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1. INTRODUCTION

In the current literature by “bilinear system” one generally denotes a state space model where
the state updating involves products of input and state variables [1,2]. These systems have been
extensively analysed both in the continuous and in the discrete case, and several results are presently
available, both clarifying their internal structure and suggesting how to design dynamic controllers. In
this contribution, we assume a different point of view and consider (discrete time scalar-inputs/scalar-
output) bilinear systems in input/output form. More precisely, we assume that the input and output
sequences, which are defined on N, take values over the real field R, and the output y causally
depends on the inputs u1 and u2 according to a map f(·, ·) satisfying the following properties:

f(αu1, u2) = αf(u1, u2) f(u1, βu2) = βf(u1, u2)
f(u1 + v1, u2) = f(u1, u2) + f(v1, u2)
f(u1, u2 + v2) = f(u1, u2) + f(u1, v2),

where α and β are in R and u1, u2, v1 and v2 arbitrary real sequences.
In this setting it is convenient to represent system signals and input/output maps by means of
formal power series in suitable indeterminates. Throughout the paper, the rings of formal power
series in a single indeterminate z and in two indeterminates z1 and z2 will be denoted by R[[z]] and
R[[z1, z2]], respectively. Accordingly, R[[z1 ·z2]] will be the ring of formal power series in the “product
indeterminate”z = z1 · z2. Moreover, the Hadamard product of two series r(z1, z2) =

∑
i,j∈N rijz

i
1z
j
2

and s(z1, z2) =
∑
i,j∈N sijz

i
1z
j
2 is defined as follows

r(z1, z2)� s(z1, z2) :=
∑
i,j∈N

(rijsij)zi1z
j
2

If we associate with two input sequences {u1(t)}t∈N and {u2(t)}t∈N the series

U1(z1) :=
+∞∑
t=0

u1(t)zt1 and U2(z2) :=
+∞∑
t=0

u2(t)zt2,
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any discrete bilinear input/output (i/o) map f : RN ×RN → RN : (u1, u2) 7→ y can be described as
follows [3]

Y (z1 · z2) =
(
F (z1, z2)U1(z1)U2(z2)

)
�

+∞∑
t=0

(z1 · z2)t, (1)

where Y (z1 · z2) :=
∑
t y(t)(z1 · z2)t is the formal power series associated with the output y and

F (z1, z2) is a suitable power series in z1 and z2 that characterizes the map f .
From a computational point of view this amounts to saying that the output sequence {y(t)}t∈N
coincides with the sequence of “diagonal coefficients” of the two-dimensional series

Z(z1, z2) := F (z1, z2)U1(z1)U2(z2),

which is the output generated by the 2D system with transfer function F (z1, z2), when excited by
the input U1(z1)U2(z2). In other words, for every t ∈ N, y(t) coincides with the diagonal element
z(t, t).
Notice that every diagonal {f(t, t+h)}t of the series expansion of F (z1, z2), h ∈ N, can be identified
as the output of (1) corresponding to the canonical inputs U1(z1) = zh1 and U2(z2) = 1, and similarly
{f(t+ h, t)}t, h ∈ N, is the output sequence produced by U1(z1) = 1 and U2(z2) = zh2 . In the sequel,
as no confusion can arise, the symbol “·” appearing in the product of z1 and z2 will be omitted.
A bilinear map (1) admits a (causal) finite-dimensional state-space realization if and only if [3]
F (z1, z2) is a rational power series with the following structure

F (z1, z2) =
n(z1, z2)

h0(z1z2)h1(z1)h2(z2)
, (2)

where h0(z1z2), h1(z1) and h2(z2) are 1D polynomials with nonzero constant terms, while n(z1, z2)
is a 2D polynomial. Throughout the paper we will assume, without loss of generality, that h0(z1z2),
h1(z1) and h2(z2) have unitary constant terms and no common factor with n(z1, z2).

The aim of this contribution is to discuss some basic issues connected with bilinear i/o maps as
described by (1) and (2). We consider, first, stability problems and derive necessary and sufficient
conditions guaranteeing that bounded inputs always produce bounded outputs (BIBO stability).
These conditions refer to the singularities of F (z1, z2) (i.e. to the zeros of the polynomials h0, h1 and
h2) and enlighten some interesting connections between BIBO stability of 2D transfer functions and
that of bilinear i/o maps.
We analyse, next, the free system dynamics, namely the output evolutions determined by finite
support input sequences. As we shall see, these evolutions can be expressed as linear combinations
of elementary modes associated with the zeros of h0(z) and with the products of zeros of h1(z) and
of h2(z).

Finally, assuming BIBO stability, we consider the asymptotic behavior of the output y corre-
sponding to periodic inputs u1 and u2. It turns out that, except for very special cases, y is eventually
periodic and its permanent component can be determined by resorting to suitable diophantine equa-
tions.

2. BIBO STABILITY

Consider the bilinear i/o map

f : R[[z1]]×R[[z2]]→ R[[z1z2]]

: (U1(z1), U2(z2)) 7→
(
n(z1, z2)U1(z1)U2(z2)
h0(z1z2)h1(z1)h2(z2)

)
�
∞∑
t=0

(z1z2)t. (3)
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The map (3) is said to be bounded input-bounded output (BIBO) stable if for every pair of series,
U1(z1) and U2(z2), with bounded coefficients, f(U1, U2) has bounded coefficients, too. BIBO stability
of (3) is strictly related to the polar structure of F (z1, z2) = n(z1, z2)/[h0(z1z2)h1(z1)h2(z2)], and,
furthermore, it turns out that the above map is BIBO stable if and only if the 2D i/o map associated
with F (z1, z2) is endowed with this property.

Proposition 1 The bilinear map (3) is BIBO stable if and only if h0(z), h1(z) and h2(z) have no
zero in the closed unit disk D1 := {z ∈ C : |z| ≤ 1}.

Proof If h0(z), h1(z) and h2(z) have no zero in D1, the 2D transfer function F (z1, z2) has no
singularities in the closed unit polydisk D2 := {(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1} and hence is BIBO
stable [4]. Consequently, every pair of bounded inputs (U1(z1), U2(z2)) produces a 2D bounded
output F (z1, z2)U1(z1)U2(z2), whose diagonal, i.e., the output y, is obviously bounded.

Suppose, now, that (3) is BIBO stable.
• We prove, first, that h2(z) has no zero in D1. If not, we would have (1 − αz2) | h2(z2), for some
α ∈ C, |α| ≥ 1. Consider the following power series

U1(z1) = h1(z1)Ū1(z1) (4)

U2(z2) =


1 if |α| > 1,

1
1− αz2 if α = ±1

1
(1− αz2)(1− α∗z2) if α ∈ C \R and |α| = 1

,

where α∗ is the conjugate of α and Ū1(z1) is a series, with bounded coefficients, to be determined.
Both U1(z1) and U2(z2) have bounded coefficients and the corresponding output is given by

Y (z1z2) =
(
n(z1, z2)
h0(z1z2)

Ū1(z1)
U2(z2)
h2(z2)

)
�
∞∑
t=0

(z1z2)t. (5)

If we express n(z1, z2) as

n(z1, z2) = zT−1
1 ñT−1(z2) + zT−2

1 ñT−2(z2) + . . .+ ñ0(z2), (6)

with T ∈ N, ñi(z2) ∈ R[z2], i = 0, 1, . . . , T − 1, by the coprimality assumption on the pair (n(z1, z2),
h2(z2)), it follows that there exists j such that (1 − αz2) does not divide ñj(z2). Consequently, the
coefficients of the power series expansion of

W (z2) :=
ñj(z2)U2(z2)

h2(z2)

constitute an unbounded sequence, and one at least of the subsequences

{w(kT )}k, {w(kT + 1)}k, . . . , {w(kT + T − 1)}k

diverges. So, there exists P ∈ N such that(
zP1

1− zT1
n(z1, z2)U2(z2)

h2(z2)

)
�
∑
t

(z1z2)t

corresponds to an unbounded sequence. It is now clear that, if we assume in (4)

Ū1(z1) :=
zP1

1− zT1
,
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the output series in (5) represents an unbounded output.
• The proof that h1(z) has no zero in D1 follows the same lines.
• To show that h0(z) has no zero in D1, suppose, by contradiction, that there exists α ∈ C, |α| ≥ 1,
such that (1− αz) | h0(z) and express n(z1, z2) as follows

n(z1, z2) = zN1 nN (z1z2) + zN−1
1 nN−1(z1z2) + . . .+ n0(z1z2) + . . .+ zM2 n−M (z1z2), (7)

with ni(z1z2) ∈ R[z1z2] and N,M ∈ N. As n(z1, z2) and h0(z1z2) have no common factor, there
exists i ∈ {−M,−M + 1, . . . , N} such that ni(z1z2) is not a multiple of 1− αz1z2.
If |α| > 1 or |α| = 1 and its multiplicity is greater than 1, the power series associated with
ni(z1z2)/h0(z1z2) corresponds to an unbounded sequence, and the output sequence corresponding
to the bounded inputs{

U1(z1) = h1(z1)
U2(z2) = h2(z2)zi2

for i ≥ 0, or

{
U1(z1) = h1(z1)z−i1

U2(z2) = h2(z2)
for i < 0

is unbounded.
Assume, now, that the only zeros of h0(z) in D1 are simple and of unitary modulus, and let 1/α be
one of them. By the coprimality of n(z1, z2) and h0(z1z2), it follows that there exists j such that
(1− αz1z2) does not divide nj(z1z2). Consequently, the coefficients of the series

∑
t

w(t)(z1z2)t =
nj(z1z2)
h0(z1z2)

do not constitute an `1 sequence.
Set T := N + M + 1 and assume, for instance, j ≥ 0. If we consider the pair of (possibly complex)
bounded inputs associated with

U1(z1) =
h1(z1)

1− (αz1)T
U2(z2) =

h2(z2)zj2
1− zT2

, (8)

we have that the series

Y (z1z2) =

(
n(z1, z2)

h0(z1z2)h1(z1)h2(z2)
h1(z1)

1− (αz1)T
h2(z2)zj2
1− zT2

)
�
∑
t

(z1z2)t

=

(
n(z1, z2)
h0(z1z2)

1
1− (αz1)T

zj2
1− zT2

)
�
∑
t

(z1z2)t

=

(
nj(z1, z2)zj1z

j
2

h0(z1z2)
1

1− (αz1)T
1

1− zT2

)
�
∑
t

(z1z2)t =
nj(z1, z2)zj1z

j
2

h0(z1z2)[1− (αz1z2)T ]

represents an unbounded output. If α belongs to R we have obtained in this way a pair of real valued
bounded inputs producing an unbounded real output. If α is complex, it is sufficient to assume in
(8)

U1(z1) =
h1(z1)

[1− (αz1)T ][1− (α∗z1)T ]
,

and proceed as before.

Remark Given a 2D transfer function F (z1, z2) = n(z1, z2)/h(z1, z2), with n(z1, z2) and h(z1, z2)
factor coprime, if h(z1, z2) is devoid of zeros in D2 the function F (z1, z2) is 2D BIBO stable. As
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it has been proved by D.Goodman [4], however, the converse is not true. Indeed, F (z1, z2) can be
BIBO stable even if it has nonessential singularities of the second kind on the distinguished boundary
T2 := {(z1, z2) ∈ C2 : |z1| = 1, |z2| = 1} of D2, namely if n(α, β) = h(α, β) = 0 for some (α, β) ∈ T2.

When restricting ourselves to the class of 2D transfer functions described as in (2), namely
to rational functions which are adopted for representing i/o bilinear maps, 2D BIBO stability is
equivalent to assuming that h0(z), h1(z) and h2(z) have no zeros in the closed unit disk D1. In
fact, if h1(α) = 0, |α| = 1, then (α, β) is a zero of the denominator of F (z1, z2) for every β ∈ C
and hence F (z1, z2) has nonessential singularities in D2 \ T2, which rules out 2D BIBO stability.
The same reasoning obviously applies to h2(z). On the other hand, if h0(α) = 0, |α| = 1, then all
pairs (αeiθ, e−iθ) ∈ T2, θ ∈ R, are zeros of h0(z1z2), viewed as a 2D polynomial. As n(z1, z2) and
h0(z1z2) are factor coprime, and hence have a finite number of common zeros, one at least of the
pairs (αeiθ, e−iθ) is a pole of F (z1, z2).

Consequently, the rational function (2) is 2D BIBO stable if and only if it represents a BIBO
stable bilinear i/o map.

3. MODAL STRUCTURE

Once a bilinear i/o map f is given, one can exploit shift-invariance to extend f to pairs of inputs
with left compact supports, or, equivalently, to pairs of Laurent series. If we consider the space
U1 ×U2 of all pairs of inputs whose supports are finite subsets of (−∞, 0], i.e. the set of trajectories
whose power series are elements of R[z−1

1 ] × R[z−1
2 ], we can introduce the Nerode equivalence as

follows. Two elements (u1, u2) and (v1, v2) of U1 × U2 are said to be Nerode equivalent if for every
positive integer N and every pair (w1, w2), whose support is included in [1, N ], the output sequences
f(u1 + w1, u2 + w2) and f(v1 + w1, v2 + w2) coincide in [N + 1,+∞). The classes induced by this
equivalence relation are naturally viewed as the states of a “canonical realization”, and we can identify
the outputs of (3) corresponding to finite support input sequences as “free evolutions” corresponding
to initial states of the canonical realization.

Let F (z1, z2) be given as in (2) and suppose that h0(z), h1(z) and h2(z) factorize over the complex
field in the following way

h0(z) =
r0∏
i=1

(1− γiz)ρi h1(z) =
r1∏
i=1

(1− αiz)µi h2(z) =
r2∏
i=1

(1− βiz)νi , (9)

with αi 6= αj , βi 6= βj , γi 6= γj for i 6= j, and r0, r1, r2, ρi, µi, νi positive integers. We aim to explicitly
relate the elementary modes describing the free evolution of (3) to the parameters αi, βi and γi
appearing in (9). To reach this goal, we need a couple of technical lemmas.

Lemma 2 For every choice of the nonnegative integers n, p and q the following identity holds(
n+ p

p

)(
n+ q

q

)
=

p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)(
n+ p+ q − k
p+ q − k

)
. (10)

Proof Rewrite the Vandermonde convolutional formula [6](
x

y

)
=
∑
k=0

(
x− q
y − k

)(
q

k

)
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in the alternate form (
x

y

)
=
∑
k=0

(−1)k
(
x+ q − k
y − k

)(
q

k

)
, (11)

and note that with x replaced by n+ p and y by p, (11) becomes(
n+ p

p

)
=
∑
k=0

(−1)k
(
q

k

)(
n+ p+ q − k

p− k

)
.

Consequently, we have(
n+ p

p

)(
n+ q

q

)
=
∑
k=0

(−1)k
(
q

k

)(
n+ p+ q − k

p− k

)(
n+ q

q

)
. (12)

It is a matter of straightforward computation to check the identity(
n+ p+ q − k

p− k

)(
n+ q

q

)
=

(
p+ q − k

q

)(
n+ p+ q − k
p+ q − k

)
, (13)

and the proof of the lemma is complete upon replacing (13) in (12).

As it is well-known, the power series expansions of the rational functions 1/(1 − δz)k+1, k ∈ N,
are given by

1
(1− δz)k+1

=
∞∑
n=0

(
n+ k

k

)
(δz)n. (14)

The following lemma shows that the Hadamard product of 1
(1−αz)p+1 and 1

(1−βz)q+1 is a linear com-
bination of power series expansions with similar structure, involving the powers of αβ.

Lemma 3 For every α and β in C and every pair (p, q) of nonnegative integers, we have

1
(1− αz)p+1

� 1
(1− βz)q+1

=
p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)
1

(1− αβz)p+q−k+1
, (15)

or, in more compact form,

1
(1− αz)p+1

� 1
(1− βz)q+1

=
1
q!

dq

dzq

[
zq

(1− αβz)p+1

]
=

1
p!

dp

dzp

[
zp

(1− αβz)q+1

]
. (16)

Proof By applying the previous lemma and the power series expansion in (14), we get

1
(1− αz)p+1

� 1
(1− βz)q+1

=

( ∞∑
n=0

(
n+ p

p

)
(αz)n

)
�
( ∞∑
n=0

(
n+ q

q

)
(βz)n

)

=
∞∑
n=0

(
n+ p

p

)(
n+ q

q

)
(αβz)n =

∞∑
n=0

p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)(
p+ q + n− k
p+ q − k

)
(αβz)n

=
p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

) ∞∑
n=0

(
p+ q + n− k
p+ q − k

)
(αβz)n

=
p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)
1

(1− αβz)p+q−k+1
.
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On the other hand,

p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)
1

(1− αβz)p+q−k+1
=

=
1
q!

p∧q∑
k=0

(−1)k
(
q

k

)
(p− k + 1)(p− k + 2) . . . (p− k + q)

(1− αβz)p+q−k+1

=
1

(αβ)qq!
dq

dzq

[p∧q∑
k=0

(−1)k
(
q

k

)
1

(1− αβz)p−k+1

]

=
1

(αβ)qq!
dq

dzq

[
1

(1− αβz)p+1

p∧q∑
k=0

(
q

k

)
(αβz − 1)k

]
. (17)

If q = p ∧ q, the summation in (17) gives (αβz)q, thus proving (16); otherwise, when p = p ∧ q, then

1
(1− αβz)p+1

p∧q∑
k=0

(
q

k

)
(αβz − 1)k =

(αβz)q

(1− αβz)p+1
+m(z),

where m(z) ∈ R[z] is a polynomial of degree smaller than q. So, (16) holds also in this case.

The above lemma has a significant system theoretic interpretation. Indeed, given a linear system
whose transfer function has a pole in 1/δ, the coefficients of the power series expansion in (14) can
be regarded as describing a mode associated with the pole. So, the identities (15) and (16) clarify
that the Hadamard product of the modes corresponding to the poles 1/α and 1/β, is a combination
of modes corresponding to a pole in 1/(αβ).
This result is extremely useful for analyzing the free evolution of the bilinear model (3). Actually,
assume that U1(z1) and U2(z2) are polynomial inputs and consider the corresponding output series

Y (z1, z2) =
1

h0(z1z2)

(
n(z1, z2)U1(z1)U2(z2)

h1(z1)h2(z2)
�
∑
t

(z1z2)t
)
.

Set n(z1, z2) :=
∑
i,j nijz

i
1z
j
2. By resorting to partial fraction expansions and to the factorizations of

h0, h1 and h2 given in (9), we get

n(z1, z2)U1(z1)U2(z2)
h1(z1)h2(z2)

=
∑
i,j

nij
U1(z1)zi1
h1(z1)

U2(z2)zj2
h2(z2)

=
∑
i,j

nij

[
p1i(z1) +

∑
r,s

ρirs
(1− αrz1)s

]p2j(z2) +
∑
v,t

τjvt
(1− βvz2)t

 ,
with p1i(z1) ∈ R[z1] and p2j(z2) ∈ R[z2]. It is not difficult to check that the Hadamard product of∑
t(z1z2)t with the above expression gives

n(z1, z2)U1(z1)U2(z2)
h1(z1)h2(z2)

�
∑
t

(z1z2)t = p(z1z2) +

 ∑
r,s,v,t

nijρirsτjvt
(1− αrz1)s(1− βvz2)t

�∑
t

(z1z2)t,

with p(z1z2) ∈ R[z1z2]. As

1
(1− αrz1)s(1− βvz2)t

�
∑
t

(z1z2)t ≡ 1
(1− αrz)s

� 1
(1− βvz)t

∣∣∣∣
z=z1z2

,
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Lemma 3 applies and we get

Y (z1, z2) =
1

h0(z1z2)

p(z1z2) +
∑
r,s,v,t

crstvk
(1− αrβvz1z2)s+t−1−k

 , (18)

where crstvk := (−1)k
(s−1
k

)(s+t−2−k
s−1

)∑
i,j ρirsτjutnij . By expressing (18) as sum of partial fractions,

we obtain the output sequence y as a linear combination of elementary modes associated with the
poles 1/γi and 1/(αrβv).

Interestingly enough, the case possibly occurs that, even though some zeros of h1(z) belong to
the interior of D1, all products 1/(αrβv) belong to C \D1. Under this assumption, when all zeros of
h0(z) are in C \D1, the bilinear system (3) exhibits only convergent modes, although it is not BIBO
stable.

Example 1 Assume in (1)

F (z1, z2) =
1

(1− 1/3 z1z2)(1− 2z1)(1− 1/4 z2)
.

This i/o bilinear map is not BIBO stable, because h1(z1) = 1−2z1 has a zero inside D1. On the other
hand, by resorting to the Euclidean algorithm, every pair of finite support inputs can be written as

(U1(z1), U2(z2)) =
(
a(z1)(1− 2z1) + c, b(z2)(1− 1/4 z2) + d)

)
,

where a(z1) =
∑
i aiz

i
1, b(z2) =

∑
i biz

i
2, and ai, bi, c, d ∈ R. So, the corresponding output Y (z1z2) is

given by

Y (z1, z2) =
1

1− 1/3 z1z2

(
a(z1)b(z2) +

cb(z2)
1− 2z1

+
da(z1)

1− 1/4 z2
+

cd

(1− 2z1)(1− 1/4 z2)

)
�
∑
t

(z1z2)t

=
1

1− 1/3 z1z2

(∑
i

aibi(z1z2)i +
∑
i

cbi2i(z1z2)i +
∑
i

dai
4i

(z1z2)i +
∑
i

cd

2i
(z1z2)i

)
,

and hence is always convergent.

4. PERIODIC EVOLUTIONS

This section surveys, rather sketchily, some aspects of bilinear i/o maps which are connected with
their limiting behavior, once a periodic excitation is applied. If we assume BIBO stability, it is quite
easy to realize that (a part from an exceptional set of periodic inputs) any pair of inputs of period
T eventually induces a nonzero output with the same period. (Notice that this assumption is not
restrictive, since if T1, T2 ∈ N are the periods of u1 and u2, we can always set T := `.c.m{T1, T2}.)
Actually, suppose that U1(z1) and U2(z2) are given by

U1(z1) =
p1(z1)
1− zT1

, U2(z2) =
p2(z2)
1− zT2

, deg p1, deg p2 < T.
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If n(z1, z2) is expressed as in (7), we have

Y (z1z2) =
N∑
i=0

zi1 ni(z1z2)
h0(z1z2)

[ p1(z1)
h1(z1)(1− zT1 )

p2(z2)
h2(z2)(1− zT2 )

]
�
∑
t

(z1z2)t

+
M∑
i=1

zi2 n−i(z1z2)
h0(z1z2)

[ p1(z1)
h1(z1)(1− zT1 )

p2(z2)
h2(z2)(1− zT2 )

]
�
∑
t

(z1z2)t

=
N∑
i=0

zi1 ni(z1z2)
h0(z1z2)

[( v10(z1)
(1− zT1 )

+
t10(z1)
h1(z1)

)(zi2v2i(z2)
(1− zT2 )

+
t2i(z2)
h2(z2)

)]
�
∑
t

(z1z2)t

+
M∑
i=1

zi2 n−i(z1z2)
h0(z1z2)

[(zi1v1i(z1)
(1− zT1 )

+
t1i(z1)
h1(z1)

)( v20(z2)
(1− zT2 )

+
t20(z2)
h2(z2)

)]
�
∑
t

(z1z2)t,

where v1i, v2i, t1i, t2i are polynomial solutions of the following diophantine equations [5]

(1− zT1 )t1i(z1) + zi1h1(z1)v1i(z1) = p1(z1), i = 0, 1, . . . ,M,

(1− zT2 )t2i(z2) + zi2h2(z2)v2i(z2) = p2(z2), i = 0, 1, . . . , N.

By the BIBO stability assumption, for large values of the time variable the behavior of the output
sequence does not depend on the terms t1i/h1 and t2i/h2 and, consequently, the power series expansion
of (

N∑
i=0

zi1z
i
2 ni(z1z2)
h0(z1z2)

[ v10(z1)
(1− zT1 )

v2i(z2)
(1− zT2 )

]
+

M∑
i=1

zi1z
i
2 n−i(z1z2)
h0(z1z2)

[ v1i(z1)
(1− zT1 )

v20(z2)
(1− zT2 )

])
�
∑
t

(z1z2)t

=
1

h0(z1z2)(1− (z1z2)T )
{
N∑
i=0

ni(z1z2)[v10(z1)v2i(z2)�
∑
t

(z1z2)t]

+
M∑
i=1

n−i(z1z2)[v1i(z1)v20(z2)�
∑
t

(z1z2)t]}

asymptotically fits the actual output of the system. Upon setting

p(z) :=
N∑
i=0

ni(z1z2)[v10(z1)v2i(z2)�
∑
t

(z1z2)t] +
M∑
i=1

n−i(z1z2)[v1i(z1)v20(z2)�
∑
t

(z1z2)t]

∣∣∣∣∣
z=z1z2

,

the output series can be rewritten as

Y (z) =
p(z)

h0(z)(1− zT )
=

t(z)
h0(z)

+
v(z)

1− zT
, (19)

where (v(z), t(z)) is a polynomial solution of the diophantine equation

(1− zT )t(z) + h0(z)v(z) = p(z), (20)

satisfying deg v < T . Again, the BIBO stability assumption can be used to show that the term
t(z)/h0(z) decays asymptotically to zero. Thus the output is eventually periodic, and its permanent
evolution is given by the expansion of v(z)/(1− zT ). Note that, as v(z) has degree smaller than T ,
its coefficents give the restriction to a period of the permanent part of the output sequence.

Remark As mentioned at the beginning of the section, the case possibly occurs that a nonzero pair
of periodic inputs produces a zero permanent output. This happens when in (19) the polynomial

9



p(z) is a multiple of 1−zT , and hence, by the BIBO stability assumption, the whole output sequence
asymptotically decays to zero.
The following examples enlighten two possible situations when this phaenomenon arises. In the
former, the denominators of the periodic inputs simplify with the polynomial n(z1, z2); in the latter,
the supports of the periodic inputs do not intersect.

Example 2 Consider the rational function

F (z1, z2) =
1− (z1z2)2

h0(z1z2)(1− αz1)(1− βz2)
,

with α, β ∈ R and all zeros of h0(z) outside D1. Corresponding to the pair of periodic inputs(
U1(z1), U2(z2)

)
=
(1− αz1

1− z2
1

,
1− βz2
1− z2

2

)
,

we get the output series

Y (z1, z2) =
1− (z1z2)2

h0(z1z2)(1− z2
1)(1− z2

2)

=
1− (z1z2)2

h0(z1z2)

(
1

(1− z2
1)(1− z2

2)
�
∞∑
t=0

(z1z2)t
)

=
1− (z1z2)2

h0(z1z2)
1

1− (z1z2)2
=

1
h0(z1z2)

,

thus proving that y asymptotically decays to zero.

Example 2 Consider the rational function

F (z1, z2) =
1

h0(z1z2)
,

where h0(z) has all zeros out of D1. The pair of periodic inputs

(
U1(z1), U2(z2)

)
=
(1 + z2

1

1− z3
1

,
2z2

1− z3
2

)
,

produces the output series

Y (z1, z2) =
1

h0(z1z2)

(
1 + z2

1

1− z3
1

2z2
1− z3

2

�
∞∑
t=0

(z1z2)t
)

= 0. (21)
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