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Abstract

2D finite codes are defined as families of compact support sequences indexed in
Z × Z and taking values in Fn, F a Galois field. Several properties of encoders,
decoders and syndrome decoders are discussed under different hypotheses on the
code structure, and related to the injectivity and primeness of the corresponding
polynomial matrices in two variables.
Dual codes are finally introduced as families of parity checks on a given modular
code, and related to the standard theory of 2D behaviours.

1 Introduction

Since the early seventies, the pioneering work of Forney [1, 2] made it quite clear that
the theory of discrete-time multidimensional linear systems over a finite field provides
a very convenient setting for the analysis of convolutional codes. On the other hand,
in the algebraic contex many questions concerning convolutional codes proved to have
answers that seem quite illuminating and useful for systems and control applications.
However, even if both fields exhibit some common research directions and resort to
similar mathematical tools, the coding point of view is somewhat different from that
of linear systems. Actually, in system theory the interest centers around input-output
relations, while in coding theory what is most important is the set of output sequences
of the encoder, i.e. the internal structure of the code.
Quite recently, the behavioural approach, developed by J.C.Willems [3] for the analysis
of dynamical systems, has been applied to the investigation of 1D and 2D convolutional
codes [4 ÷ 6]. This new framework seems to be quite effective in the 2D case, since it
allows to investigate the internal properties of the code without explicitly referring to the
machinery which underlies the codewords generation and, in particular, without making
any assumption on the ordering of two dimensional data. So, in principle, no artificial
notion of causality in Z× Z, and, consequently, no a priori restriction on the supports
of the signals are needed. Indeed, the finite-support constraint we shall introduce in
a while on two-dimensional codewords does not follow from causality considerations,
but corresponds to the fact that most of 2D information sequences encountered in the
applications do not infinitely extend in Z× Z.
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In this comunication we aim to analyse the algebraic properties of two-dimensional
convolutional codes whose codewords have finite support, and discuss how they are
related with more general classes of 2D codes, that have been modelled in [6] as 2D
complete behaviours.

The paper is organized as follows: in the next section, 2D modular codes are defined
and some fundamental requirements on the encoding and the decoding maps, which
translate into specific constraints on the algebraic structure of the code, are introduced.
As any code can be generated by different encoders, in section 3 we discuss different sets
of necessary and sufficient conditions, which guarantee the equivalence of two encoders.
The analysis is carried out both in the general case and for specific classes of 2D codes,
such as free modular, finite convolutional and finite basic codes.
In the last section, we introduce 2D codes with infinite support (unrestricted 2D be-
haviours) as suitable algebraic duals of modular codes. In this context, a dual code can
be viewed as the space of all parity checks that can be applied to a received sequence
to decide whether it belongs to the code.
The existence of a finite set of finite support parity checks for a code C, which allow for an
unambiguous identification of its codewords, a (syndrome decoder) is shown to depend
on both the structure of the dual code and the algebraic properties of the encoders of
C.

2 Finite convolutional codes

Let F be a finite field and denote by Fn
∞ the set of the sequences indexed on the discrete

plane Z × Z and taking values in Fn. In the sequel, it will be convenient to represent
the elements of Fn

∞ via formal power series, by associating any sequence w := {w(h, k)}
with the series ∑

h,k ∈ Z

w(h, k)zh
1 z

k
2 . (2.1)

To avoid cumbersome notations, we will adopt the same symbol both for a sequence
and for the associated power series, and denote the coefficient of zh

1 z
k
2 in any series

w as (w, zh
1 z

k
2 ). The main advantage in using formal power series is that many lin-

ear operators can be represented by appropriate matrices with elements in F± :=
F[z1, z2, z

−1
1 , z−1

2 ], the ring of 2D Laurent polynomials (L-polynomials). This way the
fundamental operator properties find an immediate counterpart in terms of the structure
of the corresponding matrices and, in particular, of their factors.

Definition A matrix G(z1, z2) ∈ Fk×n
± is

• F±-unimodular, if k = n and detG is a unit in F±;

• left factor prime (`FP), if for every factorization G = TḠ, with T (z1, z2) ∈ Fk×k
± ,

T is F±-unimodular;

• left zero prime (`ZP), if the ideal generated by the maximal order minors of G is
the ring F± itself.
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A 2D code of length n over F is any subset of Fn
∞ . In this paper we will mostly

deal with finite codes, i.e. subsets of Fn
∞ whose elements have finite support. By the

bijective correspondence between sequences indexed in Z× Z and formal power series,
we identify each compact support sequence with an element of Fn

± ,the F±-module of
n-dimensional row vectors with entries in F±. Accordingly, a 2D finite code C of length
n is defined as a subset of Fn

±.
In order to introduce a convolutional structure on C, the set of its sequences has to

be endowed with some properties, which constitute the mathematical formalization of
very natural requirements. The most common ones are linearity and shift-invariance,
i.e. the closure of C under shift and superposition.

(a) [Linearity] If w1 and w2 belong to C, then αw1 +βw2 belongs to C for every α and
β in F.

(b) [Shift-Invariance] w ∈ C implies that v = zh
1 z

k
2w ∈ C for every h, k ∈ Z, i.e. C is

invariant w.r.t. the shifts in Z× Z along the coordinate axes.

Codes with properties (a) and (b) can be characterized as F±-submodules of Fn
±,

and will be called modular codes. Moreover, as Fn
± is an F±-Noetherian module [7], C

is finitely generated, i.e. there exists a finite set of row vectors g1,g2, ...,gk in Fn
± such

that

C = {
k∑

i=1

uigi : ui ∈ F±} = {uG : u ∈ Fk
±} =: Im±G, (2.2)

where G(z1, z2) denotes the L-polynomial matrix G = col{g1,g2, ...,gk}.

Once a family of generators has been chosen, the matrix G constitutes an encoder,
which generates all the codewords of C as the information sequence u varies over Fk

±.
It may happen, however, that different information sequences in Fk

± produce the same
codeword, thus resulting indistinguishable at the decoding stage. Such a drawback can
be avoided if and only if G induces an injective map or, equivalently, has full row rank
over the field of rational functions F(z1, z2). Since there exist submodules of Fn

± which
are not free, not every modular code admits an injective encoder. Finite codes which
are free F±-modules are called free modular codes.

Example Let F = GF (2) and consider the modular codes generated by the following
encoders

G1(z1, z2) :=
[

1 z1 z2

z−1
1 1 z2

]

G2(z1, z2) :=

 1 z1 z2

z1 z2 + z1 1
z1 + 1 z2 z2 + 1


G3(z1, z2) :=

[
(z1 + 1)(z2 + 1) (z1 + 1) z1z

−1
2

(z1 + z−1
2 )(z2 + 1) (z1 + z−1

2 ) z1z
−1
2

]
.

As G1 is full row rank, the code generated by G1 is a free module.

3



Even though G2 is not full rank, the code it generates is free, because the sum of the
first two rows of G2 gives the third one.
Finally, Im±G3 is not free. Actually, G3 is not full rank, so if there were a basis, it
would consist of a single row vector p ∈ F2

±. The rows of G3, being elements of the
module generated by p, should be L-polynomial multiples of p, and this requirement
determines p as p = [z2 + 1 z1z

−1
2 ], modulo a unit factor zn

1 z
m
2 , n,m ∈ Z. Such a

vector, however, does not belong to Im±G3.

To further constrain the structure of C, we can require that its codewords are the
solutions of an autoregressive system of equations, i.e. there exists a finite set of matrices
Hij ∈ Fq×n, such that w =

∑
h,k∈Zw(h, k)zh

1 z
k
2 belongs to C if and only if∑

i,j

w(h− i, k − j)HT
ij = 0, ∀ (h, k) ∈ Z× Z. (2.3)

Thus, letting HT (z1, z2) :=
∑

i,j Hijz
i
1z

j
2 = [hT

1 (z1, z2) ... hT
q (z1, z2)], w ∈ C if and only

if
wHT (z1, z2) = 0. (2.4)

Each column of HT provides a parity check, which can be applied to a received sequence
for testing whether it belongs to the code, and the representation

C = ker±HT := {w ∈ Fn
± : wHT (z1, z2) = 0}

shows that a finite number of parity checks is sufficient for a complete characterization
of C. The matrix HT (z1, z2) will be referred to as a syndrome decoder of C, and the cor-
responding codes are called finite convolutional codes. Their structure is characterized
by the following proposition.

Proposition 1 A free modular code C admits a syndrome decoder if and only if C has
a `FP encoder Ḡ(z1, z2).

Proof Let C = Im±Ḡ, where Ḡ ∈ Fk×n
± is `FP, and consider a full column rank matrix

HT (z2, z2) ∈ Fn×(n−k)
± , such that ḠHT = 0.

Clearly, if w ∈ C, then w = uḠ, for some u ∈ Fk
±, and wHT = (uḠ)HT = u(ḠHT ) = 0,

so w ∈ ker±HT . On the other hand, if w ∈ Fk
± is in ker±HT , it belongs to the subspace

of F(z1, z2)n orthogonal to the columns of HT , and spanned by the rows of Ḡ. Then
there exists a row vector f ∈ F(z1, z2)k such that

w = fḠ(z1, z2). (2.5)

We aim to prove that f is an element of Fk
±. Actually, as Ḡ is `FP, there exist [8] two

L-polynomials h(z1) ∈ F[z1, z
−1
1 ], k(z2) ∈ F[z2, z

−1
2 ], and two L-polynomial matrices

X(z1, z2) and Y (z1, z2), such that

Ḡ(z1, z2)X(z1, z2) = h(z1)Ik and Ḡ(z1, z2)Y (z1, z2) = k(z2)Ik. (2.6)
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It entails no loss of generality supposing that f has irreducible entries, fi. So, letting
d(z1, z2) the l.c.m. of the denominators of fi, (2.5) can be rewritten as

d w = [n1 ... nk] Ḡ, ni ∈ F±, i = 1, 2, ... (2.7)

Postmultiplying both members of (2.7) by X(z1, z2) and Y (z1, z2), we obtain

d wX(z1, z2) = [n1 ... nk] ḠX(z1, z2) = [n1 ... nk] h(z1)
d wY (z1, z2) = [n1 ... nk] ḠY (z1, z2) = [n1 ... nk] k(z2),

respectively. As d, n1, ..., nk have no common factors, it follows that d(z1, z2) | h(z1)
and d(z1, z2) | k(z2) , and therefore d is a unit in F±. Thus f belongs to Fk

± and w to
Im±Ḡ.
Vice versa, let C = ker±HT , with HT ∈ Fn×p

± and rank r, and consider any `FP
Ḡ(z1, z2) ∈ F (n−r)×n

± , such that ḠHT = 0. Using the same arguments as in the first
part of the proof, one shows that C = Im±Ḡ

Remark By the above proof, given any encoder G of a finite code C, each set of
generators for the subspace of F(z1, z2)n orthogonal to the rows of G, constitutes a
syndrome decoder of C. In particular, we can always resort to a rFP syndrome decoder
HT , which is unique modulo a right unimodular factor.

Some specific reliability requirements, concerning the reconstruction of the informa-
tion sequences at the decoding stage, justify the introduction of our restriction on the
structure of C. Usually, the received sequence wr is not in C but, when the transmis-
sion system is well-designed, wr differs from a codeword w of C in a finite number of
points, and therefore the error sequence e := wr − w belongs to Fn

±. Since an injec-
tive encoder G ∈ Fk×n

± induces a bijection between Fk
± and C, there exists a decoder

G−1(z1, z2) ∈ F(z1, z2)n×k such that GG−1 = Ik. So, when restricted to the set of the
codewords C, G−1(z1, z2) represents the inverse of the encoding map. The error sequence
e, however, needs not to be a codeword so applying G−1(z1, z2) to wr gives back the
sequence

ur = wrG
−1 = (uG)G−1 + eG−1 = u + eG−1,

which differs from the original information sequence by the (possibly infinite) recon-
struction error eG−1 = ur − u.
To avoid this kind of catastrophic errors, it is imperative to use an L-polynomials
decoder, that exists if and only if C admits a `ZP encoder G. Analogously with the 1D
case, modular codes generated by a `ZP polynomial matrix will be called finite basic
codes.

Example Let F = GF (2). It’s easy to check that the following L-polynomial matrix

G1(z1, z2) =
[
z−1

1 + 1 0 z2
1

z−1
2 z2 + 1 0

]
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is `ZP, while

G2(z1, z2) =
[
z2

1 + 1 0 z1

z2 + 1 z2
2 + z1 0

]
is `FP but not `ZP, since its maximal order minors have a common zero in (1, 1).
Therefore, no L-polynomial right inverse of G2 exists.

As 2D finite basic codes constitute a proper subclass of convolutional ones, it might
be expected that a characterization of their structure should be possible also in terms
of syndrome decoders. This is actually the case, as stated in the following proposition.

Proposition 2 Let C be a modular code. The followings are equivalent:

(i) C = Im±Ḡ, with Ḡ ∈ Fk×n
± and `ZP;

(ii) C = kerH̄T , with H̄T ∈ Fn×(n−k)
± and rZP.

Proof (i) ⇒ (ii) By the Quillen-Suslin theorem [11], there exists an L-polynomial
matrix P̄ (z1, z2) such that

U(z1, z2) :=
[
Ḡ(z1, z2)
P̄ (z1, z2)

]
is unimodular. The rZP matrix H̄T (z1, z2) ∈ Fn×(n−k)

± , constituted by the last n − k
columns of the inverse matrix U−1(z1, z2) = [L̄T (z1, z2) H̄T (z1, z2)], satisfies ḠH̄T = 0,
and therefore is a syndrome decoder of C.
(ii)⇒ (i) Using the same argument as in the first part of the proof, H̄T (z1, z2) can be
column-bordered into a unimodular matrix V (z1, z2) := [L̄T (z1, z2) H̄T (z1, z2)]. The
first k rows of V −1(z1, z2) provide a `ZP encoder Ḡ(z1, z2) of C

3 Equivalent encoders

The above discussion made it clear that a modular code can be generated by different
encoders. In a more algebraic theoretic setting, this amounts to say that an F±-module
admits different families of generators.

Two matrices G1 ∈ Fk1×n
± and G2 ∈ Fk2×n

± are equivalent encoders (G1 ∼ G2) if
they generate the same code, i.e. if the F±- modules generated by the rows of G1 and
G2 coincide. This implies that G1 is equivalent to G2 if and only if there exist two
L-polynomial matrices P1 ∈ Fk2×k1

± and P2 ∈ Fk1×k2
± such that

P1G1 = G2 P2G2 = G1 (3.1)

When confining ourselves to the class of full row rank encoders (namely, the injective
encoders of free modular codes), we can replace (3.1) with the single equation

G1 = UG2, (3.2)
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where U(z1, z2) denotes an F±-unimodular matrix. Indeed, (3.1) and the row rank
assumption on G1 and G2 imply that both matrices have the same number, say k, of
rows, and P1 and P2 are k × k L-polynomial matrices. From G1 = P2G2 = P2P1G1 we
get P2P1 = Ik and consequently U(z1, z2) := P2(z1, z2) is F±-unimodular. So, when a
code C admits a `FP (`ZP) encoder, all the injective encoders of C are `FP (`ZP), too.

As the various subclasses of modular codes introduced in section 2 are characterized
by the existence of suitable (injective, `FP or `ZP) encoders, an important issue is
to decide whether a code C, given through the assignment of an arbitrary encoder G,
admits an encoder enjoying the aforementioned rank and primeness properties. The
following proposition provides a complete answer.

Proposition 3 Let G(z1, z2) be in Fk×n
± , with rank k̄ over F(z1, z2). Then there

exist two L-polynomial matrices, Ḡ(z1, z2) ∈ F k̄×n
± `FP and T (z1, z2) ∈ Fk×k̄

± with full
column rank, such that

G(z1, z2) = T (z1, z2)Ḡ(z1, z2). (3.3)

Moreover, the code C = Im±G

(i) is free modular if and only if T factorizes into the product

T (z1, z2) = T̄ (z1, z2)L(z1, z2) (3.4)

where T̄ is rZP and L is a non singular square matrix;

(ii) is finite convolutional if and only if T is rZP;

(iii) is finite basic if and only if T is rZP and Ḡ is `ZP.

Proof Let G′ be a k̄ × n L-polynomial matrix, obtained by selecting in G k̄ rows
linearly independent over F(z1, z2). Then G = RG′, R ∈ F(z1, z2)k×k̄. Consider any
g.l.f. Q of G′ and factorize G′ into QḠ, Ḡ ∈ F k̄×n

± `FP. So G = TḠ, where T = RQ is
an L-polynomial matrix, by the same reasonings as in the proof of Proposition 1.
(i) Assume that in (3.4) T̄ is rZP and L is a nonsingular square L-polynomial matrix,
and consider the factorization G = T̄ (LḠ). As T̄ is right zero prime, the map T̄ : Fk

± →
F k̄
± is surjective, and we have Im±G = Im±LḠ. Being the image of a full row rank

matrix, the code C is free modular.
Vice versa, let C = Im±G be a free F±-module. Then, there exist a full row rank L-
polynomial matrix G̃ such that Im±G = Im±G̃, and two L-polynomial matrices P and
P̃ satisfying

G = P̃ G̃, G̃ = PG. (3.5)

From (3.5) one gets
(PP̃ − I)G̃ = 0, (3.6)

and the row rank assumption on G̃ implies PP̃ = I. So P is `ZP and P̃ is rZP.
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On the other hand, factorize the matrix T appearing in (3.3) as T = T̄L, where T̄ is
rFP. Using (3.5), we get T̄ (LḠ) = G = P̃ G̃ = P̃PG = P̃P T̄ (LḠ), and consequently
T̄ = P̃ [PT̄ ]. As T is rFP and P̃ is rZP, it follows that PT̄ is unimodular and T̄ is rZP.
(ii) and (iii) If in (3.3) T is a rZP matrix, the map T : Fk

± → F k̄
± is surjective and

therefore Im±G = Im±Ḡ. This means that C is finite convolutional when Ḡ is `FP, and
finite basic when Ḡ is `ZP.
Conversely, if Im±G = Im±G̃ for some `FP (`ZP) k̄ × n matrix G̃, there exists an
L-polynomial matrix P such that G̃ = PG, and therefore

G̃ = (PT )Ḡ. (3.7)

As both Ḡ and G̃ are `FP, PT is unimodular and T is rZP. Moreover, if G̃ is `ZP, Ḡ is
`ZP too.

In the remaining part of this section, we shall confine ourselves to finite convolu-
tional codes. Since these codes can be characterized as kernels of syndrome decoders, it
seems quite natural to ask how two syndrome decoders of the same code C are related
each other. The following proposition provides an equivalence condition for two syn-
drome decoders, and shows that, when dealing with encoders of convolutional codes,
the equivalence condition (3.1) can be replaced by a single L-polynomial equation.

Proposition 4 Consider a pair of finite convolutional codes Ci = Im±Gi = ker±HT
i , i =

1, 2. Then C1 = C2 if and only if

a) there exist two full column rank L-polynomial matrices P1 and P2 such that

P1G1 = P2G2 (3.8)

or, equivalently,

b) there exist two full row rank L-polynomial matrices Q1 and Q2 such that

HT
1 Q1 = HT

2 Q2 (3.9)

Proof a) Assume first Im±G1 = Im±G2. By Proposition 3, there exist two rZP L-
polynomial matrices T1 and T2 such that Gi = TiḠi, Ḡi `FP, i=1,2. Sincewehave
Im±Ḡ1 = Im±G1 = Im±G2 = Im±Ḡ2, we can find an F±-unimodular matrix U(z1, z2),
satisfying Ḡ1 = UḠ2, which, in turn, gives

T−1
1 (T1Ḡ1) = UT−1

2 (T2Ḡ2), (3.10)

T−1
1 and T−1

2 L-polynomial left inverses of T1 and T2, respectively. Putting P1 := T−1
1

and P2 := UT−1
2 in (3.10), one gets equation (3.8).

Viceversa, assume that (3.8) holds and, using Proposition 3, let Gi = TiḠi, Ti rZP, Ḡi

`FP, i = 1, 2. This gives (P1T1)Ḡ1 = (P2T2)Ḡ2, and, consequently,

Ḡ1 = (T−1
1 P−1

1 P2T2)Ḡ2, (3.11)
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where T−1
1 and P−1

1 are rational left inverses of T1 and P1 respectively. As both Ḡ1

and Ḡ2 are `FP, T−1
1 P−1

1 P2T2 is an F±-unimodular matrix. So, the equivalence chain
G1 ∼ Ḡ1 ∼ Ḡ2 ∼ G2 proves that G1 and G2 are equivalent encoders.

b) If (3.9) holds, we have
wHT

1 Q1 = 0 ⇔ wHT
1 = 0

and, similarly,
wHT

2 Q2 = 0 ⇔ wHT
2 = 0.

Therefore
ker±HT

1 = ker±HT
1 Q1 = ker±HT

2 Q2 = ker±HT
2 .

Viceversa, if HT
1 and HT

2 are equivalent syndrome decoders, the columns of HT
1 and

HT
2 generate the same subspace in Fn(z1, z2). Hence, there exists a rational matrix L

that satisfies the equation HT
1 L = HT

2 . We can column-border L into a full row rank
matrix [L M ], so as to get

HT
1 [L M ] = HT

2 [ I N ] , (3.12)

where M and N are suitable rational matrices. Consider now any rMFD RS−1 of
[L M ], and rewrite (3.12) as HT

1 R = HT
2 [ I N ]S. R is clearly full row rank and,

denoting by Q2J
−1 any rMFD of [ I N ]S, we get HT

1 Q1 = HT
1 RJ = HT

2 Q2, where
both Q1 := RJ and Q2 are full row rank

4 Dual codes

An obvious way to extend the finite codes considered in the previous sections, is to relax
the constraints on the supports of the codewords, thus allowing the codes to include
sequences with infinite supports. This point of view has been adopted in [6], where
(infinite) convolutional codes have been introduced by imposing increasingly stronger
constraints, typical of the “behavioural approach” [3,9], on two-dimensional sequences
in Fn

∞.
In this section we aim to show that every complete and, in particular, convolutional

(infinite) code can be seen as the set of all parity checks that can be applied to an
arbitrary sequence of Fn

±, to decide whether it belongs to a given modular code C.
From an algebraic point of view, this amounts to regard an infinite code as a space of
linear functionals on Fn

±, i.e. as the algebraic dual of a modular code.

Introduce in Fm
± ×Fm

∞ the non degenerate bilinear form

〈·, ·〉m : Fm
± ×Fm

∞ → F,

defined by : 〈u,v〉m = (uvT , 1) =
∑

i,j∈Z u(i, j)vT (−i,−j).
Two vectors u ∈ Fm

± and v ∈ Fm
∞ are called orthogonal if 〈u,v〉m = 0. Given any

modular code C ⊆ Fm
± , its orthogonal complement C⊥ is constituted by all vectors
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of Fm
± which are orthogonal to C. Similarly, every submodule D of Fm

∞ identifies an
orthogonal complement D⊥ in Fm

± .
We can associate with every v ∈ Fm

± the linear functional on Fm
± defined by

fv(·) = 〈·,v〉m (4.1)

and, conversely, every linear functional on Fm
± can be represented as in (4.1), for an

appropriate choice of v ∈ Fm
∞. This way the space Fm

∞ is identified with L(Fm
± ), and

several strong results, which do not hold for arbitrary pairs of dual spaces, are made
available [10].

Let C be a modular code, described as the image of the map

G : Fk
± → Fn

± : u 7→ uG,

and consider the map
GT : Fn

∞ → Fk
∞ : v 7→ vGT .

As 〈uG,v〉n = (uGvT , 1) = (u(vGT )T , 1) = 〈u,vGT 〉k, then G and GT are dual map-
pings. This implies

Im±G = (kerGT )⊥, (4.2)

and
kerGT = (Im±G)⊥, (4.3)

where
kerGT := {v ∈ Fn

∞ : vGT = 0}. (4.4)

By (4.2), the F±-submodule of Fn
∞, D := kerGT , represents the set of all linear functions

fv(·) we are allowed to apply when deciding whether w ∈ Fn
∞ belongs to C, and it will

be called the dual code of C.
Relations (4.2) and (4.3) together, induce a bijective map between the family of modular
codes (i.e. the family of submodules of Fn

±) and a family of specific F±-submodules of
Fn
∞, namely those that can be described as the kernel of polynomial operators. In the

sequel we will analyse some “internal” properties which characterize infinite codes that
can be described as duals of modular codes. Moreover we aim to investigate how the
subclasses of modular codes considered in section 2, mirror into classes of dual codes
having very special structures.

The submodules of Fn
∞ which can be represented as the kernel of a polynomial matrix,

are exactly those which are close in the pointwise convergence topology, i.e. the so
called “complete dual codes” [6]. A complete dual code D can be characterized as
follows: given an infinite sequence S1 ⊂ S2 ⊂ ... of finite windows invading Z × Z (so
that every point (i, j) ∈ Z× Z eventually belongs to all the windows of the sequence),
a sequence v ∈ Fn

∞ is an element of D if and only if there exist codewords v1,v2, ... in
D such that vi|Si = v|Si, i = 1, 2, ...
In general, to test whether w ∈ Fn

± is in some modular code C, we resort to parity
checks represented by elements of D, which possibly have an infinite support. This kind
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of checks seem quite unsuitable for an algorithmic implementation, so it’s interesting to
determine when the submodule of the finite codewords of the dual code,

Df := {v ∈ D : v ∈ Fn
±} = D ∩ Fn

± (4.5)

constitutes a set of parity checks sufficient to decide whether w is in C, namely under
which conditions the equivalence

w ∈ C ⇔ 〈w,v〉n = 0, ∀ v ∈ Df (4.6)

holds. Being an F±-submodule of Fn
±, Df is finitely generated, that is Df = Im±H for

some p× n L-polynomial matrix. Thus (4.6) can be restated as

w ∈ C ⇔ wHT = 0, (4.7)

where HT (z1, z2) can be seen as a syndrome decoder. As shown in section 2, a syndrome
decoder of C can be found if and only C is the image of a `FP L-polynomial matrix.
Therefore the submodule Df of the dual code D = C⊥ provides a set of parity checks,
rich enough to identify the elements of C if and only if C is finite convolutional, in this
case it’s natural to expect that the whole dual code D can be uniquely reconstructed
from Df . The following proposition shows that this is true, indeed, and analyses how
the main features of finite convolutional codes translate, via duality, into properties of
the corresponding duals, that will be called dual convolutional codes.

Proposition 5 [Finite and dual convolutional codes] Let C be a modular code of
length n and D = C⊥ its dual. The following facts are equivalent:

(a) C is finite convolutional, i.e. C = ker±HT for some L-polynomial matrix HT ;

(b) C = Im±Ḡ, for some Ḡ `FP L-polynomial matrix;

(c) D = ImH̃ := {v ∈ Fn
∞ : v = uH̃,u ∈ Fp

∞} for some L-polynomial matrix H̃;

(d) D = kerG̃T = {v ∈ Fn
∞ : vG̃T = 0} for some G̃T `FP;

(e) D is the closure, in the pointwise convergence topology on Fn
∞, of the F±-module

Df .

Proof (a) ⇔ (b) has been proved in section 2.
By resorting to the well-known property of dual maps

(ker±HT )⊥ = ImH, (4.8)

one gets D = C⊥ = (ker±HT )⊥ = ImH, so that (a) ⇒ (c), while

(ImH̃)⊥ = ker±H̃T (4.9)

implies C = D⊥ = (ImH̃)⊥ = ker±H̃T , and hence (c) ⇒ (a).

11



Analogously, from (4.3) it follows that D = C⊥ = (Im±Ḡ)⊥ = kerḠT and therefore (b)

⇒ (d), whereas, from (4.2) one gets C = D⊥ = (ker ¯̃G
T

)⊥ = Im±
¯̃G, and so (d) ⇒ (b).

Finally, the equivalence (c) ⇔ (e) has been proved in [6,9].

Remark If C = Im±G is not a finite convolutional code, i.e. G = TḠ, with Ḡ(z1, z2)
`FP and T (z1, z2) a full column rank L-polynomial matrix, which is not rZP, by applying
to a finite sequence w the parity checks associated with the elements of Df , we cannot
guarantee that w is in C. Indeed, the elements of Fn

± which belong to ker±HT are
exactly the codewords of Im±Ḡ.
Actually, as the rows of G belong to C, then 0 = GHT = TḠHT . Since T is a full column
rank matrix, it follows that Ḡ(z1, z2)HT (z1, z2) = 0, and therefore Im±Ḡ ⊆ ker±HT .
Conversely, as the columns of HT span in Fn(z1, z2) the vector space orthogonal to
the rows of Ḡ, each vector w ∈ ker±HT can be expressed as a linear combination over
F(z1, z2) of the rows of Ḡ. By the left factor primeness of Ḡ, the coefficients of the
combination are in F±, namely w ∈ Im±Ḡ.
It’s worthwhile to remark that the code Im±Ḡ is the minimal finite convolutional code
including C. Actually, if G̃(z1, z2) is a `FP L-polynomial matrix such that C ⊆ Im±G̃,
there exists an L-polynomial matrix P (z1, z2) such that PG̃ = G = TḠ. As T is full
column rank, there exists a left rational inverse T−1(z1, z2), so that Ḡ = (T−1P )G̃.
Moreover, since G̃ is `FP and Ḡ L-polynomial, T−1P is an L-polynomial matrix, which
implies that Im±Ḡ ⊆ Im±G̃.

Example Let F = GF (2) and let C = Im±G, where

G(z1, z2) =
[
z1 z2 + 1
1 0

] [
1 z2 1
z1 1 0

]
=: T (z1, z2)Ḡ(z1, z2).

A basis for the space orthogonal in F3(z1, z2) to the rows of G, consists of the following
vector

H(z1, z2) := [1 + z2(1 + z2 + z1z2) z1 + z2 1 + z2 + z1z2 + z1z
2
2 ].

HT is a syndrome decoder for the code C̄ := Im±Ḡ, which properly includes C. Actually
C̄ includes the sequence w = [z1 1 0], which is not an element of C, but produces an
all-zero pattern when applied to the syndrome decoder HT . Therefore w is recognized
by HT as a codeword.
The reason why the syndrome decoder proves to be unreliable for identifying the ele-
ments of C, is that the totality of the parity checks in ImH is a proper subset of the
dual code D = kerGT . For instance, the infinite sequence

v := [
∑
i∈Z

zi
2 0

∑
i∈Z

zi
2]

is an element of D which is not in ImH.
Note that, by applying v to the sequence w, we recognize it as an illegal sequence, since
fv̄(·) = 〈w, v̄〉n 6= 0, for each v̄ = zn

1 z
m
2 v, n,m ∈ Z.
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Proposition 2, together with the dual relations (4.2) ÷ (4.3) and (4.8) ÷ (4.9), allows
to obtain a characterization of finite basic codes and their duals, which is very close to
that provided by Proposition 5 for convolutional codes.

Proposition 6 [Finite and dual basic codes] Let C be a modular code of length n and
D = C⊥ the corresponding dual code. The followings are equivalent

(a) C is a finite basic code, namely C = Im±Ḡ, Ḡ `ZP;

(b) C = ker±H̄T , H̄T rZP;

(c) D = kerG̃T , G̃T rZP;

(d) D = ImH̃, H̃ `ZP

As underlined by Propositions 5 and 6, the bijective correspondence between mod-
ular codes and dual complete codes, maps, in particular, finite convolutional codes into
dual convolutional codes. Consequently, internal properties of the different classes of
modular codes mirror into internal properties of the corresponding classes of dual codes.
The analysis of these properties has been carried out in [6] mainly for dual codes, while
an internal characterization of the different classes of modular codes is still unavailable.
Indeed, what seems interesting to understand, is what kind of mutual relations among
codewords characterize a modular code, without taking into account the input-output
map which underlies their generation.
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