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Abstract

The main features of finite multidimensional behaviors are introduced
as properties of the trajectories supports, and connected with the poly-
nomial matrices adopted for their description.
Observability and local detectability are shown to be equivalent to the
kernel representation of a behavior via some parity check matrix HT .
The main properties of locally undetectable behaviors as well as their
connections with the notion of constrained variables are investigated, and
a general representation result for finite support behaviors is derived.
The input/output representation via generator matrices is finally dis-
cussed, and some connections between matrix primeness and the con-
straints every trajectory imposes on the support of the corresponding
input are analysed.
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1 Introduction

Behavior theory is the study of the trajectories a dynamical system produces
according to its evolution laws. It originated in the analysis of 1D systems,
and was developed in a complete and useful form by J.C.Willems in the last
two decades. In a series of papers [17, 18, 19], Willems provided a thorough
description of the ways a system interacts with its environment, as well as a
clear conceptual apparatus for analysing and identifying the attributes a family
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of trajectories possibly exhibits. Perhaps the most important of the notions he
introduced is external controllability, which displays the way memory function
operates and hence constitutes a powerful tool for obtaining state space models
of infinite behaviors.

Recently, purely ring-theoretic extensions of Willems theory have been ob-
tained by F.Fagnani, S.K.Mitter and S.Zampieri in [2, 21]. The new field of
research is relevant for the investigation of many classes of systems, and makes
it quite clear how several concepts of behavior theory depend on the nature
of the underlying algebraic structures. Nevertheless, a certain continuity with
Willems former results is apparent, if for no other reason that the analysis is
normally developed and thought of in a standard one-dimensional time domain.

A second stage in the development of behavior theory, initiated by P.Rocha
and J.C.Willems at the end of the eighties [12, 13], resulted in the absorption of
two-dimensional (2D) signals into the theory. The analysis of 2D behaviors has
led to new insights in the classical theory of 2D systems and to new investigations
of Laurent polynomial operators, centering around the algebra of matrix pairs
and various primeness conditions for polynomial matrices.

Another development in behavior theory is G.D.Forney’s work on the behav-
ioral approach to group systems [7]. Like the original work on minimal bases
of rational spaces [6], Forney’s papers find several applications in the theory
of convolutional codes. At the same time, however, they draw on duality the-
ory, and suggest new problems on observability and memory span. Also, they
emphasize the importance of topological groups in behavior and coding theory.

During the last few years, there has been an increasing interest in convolu-
tional coding of multidimensional (nD) data [3, 15], motivated to large extent by
the possibility of investigating code performances and properties in a behavior
context. Also, multidimensional convolutional codes have been a fruitful source
of problems and conjectures, both in polynomial modules algebra and in signal
processing of discrete data arrays [14].

The aim of this paper is to present, in as self contained a manner as possi-
ble, the behavior theory of finite support multidimensional signals. The finite
support assumption is motivated by the fact that in several applications the
independent variables represent spatial coordinates and the phaenomenon one
aims to model regards only a finite region of the space. So, infinite behaviors,
which constitute the core of Willems theory, here are only marginally touched
on. A detailed analysis of the main connections between finite and infinite nD
signals falls within the scope of duality theory, and as far as the 2D case is
concerned has been carried on in [15].

Not intending to be inclusive of all aspects of the subject, we have concen-
trated on what seem to be the most interesting topics to be investigated, and
have included some preliminary material, as necessary for the discussion. Par-
ticular attention has been devoted to the supports of the signals, and to certain
elementary operations (restriction, extension and concatenation) which have
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a concrete meaning from the signal processing standpoint. Actually, several
“internal” properties of a behavior have been introduced in terms of these op-
erations, and expressed as possibilities of “cutting and pasting together” pieces
of different trajectories into a new one.

As each of these features mirrors into a particular polynomial matrix rep-
resentation, an explicit link between the parity checks description of an nD
behavior and the concept of observability is derived; indeed, the support of the
parity check matrix measures the range of action of the system laws and pro-
vides useful bounds on the region where parity checks apply when detecting if
some signal is a legal sequence.

The trajectories of an observable behavior can be expressed as the solutions
of a system of multidimensional difference equations, and hence can be rec-
ognized by means of local testing procedures. Locally undetectable behaviors,
instead, exhibit opposite properties, because every finite signal can be completed
into a legal trajectory and no local recognition procedure can be successfully
implemented.
Interestingly enough, these two classes of behaviors allow every finite behavior
to be described via intersection operations.

A point of view somewhat complementary to detection calls for an input/output
analysis of the way behavior trajectories are generated, and the supports of the
trajectories are related to the corresponding inputs. This problem appears par-
ticularly relevant when the behavior sequences are injectively generated, and
hence a given trajectory is produced by a unique input. Although no general
statement can be made on the way these supports are related, specific assump-
tions on the structure of the generating matrices allow to uniformly confine
the support of each input signal into a suitable extension of the support of the
associated output trajectory.

The use of nD Laurent polynomial (L-polynomial) matrices is pervasive all
over the paper; no attempt has been made, however, to give a complete ac-
count of their algebraic properties. For these we may refer the reader to recent
books [1] and articles [4, 16, 20] dealing with that part of abstract algebra.
A certain attention, however, has been paid to the analysis of the supports of
nD L-polynomial vectors, and some results obtained in this context seem to be
original.

The paper is organized as follows. The first part introduces the basic def-
initions and properties of nD finite behaviors; in particular, operations which
involve only the supports are sufficient to define the notions of (external) con-
trollability and observability. While controllability is well-estabilished [7, 13],
and in the context of finite support signals it follows from linearity and shift
invariance, the observability definition we will adopt comes from duality issues,
and is fully justified when a parity checks description of the behavior trajectories
is adopted. Actually, as shown in Section 3, an observable behavior is charac-
terized by a finite set of parity checks one has to apply in order to recognize
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its trajectories. This result allows observable behaviors to be identified with
kernels of polynomial matrix operators or, in more abstract terms, as maximal
submodules of given rank in the module of all finite support signals.

In Section 4 the notions of unconstrained variables and locally undetectable
behaviors are introduced. A general representation result is then provided,
showing that every finite behavior can be expressed as the intersection of an
observable and a (generally not unique) locally undetectable behavior.

In the last part of the paper we develop the theory of input-output generation
of nD behaviors, and present some relevant connections between support con-
ditions on the input-output pairs and primeness requirements on the generator
matrices.

2 Finite support behaviors: preliminary defini-
tions and basic properties

Let F be an arbitrary field and denote by z the n-tuple (z1, z2, ..., zn), so that
F[z] and F[z, z−1] are shorthand notations for the polynomial and the Laurent
polynomial (L-polynomial) rings in the indeterminates z1, ..., zn, respectively.
For any sequence w = {w(h)}h∈Zn , taking values in Fp, the support of w is the
set of points where w is nonzero, i.e., supp(w) := {h = (h1, h2, ..., hn) ∈ Zn :
w(h) 6= 0}. Also, w can be represented via a formal power series∑

hi∈Z
w(h1, h2, ..., hn) zh1

1 zh2
2 · · · zhn

n =
∑

h∈Zn

w(h) zh,

where h stands for the n-tuple (h1, h2, ..., hn) and zh for the term zh1
1 zh2

2 ...zhn
n .

On the other hand, power series can be viewed as representing vectors with
entries in F∞ := FZn

, thus setting a bijective map between nD sequences
taking values in Fp and formal power series with coefficients in Fp. This allows
us to identify nD sequences with the associated power series, in particular, finite
support nD signals with L-polynomial vectors, and to denote both of them with
the same symbol w. Sometimes, mostly when a power series w is obtained as a
Cauchy product, it will be useful to denote the coefficient of zh in w as (w, zh).

Linear operators on the sequence space are represented by appropriate ma-
trices with elements in F[z, z−1], whose primeness features find a counterpart
in terms of properties of the associated operators. The main primeness notions
which arise in the nD context are the following:

An L-polynomial matrix G ∈ F[z, z−1]p×m, p ≥ m, is

• unimodular if p = m and detG is a unit in F[z, z−1], i.e., detG = czh for
some nonzero c ∈ F and some h ∈ Zn;
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• right factor prime (rFP) if in every factorization G = ḠT , with Ḡ ∈
F[z, z−1]p×m and T ∈ F[z, z−1]m×m, T is a unimodular matrix;

• right minor prime (rMP) if its maximal order minors have no common
factors;

• right variety prime (rVP) if the ideal IG, generated by its maximal or-
der minors, includes (nonzero) L-polynomials in F[zi, z−1

i ] for every i =
1, 2, ..., n;

• right zero prime (rZP) if the ideal IG is the ring F[z, z−1] itself.

The support of a matrix G ∈ F[z, z−1]p×m is the union of the supports of its
elements.

An nD (finite) behavior B with p components is a set of finite support signals
(trajectories) taking values in Fp and endowed with the following properties:

(L) [Linearity] If w1 and w2 belong to B, then αw1 + βw2 ∈ B, for all α,
β in F;

(SI) [Shift-Invariance] w ∈ B implies v = zhw ∈ B for every h ∈ Zn
, i.e.,

B is invariant w.r.t. the shifts along the coordinate axes in Zn
.

As every nD behavior B can be viewed as an F[z, z−1]-submodule of F[z, z−1]p,
which is a Noetherian module [10], B is finitely generated, i.e., there exists a
finite set of column vectors g1,g2, ...,gm in F[z, z−1]p such that

B ≡
{ m∑
i=1

giui : ui ∈ F[z, z−1]
}

= {w = Gu : u ∈ F[z, z−1]m} =: ImG. (2.1)

The L-polynomial matrix G := row{g1,g2, ...,gm} is called generator matrix of
B.

G1 ∈ F[z, z−1]p×m1 and G2 ∈ F[z, z−1]p×m2 are generator matrices of
the same behavior if and only if there exist P1 ∈ F[z, z−1]m1×m2 and P2 ∈
F[z, z−1]m2×m1 such that G1P1 = G2 and G2P2 = G1. Consequently, G1 and
G2 have the same rank r over the field of rational functions F(z). Being an
invariant w.r.t. all generator matrices of B, r is called the rank of B. It some-
how represents a complexity index of the behavior, as r independent trajectories
can be found in B, while r + 1 trajectories (w1,w2, ...,wr+1) always satisfy an
autoregressive equation w1p1 + w2p2 + ... + wr+1pr+1 = 0, with at least one
nonzero pi ∈ F[z, z−1].

A behavior B of rank r is free if it admits a full column rank generator
matrix, that is a generator matrix G with r columns. This amounts to saying
that each trajectory w in B is uniquely expressed as a linear combination w =
g1u1 + g2u2 + · · ·+ grur, ui ∈ F[z, z−1], of the columns of G.
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The main properties of a finite behavior B are connected with certain ele-
mentary operations we can perform on the system trajectories. These operations
essentially reduce to “pasting” pieces of different trajectories into legal elements
of B, or to “cutting” a set of samples out of a given trajectory, so as to obtain
a new behavior sequence.

One of the pillars of Willems behavior theory is the notion of (external) con-
trollability. For 1D controllable behaviors the past has no lasting implications
about the future [18], which means that the restriction of a 1D trajectory to
(−∞, t] does not provide any information about the values the trajectory takes
on [t+δ,+∞), when δ > 0 is properly chosen. In a multidimensional context the
notions of “past” and “future” are quite elusive and, in many cases, unsuitable
for classifying and processing the available data. What seems more reasonable,
instead, is to investigate to what extent the values a trajectory w assumes on
a subset S1 ⊂ Zn influence the values on a subset S2, disjoint from S1, and to
check if there exists a lower bound on the distance

d(S1,S2) := min

{
n∑
i=1

|hi − ki| : (h1, h2, ..., hn) ∈ S1, (k1, k2, ..., kn) ∈ S2

}
,

(2.2)
which guarantees that w|S2, the restriction to S2 of the sequence w, is indepen-
dent of w|S1. This point of view led to the following definition [12].

(C1) [Controllability] A finite behavior B is controllable if there exists an
integer δ > 0 such that, for any pair of nonempty subsets S1,S2 of Zn

, with
d(S1,S2) ≥ δ, and any pair of trajectories w1 and w2 ∈ B , there exists v ∈ B
such that

v|S1 = w1|S1 and v|S2 = w2|S2. (2.3)

While definition (C1) requires pasting together different signals into a new
one, the following statement refers to the possibility of finding a legal extension
for every portion w|S of a behavior trajectory w, by adjusting the sample values
in a small area surrounding S. More precisely, by introducing for ε ≥ 0 the ε-
extension of the set S

Sε := {h ∈ Zn : d(h,S) ≤ ε},

one can give the following definition.

(C2) [Zero-controllability] A finite behavior B is zero-controllable if there
exists an integer ε > 0 such that, for any nonempty set S of Zn

and any w ∈
B, there exists v ∈ B satisfying

v|S = w|S and supp(v) ⊆ Sε. (2.4)
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Properties (C1) and (C2) make sense both for finite and infinite support
behaviors, and the proof of (C1) ⇔ (C2) given below holds for both of them.
However, while conditions (C1) and (C2) are always met by a finite behavior B,
and essentially follow from the module structure of B, for an infinite behavior
controllability constitutes an additional constraint w.r.t. linearity and shift
invariance [12, 13].

Controllability and zero controllability are equivalent.

(C1)⇒ (C2) Assume that B meets condition (C1). Given w ∈ B and S ⊂ Zn
,

take in (C1) w1 = w, w2 = 0, S1 = S and S2 = CSδ, where CS denotes the
complementary set of S. Then the trajectory v which fulfills (2.3) satisfies (2.4)
with ε = δ.
(C2) ⇒ (C1) Assume that B satisfies condition (C2). Given w1 and w2 ∈ B
and S1,S2 ⊂ Zn

, with d(S1,S2) > ε, by (C2) there exist v1 and v2 ∈ B such
that

vi|Si = wi|Si, supp(vi) ⊂ Sεi , i = 1, 2.

Thus v := v1 + v2 ∈ B satisfies v|Si = wi|Si, i = 1, 2, and (C1) holds for
δ = ε+ 1.

A finite behavior B is controllable.

Suppose that G ∈ F[z, z−1]p×m is a generator matrix of B and let η be a
positive integer such that B(0, η), the ball of radius η and center in the origin,
includes supp(G). Consider any set S ⊂ Zn and w = Gu ∈ B. If ū is the
sequence which coincides with u on Sη and is zero elsewhere, the trajectory
v := Gū satisfies v|S = w|S, and has support which does not exceed S2η. So
(C2) is met with ε = 2η.

Given two disjoint sets S1 and S2 which are far enough apart, controllability
expresses the possibility of steering any behavior sequence known in S1 into
another element of B assigned on S2, meanwhile producing a legal trajectory.
Like controllability, also observability will be introduced without reference to
the concept of state, according to some recent works of Forney et al. [7, 11].
Observability formalizes the possibility of pasting into a legal sequence any pair
of trajectories that take the same values on a sufficiently large subset of Zn.
This is equivalent to saying that, however a sequence w ∈ B and a subset
S ⊂ Zn are chosen, the possible extensions of w|S only depend on the values
of w on a boundary region of S.

Under this viewpoint, observability endows a behavior with a “separation
property” that allows to take into account only a small amount of data in
order to extend a portion of behavior sequence. Furthermore, once we think
of the samples in S as the information about the past dynamics of the system,
observability enables us to design the “future” evolution by considering only the
most “recent” data (those on the boundary), this way reminding of the notion
of state.
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(O1) [Observability] A finite behavior B is observable if there exists an
integer δ > 0 such that, for any pair of nonempty subsets S1,S2 of Zn

, with
d(S1,S2) ≥ δ, and any pair of trajectories w1, w2 ∈ B, satisfying w1|C(S1 ∪
S2) = w2|C(S1 ∪ S2), the trajectory

v(h) =

w1(h) h ∈ S1

w1(h) = w2(h) h ∈ C(S1 ∪ S2)
w2(h) h ∈ S2

(2.5)

is an element of B.

-
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Fig. 2.1

Observability can be equivalently restated as follows: if the support of a
behavior sequence w can be partitioned into a pair of disjoint subsets, which are
far enough apart, the restrictions of w to each subset represent legal trajectories.

(O2) [Zero-observability] A finite behavior B is zero-observable if there
exists an integer ε > 0 such that for any w ∈ B satisfying w|(Sε \ S) = 0, S a
nonempty set in Zn

, the sequence

v(h) =
{

w(h) h ∈ S
0 elsewhere

(2.6)

belongs to B.
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Fig. 2.2

Observability and zero observability are equivalent.

(O1)⇒ (O2) Assume that B fulfills condition (O1). Given S ⊂ Zn and w ∈ B
such that w|(Sδ \S) = 0, take in (O1) w1 = w, w2 = 0, S1 = S and S2 = CSδ.
The trajectory v ∈ B satisfying (2.5), satisfies also (2.6) with ε = δ.

(O2) ⇒ (O1) Assume that B fulfills condition (O2). Given S1,S2 ⊂ Zn
, with

d(S1,S2) > ε, and w1, w2 ∈ B satisfying w1|C(S1 ∪ S2) = w2|C(S1 ∪ S2), the
sequence w1 −w2 ∈ B satisfies (w1 −w2)|C(S1 ∪ S2) = 0. As a consequence,
the sequence w given by

w(h) =
{

w1(h)−w2(h) h ∈ S1

0 elsewhere

is in B, and v := w + w2 ∈ B fulfills (2.5). So, (O1) holds for δ = ε+ 1.

3 Parity checks and trajectory recognition

Underlying the definition of controllability is the idea of driving a portion of tra-
jectory into another one, provided that there is room enough for adjustements.
In rough terms, the objective one has in mind is that of manipulating the con-
trol variables to cause the system to behave in S2 in a more desirable manner
than is expected by watching the system trajectory on S1. So, controllability is
naturally connected with the generation of B as the image of some matrix G,
acting on the input space.

Observability is somehow related with the “dual” issue of recognizing whether
a given sequence v ∈ F[z, z−1]p is an element of B. This problem, that typically
arises in fault detection and convolutional encoding contexts, can be managed by
resorting to a linear filter (residual generator or syndrome former) that produces
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an identically zero output signal when the input is an admissible trajectory of
B. From a mathematical point of view, this requires to find a set of sequences
(parity checks) endowed with the property that their convolution with every
element of B is zero.

So, for a given behavior B ⊆ F[z, z−1]p, a (finite) parity check is a column
vector s ∈ F[z, z−1]p that satisfies sTw = 0, for all w ∈ B. The set B⊥ of
all finite parity checks of B is the orthogonal behavior, and as a submodule of
F[z, z−1]p, it is generated by the columns of some matrix H ∈ F[z, z−1]p×q,
that is

B⊥ = {s ∈ F[z, z−1]p : s = Hx,x ∈ F[z, z−1]q} = ImH. (3.1)

Condition sTw = 0, ∀ s ∈ B⊥, however, need not imply w ∈ B. In general

B⊥⊥ := {w ∈ F[z, z−1]p : sTw = 0,∀ s ∈ B⊥} (3.2)

properly includes B, and is the set of all L-polynomial vectors obtained by
combining the columns of G over the field of rational functions F(z). It is clear
that B can be identified via a finite set of parity checks if and only if B = B⊥⊥

or, equivalently,

B = kerHT := {w ∈ F[z, z−1]p : HTw = 0}. (3.3)

In this setting, observability finds a somewhat more substantial interpretation.
Actually, if B = kerHT , the restriction of a trajectory to a set S still provides
a legal signal every time the distance between S and the remaining support of
the trajectory exceeds the range of action of the parity check matrix H.

Proposition 3.1 below shows that kernel representations are possible, as it can
be expected, only for observable behaviors, and makes it clear that observability
induces further constraints on the structure of B, in addition to linearity and
shift invariance.

A behavior B ⊆ F[z, z−1]p is observable if and only if there exist an integer
h > 0 and an L-polynomial matrix HT ∈ F[z, z−1]h×p such that B = kerHT .

The proof of the proposition depends on a couple of technical lemmas.

Let R be an integral domain, and consider the polynomial in R[z]

m(z) = α0 z
r − α1 z

r−1 + α2 z
r−2 · · ·+ (−1)rαr.

For any ρ ≥ 0 there is p(z) ∈ R[z] such that p(z)m(z) ∈ R[zρ+1].

Let Q be the field of fractions of R and L the algebraic closure of Q. Then
m(z) can be written as m(z) = α0

∏r
i=1(z − ξi), where ξi ∈ L, i = 1, 2, . . . , n,

and ∑
i

ξi = α1/α0,
∑
i<j

ξiξj = α2/α0, . . . ξ1ξ2 · · · ξr = αr/α0. (3.4)
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Consider the following polynomial in L[z]

p̃(z) =
r∏
i=1

(zρ + ξiz
ρ−1 + ξ2

i z
ρ−2 + · · ·+ ξρ−1

i z + ξρi )

=
∑

0≤i1,i2,...,ir≤ρ

zrρ−i1−i2−···−irξi11 ξ
i2
2 · · · ξirr =

rρ∑
t=0

zrρ−t
∑

i1+i2+...+ir=t
0≤i1,i2,...,ir≤ρ

ξi11 ξ
i2
2 · · · ξirr .

Each coefficient of p̃(z) is a symmetric polynomial in the indeterminates ξ1, ξ2, ..., ξr,
with integer coefficients, and hence it is expressible [10] as a polynomial in the
elementary symmetric polynomials defined in (3.4), again with integer coeffi-
cients. Thus p̃(z) is in Q[z], the denominators of its coefficients are powers of
α0, and there exists a positive integer ν such that p(z) := ανo p̃(z) belongs to
R[z]. To conclude the proof, we note that p(z)m(z) is an element of R[zρ+1]
since

p(z)m(z) = ανo

r∏
i=1

[(zρ+ξizρ−1+ξ2
i z
ρ−2+· · ·+ξρi )(z−ξi)] = ανo

r∏
i=1

(zρ+1−ξρ+1
i ).

Let m(z) be in F[z]. For any integer ρ > 0 there is p(z) ∈ F[z] s.t.

m(z)p(z) ∈ F[zρ] := F[zρ1 , ..., z
ρ
n]. (3.5)

As m(z) = m(z1, ..., zn) can be viewed as an element of F[z1, ..., zn−1] [zn], by
Lemma 3.2 there exists p1(z1, . . . , zn) ∈ F[z1, . . . , zn−1][zn] such that

m1(z1, ..., z
ρ
n) := m(z1, ..., zn)p1(z1, . . . , zn) ∈ F[z1, ..., zn−1][zρn].

Looking at m1(z1, ..., z
ρ
n) as a polynomial in F[z1, . . . , zn−2, z

ρ
n][zn−1], we know

that there exists p2(z1, . . . , zn−1, z
ρ
n) such that

m2(z1, ..., z
ρ
n−1, z

ρ
n) := m1(z1, ..., zn−1, z

ρ
n)p2(z1, . . . , zn−1, z

ρ
n) ∈ F[z1, . . . , zn−2, z

ρ
n][zρn−1].

In n steps we end up with a polynomial

mn(zρ1 , z
ρ
2 , . . . , z

ρ
n) : = m(z1, . . . , zn)p1(z1, . . . , zn)

· p2(z1, z2, . . . , zn−1, z
ρ
n) . . . pn(zρ1 , z

ρ
2 , ..., z

ρ
n) ∈ F[zρ1 , z

ρ
2 , . . . , , z

ρ
n],

and (3.5) holds with p = p1 p2 . . . pn.

(of Proposition 3.1) Assume that B = ImG, G ∈ F[z, z−1]p×m, is an observable
behavior, and let B⊥ = ImH, H ∈ F[z, z−1]p×q, denote the orthogonal behavior
introduced in (3.1). We will show that B ≡ kerHT . Since HTG = 0, it is clear
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that kerHT ⊇ B. To prove the converse, express w ∈ kerHT as w = Gn/d(z),
d ∈ F[z],n ∈ F[z, z−1]m×1. By Lemma 3.3, for every integer ρ > 0 there is a
suitable polynomial p(z) such that p(z)d(z) ∈ F[zρ1 , . . . , , z

ρ
n]. If property (O2)

holds for ε > 0, and r > 0 is an integer such that supp(w) ⊆ B(0, r), we choose
ρ > 2r + ε. So, the behavior sequence p(z)d(z)w = Gnp(z) can be written as∑

i1,i2,...,in

ci1,i2,...,inz
ρi1
1 zρi22 · · · zρinn w,

and thus is the sum of disjoint shifted copies of w, and the distance between
two arbitrary copies exceeds ε. So, by (O2), each copy of w, and hence w itself,
is in B.
Conversely, let B = kerHT , and set ε = 2s, with s > 0 an integer s.t. B(0, s) ⊇
supp(HT ). If S is a subset of Zn and w ∈ B satisfies w|(Sε \ S) = 0, the
sequence

v(h) =
{

w(h) h ∈ S
0 elsewhere

is in kerHT and hence in B. Consequently, B is zero-observable.

The kernel description given in Proposition 3.1 leads to new insights into the
internal structure of an observable behavior. Observability, indeed, expresses
a sort of “localization” of the system laws or, equivalently, the existence of a
bound on the size of all windows (in Zn) we have to look at when deciding
whether a signal belongs to B. Denoting by B|S := {w|S : w ∈ B} the set
of all restrictions to S of behavior trajectories, the above localization property
finds a formal statement as follows:

(O3) [Local-detectability] A finite behavior B is locally-detectable if there
is an integer ν > 0 such that every signal w satisfying w|S ∈ B|S for every
S ⊂ Zn

with diam(S) ≤ ν, is in B.

Local detectability and observability are equivalent.

Assume that B satisfies (O3) for a certain ν > 0. Given S ⊂ Zn and w ∈ B
such that w|(Sν \ S) = 0, define v as follows

v(h) =
{

w(h) h ∈ Sν
0 elsewhere.

(3.6)

Consider any window W, with diam(W) ≤ ν. If W is included in Sν , then
v|W = w|W ∈ B|W, otherwise we have W ∩ S = ∅, and therefore

v|W = 0|W ∈ B|W. (3.7)

So, by (O3), v is a legal trajectory, and (O2) holds for ε = ν.
Conversely, assume that B is observable. By Proposition 3.1, there exists

an L-polynomial matrix H ∈ F[z, z−1]p×q such that B = kerHT . Let ν > 0
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be an integer such that supp(HT ) ⊆ B(0, ν), and suppose that v is any signal
satisfying v|S ∈ B|S for every S ⊂ Zn with diam(S) ≤ 2ν. If S̄ := −supp(HT ),
the computation of the coefficient of zk in HTv involves only samples of v
indexed in

k + S̄ := {h ∈ Zn : h− k ∈ S̄} = −supp(zkHT ). (3.8)

On the other hand, since diam(k+ S̄) ≤ 2ν, there exists wk ∈ B which satisfies
v|(k+S̄) = wk|(k+S̄), and this result holds for every k ∈ Zn. So, the coefficient
of zk in HTv is the same as in HTwk ≡ 0, and hence v ∈ kerHT = B.

The equivalent descriptions of observability given in (O1) ÷ (O3) rely on
the trajectories’ supports, whereas Proposition 3.1 involves parity checks and
kernel representations. A different approach to this notion consists of regard-
ing behaviors with p components as elements in the lattice of submodules of
F[z, z−1]p, and investigating whether observable elements enjoy some special
ordering properties.

Keeping in with the same spirit, we may investigate how an observable be-
havior is affected by certain “extension operations” that merge lattice elements
into larger ones. There are essentially two natural ways to perform these ex-
tensions: one consists of embedding F[z, z−1]p, and therefore each of its sub-
modules, in the rational vector space F(z)p, the other of considering F[z, z−1]p

as a submodule of Fp∞, the set of nD trajectories with p components, whose
supports possibly extend to the whole space Zn.

Once a behavior B with p components is given, in the first case we have to
consider the smallest vector subspace of F(z)p including B

Brat :=
{ r∑
i=1

wiai : wi ∈ B, ai ∈ F(z), r ∈ N
}
, (3.9)

and restrict our attention to the submodule Brat ∩ F[z, z−1]p of finite support
sequences. In general this properly includes B, and hence is a larger element of
the lattice. In the other case, we merge B in

B∞ :=
{ r∑
i=1

wiai : wi ∈ B, ai ∈ F∞, r ∈ N
}
, (3.10)

the smallest F[z, z−1]-submodule of Fp∞ which includes B. Again we have to
confine ourselves to the set of its finite elements B∞ ∩F[z, z−1]p, which clearly
includes all trajectories of B.

Let B ⊆ F[z, z−1]p be a behavior of rank r. The following statements are
equivalent:

(1) B is observable;
(2) B ≡ B∞ ∩ F[z, z−1]p;
(3) B ≡ Brat ∩ F[z, z−1]p;
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(4) B is maximal in the set of all submodules of F[z, z−1]p of rank r;
(5) sw ∈ B ⇒ w ∈ B, for every w ∈ F[z, z−1]p and every nonzero

s ∈ F[z, z−1];
(6) B = B⊥⊥.

(1) ⇒ (2) As B is observable, there exists H ∈ F[z, z−1]p×q such that
B = kerHT = {w ∈ F[z, z−1]p : HTw = 0}. If w ∈ B∞ ∩ F[z, z−1]p, then
w =

∑
iwiai, ai ∈ F∞,wi ∈ B, and therefore HTw = HT

(∑
iwiai

)
=∑

i(H
Twi)ai = 0. Thus w ∈ kerHT = B, which implies B ⊇ B∞ ∩F[z, z−1]p.

The reverse inclusion is obvious.
(2) ⇒ (3) Follows immediately from B ⊆ Brat ∩F[z, z−1]p ⊆ B∞ ∩F[z, z−1]p.

(3) ⇒ (4) If B′ ⊇ B and rankB′ = rankB, it is clear that B and B′ generate
the same F(z)-subspace of F(z)p and, consequently, Brat ∩F[z, z−1]p = B′rat ∩
F[z, z−1]p. So, the inclusions chain Brat∩F[z, z−1]p ⊇ B′ ⊇ B and assumption
(3) together imply B′ = B, which means that B is maximal.
(4) ⇒ (5) Suppose sw ∈ B, s ∈ F[z, z−1]. The behavior B′ generated by
B and w has the same rank of B, and hence, by the maximality assumption,
coincides with B.
(5)⇒ (6) As B and B⊥⊥ have the same rank r and B⊥⊥ ⊇ B, both behaviors
generate the same F(z)-subspace of F(z)p. In particular, w ∈ B⊥⊥ implies
w ∈ (B⊥⊥)rat = Brat. So, there exist pi, si ∈ F[z, z−1] and wi ∈ B, such that
w =

∑r
i=1 wi pi/si, which implies sw ∈ B, s = `.c.m.{si}. By assumption (5),

also w is in B.
(6) ⇒ (1) Since B⊥ is a submodule of F[z, z−1]p, there exists a suitable L-
polynomial matrix H such that B⊥ = ImH. So

B⊥⊥ = (B⊥)⊥ = {w ∈ F[z, z−1]p : vTw = 0,∀v ∈ ImH} = kerHT .

By assumption (6), B coincides with kerHT , and hence is observable.

4 Behavior decomposition

In this section we take a first step towards a structural analysis of finite support
behaviors. The scope of structure theory is to describe general behaviors in
terms of some simpler ones, simpler in some perceptible way, perhaps in terms
of concreteness, perhaps in terms of tractability. Of essential importance, after
one has decided upon these simpler objects, is to find a method of passing down
to them and to discover how they weave together to yield the general behavior
with which we began.

Observable behaviors constitute good candidates for these simpler objects,
as each behavior can be embedded into an observable one. In order to represent
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a general behavior B, then, we have to slice out of its enveloping observable
behavior B⊥⊥ a certain part. This can be done by intersecting B⊥⊥ with a suit-
able, not necessarily unique, element of a behavior class that exhibits properties
which are as far as possible from observability and hence from local detectabil-
ity. The definition of this class depends on the notion of constrained variables
which we now introduce.

Let B ⊆ F[z, z−1]p be a finite support behavior and {i1, i2, . . . , ir}, r < p, a
subset of {1, 2, . . . , p}. We call wi1 , wi2 , . . . , wir constrained variables of B if for
every pair of trajectories v,v′ ∈ B, vj = v′j for every j 6∈ {i1, i2, . . . , ir} implies
v = v′.

As shown in the following lemma, the maximum number of constrained
variables of a behavior B in F[z, z−1]p can be expressed in terms of the rank
and the number of components of B.

Let B ⊆ F[z, z−1]p be a behavior of rank r. The maximum number of
constrained variables of B is p− r.

Let G ∈ F[z, z−1]p×m be a generator matrix of B and suppose, for sake of
simplicity, that the first r rows of G are linearly independent, so that in

G =
[
G1

G2

]
}r
}p− r ,

G1 has full row rank. The components wi, i = r+1, r+2, . . . , n, are constrained

variables. If not, there would be a trajectory w =
[

0
w2

]
in B, with w2 6= 0,

and hence an L-polynomial vector u ∈ F[z, z−1]m s.t.
[
G1

G2

]
u =

[
0
w2

]
. This

is a contradiction, however, because

rank G1 = rank
[
G1

G2

]
⇒ ker G1 = ker

[
G1

G2

]
.

It remains to prove that the number of constrained variables cannot exceed p−r.
Suppose, instead, that k > p− r variables of B, say the last k, are constrained,
and partition the generator matrix G into

G =
[
Ĝ1

Ĝ2

]
}p− k
}k .

As r =rank G > rankĜ1, kerĜ1 properly includes kerG. Consequently, there

exists u s.t. Ĝ2u 6= 0 and both
[
0
0

]
and

[
0
Ĝ2u

]
, Ĝ2u 6= 0, are in B,

which contradicts the assumption that the last k components are constrained.
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A behavior B devoid of constrained variables exhibits the very peculiar
feature that for every finite set S ⊂ Zn, B|S coincides with F[z, z−1]p | S.
This property, which appears somehow opposite to local detectability, makes it
is impossible to recognize the trajectories of B by resorting to a local checking
procedure.

(LU) [Local-undetectability] A behavior B ⊆ F[z, z−1]p is locally unde-
tectable if there exists δ > 0 s.t. for every sequence v ∈ F[z, z−1]p and every
set S ⊂ Zn

, a trajectory w ∈ B can be found, satisfying

w|S = v|S and supp(w) ⊆ Sδ. (4.1)

Let B ⊆ F[z, z−1]p be a finite support behavior. The following facts are
equivalent:

i) B is devoid of constrained variables;

ii) B is the image of some L-polynomial matrix G ∈ F[z, z−1]p×m with rank
p;

iii) B is locally undetectable.

i) ⇔ ii) Immediate from Lemma 4.1.

ii) ⇒ iii) Let v be an arbitrary sequence in F[z, z−1]p and S a finite set. If B
= ImG, for some G ∈ F[z, z−1]p×m of rank p, v can be obtained as the image of
some rational vector u ∈ F(z)p, i.e., v = Gu. Consider a power series expansion
of u with support in a suitable cone of Zn, and introduce the finite sequence

ū(h) :=
{

u(h) h ∈ Sε
0 elsewhere

,

where ε is the radius of a ball centered in the origin and including the support
of G. The behavior sequence v̄ := Gū coincides with v on S and has support
included in S2ε. So, (4.1) holds with δ = 2ε.

iii)⇒ ii) Suppose that B is locally undetectable and assume, by contradiction,
B = ImG, for some G ∈ F[z, z−1]p×m with rank less than p. Then there exixts
a nonzero L-polynomial vector h ∈ F[z, z−1]p satisfying hTG = 0. Consider a
sequence v ∈ F[z, z−1]p s.t. hTv 6= 0 and a set T ⊂ Zn which includes both
supp(v) and supp(hTv) and define S := T ρ, where ρ is the radius of a ball,
centered in the origin, which includes supp(h). If property (LU) holds for some
δ > 0, there is a trajectory w ∈ B that can be expressed as w = v+r, for some
r with support in Sδ \ S (see Fig. 4.1).
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Fig. 4.1

As w = Ga, for some a ∈ F[z, z−1]m, it follows that

0 = hTGa = hTw = hTv + hT r.

This is not possible, however, since T includes the support of hTv without
intersecting supp(hT r).

For every behavior B ⊆ F[z, z−1]p there exist an observable behavior B0

and a locally undetectable behavior Blu in F[z, z−1]p s.t.

B = B0 ∩Blu. (4.2)

Moreover, B0 is uniquely determined as B⊥⊥, the smallest observable behavior
including B.

Let B = ImG and B0 := B⊥⊥ = kerHT . Clearly, B0 is an observable behavior
including B. If G has rank r, we can assume, for sake of simplicity, that its first
r rows are linearly independent. So, G can be partitioned as

G =
[
G1

G2

]
}r
}p− r ,

where G1 is a full rank matrix. Let

Glu :=
[
G1 0
0 Ip−r

]
,

and Blu := ImGlu. Clearly, Blu is a locally undetectable behavior, and it in-
cludes B as

G =
[
G1

G2

]
=
[
G1 0
0 Ip−r

] [
I
G2

]
.
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So, one obviously gets B ⊂ B0 ∩Blu.
To prove the reverse inclusion, consider w ∈ B0 ∩ Blu. Clearly, w satisfies
HTw = 0 and can be expressed as

w =
[
G1u1

u2

]
.

Factoring G into the product of a (full column rank) right factor prime matrix
Ḡ and a full row rank rational matrix Q [16], one gets[

G1

G2

]
= G = ḠQ =

[
Ḡ1

Ḡ2

]
Q.

As the columns of Ḡ generate the F(z)-vector space orthogonal to the rows of
HT , there exists v ∈ F(z)r s.t. w = Ḡv. But then Ḡ1v = G1u1 = Ḡ1Qu1

implies v = Qu1, and thus u2 = Ḡ2v = Ḡ2Qu1 and

w =
[
G1u1

u2

]
=
[
Ḡ1

Ḡ2

]
Qu1 = Gu1.

This implies that w is in B.
It remains to prove the uniqueness of B0 in the above representation. To

this end we need the following technical lemma.

Let Bi ⊂ F[z, z−1]p, i = 1, 2, be finite support behaviors with p components.
If B = B1 ∩B2, then

Brat = (B1)rat ∩ (B2)rat. (4.3)

Let G,G1 and G2 be generator matrices of B, B1 and B2, respectively. Clearly,
Brat = ImF(z)G := {v ∈ F(z)p : v = Gu,u rational}, and similarly (Bi)rat =
ImF(z)Gi, i = 1, 2. Therefore, v ∈ Brat implies v = Gn/d, for some L-
polynomial vector n and some L-polynomial d, and hence dv ∈ B = B1 ∩B2.
But then, dv = G1u1 = G2u2, for suitable L-polynomial vectors u1 and u2,
which implies v ∈ (B1)rat ∩ (B2)rat.

Conversely, if v ∈ (B1)rat ∩ (B2)rat, it can be expressed as v = G1n1/d1 =
G2n2/d2, for suitable L-polynomial vectors ni and L-polynomials di, i = 1, 2.
If d := `.c.m.(d1, d2), it is clear that dv is an element of B1 ∩B2, and hence of
B. Consequently, v is in Brat.

We now return to the proof of the uniqueness of B0. Suppose, by contra-
diction, that B = B̂0 ∩ B̂lu, for some observable behavior B̂0 6= B⊥⊥ and some
locally undetectable behavior B̂lu. As B⊥⊥ is the smallest observable behavior
including B and is maximal in the class of modules of rank r, B̂0 must have
rank greater than r. Consequently, (B̂0)rat

⊃
6= (B⊥⊥)rat. On the other hand

(Blu)rat = (B̂lu)rat = F(z)p,
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and therefore (B⊥⊥)rat ∩ (Blu)rat = (B⊥⊥)rat
⊂
6= (B̂0)rat = (B̂0)rat ∩ (B̂lu)rat.

But this is not possible, as B⊥⊥ ∩Blu = B = B̂0 ∩ B̂lu should imply, by the
above Lemma, (B⊥⊥)rat ∩ (Blu)rat = (B̂0)rat ∩ (B̂lu)rat.

5 Input-output description and trajectory gen-
eration

The analysis we carried out in the previous sections focused on the properties
of behavior trajectories, without concern for the way they are generated. Once
a behavior B is represented via a finite set of generators g1,g2, ...,gm, however,
it is natural to look at G := [g1 g2 ... gm] as a transfer matrix, and hence to
consider B as the image of an input-output map acting on F[z, z−1]m. This
point of view seems particularly appropriate when B is a convolutional code
[3, 15], as it is customary to regard it as the result of an encoding process, and,
consequently, its trajectories (codewords) as the outputs of a dynamical encoder.
In a wider context, the trajectories of B are obtained from certain processing
operations applied to multidimensional data, or from different transformations
(desired or not) performed on the original signal. In both cases the analysis
of the algebraic properties of the generator matrices makes possible a detailed
knowledge of the behavior structure.

When an input/output description is adopted, it is often imperative to as-
sociate trajectories of B and input sequences bijectively. In data transmission
the meaning of this requirement is clear, as input signals represent information
messages to be retrieved from the received codewords, and an unambiguous de-
cision at the decoding stage is possible when each codeword encodes a unique
information sequence. This amounts to saying that the encoder G induces a 1-1
map.

Throughout this section we steadily assume that B has a full column rank
generator matrix G, and hence is free. Under this assumption, G admits (pos-
sibly infinitely many) rational left inverses G−1. Each of them, when applied to
a behavior trajectory w = Gu, uniquely retrieves the (finite) input sequence u.
When B represents a finite convolutional code this implies that every estimate
ŵ ∈ B of the codeword w produces a finite error eu := u−G−1ŵ = G−1(w−ŵ)
in reconstructing the information sequence u. Consequently, when a codeword
estimator is available, no catastrophic error can arise [3, 5]. However, if we
apply the “decoder” G−1 directly to the noisy sequence v = w + r, as r gen-
erally is not an element of B, the decoding algorithm possibly gives an infinite
support sequence, which differs from the correct input in infinitely many points
and clearly is not even an admissible information sequence. This drawback can
be avoided if and only if G−1 is an L-polynomial matrix.

Proposition 5.1 below provides equivalent conditions for the existence of an
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L-polynomial inverse, and in particular shows that such an inverse exists if and
only if G is left zero-prime.

Let G be in F[z, z−1]p×m and Ĝ = zhG = zh1
1 · · · zhn

n G in F[z]p×m for some
h ∈ Nn. If K denotes the algebraic closure of F, the L-variety VL(G) of the
maximal order minors of G is the algebraic set

VL(G) := V(Ĝ) \
{

(k1, k2, ..., kn) : ki ∈K,
∏
i

ki = 0
}
, (5.1)

where V(Ĝ) denotes the variety (in K) of the maximal order minors of Ĝ.

The above definition is well-posed, as (5.1) does not depend on the choice of Ĝ.

Let G be a p×m L-polynomial matrix. The following statements are equiv-
alent:
i) G is right zero-prime;
ii) there exists an L-polynomial matrix P ∈ F[z, z−1]m×p such that PG = Im;
iii) VL(G) is empty;
iv) Im GT = F[z, z−1]m.

i)⇒ ii) Let mi(G) denotes the i-th maximal order minor of G, i = 1, 2, ...,
(
p
m

)
.

By the zero-primeness assumption, there exist L-polynomials hi ∈ F[z, z−1] such
that

∑
i himi(G) = 1. If Si is the m× p matrix which selects in G the m rows

corresponding to mi(G), from Im =
∑
i himi(G)Im =

∑
i hi
(
adj(SiG)

)
(SiG),

we find that P :=
∑
i hi
(
adj(SiG)

)
Si is a left inverse of G with elements in

F[z, z−1].

ii) ⇒ iii) Let zr = zr11 · · · zrn
n be a suitable term such that P̂ = zrP is in

F[z]m×p. By applying the Binet-Cauchy formula [8] to equation P̂ Ĝ = zh1+r1
1

· · · zhn+rn
n Im, we get∑

i

mi(P̂ )mi(Ĝ) = z
m(h1+r1)
1 z

m(h2+r2)
2 · · · zm(hn+rn)

n , (5.2)

wheremi(P̂ ) andmi(Ĝ) are corresponding maximal order minors of P̂ and Ĝ, re-
spectively. Then V(Ĝ) is included in the variety of zm(h1+r1)

1 z
m(h2+r2)
2 · · · zm(hn+rn)

n ,
which is a subset of K := {(k1, k2, ..., kn) : ki ∈K,

∏
i ki = 0}.

iii)⇒ i) As K is the variety of z = z1 · · · zn, by assumption iii) V(Ĝ) is included
in the variety of z. So, by Hilbert’s Nullstellensatz [10], an integer r > 0 exists
such that zr1 · · · zrn belongs to the ideal generated in F[z] by the maximal order
minors of Ĝ:

zr1 · · · zrn =
∑
i

h̄i mi(Ĝ), h̄i ∈ F[z]. (5.3)
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As each maximal order minor mi(Ĝ) differs from mi(G) in a unit of F[z, z−1],
the zero-primeness of G easily follows after dividing both members of (5.3) by
zr1 · · · zrn.

ii)⇔ iv) Obvious.

When the generator matrix G has an L-polynomial inverse, a uniform bound
can be found on the support of the input sequences which correspond to the
behavior trajectories. Actually, if P is such an inverse, w ∈ B is generated
by the input signal u = Pw whose support cannot exceed “too much” that of
w. This feature, we will refer to as wrapping input property, is quite appealing,
as the mere recognition of the support of a trajectory allows the derivation of
a uniformly tight bound on the support of the corresponding input sequence.
In particular, in the context of finite convolutional codes, the above property
guarantees that small errors in the codeword estimate reflect into small errors
in the information sequence reconstruction.

-
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Fig. 5.1

(WI) [Wrapping input property] A finite behavior B has the wrapping
input property if there exist a full column rank generator matrixG and a positive
integer δ such that w = Gu implies

supp(u) ⊆
(
supp(w)

)δ
. (5.4)

It is worthwhile to notice that property (WI) does not depend on the par-
ticular full column rank generator matrix of B we are considering. In fact, it
is easily seen that if (5.4) holds for anyone of these generator matrices, then it
holds for all of them (in general for a different δ). On the other hand, when non-
injective generator matrices of B are considered, and the uniqueness of the input
sequence producing a given trajectory is lost, a particular input can be found,
however, whose support satisfies (5.4), as shown by the following proposition.
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Assume that B has the (WI) property for some full column rank matrix G
and some integer δ > 0. Then for every generator matrix Ḡ ∈ F[z, z−1]p×q an
integer δ̄ > 0 can be found s.t. each trajectory w ∈ B can be expressed as
w = Ḡū for some input ū with supp(ū) ⊆

(
supp(w)

)δ̄
.

Since G and Ḡ are generator matrices of the same behavior, there exists a full
column rank L-polynomial matrix Q, such that G = ḠQ. Let τ be the radius
of a ball, with center in the origin, including supp(Q), and consider w ∈ B.
By property (WI), there is u such that w = Gu and supp(u) ⊆

(
supp(w)

)δ.
So, ū := Qu satisfies w = Gu = ḠQu = Gū, and supp(ū) = supp(Qu) ⊆(
supp(u)

)τ ⊆ (supp(w)
)τ+δ

. Consequently, the proposition holds for δ̄ = τ + δ.

Interestingly enough, the zero primeness of G is not only sufficient but also
necessary for property (WI). So, free behaviors satisfying property (WI) can be
identified with behaviors that are generated by `ZP matrices.

A finite behavior B has the (WI) property if and only if it admits a right
zero-prime generator matrix.

The “if” part has already been proved. To show the converse, we need the
following characterization of rZP matrices.

LetG ∈ F[z, z−1]p×q be a Laurent polynomial matrix and denote by F[[z, z−1]]
the space of bilateral scalar formal power series in the indeterminates z1, . . . , zn.
Then G is right zero prime if and only if

Gs = 0 (5.5)

for some sequence s ∈ F[[z, z−1]]q implies s = 0.

Introduce in F[z, z−1]q×F[[z, z−1]]q the following nondegenerate bilinear form

〈·, ·〉q : F[z, z−1]q × F[[z, z−1]]q → F

defined by : 〈u,v〉q = (uvT , 1) =
∑

h∈Zn u(h)vT (−h).
With this position, the space F[[z, z−1]]q is naturally viewed as L(F[z, z−1]q),
the algebraic dual of F[z, z−1]q [9, 15]. In fact, we can associate with every
v ∈ F[[z, z−1]]q the linear functional on F[z, z−1]q defined by

fv(·) = 〈·,v〉q (5.6)

and, conversely, every linear functional on F[z, z−1]q can be represented as in
(5.6) for an appropriate choice of v ∈ F[[z, z−1]]m. Upon identifying F[[z, z−1]]q

with L(F[z, z−1]q), we can resort to the well known relation

ker∞G := {s ∈ F[[z, z−1]]q : Gs = 0}
≡ {s ∈ F[[z, z−1]]q : sTv = 0, ∀v ∈ ImGT } =: (ImGT )⊥⊥.
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If ImGT = F[z, z−1]q, all canonical vectors ei and all monomial vectors zh1 z
k
2ei

belong to ImGT , and therefore s ∈ (ImGT )⊥⊥ implies 〈zh1 zk2ei, s〉q = 0, h, k ∈ Z
and i = 1, 2, . . . , q, and hence s = 0. So, it is clear that ker∞G = {0} if and
only if ImGT = F[z, z−1]q, and this happens iff G is rZP.

Suppose, now, that B has the (WI) property w.r.t. some positive integer δ
and some full column rank generator matrix G. We aim to prove that G is rZP.
If not, there would be a sequence s ∈ F[[z, z−1]]q satisfying (5.5). Let η be the
radius of a ball, B(0, η), centered in the origin and including supp(G). If k is
an element of supp(s), the finite support sequence

u(h) :=
{

s(h) h ∈ B(k, 2δ + η)
0 elsewhere

generates a behavior sequence w := Gu that does not fulfill (5.4).

The (WI) property introduces very severe constraints on the supports of the
input sequences which produce the behavior trajectories. So, it is not unex-
pected that it reflects into the strongest primeness property a generator matrix
can be endowed with, namely zero-primeness. Obviously, weaker requirements
on the supports of the generating sequences correspond to weaker primeness
properties of G. In particular, minor primeness guarantees that the signal pro-
ducing a behavior sequence w exhibits a support which slightly exceeds a paral-
lelepipedal box including supp(w), whereas variety primeness ensures that each
projection of u and w onto a coordinate hyperplane gives a pair of signals with
the (WI) property.

A standpoint which proves to be quite fruitful in analysing the above-
mentioned connections is to regard an arbitrary finite support sequence w ∈
F[z, z−1]p as a vector with entries in certain L-polynomial rings that properly in-
clude F[z, z−1]. Actually, w can be thought of as an element of F(zci )[zi, z

−1
i ] :=

F(z1, .., zi−1, zi+1, .., zn)[zi, z−1
i ]

w =
∑
hi∈Z

whi(z
c
i )z

hi
i ,

or as an element of F(zi)[zci , (z
c
i )
−1] := F(zi)[z1, ..., zi−1, zi+1, ..., zn, z

−1
1 , .., z−1

i−1, z
−1
i+1,

.., z−1
n ]

w =
∑

h1,...,hi−1,hi+1,..,hn∈Z
wh1,..,hi−1,hi+1,..,hn

(zi)zh1
1 · · · z

hi−1
i−1 z

hi+1
i+1 · · · z

hn
n .

Correspondingly, we are lead to introduce the following support sets

suppi(w) := {(h1, ..., hn) ∈ Zn : whi(z
c
i ) 6= 0}

suppic(w) := {(h1, ..., hn) ∈ Zn : wh1,...,hi−1,hi+1,...,hn(zi) 6= 0}.
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[16] Let G ∈ F[z, z−1]p×m be a full column rank matrix. Then
i) G is rMP if and only if G is right (zero) prime in F(zci )[zi, z

−1
i ] for every

i = 1, 2, ..., n;
ii) G is rVP if and only if G is rZP in F(zi)[zci , (z

c
i )
−1], for every i = 1, 2, ..., n.

Let B be a finite behavior. Then
i) B has a rMP generator matrix if and only if there exist an integer δ > 0 and
a full column rank generator matrix G, such that w ∈ B implies w = Gu with

supp(u) ⊆
n⋂
i=1

(
suppi(w)

)δ
; (5.7)

ii) B has a rVP generator matrix if and only if there exist an integer δ > 0 and
a full column rank generator matrix G, such that w ∈ B implies w = Gu with

supp(u) ⊆
n⋂
i=1

(
suppic(w)

)δ
. (5.8)

i) It is easy to realize that condition (5.7) is equivalent to the set of conditions

suppi(u) ⊆
(

suppi(w)
)δ
, i = 1, 2, ..., n. These hold true if and only if G is a rZP

matrix in F(zci )[zi, z
−1
i ], for every i = 1, 2, ..., n, namely G is rMP in F[z, z−1].

ii) The result is shown along the same lines of i), after replacing F(zci )[zi, z
−1
i ]

with F(zi)[zci , (z
c
i )
−1].

6 Conclusions

In this paper we have focused on some features of finite support nD behaviors
which are relevant for multidimensional signal generation and recognition. Two
opposite situations have been considered, namely the case when a local testing
procedure suffices to decide whether a given signal belongs to the behavior, and
the case when every finite signal can be completed into a legal trajectory, and
hence behavior sequences cannot be recognized by means of local checks.

Observable and locally undetectable behaviors, which correspond to these
two situations, have been characterized both in terms of their internal proper-
ties and of their polynomial matrix descriptions. Any finite support behavior,
being the intersection of an observable and an unconstrained behavior, exhibits
intermediate properties.

Finally, adopting an input/output point of view, the connections between
the support of a behavior trajectory and that of its generating input have been
enlightened.
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