNs with inputs have been used

to design and analyze therapeutic intervention strategies. The idea is to find a control sequence

that steers the network from an undesirable location (corresponding to a diseased state of the

biological system) to a desirable one (corresponding to a healthy state).

In the last decade, an algebraic framework has been developed that casts both BNs and BCNs

into the framework of linear state-space models (operating on canonical vectors) [3], [6], [7],

[8]. Within this setting, several control problems, like stability, stabilizability [4], [13], [14],

controllability [20] and observability [12], have been investigated.

The optimal control of BCNs has been recently addressed in a few contributions. Specifically,

in [30] (see also Chapter 15 in [8]) the problem of finding the input sequence that maximizes,

on the infinite horizon, an average payoff that weights both the state and the input at every

time t ∈ Z+, was investigated. The optimal solution is expressed as a feedback law, driving the

BCN to a periodic state trajectory with maximum payoff. Also, [18] and [19] considered the

optimal control problem over a finite horizon, but restricted the analysis to the case when the

payoff function only depends on the state of the BCN at the end of the control interval. The

optimal solution is obtained by resorting to the maximum principle, and has the structure of a

time varying state feedback law.

The interest in the optimal control problem for BCNs arises primarily, but not exclusively,

from two research areas. On the one hand, interesting applications to game theory have been

illustrated in [8], [30]. On the other hand, the results presented in [9], [25], [26], [27], [29]

provide evidence of the fact that optimal control problems naturally arise when dealing with
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biological systems in general, and genetic networks in particular, and BCNs often represent a

very convenient set-up where to investigate these problems. As an example, we consider the

constrained intervention in a mammalian cell-cycle network [10], [11], [16].

Motivating Example: The cell cycle is a temporal sequence of molecular events that take place

in a cell, leading to its division and duplication. The cell cycle is divided into several phases.

DNA replication occurs during the Synthesis (or S) phase. Growth stops and cellular energy is

focused on the orderly division into two daughter cells at the Mitosis (or M) phase. The S and

M phases are separated by two gap phases, G1 (between M and S) and G2 (between S and

M). A fifth phase, called G0, corresponding to a quiescent state, can be reached from G1 in the

absence of stimulation. Gap phases enable the cell to monitor its environment and internal state

before committing to the S or M phase.

Mammalian cell division is tightly controlled, and cell cycle coordination is achieved through

extra-cellular positive and negative signals whose balance decides whether a cell will divide

or remain in the G0 resting phase. The positive signals or growth factors ultimately elicit the

activation of Cyclin D (CycD) in the cell.

[11] developed a BCN model for the core network regulating the mammalian cell cycle. The

model includes a single Boolean input, U(t), corresponding to the activation/inactivation of CycD

in the cell, and nine Boolean state-variables X1(t), . . . , X9(t) representing the activity/inactivity

at time t of nine different proteins: Rb, E2F, CycE, CycA, p27, Cdc20, Cdh1, UbcH10, CycB,
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respectively. The BCN model is

X1(t+ 1) = (Ū(t) ∧ X̄3(t) ∧ X̄4(t) ∧ X̄9(t))

∨(X5(t) ∧ Ū(t) ∧ X̄9(t)),

X2(t+ 1) = (X̄1(t) ∧ X̄4(t) ∧ X̄9(t))

∨(X5(t) ∧ X̄1(t) ∧ X̄9(t)),

X3(t+ 1) = X2(t) ∧ X̄1(t),

X4(t+ 1) = (X2(t) ∧ X̄1(t) ∧ X̄6(t) ∧ (X7(t) ∧X8(t)))

∨(X4(t) ∧ X̄1(t) ∧ X̄6(t) ∧ (X7(t) ∧X8(t))),

X5(t+ 1) = (Ū(t) ∧ X̄3(t) ∧ X̄4(t) ∧ X̄9(t))

∨(X5(t) ∧ (X3(t) ∧X4(t)) ∧ Ū(t) ∧ X̄9(t)),

X6(t+ 1) = X9(t),

X7(t+ 1) = (X̄4(t) ∧ X̄9(t)) ∨X6(t) ∨ (X5(t) ∧ X̄9(t)),

X8(t+ 1) = X̄7(t)

∨(X7(t) ∧X8(t) ∧ (X6(t) ∨X4(t) ∨X9(t))),

X9(t+ 1) = X̄6(t) ∧ X̄7(t),

(1)

where ∨,∧ and ·̄ represent the logical functions OR, AND and NOT.

Following one of the mutations proposed in [11], in [10] it was assumed that, in a cancerous

scenario, the gene p27 can mutate so that it is always inactive (OFF). This mutation leads

to a situation where both CycD and Rb are down-regulated as “undesirable states”. In this

contest, the control strategy proposed in [10] aimed at preventing that the system evolves passing

through configurations with both CycD and Rb set to zero. To this end the Authors introduced a

function rewarding all the allotted configurations (and hence penalizing all the forbidden ones)

and discussed a control strategy aimed at maximizing the reward function. We refer the reader

to [10] for the details.

By following this stream of research, in this paper we address the optimal control problem

for BCNs, by assuming a cost function that depends on both the state and the input values at

every time instant. We first consider the finite horizon optimal control problem. By resorting to

the semi-tensor product, the original cost function is rewritten as a linear one, and the problem

solution is obtained, in section III, by means of a recursive algorithm that represents the analogue

for BCNs of the difference Riccati equation for linear systems. In section IV, several optimal

control problems for BCNs are shown to be easily reframed into the present set-up. In particular,
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in section V, the cost function is adjusted so as to include penalties on the switchings, provided

that the size of the BCN state variable is suitably augmented.

In section VI, we address the infinite horizon optimal control problem and we provide nec-

essary and sufficient conditions for its solvability. The solution is obtained as the limit of the

solution over the finite horizon [0, T ], and it is always achievable in a finite number of steps.

Finally, the average cost problem over the infinite horizon, investigated in [30], [8], is addressed,

by making use of the results obtained in the previous sections.

Notation. Z+ denotes the set of nonnegative integers. Given two integers k, n ∈ Z+, with

k ≤ n, by the symbol [k, n] we denote the set of integers {k, k+1, . . . , n}. We consider Boolean

vectors and matrices, taking values in B := {0, 1}, with the usual Boolean operations.

δik denotes the ith canonical vector of size k, Lk the set of all k-dimensional canonical vectors,

and Lk×n ⊂ Bk×n the set of all k × n matrices whose columns are canonical vectors of size k.

Any matrix L ∈ Lk×n can be represented as a row whose entries are canonical vectors in Lk,

namely L = [ δi1k δi2k . . . δink ] , for suitable indices i1, i2, . . . , in ∈ [1, k]. The k-dimensional

vector with all entries equal to 1, is denoted by 1k.

The (`, j)th entry of a matrix L is denoted by [L]`,j , while the `th entry of a vector v is [v]`.

The ith column of a matrix L is coli(L). Given a matrix L ∈ Bk×k (in particular, L ∈ Lk×k),

we associate with it [2] a digraph D(L), with vertices 1, . . . , k. There is an arc (j, `) from j

to ` if and only if the (`, j)th entry of L is unitary. A sequence j1 → j2 → . . . → jr → jr+1

in D(L) is a path of length r from j1 to jr+1 provided that (j1, j2), . . . , (jr, jr+1) are arcs of

D(L). A closed path is called a cycle. In particular, a cycle γ with no repeated vertices is called

elementary, and its length |γ| coincides with the number of (distinct) vertices appearing in it.

There is a bijective correspondence between Boolean variables X ∈ B and vectors x ∈ L2,

defined by the relationship

x =

[
X

X̄

]
.

We introduce the (left) semi-tensor product n between matrices (in particular, vectors) as follows

[8], [20], [22]: given L1 ∈ Rr1×c1 and L2 ∈ Rr2×c2 (in particular, L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2),

we set

L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T := l.c.m.{c1, r2},
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where l.c.m. denotes the least common multiple. The semi-tensor product represents an extension

of the standard matrix product, by this meaning that if c1 = r2, then L1 n L2 = L1L2. Note

that if x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n x2 ∈ Lr1r2 . For the various properties of the semi-

tensor product we refer to [8]. By resorting to the semi-tensor product, we can extend the

previous correspondence to a bijective correspondence between Bn and L2n . This is possible in

the following way: given X = [X1 X2 . . . Xn ]> ∈ Bn, set

x :=

[
X1

X̄1

]
n

[
X2

X̄2

]
n . . .n

[
Xn

X̄n

]
=



X1X2 . . . Xn−1Xn

X1X2 . . . Xn−1X̄n

X1X2 . . . X̄n−1Xn

...

X̄1X̄2 . . . X̄n−1X̄n


.

II. FINITE HORIZON OPTIMAL CONTROL OF BCNS: PROBLEM STATEMENT

A Boolean control network is described by the following equation

X(t+ 1) = f(X(t), U(t)), t ∈ Z+, (2)

where X(t) and U(t) denote the n-dimensional state variable and the m-dimensional input at

time t, taking values in Bn and Bm, respectively. f is a (logic) function, i.e. f : Bn×Bm → Bn.

By resorting to the semi-tensor product n, state and input Boolean variables can be represented

as canonical vectors in LN , N := 2n, and LM , M := 2m, respectively, and the BCN (2) satisfies

[8] the following algebraic description:

x(t+ 1) = Ln u(t) n x(t), t ∈ Z+, (3)

where x(t) ∈ LN and u(t) ∈ LM . L ∈ LN×NM is a matrix whose columns are canonical

vectors of size N . For every choice of the input variable at time t, namely for every u(t) = δiM ,

L n u(t) =: Li is a matrix in LN×N . So, we can think of the BCN (3) as a switched Boolean

system (see [21], [24] for some recent works on this subject; also switched BCNs have been

recently investigated in [23]),

x(t+ 1) = Lu(t)x(t), t ∈ Z+, (4)

where u(t), t ∈ Z+, is a switching sequence taking values in [1,M ]. For every i ∈ [1,M ], we

refer to the BN

x(t+ 1) = Lix(t), t ∈ Z+, (5)
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as to the ith subsystem of the switched Boolean system. Note that the matrix L can be expressed

in terms of the matrices Li as:

L = [L1 L2 . . . LM ] .

By referring to the algebraic description of the BCN (3), we introduce the following general

finite horizon optimal control problem:

Given the BCN (3), with initial state x(0) = x0 ∈ LN , determine an input sequence that

minimizes the cost function:

JT (x0,u(·)) = Qf (x(T )) +
T−1∑
t=0

Q(u(t),x(t)), (6)

where Qf (·) is any function defined on LN , and Q(·, ·) is any function defined on LM × LN .

The cost function (6) weights the BCN state at every time instant: the final state is weighted

by a special function Qf (·), while the state at every intermediate instant t is weighted, together

with the input value at the same time, by the function Q(·, ·). Note that Q(u(t), ·) can also be

thought of as Qu(t)(·), and hence the cost function can be regarded as a “switched function”,

that depends on the specific “switched sequence” u(t), t ∈ [0, T −1] (see [31], Problem 1, where

the quadratic optimal control problem of a discrete time switched linear system is investigated).

The first step to take is to show that, due to the fact that the state and input vectors are always

canonical vectors, every cost function described as in (6) can be equivalently expressed as a

linear cost function, by resorting to the semi-tensor product. Indeed, the final cost function can

be equivalently expressed as

Qf (x(T )) = c>f x(T ).

for c>f := [Qf (δ1
N) Qf (δ2

N) . . . Qf (δNN ) ] . Similarly, by making use of the semi-tensor

product properties, and of the fact that x(t) ∈ LN and u(t) ∈ LM , for every t ∈ [0, T − 1], we

have that

Q(u(t),x(t)) = c> n u(t) n x(t),

where

c> := [Q(δ1M , δ1N ) . . . Q(δ1M , δN
N ) . . . Q(δM

M , δ1N ) . . . Q(δM
M , δN

N ) ] = [ c>1 . . . c>M ] .
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Note that

c>i = [Q(δiM , δ
1
N) . . . Q(δiM , δ

N
N ) ] = [Qδi

M
(δ1
N) . . . Qδi

M
(δNN ) ] ∈ LN .

This implies that the index (6) can be equivalently rewritten as follows:

JT (x0,u(·)) = c>f x(T ) +
T−1∑
t=0

c> n u(t) n x(t), (7)

where cf ∈ RN and c ∈ RNM .

Remark 1: As the input and state vectors take only a finite set of values, the input sequence

that minimizes the cost function (7) (for any given x0) is the same one that minimizes

J̃T (x0,u(·)) = [cf + α1N ]>x(T ) +
T−1∑
t=0

[c + β1NM ]> n u(t) n x(t),

for any choice of α, β ∈ R. So, it is always possible to assume that the weight vectors cf and

ci, i ∈ [1,M ], are nonnegative, without affecting the optimal control solution. Therefore, in the

rest of the paper, we find an input trajectory that minimizes the index cost (7) for the BCN (3),

with c and cf nonnegative vectors, starting from the initial condition x(0) = x0.

III. FINITE HORIZON OPTIMAL CONTROL OF BCNS: PROBLEM SOLUTION

We first observe that for every choice of a family of N -dimensional real vectors m(t), t ∈

[0, T ], and every state trajectory x(t), t ∈ [0, T ], of the BCN, one has

0 =
T−1∑
t=0

[m(t+ 1)>x(t+ 1)−m(t)>x(t)] + m(0)>x(0)−m(T )>x(T ).

Consequently, the cost function (7) can be equivalently written as

JT (x0,u(·)) = m(0)>x(0) + [cf −m(T )]>x(T ) +
T−1∑
t=0

c> n u(t) n x(t)

+
T−1∑
t=0

[m(t+ 1)>x(t+ 1)−m(t)>x(t)].

Now, we make use of the state update equation of the BCN (3) and of the fact that, for every

choice of u(t) ∈ LM , one has

m(t)>x(t) = [ m(t)> m(t)> . . . m(t)> ] n u(t) n x(t).
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This way we get

JT (x0,u(·)) = m(0)>x(0) + [cf −m(T )]>x(T )

+
T−1∑
t=0

(
c> + m(t+ 1)>L− [ m(t)> . . . m(t)> ]

)
n u(t) n x(t).

Now, since the values of the vectors m(t), t ∈ [0, T ], do not affect the value of the index, we

choose them according to the following algorithm:

• [Initialization] Set m(T ) := cf ;

• [Recursion] For t = T − 1, T − 2, . . . , 1, 0, the jth entry of the vector m(t) is chosen

according to the recursive rule:

[m(t)]j := min
i∈[1,M ]

(
[ci]j + [m(t+ 1)>Li]j

)
, ∀ j ∈ [1, N ]. (8)

We notice that, by the previous algorithm, for every t ∈ [0, T − 1] the vector

w(t)> := [ w1(t)> w2(t)> . . . wM(t)> ]

= [ c>1 . . . c>M ] + m(t+ 1)> [L1 L2 . . . LM ]

− [ m(t)> m(t)> . . . m(t)> ]

is nonnegative and satisfies the following condition: for every j ∈ [1, N ] there exists i ∈ [1,M ]

such that [wi(t)]j = 0. As a result, the index

JT (x0,u(·)) = m(0)>x(0)

+
T−1∑
t=0

[ w1(t)> w2(t)> . . . wM(t)> ] n u(t) n x(t)

is minimized by the input sequence u(t), t ∈ [0, T − 1], that is obtained according to this rule:

x(t) = δjN ⇒ u(t) = δ
i∗(j,t)
M ,

where1

i∗(j, t) = arg min
i∈[1,M ]

(
[ci]j + [m(t+ 1)>Li]j

)
.

In this way,

[ w>1 (t) . . . w>M(t) ] n u(t) n x(t) = 0, ∀ t ∈ [0, T − 1],

1Note that the index that minimizes the function is not necessarily unique: so there is not necessarily a unique optimal input.
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and by the nonnegativity of the vector w(t), this is the minimum possible value that this term

can take.

Two straightforward consequences of the previous analysis are:

• J∗T (x0) := minu(·) JT (x0,u(·)) = m(0)>x(0), where m(0) is obtained according to the

previous algorithm.

• The optimal control input can be implemented by means of a time-varying state feedback

law. Actually, the optimal input can be expressed as

u(t) = K(t)x(t),

where the state feedback matrix is

K(t) = [ δ
i∗(1,t)
M δ

i∗(2,t)
M . . . δ

i∗(N,t)
M ] .

Remark 2: Equation (8) can be viewed as the equivalent for BCNs of the difference Riccati

equation for standard discrete-time linear systems with a quadratic cost function. The updating

algorithm, however, is based on a linear functional instead of a quadratic one, due to the fact

that both the input and the state take only a finite number of values.

Remark 3: Bellman’s Principle of Optimality [1] provides an alternative way for deriving

the recursive equation (8). For any t ∈ [0, T ], let

J[t,T ](x(t),u(·)) := c>f x(T ) +
T−1∑
τ=t

c> n u(τ) n x(τ)

denote the cost function corresponding to the interval [t, T ], and let m(t) ∈ RN be the row

vector whose jth component is defined as follows:

[m(t)]j := min
u(·)

J[t,T ](δ
j
N ,u(·)).

Then, it can be shown, after some manipulation, that

m(t)>x(t) = min
u(·)

{
c> n u(t) n x(t) + min

u(·)
J[t+1,T ](x(t+ 1),u(·))

}
= min

u(·)

{
[c> + m(t+ 1)>L] n u(t) n x(t)

}
.

So, the algorithm we proposed to solve the finite horizon optimal control problem is a dynamic

programming algorithm, that could be alternatively derived by resorting to Bellman’s Principle.
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Remark 4: As far as the computational complexity of the proposed algorithm is concerned,

we first consider the evaluation of the jth entry of m(t), [m(t)]j . To this goal, one needs to

select the entry of m(t+ 1) corresponding to the canonical vector [Li]j and sum such entry to

[ci]j . This operation must be performed for every index i ∈ [1,M ], and the smallest of these M

values gives [m(t)]j . So, the computational burden required to evaluate [m(t)]j is linear with

respect to M , i.e. O(M). Furthermore, this operation must be repeated for every component of

m(t) and for every t ∈ [0, T − 1]. Consequently, the computational complexity of the algorithm

is O(NMT ).

Example 1: Consider the BCN (3) and suppose that N = 8, M = 2 and

L1 := Ln δ1
2 = [ δ4

8 δ5
8 δ4

8 δ5
8 δ6

8 δ7
8 δ8

8 δ7
8 ] ,

L2 := Ln δ2
2 = [ δ2

8 δ4
8 δ1

8 δ7
8 δ6

8 δ5
8 δ6

8 δ6
8 ] .

We consider the problem of minimizing the cost function (7) for T = 4, by assuming

cf = [ 1 1 1 2 1 10 0 0 ]> , c = [ 1>8 0>8 ]> ,

and initial condition x(0) = δ1
8 .

It is worth noticing that the input u(t) = δ2
2 has zero cost. So, one would be tempted to just

assume u(t) = δ2
2 for every t ∈ [0, 3]. This way, however, x(4) would be equal to δ6

8 , which is

the “most expensive” final state. So, we proceed according to the algorithm:

• m(4) = cf = [ 1 1 1 2 1 10 0 0 ]>;

• m(3) = [ 1 2 1 0 10 1 1 1 ]> and K(3) = [ δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ1
2 δ1

2 ] ;

• m(2) = [ 1 0 1 1 1 2 1 1 ]> and K(2) = [ δ1
2 δ2

2 δ2
2 δ2

2 δ2
2 δ1

2 δ2
2 δ2

2 ] ;

• m(1) = [ 0 1 1 1 2 1 2 2 ]> and K(1) = [ δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 ] ;

• m(0) = [ 1 1 0 2 1 2 1 1 ]> and K(0) = [ δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 ] .

As a consequence,

J∗4 (δ1
8) = min

u(·)
J4(δ1

8,u(·)) = m(0)>δ1
8 = 1.

An optimal input sequence is

u∗(0) = u∗(1) = u∗(2) = δ2
2, u∗(3) = δ1

2,
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and it corresponds to the state-trajectory

x∗(0) = δ1
8, x∗(1) = δ2

8, x∗(2) = δ4
8, x∗(3) = δ7

8, x∗(4) = δ8
8.

♠

IV. EXTENSIONS AND SPECIAL CASES

A. Time-varying weight matrices

The analysis carried on in sections II and III immediately extends to the case when the cost

function is time-dependent, namely

JT (x0,u(·)) = Qf (x(T )) +
T−1∑
t=0

Q(u(t),x(t), t), (9)

where Qf (·) is any function defined on LN , and Q(·, ·, ·) is any function defined on LM ×LN ×

[0, T − 1]. Indeed, when so, the cost function can be equivalently rewritten as

J(x0,u(·)) = c>f x(T ) +
T−1∑
t=0

c>(t) n u(t) n x(t),

for c>f := [Qf (δ1
N) Qf (δ2

N) . . . Qf (δNN ) ] , and

c>(t) := [Q(δ1
M , δ

1
N , t) . . . Q(δ1

M , δ
N
N , t) . . . Q(δMM , δ

1
N , t) . . . Q(δMM , δ

N
N , t) ] .

Obviously, the recursive rule (8) of the previous algorithm must be slightly modified to keep

into account the fact that the cost c(t) is time-varying.

B. Quadratic cost function

The standard quadratic cost function

JT (x0,u(·)) = x(T )>Qfx(T ) (10)

+
T−1∑
t=0

[ x(t)> u(t)> ]

[
Q S

S> R

][
x(t)

u(t)

]
,

where Qf , Q, S and R are matrices of suitable dimensions, can be equivalently expressed as in

(7) for

c>f := [ [Qf ]1,1 [Qf ]2,2 . . . [Qf ]N,N ] ,

c> := [ q> q> . . . q> ] + [ [R]1,11
>
N [R]2,21

>
N . . . [R]M,M1>N ]

+ 2 [ col1(S)> col2(S)> . . . colM(S)> ] ,
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and

q> := [ [Q]1,1 [Q]2,2 . . . [Q]N,N ] .

C. Cost function that weights only the final state

In a couple of recent papers [18], [19] the finite horizon optimal control problem for BCNs

has been addressed by resorting to Pontryagin maximum principle, and by assuming as cost

function a linear function of the final state:

JT (x0,u(·)) = c>f x(T ), cf ∈ RN . (11)

The problem of determining the state trajectory starting from a given x(0) = x0 that minimizes

the cost function (11) can be cast in our analysis, by simply assuming c = 0. The algorithm

becomes the following one:

• [Initialization] Set m(T ) := cf ;

• [Recursion] For t = T − 1, T − 2, . . . , 1, 0, the jth entry of the vector m(t) is chosen

according to the recursive rule:

[m(t)]j := min
i∈[1,M ]

[m(t+ 1)>Li]j, ∀ j ∈ [1, N ].

The minimum cost is again J∗T (x0) = m(0)>x0, and the corresponding optimal input can be

expressed as a time-varying feedback from the (optimal) state trajectory. If we reverse the

perspective and instead of minimizing the cost function we aim at maximizing it, as investigated

in [18], [19], the algorithm requires a minor modification. Actually, at each recursion step, the

goal is to select the entries of the vector m(t) in such a way that for every j ∈ [1, N ] there exists

i ∈ [1,M ] such that [m(t+ 1)>Li]j − [m(t)]j = 0, while for the other indices ` 6= i, ` ∈ [1,M ],

[m(t+ 1)>L`]j − [m(t)]j ≤ 0. This amounts to assuming:

[m(t)]j := max
i∈[1,M ]

[m(t+ 1)>Li]j, ∀ j ∈ [1, N ].

Therefore also in this case the optimal input is the one that annihilates all the terms

w(t)> n u(t) n x(t), t ∈ [0, T − 1],

where

w(t)> = m(t+ 1)>L− [ m(t)> m(t)> . . . m(t)> ] .
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To illustrate this revised technique, we consider Example 8, addressed at the end of [18].

Example 2: Consider the BCN (3) and suppose that N = 4, M = 4 and

L1 := Ln δ1
4 = [ δ2

4 δ3
4 δ3

4 δ4
4 ] ,

L2 := Ln δ2
4 = [ δ2

4 δ1
4 δ3

4 δ4
4 ] ,

L3 := Ln δ3
4 = [ δ1

4 δ3
4 δ2

4 δ4
4 ] ,

L4 := Ln δ4
4 = [ δ2

4 δ2
4 δ4

4 δ3
4 ] .

We address the problem of maximizing the function (11) for T = 3, by assuming

cf = [ 1 0 0 0 ]> ,

and initial condition x(0) = δ4
4 . In order to maximize c>f x(3), we proceed according to the

revised algorithm:

• m(3) = cf = [ 1 0 0 0 ]>;

• m(2) = [ 1 1 0 0 ]> and K(2) = [ δ3
4 δ2

4 δ1
4 δ1

4 ] ;;

• m(1) = [ 1 1 1 0 ]> and K(1) = [ δ2
4 δ2

4 δ3
4 δ1

4 ] ;

• m(0) = [ 1 1 1 1 ]> and K(0) = [ δ2
4 δ2

4 δ2
4 δ4

4 ] .

As a consequence,

J ]3(δ4
4) := max

u(·)
J(δ4

4,u(·)) = m(0)>δ4
4 = 1.

An optimal input sequence is

u](0) = δ4
4, u](1) = δ3

4, u](2) = δ2
4,

and it corresponds to the state-trajectory

x](0) = δ4
4, x](1) = δ3

4, x](2) = δ2
4, x](3) = δ1

4.

♠
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D. Constraints on the state trajectory

The finite horizon optimal control problem for the BCN (3) can be further enriched by

introducing either constraints on the final state to be reached, or on the states and/or transitions

we want to avoid. Specifically, we may be interested in imposing a specific value on the final

state x(T ). If so, we can just use the previous set-up, by assuming that cf has all entries equal

to +∞, except for the one corresponding to the final state we want to achieve (i.e., the jth

entry, if we want that x(T ) = δjN ). Similarly, if we want to avoid a certain state (say δjN ) or

a certain transition (by this meaning the use of a specific input u(t) = δiM corresponding to a

given state x(t) = δjN ), we just need to set to +∞ some entries of the cost vectors (specifically,

[cf ]j = +∞ and [ci]j = +∞ for all i ∈ [1,M ] in the former case, and [ci]j = +∞ for the given

values of i and j in the latter case).

V. FINITE-HORIZON OPTIMAL CONTROL OF BCNS WITH PENALTY ON THE SWITCHINGS

The interpretation of a BCN as a switched Boolean system suggests a generalization of the

cost function (7) we have considered up to now. Indeed, in addition to the cost on the state,

weighted by the value of the input sample, we may want to penalize the switchings, namely the

changes in the input value, meanwhile attributing zero cost to conservative inputs (namely to the

case when u(t) coincides with u(t−1)). This idea is formalized by the following cost function:

JT (x0,u(−1),u(·)) = c>f x(T ) +
T−1∑
t=0

c> n u(t) n x(t) +
T−1∑
t=0

p> n u(t) n u(t− 1), (12)

where cf ∈ RN , c ∈ RNM and p ∈ RM2 . To penalize switchings and attribute no penalties when

the input does not change, it is sufficient to choose p in such a way that pn δiM n δjM is zero if

i = j and positive otherwise. Clearly different switchings may be penalized in different ways.

First of all, we notice that in this set-up the initial condition is not only the state at t = 0,

but also the input value at time t = −1. This suggests to tackle this problem by introducing an

augmented state variable:

ξ(t) := x(t) n u(t− 1),

with known initial condition ξ(0) = x(0)nu(−1). As a first goal, we want to derive the one-step

updating law of the variable ξ(t). To this end, we need some notation. Set

Lij := colj(Li) = Ln δiM n δjN , ∀ i ∈ [1,M ], j ∈ [1, N ].
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It is not difficult to verify that

ξ(t+ 1) = L̃n u(t) n ξ(t), (13)

where

L̃ = [L11 n δ1
M1>M . . . L1N n δ1

M1>M L21 n δ2
M1>M . . . L2N n δ2

M1>M . . .

LM1 n δMM1>M . . . LMN n δMM1>M ] ∈ LNM×NM2 .

We now want to prove that also the cost function (12) can be rewritten as in (7), by referring

to the state variable ξ(t). Indeed, we can easily verify that

c>f x(T ) = [ [cf ]11
>
M [cf ]21

>
M . . . [cf ]N1>M ] ξ(T ) = (c>f ⊗ 1>M)ξ(T ).

On the other hand,

c> n u(t) n x(t) = [ [c1]11
>
M . . . [c1]N1>M [c2]11

>
M . . . [c2]N1>M . . .

[cM ]11
>
M . . . [cM ]N1>M ] n u(t)n ξ(t)

= (c> ⊗ 1>M) n u(t) n ξ(t).

Finally, if

p> = [ p>1 p>2 . . . p>M ] ,

where p>i := p> n δiM , i ∈ [1,M ], then

p> n u(t) n u(t− 1) = [ p>1 . . . p>1 . . . p>M . . . p>M ] n u(t) n ξ(t).

This implies that the cost function (12) can be rewritten as

JT (ξ(0),u(·)) = c̃>f ξ(T ) +
T−1∑
t=0

c̃> n u(t) n ξ(t), (14)

where

c̃>f := c>f ⊗ 1>M ,

c̃> := c> ⊗ 1>M + [ p>1 . . . p>1 . . . p>M . . . p>M ] .

Consequently, the approach developed in section III may be successfully applied to obtain the

optimal solution also in this case.
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Remark 5: The state variable ξ(t), being a function of x(t) and u(t− 1), is independent of

u(t). Therefore u(t) is a free input for the BCN (13). On the other hand, it is clear that the

value of ξ(t) constrains the choice of u(t) when trying to solve the optimization problem (14).

In particular, since ξ(t) depends on u(t− 1), it allows to keep into account the penalties related

to switchings, when searching for an optimal solution.

VI. INFINITE HORIZON OPTIMAL CONTROL PROBLEM

The natural extension of the previous optimal control problem to the infinite horizon case can

be stated as follows:

Given the BCN (3), with initial state x(0) = x0 ∈ LN , determine an input sequence that

minimizes the quadratic cost function:

J(x0,u(·)) =
+∞∑
t=0

c> n u(t) n x(t), (15)

where c ∈ RNM . As in the finite horizon case, we assume that the vector c is nonnegative.

We want to show that the only possibility of obtaining a finite value for the optimum index

J∗(x0) := min
u(·)

J(x0,u(·)),

is represented by the existence of a periodic state-input trajectory (x(t),u(t))t∈Z+ , of zero cost,

that can be “reached” from x0. This amounts to saying that there exist T > 0, τ ≥ 0 and

u(t), t ∈ Z+, such that

(x(t),u(t)) = (x(t+ T ),u(t+ T )), ∀ t ∈ Z+, t ≥ τ, (16)

and

c> n u(t) n x(t) = 0, ∀ t ∈ Z+, t ≥ τ. (17)

Condition (17) implies, in particular, that the optimal control problem has a finite solution only

if the vector c has some zero entry.

Proposition 1: The minimum value J∗(x0) of the infinite horizon cost function (15) is finite

for every choice of the initial state x0 ∈ LN if and only if for every x0 there exists an input

sequence that makes the resulting state-input trajectory both periodic and zero-cost starting from

some time instant τ ≥ 0.
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Proof: [Sufficiency] Let x(0) = δJN , j ∈ [1, N ], be an arbitrary initial state, and let

u(j)(t), t ∈ Z+, be an input sequence that makes the resulting state-input trajectory, say (x(j)(t),

u(j)(t))), both T -periodic and zero-cost starting from time τ , for some nonnegative integers T

and τ . Then

J∗(x0) = min
u(·)

J(x0,u(·)) ≤
τ−1∑
t=0

c> n u(j)(t) n x(j)(t) < +∞.

[Necessity] Let x0 be an arbitrary initial state. As the number of distinct pairs (x(t),u(t)), t ≥

0, is finite, if

J∗(x0) = min
u(·)

+∞∑
t=0

c> n u(t) n x(t) < +∞,

then there must be some τ1 > 0 such that

c> n u(t) n x(t) = 0, ∀ t ≥ τ1.

On the other hand, the finite number of the distinct state-input pairs ensures that there must be

two positive integers τ and T , with τ ≥ τ1, such that

(x(τ),u(τ)) = (x(τ + T ),u(τ + T )).

Therefore, the state-input trajectory

(x̃(t), ũ(t)) =

{
(x(t),u(t)), for t ∈ [0, τ + T − 1];

(x(t− T ),u(t− T )), for t ∈ [τ + T,+∞),

stemming from x̃(0) = x(0) = x0, is, (at least) from t = τ , periodic (of period T ) with zero-cost.

The previous characterization essentially requires to perform two checks on the BCN: (1) to

verify the existence of zero-cost periodic state-input trajectories, and (2) to check that every

initial state x0 can “reach” (at least) one of the states belonging to any such periodic trajectory2.

The concept of reachability has been thoroughly explored in the literature about BCNs (see, e.g.,

[5], [8], [20]). We say that a state xf is reachable from x0 if there exist τ ≥ 0 and u(t), t ∈ Z+,

such that the state-input trajectory (x(t),u(t))t∈Z+ satisfies

x(0) = x0 and x(τ) = xf .

2In the following, we will informally talk about zero-cost periodic state trajectory by this meaning the projection of a zero-cost

periodic state-input trajectory over the state component.
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If x0 = δjN and xf = δhN , then xf is reachable from x0 if there exists τ ≥ 0 such that [Lτtot]h,j > 0,

where

Ltot := L1 ∨ L2 ∨ . . . ∨ LM (18)

is the Boolean sum of the various transition matrices Li’s.

So, we now look into these two issues. (1) How can we check whether zero-cost periodic

state-input trajectories exist? A simple test can be performed in the following way. Let C(0)
i

be the N × N matrix, whose columns are obtained from the cost vector c>i according to the

following rule

colj(C
(0)
i ) :=

{
δjN , if [ci]j = 0;

0N , otherwise;
j ∈ [1, N ].

It is easily seen that LiC
(0)
i is obtained from Li by simply replacing with zero columns the

columns corresponding to state transitions (driven by the input value u = δiM ) of positive cost.

Consequently,

L(0) := (L1C
(0)
1 ) ∨ (L2C

(0)
2 ) ∨ . . . ∨ (LMC

(0)
M )

is the Boolean matrix representing all the state transitions that can be achieved at zero cost,

provided that a suitable input is selected. In other words, [L(0)]h,j = 1 if and only if there exists

i ∈ [1,M ] such that

δhN = Ln δiM n δjN and c> n δiM n δjN = 0.

So, it is clear that a zero-cost periodic state (and hence state-input) trajectory exists if and only

if the digraph D(L(0)) has at least one cycle or, equivalently, L(0) is not nilpotent.

(2) Is it possible from every initial state to reach at least one of the (states belonging to) periodic

zero-cost state trajectories? If L(0) is not nilpotent, then (L(0))N 6= 0. Consequently, we may

introduce the set

H := {h ∈ [1, N ] : (δhN)>(L(0))N 6= 0} (19)

of the indices of the nonzero rows in (L(0))N . Elementary graph theory allows us to say that

h ∈ H if and only if the state δhN belongs to one of these periodic zero-cost state trajectories.

From every initial state x0 = δjN ∈ LN it is possible to reach some state δhN , h ∈ H, if and only

if for every j ∈ [1, N ] the jth column of LNtot has at least one nonzero entry indexed by H .
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These graph-theoretic interpretations immediately suggest a way to obtain the minimum cost

J∗(x0) for every x0 = δjN ∈ LN . Clearly, J∗(δhN) = 0 for every h ∈ H . On the other hand,

for every state δjN , j 6∈ H, it is sufficient to determine the minimum cost state-input trajectory

(x(t),u(t))t∈Z+ starting from x(0) and reaching some state δhN , h ∈ H , in a finite number (at

most N − 1) of steps.

Remark 6: It is worthwhile noticing that

H ⊆ H∗ := {h ∈ [1, N ] : J∗(δhN) = 0},

but the two sets do not necessarily coincide, as there may be states δjN that access at zero cost

some states δhN , h ∈ H, but j 6∈ H .

Under the previous assumptions, and by making use of the results regarding the finite horizon

optimal control problem, we want to derive the expression of the optimal cost corresponding to

any given initial condition, and to show that the optimal solution can be expressed as a static

state-feedback. Let us consider the finite horizon optimal control problem

J∗T (x0) := min
u(·)

T−1∑
t=0

c> n u(t) n x(t),

for the BCN (3), under the assumption that x(0) = x0. Also, assume that the set H defined in

(19) is not empty, and for every choice of x0 there exists at least one state xf = δhN , h ∈ H ,

reachable from x0. We want to show that, when T is sufficiently large, the finite vector sequence

{m(t)}t=T,T−1,...,2,1,0, generated by the algorithm described in section III, starting from the initial

condition m(T ) = 0, converges in a finite number of steps to a nonnegative vector m∗.

Lemma 1: The finite vector sequence {m(t)}t=T,T−1,...,2,1,0, m(t) ∈ RN , generated by the

algorithm:

m(T ) = 0N ;

[m(t)]j = min
i∈[1,M ]

[c>i + m(t+ 1)>Li]j, j ∈ [1, N ], t = T − 1, T − 2, . . . , 1, 0,

satisfies

0 = m(T ) ≤m(T − 1) ≤ . . . ≤m(1) ≤m(0). (20)

Moreover, for T sufficiently large, there exists ∆ ≥ 0 such that

m∗ := m(T −∆) = m(T − τ), ∀ τ ∈ [∆, T ]. (21)
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Proof: From the analysis of the finite horizon optimal control problem, we deduce that,

for every choice of the initial state x0 = δjN , j ∈ [1, N ], and every τ ≥ 1,

m(T − τ)>δjN = min
u(·)

T−1∑
t=T−τ

c> n u(t) n x(t), (x(T − τ) = δjN)

= min
u(·)

τ−1∑
t=0

c> n u(t) n x(t), (x(0) = δjN)

≤ min
u(·)

τ∑
t=0

c> n u(t) n x(t), (x(0) = δjN)

= min
u(·)

T−1∑
t=T−τ−1

c> n u(t) n x(t), (x(T − τ − 1) = δjN)

= m(T − τ − 1)>δjN .

The arbitrariety of j ensures that m(T − τ) ≤m(T − τ − 1).

We now prove that the sequence is upper bounded. Actually, let dj be the total cost of a

state-input trajectory that drives the system state from δjN to some state δhN , h ∈ H (and does

not pass through the same state twice). Clearly, for every τ ≥ N ,

[m(T − τ)]j = m(T − τ)>δjN = min
u(·)

τ−1∑
t=0

c> n u(t) n x(t) ≤ dj.

Consequently,

m(T − τ)> ≤ [ d1 d2 . . . dN ] .

Finally we prove that this upper-bounded, monotonically increasing sequence converges to its

limit value in a finite number of steps. Set cmin := min{[ci]j > 0 : i ∈ [1,M ], j ∈ [1, N ]}. By

the interpretation of [m(T −∆)]j as the minimal cost over an interval of length ∆ (specifically

[0,∆− 1]) starting from the state δjN , it follows that the sequence

0 = [m(T )]j ≤ [m(T − 1)]j ≤ . . . ≤ [m(1)]j ≤ [m(0)]j

at each time step, namely when moving from T − τ to T − τ − 1, either remains constant or it

increases of at least cmin. On the other hand, if the sequence would remain constant for N + 1

consecutive time instants, say

[m(T − τ)]j = [m(T − τ − 1)]j = . . . = [m(T − τ −N)]j
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this would mean that the optimal cost starting from δjN would not change when moving the final

time instant from τ to τ +N . This implies that the optimal state trajectory has entered (at least

at time τ + N − 1) a zero-cost loop. But then [m(T − t)]j = [m(T − τ)]j for all t ∈ [τ, T ].

So, we have shown that every jth entry of m(T − τ) is upper bounded and not decreasing as τ

increases, it cannot remain constant for more than N consecutive time instants, and every time

it increases it increases of at least cmin. This ensures that it reaches its maximum value in a

finite number of steps. Since this is true for every j ∈ [1, N ], the proof is completed.

As an immediate consequence of the previous lemma, we can claim what follows:

Theorem 1: Assume that the set H defined in (19) is not empty, and for every choice of x0

there exists at least one state xf = δhN , h ∈ H , reachable from x0. Then

1) there exists T̄ ≥ 0 such that, for every x0,

J∗T (x0) = J∗T̄ (x0) = (m∗)>x0, ∀ T ≥ T̄ ,

and therefore

J∗(x0) = min
u(·)

+∞∑
t=0

c> n u(t) n x(t) = (m∗)>x0.

2) m∗ is obtained through the algorithm of section III, by assuming cf = 0, and is a fixed

point of the algorithm, namely a solution of the family of equations:

[m∗]j = min
i∈[1,M ]

[c>i + (m∗)>Li]j, j ∈ [1, N ], (22)

that represent the equivalent, for BCNs, of the algebraic Riccati equation for linear systems.

3) Upon defining

i∗(j) := arg min
i∈[1,M ]

[c>i + (m∗)>Li]j,

the optimal control input can be implemented by means of the static state-feedback law:

u(t) = Kx(t),

where the (not necessarily unique) feedback matrix is

K = [ δ
i∗(1)
M δ

i∗(2)
M . . . δ

i∗(N)
M ] .

Remark 7: As far as the computational complexity of the algorithm proposed in Theorem

1 is concerned, we have already remarked that the evaluation of the vector sequence m(t), t ∈
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[0, T −1], has complexity O(NMT ). On the other hand, the graph theoretic interpretation of the

cost vectors ensures that when the limit m∗ is finite, it coincides with the vector m(0) obtained

for the finite horizon optimal control problem in [0, T ], provided that T ≥ N . Therefore, the

complexity of Theorem 1 is O(N2M).

The family of equations (22) admits an infinite number of nonnegative solutions. We want to

prove that m∗ is the smallest among them.

Proposition 2: Assume that the set H defined in (19) is not empty, and for every choice of

x0 there exists at least one state xf = δhN , h ∈ H , reachable from x0. If m is a nonnegative

solution of the family of equations (22), then m ≥m∗.

Proof: Consider, again, the finite horizon optimal control problem

J∗T (x0) = min
u(·)

T−1∑
t=0

c> n u(t) n x(t),

for the BCN (3), under the assumption that x(0) = x0. By Theorem 1, we know that for every

T ≥ T̄ , J∗T (x0) = (m∗)>x0. On the other hand,

J∗T (x0) = min
u(·)

(
m(0)>x(0)−m(T )>x(T )

+
T−1∑
t=0

(
c> + m(t+ 1)>L− [ m(t)> . . . m(t)> ]

)
n u(t) n x(t)

)
, (23)

for every choice of the vector sequence m(t), t ∈ [0, T ]. This applies in particular if we assume

m(t) = m,∀ t ∈ [0, T ]. When so, the choice

u(t) = δ
i(j,t)
N , ∀ t ∈ [0, T − 1], where i(j, t) = arg min

i∈[1,M ]

(
[ci]j + [m>Li]j

)
,

ensures that all the terms in (23) (for m(t) = m(t+ 1) = m) become zero, and hence

(m∗)>x0 = min
u(·)

(
m>x(0)−m>x(T )

+
T−1∑
t=0

(
c> + m>L− [ m> . . . m> ]

)
n u(t) n x(t)

)
≤ m>x(0)−m>x(T ) ≤m>x0.

The arbitrariety of x0 ensures that m∗ ≤m.

The previous results point out two ways to obtain the vector m∗: (1) as the limit solution of the

algorithm given in section III, initialized with the zero vector, or (2) as the smallest nonnegative

September 3, 2013 DRAFT



24

solution of (22). As far as the first method is concerned, the following example shows that even

if the algorithm always converges to m∗ in a finite number of steps, say ∆, however there is no

upper bound on ∆, as it depends on the specific choice of the cost vector c. This means that

the algorithm may converge to m∗ very slowly.

Example 3: Consider the BCN (3) and suppose that N = 4, M = 2, and

L1 := Ln δ1
2 = [ δ2

4 δ3
4 δ2

4 δ4
4 ] ,

L2 := Ln δ2
2 = [ δ1

4 δ4
4 δ2

4 δ1
4 ] .

Assume as cost function the one associated with the vector

c> = [ 1 ε ε 0 1 1 1 2 ] ,

where ε > 0 is arbitrarily small, and let x(0) = δ1
4 be the initial condition. The BCN can be

represented by the following digraph (see Fig. 1), obtained by overlapping the two digraphs

D(L1) and D(L2). (Blue) continuous arcs belong to D(L1), while (red) dashed arcs belong

to D(L2). For each vertex j (corresponding to δj4), there are two outgoing arcs: each of them

labelled by the input and cost values, i.e. by the pair (u, c> n u n δj4).

1	
   2	
  

3	
  4	
  

u=δ22,	
  1	
  

u=δ21,	
  0	
  

u=δ22,	
  1	
  

u=δ21,	
  1	
  

u=δ12,	
  ε	
  
u=δ22,	
  1	
   u=δ22,	
  2	
  

u=δ12,	
  ε	
  

Fig. 1: Digraph corresponding to the BCN of Example 3

Set ∆ := min{t ∈ Z+ : (t − 1)ε ≥ 1} = d1
ε
e + 1. It is a matter of simple computation to

prove (or to derive from the digraph) that

[m(T − t)]1 =

{
1 + (t− 1)ε, ∀ t ∈ [1,∆);

2, ∀ t ∈ [∆,+∞).
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Accordingly, as far as the optimal control problem (with no final cost) is posed over the finite

horizon [0, T ], T < ∆, the optimal input is constant and equal to u∗(t) = δ1
2 , while for T ≥ ∆

(in particular, for the infinite horizon optimal control problem) the optimal input is

u∗(t) =


δ1

2, for t = 0;

δ2
2, for t = 1;

δ1
2 for t ≥ 2.

♠

As far as the second method is concerned, there is no need for computing all the nonnegative

solutions of (22) in order to identify m∗ among them. Indeed, we may notice that for every

h ∈ H , [m∗]h = 0. This trivially follows from the fact that for every initial state δhN , h ∈ H, the

zero-cost periodic state-input trajectory departing from that state is surely optimal, and hence

0 = J∗(δhN) = (m∗)>δhN . On the other hand, the following proposition shows that m∗ is the

only solution of (22) taking zero values on H . So, we can easily evaluate m∗ from (22), by

preliminarily determining H through (19) and by setting to zero all the entries of m∗ indexed

by H .

Proposition 3: Assume that the set H defined in (19) is not empty, and for every choice of

x0 there exists at least one state xf = δhN , h ∈ H , reachable from x0. If m is a solution of the

family of equations (22) and [m]h = 0 for every h ∈ H , then m = m∗.

Proof: We already know that there exists a solution of (22), namely m∗, whose entries

indexed by H are zero. So, it is sufficient to show that the entries [m]j, j 6∈ H, of any solution

m of (22) are uniquely determined by the values of the entries [m]h, h ∈ H . Let Hk denote the

set of indices j ∈ [1, N ] of the states δjN for which the (state/input) path of minimal cost leading

to some state δhN , h ∈ H, has length k. We observe that for every j ∈ H1 there exists q ∈ [1,M ]

such that Ln δqM n δjN = δhN for some h ∈ H , and

[m]j =
[
c>q + m>Lq

]
j

= [cq]j + [m]h = [cq]j .

So, for every j ∈ H1, the jth entry of m is uniquely determined.

Now we observe that H2 can be seen as the set of indices j ∈ [1, N ] of the states δjN for

which the (state/input) path of minimal cost leading to some state δhN , h ∈ H1, has length 1. So,

by recursively applying the previous reasoning, we show that, for every j ∈ H2, the jth entry

of m is uniquely determined, and so on.
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To conclude, it is worthwhile to briefly comment on the various nonnegative solutions of

the equations (22). It is possible to prove that if we denote by C1, C2, . . . , Ck the disjoint (not

necessarily elementary) zero-cost cycles in D(L(0)) (so that H = C1 ∪ C2 ∪ . . . ∪ Ck), then

[m]h = [m]`, ∀ h, ` ∈ Cr, ∀ r ∈ [1, k].

So, if the values of these entries, corresponding to the states belonging to the various zero-cost

states, have been assigned as

[m]h = αr, ∀ h ∈ Cr, r ∈ [1, k],

all the other entries are uniquely determined. However, the nonnegative values of α1, α2, . . . , αk

are not completely arbitrary. Indeed, they are constrained by the fact that for each h ∈ Cr and

q ∈ Cs, r 6= s, if δqN can be reached from δhN , then it must be

αr = [m]h ≤ w(h, q) + [m]q = w(h, q) + αs,

where w(h, q) is the cost of the minimum cost path from δhN to δqN .

Example 4: Consider the BCN (3) and suppose that N = 6, M = 2 and

L1 := Ln δ1
2 = [ δ3

6 δ1
6 δ4

6 δ5
6 δ6

6 δ6
6 ] ,

L2 := Ln δ2
2 = [ δ3

6 δ3
6 δ3

6 δ3
6 δ4

6 δ2
6 ] .

We consider the problem of minimizing the cost function (15), by assuming

c> = [ 1 1 0 5 2 0 7 2 0 0 2 4 ] ,

and arbitrary initial condition x(0). The BCN can be represented by the digraph illustrated in

Fig. 2.
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1	
   3	
   4	
  

5	
  6	
  

u=δ21,	
  1	
  

u=δ22,	
  2	
  

u=δ21,	
  0	
  

u=δ21,	
  2	
  u=δ22,	
  4	
  	
  

u=δ22,	
  7	
  	
  

u=δ21,	
  0	
  

u=δ12,	
  5	
  u=δ22,	
  2	
  

2	
  

u=δ21,	
  1	
  

u=δ22,	
  0	
  

u=δ22,	
  0	
  	
  

Fig. 2: Digraph corresponding to the BCN of Example 4

It is a matter of simple computation to prove (or to derive from the digraph) that

m∗ = [ 1 2 0 0 2 0 ]>

and

K = [ δ1
2 δ2

2 δ2
2 δ2

2 δ1
2 δ1

2 ] .

Also, it is easy to verify that the disjoint zero-cost cycles are C1 : 3 → 3 → 4 → 3 and

C2 : 6 → 6. So, the solutions of (22) are those and those only that can be parametrized as

follows:

m = [ 1 + α1 2 + α1 α1 α1 2 + min{α1, α2} α2 ]> ,

where α1, α2 are nonnegative parameters, satisfying either one of the following constraints:

α1 ≤ α2 ≤ α1 + 6 or α2 ≤ α1 ≤ α2 + 7.

Clearly, m∗ is the smallest solution, corresponding to α1 = α2 = 0. ♠

VII. AVERAGE COST MINIMIZATION

In [30] and [8], the problem of finding the input sequence that maximizes, on the infinite

horizon, some average payoff that weights both the state and the input at every time t ∈ Z+,

has been investigated. We want to show that the analysis carried on in section III for the finite-

horizon optimal control problem can be used to provide a solution also to that problem. To be
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consistent with the previous analysis, we will search for the minimum average cost instead of

the maximum payoff3, and hence address the following problem:

Given the BCN (3), with initial state x(0) = x0 ∈ LN , determine an input sequence that

minimizes the average cost function:

Ja(x0,u(·)) = lim
T→+∞

1

T

T−1∑
t=0

c> n u(t) n x(t), (24)

where c ∈ RNM is a nonnegative vector.

We first observe that the input sequence that solves the finite horizon optimum problem

J∗T (x0) = min
u(·)

T−1∑
t=0

c> n u(t) n x(t), (25)

for the BCN (3), under the assumption that x(0) = x0, also solves the finite horizon optimum

problem

min
u(·)

1

T

T−1∑
t=0

c> n u(t) n x(t). (26)

Moreover, if we denote by m̃T (0) the vector m(0) obtained from the usual algorithm, applied

over the time interval [0, T ] and initialized by m(T ) = 0, we know that

min
u(·)

1

T

T−1∑
t=0

c> n u(t) n x(t) =
1

T
m̃T (0)>x0.

So, it is immediately seen that

J∗a(x0) := min
u(·)

Ja(x0,u(·)) = lim
T→+∞

1

T
m̃T (0)>x0 = m>a x0,

where

ma := lim
T→+∞

1

T
m̃T (0). (27)

It is worth noticing that the limit always exists, independently of the structure of the digraph

corresponding to the BCN (in particular, of the existence of zero-cost periodic state-input

trajectories reachable from the various initial states), since ma ≤ maxi∈[1,M ],j∈[1,N ][ci]j1N .

Consequently, the optimal average cost problem has always a finite solution. Moreover, the

3The adaptation to the maximum payoff case of the present analysis can be obtained by replacing the “min” function with

the “max” in the algorithm that generates the vector sequence m(t), t ∈ Z+, similarly to what we did in section IV.C, for the

cost function that weights only the final state.
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identity (27) together with the recursive algorithm given in section III provide a simple way to

obtain the vector ma of the minimal average costs.

As far as the optimal input is concerned, as previously clarified, the input sequence that solves

the finite-horizon optimum problem (25) also solves (26). So, it is clear that the input sequence

that minimizes the average cost (24) can be determined by suitably adjusting the algorithm

presented in the previous section. Also in this case it is possible to prove that the optimal input

becomes periodic after a finite number of steps and it can be expressed as a static state-feedback.

The approach to the problem solution we just described is purely numerical and it does not

require any insight into the digraph associated with the BCN. On the other hand, the solution

provided by D. Cheng and co-authors is entirely based on the graph theoretic interpretation of

the optimal solution. Indeed, as proved in [30] and [8], for every initial condition x0 ∈ LN the

minimum average cost is achieved by eventually leading the state-input evolution (x(t),u(t))t∈Z+

to (one of) the periodic state-input trajectory of minimum average cost reachable from x0. In

detail, for every x0 ∈ LN we consider all the elementary cycles Ci in D(Ltot) that are reachable

from x0 (by this meaning that one, and hence all, of the states belonging to Ci are reachable from

x0). If Ci : j1 → j2 → . . . → jd → j1 and the transition from the vertex jh to the vertex jh+1

(with jd+1 := j1) is due to an arc appearing (also) in D(Lih) (equivalently, δjh+1

N = LnδihM nδjhN ),

then the average cost of Ci is

Ca(Ci) =
1

d

d∑
h=1

c> n δihM n δjhN . (28)

Therefore

J∗a(x0) = min{Ca(Ci) : Ci is reachable from x0}.

In [30] and [8], it is also proved that a logical matrix G∗ can be found such that the optimal

state and input trajectories update according to the following equations: x∗(t+ 1) = Ln u∗(t) n x∗(t)

u∗(t+ 1) = G∗ n u∗(t) n x∗(t).

This method is very elegant and has an appealing graph theoretic interpretation, but it also

requires to evaluate all the state-input cycles of the digraph associated with the BCN and their

cost.
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To conclude, we want to observe that once we take for granted (28) (and hence also the

knowledge of the minimum cost cycles reachable from the various states), we can suitably

adjust the analysis developed in the infinite horizon case in section VI, to quickly find ma and

the state-feedback matrix that determines the optimal input solution. To this end it is sufficient to

solve the infinite horizon minimum cost problem, by suitably modifying the vector c. In detail,

we can proceed as follows:

• First of all, for every x0, we select the cycle of minimum average cost that can be reached

from x0. If it is not unique, we choose the one that can be reached from x0 through the

minimum cost path. We denote such cycle by Ci(x0) : j1 → j2 → . . .→ jd → j1.

• If the transition of minimum cost from the vertex jh to the vertex jh+1 (by assuming, again,

jd+1 = j1) is due to u = δihM , then we replace [cih ]jh with the zero entry in the cost vector

c.

• After this modification of the cost vector, the optimal input trajectory that solves the original

minimum average cost problem is the same one that solves the infinite horizon optimal

control problem for the new vector c. Accordingly, we can introduce the set H of all states

that belong to zero-cost cycles, impose [m∗]h = 0,∀ h ∈ H , and determine the remaining

entries of the vector m∗ through (22). The corresponding state-feedback matrix K will be

determined from the algorithm (22), as described in Theorem 1.
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