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Abstract

The paper analysises the internal properties (controlla-
bility, observability, detectability and extendability) of
finite support multidimensional behaviors and the rela-
tions with their polynomial matrix descriptions.

1 Introduction

Behavior theory is the study of the trajectories a dynam-
ical system produces according to its evolution laws. It
originated in the analysis of 1D systems, and was devel-
oped by J.C.Willems in the last two decades [?, ?].

The aim of this paper is to discuss some aspects of
the behavior theory of finite support multidimensional
signals. Particular attention has been paid to the sup-
port structure of multidimensional signals, and to ele-
mentary operations (restriction, extension and concate-
nation) which have a concrete meaning from the signal
processing standpoint. These provide a link between the
parity checks description of nD behaviors and the con-
cepts of observability and extendability. We investigate,
then, the way behavior trajectories are generated and
their supports are related to the corresponding inputs.

The use of nD Laurent polynomial matrices is per-
vasive all over the paper; no attempt has been made,
however, to analyse their algebraic properties. For these
we refer the reader to [?, ?]. Similarly, infinite support
behaviors are marginally touched on. The analysis of
their connections with finite nD behaviors falls within
the scope of duality theory, and has been carried on in

7).
2 Main definitions and properties

Let [F be a field and denote by z the n-tuple (21, 22, ..., 2,,),
so that [F[z] and [F[z, z~!] are shorthand notations for the
polynomial and the Laurent polynomial (L-polynomial)
rings in the indeterminates z1, ..., z,,, respectively.

For any sequence w = {w(h)},czn, taking values in F”,
the support of w is the set of points where w is nonzero,
i.e. supp(w) := {h = (hq,ho,....,h,) € Z" : w(h) # 0}.
Also, w can be represented via a formal power series

Z w(hi,ho,...;hy) cghn = Z w(h) z",

hi €L hezZ™

hy ho
zl 22 ..

where h stands for the n-tuple (h1, ha, ..., hy,) and z" for

h1 _ho hn
the term 27" 252%...2;m.

On the other hand, power series can be viewed as repre-

senting vectors with entries in Foo := IF Zn, thus setting
a bijective map between nD sequences taking values in
F” and formal power series with coefficients in F”. This
allows us to identify nD sequences with the associated
power series, in particular, finite support nD signals, with
L-polynomial vectors, and to denote both of them with
the same symbol w. Sometimes, mostly when a power se-
ries w is obtained as a Cauchy product, it will be useful
to denote the coefficient of zP in w as (w,z").

Linear operators on the sequence space are represented
by appropriate matrices with elements in [F|z, z~!], whose
primeness features find a counterpart in terms of proper-
ties of the associated operators.

Definition An L-polynomial matrix G € F[z, z=1]P*™,
p>m,is

e unimodular if p = m and det G is a unit in F[z,z71];

e right factor prime (rFP) if in every factorization G =
GT, with G € F[z,z71]P*™ and T € F[z,z-1]™*™ T is
a unimodular matrix;

e right minor prime (rMP) if its maximal order minors
have no common factors;

e right variety prime (rVP) if the ideal Ig, generated
by its maximal order minors, includes (nonzero) L-
polynomials in F[z;, zz_l] for every i = 1,2, ..., m;

e right zero prime (rZP) if the ideal I is the ring [z, z7!]
itself.

An nD (finite) behavior B with p components is a set
of finite support signals (trajectories) taking values in
F” and endowed with the properties of lnearity and
shift-invariance, namely wi,wo € B = aw; + fws €
B and zPwy, for all a, 3 € IF and h € Z".



As every nD behavior B can be viewed as an [F[z,z7}]
submodule of F[z,z71]P, which is a Noetherian module
[?], B is finitely generated, i.e. there exists a finite set of

column vectors g1, g2, ..., & in F[z,z71]P s.t.

B= {i giu; tu; € F[z,z_l]} =: ImG. (2.1)
i=1

The L-polynomial matrix G := row{gi,&2,...,&m} is
called generator matriz of B. Generator matrices of the
same behavior B have the same rank r over the field of
rational functions [F(z). Being an invariant w.r.t. all
generator matrices of B, r is called the rank of B.

One of the pillars of Willems behavior theory is the
notion of (external) controllability, that in a 1D context
means that for controllable behaviors the past has no
lasting implications about the far future [?]. In the mul-
tidimensional case the notions of “past” and “future” are
quite elusive. What seems more reasonable, instead, is
to investigate to what extent the values a trajectory w
assumes on a subset S; C Z" influence the values on the
subset Ss, disjoint from &7, and to check if there exists a
lower bound on the distance

d(81,8;) :=min{) |h; — ki,h € Si,k € Sy}, (2.2)
1=1

which guarantees that w|Ss, the restriction to Sy of the
sequence w, is independent of w|S;. This point of view
led to the following definition [?].

(C1) [Controllability] A finite behavior B is control-
lable if there exists an integer 6 > 0 s.t., for any pair of
nonempty subsets Si, Sy of Z", with d(S;,Sz) > §, and
any pair of trajectories wy and wy € B, there exists
v € B s.t. v[§1 = wq|S1 and v|S2 = wa|Ss.

While definition (C;) requires to paste together differ-
ent signals into a new one, the following definition refers
to the possibility of finding a legal extension for every
portion w|S of a behavior trajectory w, by adjusting the
sample values in a small area surrounding S. Precisely,
once introduced the e-extension, € > 0, of the set S,
S¢:={(h1,ha,....,hn) € Z" : d((h1, ha, ..., hyn),S) < €},

one can give the following definition.

(C2) [Zero-controllability] A finite behavior B is zero-
controllable if there exists an integer ¢ > 0 s.t., for any
nonempty set S of Z" and any w € B, there exists v € B
satisfying v|S = w|S and supp(v) C S°.

Properties (C;) and (C3) make sense both for finite
and infinite support behaviors, and the equivalence (Cy)
< (Cg) holds for both of them. However, while these
conditions are always met [?] by a finite behavior B, and
follow from the noetherian module structure of B , for an
infinite behavior controllability constitutes an additional
constraint w.r.t. linearity and shift invariance [?, ?].

Observability [?] formalizes the possibility of pasting
into a legal sequence any pair of trajectories that take
the same values on a sufficiently large subset of Z". This
amounts to say that, however chosen a sequence w € B
and a subset S € Z", the possible extensions of w|S only
depend on the values of w on a boundary region of S.

(O1) [Observability] A finite behavior B is observable if
there exists an integer 6 > 0 s.t., for any pair of nonempty
subsets S1, Sy of Z", with d(S1,Ss) > 0, and any pair of
trajectories w1, wo € B, satisfying w1|C(S; U S2) =
w32|C(S; USz), the trajectory

w1 (h) hes,
V(h) =4 Wi (h) = Wz(h) h e C(Sl @] 82) (23)
Wg(h) hc 82

is an element of B.

Observability can be equivalently restated as follows: if
the support of a sequence w € B can be partitioned into
a pair of disjoint subsets, which are far enough apart, the
restrictions of w to each subset are legal trajectories.

(O3) [Zero-observability] A finite behavior B is zero-
observable if there is an integer € > 0 s.t. for any w € B
satisfying w|(S€\ S) = 0, S C Z" not empty, the se-
quence v which coincides with w on § and is zero else-
where belongs to B.

Proposition 2.1 Observability and zero observability
are equivalent.

PROOF (O;) = (O2) Assume that B fulfills (O;). Given
SCZ"andw e Bst. w|(S°\S) =0, take in (O;)
wi=w,wy =038 =38,S = CS°. The trajectory
v € B satisfying (2.3), coincides with w on S and is zero
elsewhere. So, (O3) holds with € = 4.

(O2) = (01) Assume that B fulfills condition (Os).
Given 81,8, ¢ Z", with d(81,82) > €, and wq, wo € B
satisfying w1|C(S; U S2) = w2|C(S; U S2), the sequence
w1 — Wy € B satisfles (w; — w2)|C(S; US2) = 0. As a
consequence, the signal w, which coincides with w; — wo

in S; and is zero elsewhere, isin B, and v := w+ws € B
fulfills (2.3). So, (O1) holds for § = €. |

3 Trajectories recognition

Underlying the definition of controllability is the idea of
driving a portion of trajectory into another one, provided
that there is room enough for adjustements. Observabil-
ity, instead, is related with the “dual” issue of recognizing
whether a given sequence v € F[z,z71]? is an element of
B. This problem, that tipically arises in fault detection
and convolutional encoding contexts, can be managed
by resorting to a linear filter (residual generator or syn-
drome former) that produces an identically zero output
signal when the input is an admissible trajectory of B.
This requires to find a set of sequences (parity checks)
endowed with the property that their convolution with



the elements of B is zero. So, for a given behavior B
C [F[z,z71]?, a (finite) parity check is a column vector
s € [F[z,z71]P that satisfies s”w = 0, for all w € B. The
set B+ of all finite parity checks of B is the orthogonal be-
havior, and as a submodule of [F[z,z71]?, it is generated
by the columns of some matrix H € F[z,z71|P*9, that is

Bt ={scFz,z7 " :s = Hx,x € Flz,27']}. (3.1

Condition s”w = 0, V s € B+, however, needs not imply

w € B. In general

Bt = {weFzz'P:sTw=0,VscB'} (32
properly includes B, and is the set of all L-polynomial
vectors obtained by combining the columns of G over the
field of rational functions IF(z). It is clear that B can be
identified via a finite set of parity checks if and only if B
= B L or, equivalently,

B=kerH" := {w c Flz,z7'|P: H'w =0}. (3.3)
In this setting, observability finds a somewhat more sub-
stantial interpretation: if B = kerH”, the restriction of a
trajectory to a set S still provides a legal signal whenever
the distance between S and the remaining support of the
trajectory exceeds the range of action of the parity check
matrix H. Proposition 3.1 below shows that kernel repre-
sentations correspond to observable behaviors, and makes
it clear that observability induces further constraints on
B, in addition to linearity and shift invariance.

Proposition 3.1 A behavior B C [F[z,z7 1] is observ-
able iff there is an integer h > 0 and an L-polynomial
matrix HT € F[z,z71|"*P s.t. B = kerH”.

The proof depends on a the following technical lemma

Lemma 3.2 [?] Let m(z) be in F[z]. For any integer
p > 0 there is p(z) € F[z] s.t.

m(z)p(z) € Flz°]:=F[f, ..., 22]. 1A (3.4)
PROOF OF PROPOSITION 3.1 Assume that B = ImG,
G € F[z,z~1]P*™  is an observable behavior, and let B +
=1Im H, H € Fz,z71]P*9, denote the orthogonal behav-
ior introduced in (3.1). We will show that B = kerH™.
Since HTG = 0, it is clear that kerHT D B. To prove
the converse, express w € kerHT as w = Gn/d(z), d €
Flz],n € F[z,z71]™*!. By Lemma 3.2, for every integer
p > 0 there is a suitable polynomial p(z) s.t. p(z)d(z) €
[F[27,...,,2¢]. If property (O2) holds w.r.t. € > 0, and
r > 0 is an integer s.t. supp(w) C B(0,r), we choose p >
2r 4 ¢. So, the behavior sequence p(z)d(z)w = Gnp(z)
can be written as Y5, o Ciyuy, g2t 250 2T W,
and thus is the sum of disjoint shifted copies of w, and
the distance between two arbitrary copies exceeds €. So,
by (O3), each copy of w, and hence w itself, is in B.

Conversely, let B =kerH”, and set € = 2s, with s > 0 an
integer s.t. B(0,s) D supp(HT). If S is a subset of Z"

and w € B satisfies w|(S°\ S) = 0, the sequence v which
coincides with w on § and it is zero elsewhere belongs to
B. Consequently, B is zero-observable. |

As a consequence of Proposition 3.1, observability for-
malizes the “local nature” of the system laws or, equiva-
lently, the existence of a bound on the size of all windows
(in Z") we have to look at when deciding whether a sig-
nal belongs to B . Letting B|S := {w|S : w € B}, the
above localization property finds a formal statement as
follows:

(O3) [Local-detectability] A finite behavior B is
locally-detectable if there is an integer v > 0 s.t. every
signal w satisfying w|S € B|S for every S ¢ Z" with
diam(S) < v, is in B.

Proposition 3.3 Local detectability and observability
are equivalent.

PROOF Assume that B satisfies (O3) for a certain v > 0.
Given S € Z" and w € B s.t. w|(S”\S) =0, let v be
the sequence which coincides with w on & and it’s zero
elsewhere. Consider any window W, with diam(W) < v.
If W is included in §”, then vIW = wlW € BW,
otherwise we have W NS = 0, and therefore v|)W =
0|W € B|W. So, by (03), v is a legal trajectory, and
(O2) holds for e = v.

Conversely, assume that B is observable. By Propo-
sition 3.1, there exists an L-polynomial matrix H €
Flz,z=1]P*? st. B = ker HT. Let v > 0 be an in-
teger s.t. supp(H?) C B(0,v), and suppose that v is
any signal satisfying v|S € B|S for every S C Z" with
diam(S) < 2v. If S := —supp(HT), the computation of
the coefficient of zX in H”'v involves only samples of v in-
dexedink+S :={h € Z" :h—k € S} = —supp(zH7).
On the other hand, since diam(k + S) < 2v, there exists
wi € B which satisfies v|(k + ) = wyi|(k + S), and
this result holds for every k € Z". So, the coefficient
of z¥ in H”v is the same as in H'wy = 0, and hence
veker HT = B. |

A different approach to observability consists in regard-
ing behaviors with p components as elements in the lat-
tice of submodules of F[z,z71]?, and analysing whether
observable elements enjoy some special ordering proper-
ties. Keeping in with the same spirit, we investigate how
an observable behavior is affected by certain “extension
operations” that merge lattice elements into larger ones.
There are essentially two natural ways to perform these
extensions: one consists in embedding F[z,z71]P, and
therefore each of its submodules, in the rational vector
space [F(z)P, the other in considering F[z,z71]P as a sub-
module of F2 , the set of trajectories with p components
whose supports possibly extend to the whole space Z".

Once a behavior B with p components is given, in the
first case we have to consider the smallest vector subspace



of F(z)P including B

Brat := {iwiai cw; €8, a; €F(z), re N}, (3.5)

=1

and restrict our attention to the submodule B,z N
[F[z,z71]P of finite support sequences. This in general
properly includes B, and hence is a larger element of the
lattice. In the other case, we merge B in

Bso = {iwiai cw; €8, a; € Foo, T € N}, (3.6)
i=1

the smallest [z, z~!]-submodule of FZ which includes
B and is closed w.r.t. scalar multiplications by elements
of Foo. Again we confine ourselves to the finite elements
Boo NF[z,z7 1P, which include all trajectories of B.

Proposition 3.4 Let B C F[z,z7!]? be a behavior of
rank r. The following statements are equivalent:

(1) B is observable;

(2) B= By NF[z,z71)P;

(3) B = Brat N Flz,271]7;

(4) B is maximal in the set of all submodules of
F(z,271)? of rank r;

(5) sw € B = w € B, for every w € F[z,z71|P and
every nonzero s € [z, z71];

(6) B=B++.
ProOOF (1) = (2) As B is observable, there exists H €
Flz,z7'P*9st. B=kerHT = {w € F[z,z7 1] : HTw =
0}. If w € Boo NF(z,271P, then w = Y, w;a;, a; €
Foo,W; € B, and therefore HTw = HT<Z:z Wiai)

> ,(H"w;)a; = 0. Thus w € ker H” = B, which implies
B 2 By, NF[z,z71]P. The reverse inclusion is obvious.
(2) = (3) Follows immediately from B C B N
Flz,z7 1P C Boo NF[z,z71]P.

(3) = (4) If B O B and rankB’ = rankf3, it is clear that
B and B’ generate the same [F(z)-subspace of [F(z)P and,
consequently, Byay N[z, 27 1P = B, N[z, z71]P. So, the
inclusions Byay NF[z, 271 O B’ 2 B and assumption (3)
together imply B’ = B, and hence B is maximal.

(4) = (5) Suppose sw € B, s € F[z,z71]. The behavior
B’ generated by B and w has the same rank of B , and
hence, by the maximality assumption, coincides with 5.

(5) = (6) As B and Bt! have the same rank r and
Bt+ D B, both behaviors generate the same [F(z)-
subspace of F(z)?. In particular, w € B+ implies
w € (Bt1)rat = Brat- So, there exist p;,s; € Flz,z71]
and w; € B, s.t. w = >./_, w; p;/s;, which implies
sw € B, s ={.cm.{s;}. By assumption (5), w is in B .

(6) = (1) Since Bt is a submodule of F[z,z~1]?, there
exists a suitable L-polynomial matrix H s.t. B+ = ImH.
So B+ = {w € Flz,z7!]? : vIw = 0,¥v € ImH} =
kerH. By assumption (6), B coincides with kerH”, and
hence is observable. |

When no information on the support is given, a posi-
tive outcome of the parity checks on a finite window S,
does not guarantee that a behavior sequence can be found
interpolating the available data on S. A noteworthy ex-
ception is represented by the case when S is surrounded
by a sufficiently large boundary region where the signal
is zero. If so, extending the data out of S via the zero se-
quence leads to a signal which satisfies the parity checks
all over Z". Clearly, it would be desirable if the extension
into a legal trajectory could be accomplished without any
assumption on the data values on the boundary region.
A discussion of this problem relies on the definition of
what we mean by “ satisfying the parity checks” on a set

ScZ".

Definition Let B = kerH7” be an observable behavior.
A sequence v € F[z,z71|P satisfies the parity checks of B

inheZ" if (HTV,Zh) =0,Vi€h+supp(HT), where
h+supp(HT) := {h+j:j € supp(HT)}. Moreover, if S
is any subset of Z", v satisfies the parity checks of B on
S if it satisfies them in each point of S, i.e. (HTV, zi) =
0,VieS+supp(HT).

As implied by condition H”v = 0, knowing the data
on a finite window W allows to check the signal only on
those subsets S of W satisfying the inclusion §¥ C W,
v > 0 being an integer selected according to the size of
the support of H”. Once the parity checks have been suc-
cessfully performed on a sequence v in a subset S which
fulfills the above inclusion, the question arises whether
there exists a behavior signal that fits on S the available
data. In general, even under the observability assump-
tion, the answer is negative. When the hypotheses on B
are properly strengthened, however, an integer £ > 0 can
be found, s.t. a positive check on S¢ guarantees the ex-
istence of some w € B which coincides with v in S§. The
formal definition of this property is the following.

(E) [Extendability] An observable behavior B =
kerHT is extendable if there is an integer ¢ > 0 s.t., for
every subset S C Z" and every v € F[z,z7!]?, which
satisfies on S§¢ the parity checks of B, a trajectory w € B
can be found s.t. w|S = v|S.

Proposition 3.5 below characterizes extendable behav-
iors as those described by ZP parity check matrices.

Proposition 3.5 A finite behavior B is extendable iff
B =kerHT, for some left zero-prime ((ZP) matrix H” .

PROOF Showing that the left zero-primeness of H” im-
plies property (E) does not depend on the finiteness of
the signal supports. Hence the necessity part of the proof
mimics that given in [?] for infinite 2D behaviors and will
be omitted. The sufficiency part is based on the following
lemma.

LEMMA [?] Let H” be an element of F[z,z=1]9*P. The
map HT : F[z,z71]? — Flz,27%? : w— HTw is onto
iff HT is (ZP.



Suppose that B satisfies property (E) for some € > 0. As
B is observable, it can be described as B = kerH”, and it
is not restrictive assuming H” ¢FP. To prove that H” is
(7P, we use the lemma and show that Hx = a has an L-
polynomial solution for all a in [F[z,z71]9. As H” has full
row rank over [F(z), the equation has a rational solution
v =n/d, n € F[z]?, d € F[z], and hence H'n = d a.
Set p = 201 + 4e, where 6; and §, are the radii of
two balls, with center in the origin, including supp(H7)
and supp(a), respectively. By Lemma 3.2, there ex-
ists p(z) € F[z] sit. pd belongs to [F[z7,...,2£] and,
by the assumption on p, equation H'p n = pda, im-
plies that the support Q of pda is the disjoint union of
finitely many shifted copies Q; of supp(a), whose mu-
tual distance is lower bounded by 2(e + 41), namely
Q = Uj supp(c; z”'a) = U; Q;.

Consequently, the sequence pn fulfills the parity checks
on the set C(Q%). So, by the extendability assumption,
a sequence w € B can be found, coinciding with v on
C(Q%7*2). As the support of the finite sequence y :=
w — pn is included in UiQ?H'E, y can be rewritten as y =
> ¥i, ¥i being the restriction of y to Q?lJrE. Also, by the
choice of p we made, all supports of H y; are disjoint,
and hence HTy = pda implies HTy; = ¢; z”la, thus
proving that the original equation has an L-polynomial
solution. |

4 Trajectories generation

Once a behavior B is represented via a finite set of
generators g1,82, ..., Em, it is natural to look at G :=
[g1 g2 .- gm] as a transfer matrix, and hence to con-
sider B as the image of an input/output map acting on
[F[z,z=!]™. When an i/o description is adopted, it is of-
ten imperative to associate trajectories of B and input
sequences bijectively. In data transmission the meaning
of this requirement is clear, as input signals represent
information messages to be retrieved from the received
codewords.

Throughout this section we assume that B has a full
column rank generator matrix GG. Under this assump-
tion, G admits (possibly infinitely many) rational left in-
verses G~1. Each of them, once applied to a trajectory
w = Gu, allows to uniquely retrieve the (finite) input
sequence u. However, when G~! is applied to a finite
support sequence v ¢ B, coming, for instance, from a
noisy measurement of w, we may obtain an infinite sup-
port sequence, which differs from u in infinitely many
points.

Clearly, when G~! is an L-polynomial matrix this draw-
back can be avoided. Proposition 4.1 provides equivalent
conditions for the existence of an L-polynomial inverse.

Definition Let G be in F[z,z~']P*™ and G = z2"G =
202G in Flz)P>™ for some h € N™. If K denotes
the algebraic closure of IF, the L-variety VX(G) of the

mazximal order minors of G is the algebraic set

VEG) = V() \ {(k1, . k) € K, Hki:()}, (4.1)

where V(G) denotes the variety (in K) of the maximal
order minors of G.

The above definition is well-posed, as (4.1) does not de-
pend on the choice of G.

Proposition 4.1 Let G be a pxm L-polynomial matrix.
The following statements are equivalent:

i) G is right zero-prime;

ii) there exists a matrix P € F[z,z71|™*P such that
PG = I,;

iii) VE(QG) is empty.

PROOF i) = ii) Let m;(G) denotes the i-th maximal
order minor of G, i =1,2, ..., (fr’L). By the zero-primeness
assumption, there exist L-polynomials h; € [F[z,z71] s.t.
>, himi(G) = 1. If S; is the m x p matrix which se-
lects in G the m rows corresponding to m;(G), from
Im = El thZ(G)Im = ZZ hi (adJ(SZG))(SlG), we find
that P := . h; (adj(SiG))Si is a left inverse of G with
elements in F[z,z7].

i1) = #ii) Let 2" = z[*--- 2z be a suitable term s.t.
P = z"P is in F[z)™*?. By applying the Binet-Cauchy
formula to equation PG = 2/ ¥ ...t e get
S mi(PYmi(G) = z{n(hﬁh) oot Shere mi(P)
and mz(é) are corresponding maximal order minors of P
and G, respectively. Then V(G) is included in the variety

m(hi+r1) _m(ha+r2) m(hp+7ry)
Z2 DY Zn

of z; , which is a subset of

K := {(kl, ]{12, ...,k'n) : k‘L S K, Hi kz = 0}

iit) = i) As K is the variety of z = 21 ---z,, by as-
sumption 7ii) V(@) is included in the variety of z. So,
by Hilbert’s Nullstellensatz [?], an integer r > 0 exists
s.t. 2] -+ 2" belongs to the ideal generated in [F[z] by the
maximal order minors of G:

A=Y himi(G),  hi €z (4.2)

As each maximal order minor m;(G) differs from m;(G)
in a unit of [F|z,z7!], the zero-primeness of G follows
after dividing both members of (4.2) by 2] --- z7. |

When the generator matrix G has an L-polynomial in-
verse, a uniform bound can be found on the support of
the input sequences which correspond to the behavior
trajectories. Actually, if P is such an inverse, w € B is
generated by the input signal u = Pw whose support
cannot exceed “too much” that of w.

(WI) [Wrapping input property] A finite behavior
B has the wrapping input property if there exist a full
column rank generator matrix G' and a positive integer ¢
s.t. w = Gu implies supp(u) C (Supp(w))é.

Property (WI) does not depend on the particular gen-
erator matrix of BB, provided that it has full column rank.



Furthermore, when noninjective generator matrices are
considered, a particular input can be found, whose sup-
port satisfies the above constraint.

Proposition 4.2 Assume that B has the (WI) property
for some full column rank matrix G and some integer
§ > 0. Then for every generator matrix G € F[z,z~1]P*4
an integer § > 0 can be found s.t. each trajectory w €
B can be expressed as w = G for some input @ with

supp(a) C (supp(w))g.

PROOF Since G and G are generator matrices of the same
behavior, there exists a full column rank L-polynomial
matrix @Q, s.t. G = GQ. Let 7 be the radius of a ball,
with center in the origin, including supp(Q), and consider
w € B. By property (WI), there is u s.t. w = Gu and

supp(u) C (supp(w))g. So, u := Qu satisfies w = Gu =
GQu = Gu, and supp() = supp(Qu) C (supp(u))” C
gsupp(w))TH. Consequently, the proposition holds for
d=7+40. |

Interestingly enough, the zero primeness of G is not
only sufficient but also necessary for property (WI). So,
free behaviors satisfying property (WI) can be identified
extendable behaviors.

Proposition 4.3 [?] A finite behavior has the (WI)
property iff it admits a rZP generator matrix.

The (WI) property introduces severe constraints on the
support of the input sequence which produces a trajec-
tory. So, it is not unexpected that it reflects into the
strongest primeness property G can be endowed with,
namely zero-primeness. Obviously, weaker requirements
on the supports of the generating sequences correspond
to weaker primeness properties of G. In particular, minor
primeness guarantees that the signal producing a behav-
ior sequence w exhibits a support which slightly exceeds
a parallelepipedal box including supp(w), whereas vari-
ety primeness ensures that each projection of u and w
onto a coordinate hyperplane gives a pair of signals with
the (WI) property.

An useful standpoint is to regard a finite support se-
quence w € [F[z,z71]P as a vector with entries in cer-
tain L-polynomial rings that properly include F|z,z~1].

Actually, w can be thought of as an element of
Fz)[zi, 27 = F (21, oy 2im1, Zig 1y o 20)[20, 25 Y]
W= wi(z)z",
hi€Z
or as an element of [F(z)[2¢, (25)7Y =
F(Zi)[zla-~-aZi—laZi+17---aznazl_ ,..,2;11,2;1,..,25;1]
hio1 _h

W= D Wy hheaoha ()22

hi,.hi—1,

hit1,...hn€Z

Correspondingly, we introduce the following sets

supp; (w) := {h € Z" : wy,, (zf) # 0}

SUpPpP;e (W) = {h € Z" CWhy kiRt b (ZZ) 7& 0}

Lemma 4.4 [?] Let G € F[z,z7]P*™ be a full column
rank matrix. Then

i) G is tMP iff G is right (zero) prime in F(z§)[z;, 2, ']
for every i = 1,2,...,n;

ii) G is rVP iff G is rZP in F(2;)[2¢, (26)7Y, for every

i=1,2,..,n. [

Proposition 4.5 Let B be a finite behavior. Then
i) B has a rMP generator matrix iff there exist an integer
6 > 0 and a full column rank generator matrix G, s.t.
w € B implies w = Gu with
0
supp(u) C MLy (supp; (w))"; (4.3)
1) B has a rVP generator matrix iff there exist an integer
6 > 0 and a full column rank generator matrix G, s.t.
w € B implies w = Gu with
5
supp(u) € MLy (supp;e (w))". (4.4)
Proor i) It is easy to realize that condition
(4.3) is equivalent to the set of conditions supp,(u) C
(Suppi(w))(;, i =1,2,...,n. These hold true iff G is a rZP
matrix in F(zf)[zz,zl_l], for every i = 1,2,...,n, namely
G is tMP in F[z,z71].
1) The result is shown along the same lines of i), after
replacing F(2§)[2;, 2 1] with F(z;)[2¢, (25) 1] [ ]

% T

References

[1] E.Fornasini, M.E.Valcher Algebraic aspects of 2D
convolutional codes, TEEE Trans.Inf.Th., IT-40,
pp-1068-1082, 1994

[2] E.Fornasini, M.E.Valcher Multidimensional systems
with finite support behaviors, submitted, 1995

[3] S.Lang Algebra, Addison-Wesley, 1993

[4] H.Loeliger, G.Forney, et al. Minimality and observ-
ability of group systems, to appear, 1994

[5] P.Rocha Structure and Representation of 2D Sys-
tems, Ph.D.Th., Rijksuniversiteit Groningen, 1990

[6] P.Rocha, J.C.Willems Controllability of 2D systems,
IEEE Trans. Aut. Contr., AC-36, pp.413-23, 1991

[7] M.E.Valcher, E.Fornasini On 2D finite support con-
volutional codes, MSSP Jour., 5, pp.231-43, 1994

[8] M.E.Valcher Modellistica ed Analisi dei Sistemi
2D con Applicazioni alla Codifica Convoluzionale,
Ph.D.Th., Univ.of Padova, 1995

[9] J.C.Willems Models for Dynamics, Dynamics Re-

ported, vol.2, Wiley and Teubner, pp. 171-269, 1989

J.C.Willems Paradigms and puzzles in the theory of

dynamical systems, IEEE Trans. Aut.Contr., AC-36,

pp. 259-294, 1991



