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Abstract— In this paper various control problems for Boolean
control networks (BCNs) are investigated. By resorting to some
recent results regarding the infinite-horizon optimal control,
we first provide an alternative proof of the fact that the
stabilization of a BCN to a given reachable equilibrium point
can always be performed by means of a static state-feedback.
Secondly, upon deriving necessary and sufficient conditions for
the solvability of the output regulation problem, we show that,
when such conditions are satisfied, also this problem can be
solved by means of a static state-feedback. In both cases, a
feedback gain matrix is explicitly derived by making use of the
results obtained for the optimal control problem. Finally, some
preliminary results about the stabilization problem by means of
a static, either time-invariant or time-varying, output feedback
are also presented.

I. INTRODUCTION

Research interests in Boolean networks (BNs) and
Boolean control networks (BCNs) have a very long tradition.
The renewed interest witnessed in recent times, however,
must be mainly credited to two reasons: on the one hand,
BNs and BCNs (as well as probabilistic BNs) have proved
to be effective modeling tools for a number of rapidly
evolving research topics, like genetic regulation networks
[10], and consensus problems [9], [16]. On the other hand,
the algebraic framework developed by D. Cheng and co-
authors [1], [3], [4] has allowed to cast both BNs and BCNs
into the framework of linear state-space models (operating
on canonical vectors), thus benefitting of a large number
of powerful algebraic tools, in addition to more traditional
graph-based techniques. By resorting to this approach, stabil-
ity and stabilizability of an equilibrium point or a limit cycle
[2], [6], controllability [13], observability, reconstructibility
and state estimation [5], have been thoroughly investigated.
Also, the optimal control of BCNs has been addressed in a
few contributions. In [17] (see also Chapter 15 in [4]) the
problem of finding the input sequence that maximizes, on the
infinite-horizon, an average payoff that weights both the state
and the input at every time t ∈ Z+, has been investigated.
Meanwhile in [11] and [12] the optimum control problem on
a finite horizon, by assuming that the payoff function only
depends on the state of the BCN at the end of the control
interval, has been explored.

In a pair of recent papers [7], [8], both the finite-horizon
and the infinite-horizon optimal control problems for BCNs
have been investigated, by assuming a cost function that
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depends on both the state and the input values at every time
instant. In the former case, the optimal solution is expressed
as a time-varying static state feedback law. In the latter, the
solution is obtained as the limit of the solution over the
finite horizon [0, T ], and it is therefore a time-invariant static
state feedback law. In this paper we first exploit the results
obtained for the infinite-horizon optimal control problem to
provide an alternative proof of the fact that the stabilization
of a BCN to a given reachable equilibrium point can always
be performed by means of a static state-feedback. Then we
derive necessary and sufficient conditions for the solvability
of the output regulation problem, and we show that, when
such conditions are satisfied, also this problem can be solved
by means of a static state-feedback. In both cases, a feedback
gain matrix is explicitly derived by making use of the
results obtained for the optimal control problem. Finally,
some preliminary results about the stabilization problem
by means of a static, either time-invariant or time-varying,
output feedback are presented.

Notation. Z+ denotes the set of nonnegative integers.
Given k, n ∈ Z+, k ≤ n, the symbol [k, n] denotes the set
of integers {k, k + 1, . . . , n}. We consider Boolean vectors
and matrices, taking values in B := {0, 1}, with the usual
operations (sum ∨, product ∧ and negation ¬).
δik is the ith canonical vector of size k, Lk the set of all k-

dimensional canonical vectors, and Lk×n ⊂ Bk×n the set of
all k×n matrices whose columns are canonical vectors. L ∈
Lk×n can be represented as a row vector whose entries are
canonical vectors in Lk, namely L = [ δi1k δi2k . . . δink ] ,
for suitable indices i1, i2, . . . , in ∈ [1, k]. 1k is the k-
dimensional vector with all entries equal to 1. The (`, j)th
entry of a matrix M is denoted by [M ]`j , its ith column by
coli(M), the `th entry of a vector v by [v]`.

Given a matrix L ∈ Bk×k (in particular, L ∈ Lk×k),
we associate with it a digraph D(L), with vertices 1, . . . , k.
There is an arc (j, `) from j to ` if and only if the (`, j)th
entry of L is unitary. A sequence j1 → j2 → . . . → jr →
jr+1 in D(L) is a path of length r from j1 to jr+1 provided
that (j1, j2), . . . , (jr, jr+1) are arcs of D(L).

There is a bijection between Boolean variables X ∈ B
and vectors x ∈ L2, defined by the relationship

x =
[
X
¬X

]
. (1)

The (left) semi-tensor product n between matrices (and, in
particular, vectors) is defined as follows [4], [13]: given L1 ∈
Rr1×c1 and L2 ∈ Rr2×c2 (in particular, L1 ∈ Lr1×c1 and



L2 ∈ Lr2×c2 ), we set

L1nL2 := (L1⊗IT/c1)(L2⊗IT/r2), T := l.c.m.{c1, r2},

where l.c.m. denotes the least common multiple. The semi-
tensor product is an extension of the standard matrix product,
by this meaning that if c1 = r2, then L1 nL2 = L1L2. Note
that if x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n x2 ∈ Lr1r2 .
For the properties of the semi-tensor product we refer to [4].
(1) extends to a bijection between Bn and L2n , as follows:
given X = [X1 X2 . . . Xn ]> ∈ Bn, set

x :=
[
X1

¬X1

]
n
[
X2

¬X2

]
n . . .n

[
Xn

¬Xn

]
.

II. INFINITE-HORIZON OPTIMAL CONTROL OF BCNS

A Boolean control network (BCN) is described by the
following equations

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t)), t ∈ Z+,

(2)

where X(t), U(t) and Y (t) denote the n-dimensional state
variable, the m-dimensional input and the p-dimensional out-
put at time t, taking values in Bn,Bm and Bp, respectively.
f, h are (logic) functions, i.e. f : Bn × Bm → Bn and
h : Bn → Bp. By resorting to the semi-tensor product n,
state, input and output Boolean variables can be represented
as canonical vectors in LN , N = 2n, LM , M = 2m, and
LP , P = 2p, respectively, and the BCN (2) satisfies [4] the
following algebraic description:

x(t+ 1) = Ln u(t) n x(t), t ∈ Z+,
y(t) = Hx(t) (3)

where x(t) ∈ LN ,u(t) ∈ LM and y(t) ∈ LP . L ∈
LN×NM and H ∈ LP×N are matrices whose columns are
all canonical vectors of size N and P , respectively. For every
choice of the input variable at t, namely for every u(t) = δjM ,
Lnu(t) =: Lj is a matrix in LN×N . So, we can think of the
state equation of the BCN (3) as a Boolean switched system,

x(t+ 1) = Lσ(t)x(t), t ∈ Z+, (4)

where σ(t), t ∈ Z+, is a switching sequence taking values
in [1,M ]. For every i ∈ [1,M ], we refer to the BN

x(t+ 1) = Lix(t), t ∈ Z+, (5)

as to the ith subsystem of the Boolean switched system (4).
L can be expressed as L = [L1 L2 . . . LM ] .

Before proceeding, we need the concept of reachability.
Definition 1: [4] Given a BCN (3), we say that xf = δjN

is reachable from x0 = δhN if there exists τ ∈ Z+ and an
input u(t), t ∈ [0, τ − 1], that leads the state trajectory from
x(0) = x0 to x(τ) = xf .

A state xf = δjN is reachable from x0 = δhN if and only
if [4] there exists τ ∈ Z+ such that the Boolean sum of the
matrices Li, i ∈ [1,M ], namely

Ltot :=
M∨
i=1

Li,

satisfies [Lτtot]jh = 1. In the sequel, we will denote the set
of states reachable from x0 as R(x0).

In a recent contribution [8] we have addressed the follow-
ing infinite-horizon optimal control problem:

Given the BCN (3), with initial state x(0) = x0 ∈ LN ,
determine an input sequence that minimizes the cost function:

J(x0,u(·)) =
+∞∑
t=0

c> n u(t) n x(t), (6)

where c> := [ c>1 c>2 . . . c>M ] ∈ RNM is nonnegative.

We have shown that the optimum index

J∗(x0) := min
u(·)

J(x0,u(·)),

takes a finite value if and only if there exists at least one
periodic state-input trajectory (x(t),u(t))t∈Z+ , of zero cost,
that can be reached from x0. This amounts to saying that
there exist T > 0, τ ≥ 0 and u(t), t ∈ Z+, such that

(x(t),u(t)) = (x(t+ T ),u(t+ T )), ∀ t ∈ Z+, t ≥ τ, (7)
c> n u(t) n x(t) = 0, ∀ t ∈ Z+, t ≥ τ. (8)

Conditions (7) and (8) can be easily checked, by making
use of either the graph associated with the BCN or the
matrices Li, i ∈ [1, N ], and of the vector c (see [8] for
the details). If H denotes the set of all states that belong
to a periodic zero-cost state-input trajectory, J∗(δhN ) = 0 for
every h ∈ H. On the other hand, for every state δjN , j 6∈ H,
it is sufficient to determine the minimum cost state-input
trajectory (x(t),u(t))t∈Z+ starting from x(0) and reaching
some state δhN , h ∈ H, in a finite number (at most N −1) of
steps. J∗(δhN ) is just the cost associated with that minimum
cost state-input trajectory.

The optimal solution can always be obtained as a static
state-feedback. To obtain the feedback law (as well as the
optimal cost function), let m∗ be the vector whose jth entry
is obtained according to the following Algorithm:
• if j ∈ H then [m∗]j := 0;
• if j 6∈ H, then [m∗]j is the solution of the minimization

problem: [m∗]j = mini∈[1,M ][c>i + (m∗)>Li]j .
Also, if j ∈ H, let i∗(j) be any index i ∈ [1,M ] such that the
pair (δjN , δ

i
M ) belongs to a zero cost state-input trajectory. If

j 6∈ H, set i∗(j) := arg mini∈[1,M ][c>i + (m∗)>Li]j .
Then [8] the optimal cost function is J∗(x0) = (m∗)>x0,
while the optimal control input can be implemented by means
of the static state-feedback law: u(t) = Kx(t), where

K = [ δi
∗(1)
M δ

i∗(2)
M . . . δ

i∗(N)
M ] .

In the following sections we will show that some control
problems for BCNs can be solved upon restating them as
infinite-horizon optimal control problems.

III. STABILIZATION TO A GIVEN STATE

The first problem we address is that of stabilization of a
BCN to some equilibrium point xe.



Definition 2: [2], [4], [6] A BCN (3) is stabilizable to
xe ∈ LN if for every x(0) ∈ LN there exist u(t), t ∈ Z+,
and τ ∈ Z+ such that x(t) = xe for every t ≥ τ .

The problem solution is rather immediate.
Proposition 1: [4], [6], [15] A BCN (3) is stabilizable to

xe ∈ LN if and only if the following conditions hold
1) xe is an equilibrium point of the ith subsystem (5), for

some i ∈ [1,M ], i.e. xe = Ln δiM n xe;
2) xe is reachable from every initial state x(0), i.e., xe ∈
∩x(0)∈LN

R(x(0)).
What is more interesting is the fact that if a BCN (3) is

stabilizable to xe, then stabilization is achievable by means
of a static state-feedback law [6], [15]. We want to show that
the same result can be obtained by casting this problem into
the optimal control set-up, and by resorting to the results of
the previous section. Assume xe = δj

∗

N , and set

I(xe) := {i ∈ [1,M ] : xe = Ln δiM n xe}.

Introduce the cost vector c> := [ c>1 c>2 . . . c>M ] , with

[ci]j =
{

0, if i ∈ I(xe) and j = j∗;
1, otherwise.

(9)

Theorem 1: Given xe = δj
∗

N , the BCN (3) is stabiliz-
able to xe if and only if J∗(x0) = minu J(x0,u(·)) =
minu

∑+∞
t=0 c> n u(t) n x(t), with c given in (9), is finite

for each x0 ∈ LN .
Proof: If the BCN is stabilizable to xe then, by

Proposition 1 point 2), for every x0 there exists τ ∈ Z+

and an input sequence ũ(t), t ∈ [0, τ − 1], that drives the
BCN state, say x̃(t), to xe at time τ . On the other hand, by
Proposition 1 point 1), the set I(xe) is not empty and for
every i ∈ I(xe) we have c> n δiM n xe = 0. We therefore
have J∗(x0) ≤

∑τ−1
t=0 c> n ũ(t) n x̃(t) < +∞.

Conversely, if J∗(x0) < +∞ for every x0 ∈ LN , there
exists τ ∈ Z+ such that c> n u(t) n x(t) = 0, ∀ t ≥ τ.
By the way the vector c has been defined, this implies, in
particular, that x(τ) = xe, and the arbitrariety of x0 ensures
that point 2) of Proposition 1 holds. Also, if u(τ) = δiM ,
then i ∈ I(xe) and hence point 1) of Proposition 1 holds,
too. Consequently, the BCN (3) is stabilizable to xe.

This result allows to reduce the solution of the stabilization
problem to the solution of an infinite-horizon optimal con-
trol problem. In particular, the Algorithm described in the
previous section, with H = {j∗}, can be used to derive the
state-feedback matrix K. Note that J∗(x0) will always be
equal to the length of the shortest path from x0 to xe = δj

∗

N .

IV. REGULATION PROBLEM

A classical control theory problem is the regulation of the
output trajectory to a given constant value, say ye. Clearly,
this can be seen as a natural extension of the stabilization
problem addressed in the previous section. The regulation
problem is formalized in the following definition.

Definition 3: The regulation problem to the output value
ye ∈ LP is solvable for the BCN (3) if for every x(0) ∈ LN

there exist u(t), t ∈ Z+, and τ ∈ Z+ such that y(t) = ye
for every t ≥ τ .

The problem solution requires some notation. We first
introduce the set X (ye) := {δjN : HδjN = ye}, which
is nothing but the indistinguishability class in 1 step cor-
responding to the output value ye [5]. We also denote by
Z(ye) the subset of all states x̃ of X (ye) for which there
exists a state-input trajectory (x̃(t), ũ(t)), t ∈ Z+, satisfying
x̃(0) = x̃ and x̃(t) ∈ X (ye),∀ t ∈ Z+.

Proposition 2: The regulation problem to the value ye
is solvable for the BCN (3) if and only if the following
conditions hold

1) X (ye) contains a state trajectory, or, equivalently,
Z(ye) 6= ∅;

2) the set Z(ye) is reachable from every initial state x(0),
i.e., Z(ye) ∩R(x(0)) 6= ∅ for every x(0) ∈ LN .
Proof: [Sufficiency] Let x(0) be any state in LN . If 1)

and 2) hold, there exists x̃ ∈ Z(ye)∩R(x(0)). Consequently,
τ ∈ Z+ and an input ũ(t), t ∈ [0, τ−1], can be found leading
the state trajectory from x(0) to x(τ) = x̃. As x̃ ∈ Z(ye),
there exists ũ(t), t ∈ [τ,+∞), such that x(t) ∈ Z(ye) for
every t ≥ τ and hence y(t) = ye for every t ≥ τ .
[Necessity] Follows the same lines as the sufficiency part.

Also in this case the problem solution can be expressed as
a static state-feedback, and we derive this result again from
the solution of the infinite-horizon optimal control problem.
Introduce the cost vector c> := [ c>1 c>2 . . . c>M ] , with

[ci]j =
{

0, if j ∈ Z(ye) and Ln δiM n δjN ∈ Z(ye);
1, otherwise.

(10)
Theorem 2: Given the output value ye, the regulation

problem to the value ye is solvable for the BCN (3) if and
only if the optimal control problem

J∗(x0) = min
u
J(x0,u(·)) = min

u

+∞∑
t=0

c> n u(t) n x(t),

with c given in (10) has a finite solution for every x0 ∈ LN .

Proof: If the regulation problem is solvable then, by
Proposition 2, for every x0 there exists τ ∈ Z+ and an input
sequence ũ(t), t ∈ [0, τ − 1], that drives the BCN to some
state trajectory x̃(t), t ≥ τ, included in Z(ye) Therefore
J∗(x0) ≤

∑τ−1
t=0 c> n ũ(t) n x̃(t) < +∞.

Conversely, suppose that J∗(x0) < +∞ for every x0 ∈ LN .
Then there exists τ ∈ Z+ such that c>nu(t)nx(t) = 0,
∀ t ≥ τ. By the way the vector c has been defined and
the arbitrariety of x0, this implies, in particular, that x(τ) ∈
Z(ye), and hence points 1) and 2) of Proposition 2 hold.
This ensures that the regulation problem is solvable.

Also in this case, we may apply the Algorithm described
in the section II, for H = Z(ye), to derive the state-feedback
matrix K. In this case J∗(x0) will be equal to the length of
the shortest path from x0 to Z(ye).



V. OUTPUT FEEDBACK STABILIZATION

As we have seen, the problem of stabilizing a BCN to
some state xe, under the necessary and sufficient conditions
given in Proposition 1, can be solved by means of a static
state feedback law. A similar result has been derived for the
output regulation problem. So, the question spontaneously
arises: under what conditions can we solve these problems
by resorting to an output feedback?

Definition 4: A BCN (3) is output feedback stabilizable
to the state xe ∈ LN if there exists Ky ∈ LM×P such that
the output feedback law u(t) = Kyy(t), t ∈ Z+, drives
every x(0) ∈ LN to the state xe in a finite number of steps,
namely ∃τ ∈ Z+ such that x(t) = xe for every t ≥ τ .

The output feedback stabilization problem is quite chal-
lenging to be solved in a computationally tractable way.
Clearly, if Ky defines an output feedback law, then K =
KyH defines a state feedback law. So, a possible way could
be that of determining whether the set of all state-feedback
matrices includes at least one matrix expressed as K = KyH
for some Ky ∈ LM×P (see [14]). However, in general, the
search cannot be restricted to the matrices K that implement
paths of minimum length from each state to the equilibrium
state xe [6]. Consequently, the test may need to be performed
on a quite large set of state feedback matrices. We illustrate
this concept by means of an example.

Example 1: Consider a BCN (3) with N = 61,M = 2,
P = 2 and

L1 := Ln δ1
2 = [ δ2

6 δ6
6 δ6

6 δ3
6 δ6

6 δ1
6 ] ,

L2 := Ln δ2
2 = [ δ1

6 δ3
6 δ4

6 δ5
6 δ4

6 δ6
6 ] ,

H = [ δ1
2 δ2

2 δ1
2 δ1

2 δ2
2 δ2

2 ]

The BCN can be represented by the following digraph,
obtained by overlapping the digraphs D(L1) and D(L2).

1	
  

y	
  =	
  δ21	
  

2	
   3	
  

6	
   5	
   4	
  

y	
  =	
  δ21	
  

y	
  =	
  δ21	
  

FIG. 1. Digraph corresponding to the BCN of Example 1.

Light blue thick arrows represent arcs of D(L1), red thick
dashed arrows represent arcs of D(L2). Black continuous
arrows stem from states whose associated output is δ1

2 , while
red dashed lines stem from states whose ouput is y = δ2

2 .

1N = 6 is not a power of 2, but the analysis is not affected by this fact

Assume xe = δ6
6 . It is easy to see that xe is reachable

from every state and xe = Ln δ2
2 n xe.

As both conditions of Proposition 1 are satisfied, the BCN
is stabilizable to xe. If we search for the stabilizing state-
feedback matrices that correspond to minimum distance
paths from each δj6 to xe = δ6

6 , we find two possible solutions
K1 = [ δ1

2 δ1
2 δ1

2 δ1
2 δ1

2 δ2
2 ] ,

K2 = [ δ1
2 δ1

2 δ1
2 δ2

2 δ1
2 δ2

2 ] .

Neither of these matrices can be expressed as Ki = KyiH
for some Kyi ∈ L2×2, otherwise the last two columns of
K1 or K2 should be identical. On the other hand, it is
easy to see that Ky = [ δ1

2 δ2
2 ] = I2 (corresponding to

KyH = H , namely u(t) = y(t)) determines a stabilizing
output feedback. ♠

A necessary (but not sufficient) condition for static output-
feedback stabilization is given in the following proposition.

Proposition 3: Given a BCN (3), a necessary condition
for the existence of a static output feedback stabilizing the
BCN to xe is that there exists an input value ū such that
L n ū n xe = xe, and x(t) = xe,∀ t ∈ Z+ is the only
periodic state trajectory corresponding to the constant input
u(t) = ū, t ∈ Z+, that is entirely included in X (Hxe).

Example 2: Consider a BCN with N = 4,M = 2, P = 2
L1 := Ln δ1

2 = [ δ1
4 δ2

4 δ4
4 δ1

4 ] ,
L2 := Ln δ2

2 = [ δ4
4 δ3

4 δ3
4 δ3

4 ] ,
H = [ δ1

2 δ1
2 δ2

2 δ2
2 ]

The BCN can be represented by the following digraph.

2	
  

y	
  =	
  δ21	
  

3	
  

1	
   4	
  

FIG. 2. Digraph corresponding to the BCN of Example 2.

Assume xe = δ1
4 . It is easy to see that xe is reachable

from every state and xe = Ln δ1
2 n xe. As both conditions

of Proposition 1 are satisfied, the BCN is state-feedback
stabilizable to xe. However, an output feedback stabilizing
the BCN to the state δ1

4 does not exist, since the previous
necessary condition is not satisfied. Indeed, the only input
value that keeps the system in the equilibrium state is u = δ1

2 .
However, δ2

4 ∈ X (Hxe) = {δi4 : Hδi4 = δ1
2} is an

equilibrium point of the BCN corresponding to the same
input value. ♠

When both conditions of Proposition 1 are satisfied for
some specific xe, we provide an algorithm to explore the



existence of an output-feedback law stabilizing the BCN (3)
to xe. To this end, we previously remove output values that
never occur (this is the case if there are zero rows in the
matrix H) and introduce a suitable permutation of the state
and output components. So, we can always assume xe = δ1

N

and H = diag{1>n1
,1>n2

, . . . ,1>nP
}. In this set-up, Theorem

1 in [14] can be restated, in slightly revised terms, as follows.

Corollary 1: The BCN (3) is output feedback stabilizable to
xe = δ1

N if and only if there exists Ky ∈ LM×P such that

(LnKyHΦN )N = [ δ1
N δ1

N . . . δ1
N ] = δ1

N1TN , (11)

where Φ is the so-called power reducing matrix [4], i.e. the
logical matrix satisfying x(t) n x(t) = Φx(t),∀x(t) ∈ LN .

If we analyze the structure of the logical matrix L n
KyHΦN , we observe that it is obtained in this way

LnKyHΦN = [ blk1(Li1) blk2(Li2) . . . blkP (LiP ) ] ,

where blkk(Lik) is the N ×nk matrix obtained by selecting
the columns of Lik with indices in the interval [(

∑k−1
`=1 n`)+

1, (
∑k−1
`=1 n`) + nk], and Ky = [ δi1M δi2M . . . δiPM ] .

Condition (11) is satisfied if and only if

LnKyHΦN =
[

1 ∗
0N−1 Ñ

]
,

for some nilpotent matrix Ñ ∈ L(N−1)×(N−1). In addition,
Ñ is nilpotent if and only if all its principal submatrices are
nilpotent. This suggests an algorithm to ordinately choose
the indices i1, i2, . . . , iP appearing in the matrix Ky .

First, the index i1 is chosen in such a way that the first
column of blk1(Li1) is δ1

N and the principal submatrix
of Li1 obtained by selecting rows and columns of indices
[2, n1] is nilpotent (note that this selection criterion for i1
is nothing but the necessary condition we have given in
Proposition 3). Subsequently, i2 is chosen in such a way
that the principal submatrix of Li2 obtained by selecting
rows and columns of indices [n1 + 1, n1 + n2] is nilpo-
tent, and the submatrix of [ blk1(Li1) blk2(Li2) ] obtained
by selecting rows and columns of indices [2, n1 + n2]
is nilpotent. By proceeding in this way, all the indices
i1, i2, . . . , iP are chosen. Clearly, if at some stage there
is no choice of the index ik such that the submatrix of
[ blk1(Li1) blk2(Li2) . . . blkk(Lik) ] obtained by se-
lecting rows and columns of indices [2, n1 +n2 + . . .+nk] is
nilpotent, then the previous choices for i1, i2, . . . , ik−1 must
be modified. By proceeding in this way, either a solution
is explicitly derived or it is shown that there is no possible
solution. The selection criterion allows to restrict the analysis
and to not consider all possible P -tuples of indices. So, this
represents a sort of branch and bound algorithm.

Remark 1: If we look for all the output feedback matrices
that stabilize the BCN to xe = δ1

N , and consider the
homogeneous polynomial matrix

L =

[
M∑
j1=1

blk1(Li1)z1,i1

∣∣∣ . . .
∣∣∣ M∑
jP =1

blkP (LiP )zP,iP

]

in the PM indeterminates zh,ih , h ∈ [1, P ], ih ∈ [1,M ],
the stabilization to xe = δ1

N is possible if and only if there
exist P indeterminates z1,k1 , . . . zP,kP

such that every entry
of the first row of LN includes a monomial (of degree N )
in z1,k1 , . . . zP,kP

. If so, a stabilizing output feedback matrix
is Ky = [ δk1M δk2M . . . δkP

M ]

VI. TIME-VARYING OUTPUT FEEDBACK STABILIZATION

All feedback solutions proposed in the previous sections
are time-invariant. There are situations, however, when the
output feedback stabilization cannot be achieved by resorting
to a time-invariant solution, but it can be by adopting a time
varying feedback law u(t) = Ky(t)y(t), t ∈ Z+.

Example 3: Consider the BCN of Example 2, and assume,
again, xe = δ1

4 . A time-invariant output feedback law
stabilizing the BCN to xe does not exist. However, the time-
varying output feedback law Ky(0) = [ δ2

2 δ2
2 ] , Ky(t) =

[ δ1
2 δ1

2 ] ,∀ t ≥ 1, stabilizes the BCN to xe. ♠
The idea behind Example 3 can be generalized, as shown

in the following proposition.
Proposition 4: Given a BCN (3) and xe ∈ LN , suppose

that there exists ū = δi
∗

M such that xe = L n ū n xe and
let Aū(xe) denote the domain of attraction of xe in the BN
x(t+1) = Lnūnx(t) = Li∗x(t), t ∈ Z+, i.e. the set of
all initial states whose associated state trajectory eventually
becomes equal to xe. If there exist T ∈ Z+ and an input
ũ(0), ũ(1), . . . , ũ(T − 1) such that for every x(0) ∈ LN ,
the state trajectory stemming from x(0) under the action of
the previous input satisfies x(T ) ∈ Aū(xe), then there exists
a time-varying output feedback stabilizing the BCN to xe.

Proof: Assume ũ(t) = δitM , t ∈ [0, T − 1]. Then

Ky(t) =

 δitM1>P , t ∈ [0, T − 1];

δi
∗

M1>P , t ≥ T ;

stabilizes the BCN to xe.

Example 4: Consider a BCN with N = 8,M = 2, P = 2,

L1 := Ln δ1
2 = [ δ2

8 δ6
8 δ4

8 δ5
8 δ3

8 δ7
8 δ3

8 δ2
8 ] ,

L2 := Ln δ2
2 = [ δ8

8 δ2
8 δ3

8 δ3
8 δ4

8 δ5
8 δ6

8 δ7
8 ] ,

H = [ δ1
2 δ2

2 δ1
2 δ1

2 δ2
2 δ2

2 δ1
2 δ2

2 ]
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FIG. 3. Digraph corresponding to the BCN of Example 4.



Assume xe = δ3
8 . Then xe = L n δ2

2 n xe and Aδ22 (δ3
8) =

{δi8; i ∈ [1, 8], i 6= 2}. On the other hand, if we apply at t = 0
and t = 1 the input values ũ(0) = ũ(1) = δ1

2 , independently
of the initial state x(0), we know that x(2) ∈ Aδ22 (δ3

8).
Therefore the output feedback law

Ky(t) =

 [ δ1
2 δ1

2 ] , t ∈ [0, 1];

[ δ2
2 δ2

2 ] , t ≥ 2;

stabilizes the BCN to xe. ♠
Another set of sufficient conditions for the existence of

a time-varying output feedback stabilization is given in the
following proposition.

Proposition 5: Given a BCN (3), let xe = δ1
N be an

equilibrium point of the BCN for the set of input values
Ue ⊆ LM and assume that Hxe = δ1

P . If xe is reachable
from every initial state x(0) = δjN using input sequences
u(j)(0),u(j)(1), . . . that satisfy the constraint

x(j)(t) ∈ X (δ1
P ) ⇒ u(j)(t) ∈ Ue, (12)

there exists a time-varying output feedback Ky(t), t ∈ Z+

that drives every x(0) ∈ LN to xe in finite time.
Proof: Let Ck ⊂ LN denote the set of initial states

x(0) = δjN that can be driven to xe at time t = k, but
not at any time t < k, by using input sequences satisfying
(12). Clearly C0 = {xe} and there exists imax ≥ 1 such that
Ci 6= ∅ if and only if i ∈ [0, imax].
We inductively define the matrices Ky(t), as follows.
[Case t = 0] For every h ∈ [1, P ] such that X (δhP )∩C1 6= ∅,
set colh(Ky(0)) = Ky(0)δhP = δ

ih,0
M , where the input value

u = δ
ih,0
M maps (at least) one element of X (δhP ) ∩ C1 in xe

i.e.
xe = Ln δ

ih,0
M n δiN , ∃δiN ∈ X (δhP ) ∩ C1,

and δih,0
M ∈ Ue when h = 1. For every h ∈ [1, P ] such that

X (δhP ) ∩ C1 = ∅, we let k̃ denote the least positive integer
such that X (δhP )∩Ck̃ 6= ∅. In this case, we set colh(Ky(0)) =
Ky(0)δhP = δ

ih,0
M , where the input value u = δ

ih,0
M maps (at

least) one element of X (δhP ) ∩ Ck̃ in Ck̃−1, i.e

Ln δ
ih,0
M n δiN ∈ Ck̃−1, ∃δiN ∈ X (δjP ) ∩ Ck̃,

and, again, δih,0
M ∈ Ue when h = 1.

[Induction step] Assume that Ky(0),Ky(1), . . .Ky(t − 1)
have been already selected, and introduce S(t)

h the (possibly
empty) set of states, x(t) ∈ LN , that can be reached at time
t, by resorting to the previous output feedback, and such that
Hx(t) = δhP . Clearly, S(t)

h ⊆ X (δhP ).
• Case S(t)

h 6= ∅.
For every h ∈ [1, P ] such that S(t)

h ∩ C1 6= ∅, we set
colh(Ky(t)) = Ky(t)δhP = δ

ih,t

M , where the input value
u = δ

ih,t

M maps (at least) one element of S(t)
h ∩ C1 in xe,

i.e.
xe = Ln δ

ih,t

M n δiN , ∃δiN ∈ S
(t)
h ∩ C1,

and δih,t

M ∈ Ue when h = 1.

On the other hand, for every h ∈ [1, P ] such that S(t)
h ∩

C1 = ∅ and k̃ is the least positive integer such that S(t)
h ∩Ck̃ 6=

∅, we set colh(Ky(t)) = Ky(t)δhP = δ
ih,t

M , where the input
value u = δ

ih,t

M maps (at least) one element of S(t)
h ∩ Ck̃ in

Ck̃−1, i.e.

Ln δ
ih,t

M n δiN ∈ Ck̃−1, ∃δ
i
N ∈ S

(t)
j ∩ Ck̃,

and δih,t

M ∈ Ue when h = 1.
• Case S(t)

h = ∅.
For every h ∈ [1, P ] such that S(t)

h = ∅, colh(Ky(t)) =
Ky(t)δhP can be arbitrarily selected.

For a sufficiently large t, we have S1(t) = {xe}, while
Sh(t) = ∅ for every h ∈ [2, P ]. Therefore xe is a fixed point
under the output feedback we have constructed, and the BCN
reaches xe in a finite number of steps, for every x(0).

Remark 2: In the previous proposition the equilibrium
point xe is reachable from every initial condition, even if
we constrain the input values to belong to Ue ( LM every
time we encounter a state δjN belonging to X (Hxe).
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