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Abstract

The main features of (finite) multidimensional convolu-
tional codes are introduced as properties of the codewords
supports, and connected with the polynomial matrices
(encoders) adopted for their description.
Observability and local detectability are shown to be
equivalent to the kernel representation of a code via some
parity check matrix HT .
The input/output representation of convolutional codes
is finally discussed, and some connections between matrix
primeness and the constraints every codeword imposes on
the support of the corresponding information sequence
are analysed.
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1 Introduction

Since the early seventies, the pioneering work of Forney
[3, 4] made it quite clear that the theory of discrete-time
multidimensional linear systems over a finite field pro-
vides a very convenient setting for the analysis of convo-
lutional codes. On the other hand, in the algebraic contex
many questions concerning convolutional codes proved to
have answers that seem quite illuminating and useful for
systems and control applications.
However, even if both fields exhibit some common re-
search directions and resort to similar mathematical
tools, the coding point of view is somewhat different from
that of linear systems. Actually, in system theory the
interest centers around input-output relations, while in
coding theory what is most important is the set of out-
put sequences of the encoder, i.e. the internal structure
of the code.
Quite recently, the behavioral approach, developed by
J.C.Willems [10] for the analysis of dynamical systems,
has been applied to the investigation of 1D and nD con-
volutional codes [1, 5, 7, ?]. This new framework seems
to be quite effective in the nD case, since it allows to

investigate the internal properties of the code without
explicitly referring to the machinery which underlies the
codewords generation and, in particular, without making
any assumption on the ordering of two dimensional data.
So, in principle, no artificial notion of causality in Zn,
and, consequently, no a priori restriction on the supports
of the signals are needed. Indeed, the finite-support con-
straint we shall introduce in a while on n-dimensional
codewords does not follow from causality considerations,
but corresponds to the fact that most of nD informa-
tion sequences encountered in the applications do not in-
finitely extend in Zn.
In this comunication we aim to exploit the behavioral
approach for analysing the algebraic properties of n-
dimensional convolutional codes with finite support code-
words. Particular attention has been devoted to the sup-
ports of information signals and codewords, as well as to
certain elementary operations (restriction, extension and
concatenation) which have a concrete meaning from the
signal processing standpoint. Actually, several “internal”
properties of a code can be introduced in terms of these
operations, and expressed as possibilities of “cutting and
pasting together” pieces of different trajectories into a
new one.

As each of these features mirrors into a particular poly-
nomial matrix representation, an explicit link between
the parity checks description of an nD convolutional code
and the concept of observability is derived. The code-
words of an observable code can be expressed as the so-
lutions of a system of multidimensional difference equa-
tions, and hence can be recognized by means of local
testing procedures.

A point of view somewhat complementary to detection
calls for an input/output analysis of the way the code-
words are generated, and their supports are related to
the corresponding information sequences. This problem
appears particularly relevant when the codewords are in-
jectively generated, and hence a given trajectory is pro-
duced by a unique input. Although no general state-
ment can be made on the way these supports are related,
specific assumptions on the structure of the generating
matrices allow to uniformly confine the support of each
input signal into a suitable extension of the support of

1



the associated codeword.

2 Basic properties of finite convo-
lutional codes

Let F be a finite field and denote by z the n-tuple
(z1, z2, ..., zn), so that F[z] and F[z, z−1] are shorthand
notations for the polynomial and the Laurent polynomial
(L-polynomial) rings in the indeterminates z1, ..., zn, re-
spectively.
For any sequence w = {w(h)}h∈Zn , taking values in Fp,
the support of w is the set of points where w is nonzero,
i.e., supp(w) := {h = (h1, h2, ..., hn) ∈ Zn : w(h) 6= 0}.
Also, w can be represented via a formal power series∑
hi∈Z

w(h1, h2, ..., hn) zh1
1 zh2

2 · · · zhn
n =

∑
h∈Zn

w(h) zh,

where h stands for the n-tuple (h1, h2, ..., hn) and zh for
the term zh1

1 zh2
2 ...zhn

n . On the other hand, power series
can be viewed as representing vectors with entries in
F∞ := FZn

, thus setting a bijective map between nD
sequences taking values in Fp and formal power series
with coefficients in Fp. This allows us to identify nD
sequences with the associated power series, in particu-
lar, finite support nD signals with L-polynomial vectors,
and to denote both of them with the same symbol w.
Sometimes, mostly when a power series w is obtained as
a Cauchy product, it will be useful to denote the coeffi-
cient of zh in w as (w, zh).
The support of a matrix G ∈ F[z, z−1]p×m is the union
of the supports of its elements.

An nD (finite) convolutional code C of length p is a set
of finite support signals (trajectories, codewords) taking
values in Fp and endowed with the following properties:

(L) [Linearity] If w1 and w2 belong to C, then αw1 +
βw2 ∈ C, for all α, β in F;

(SI) [Shift-Invariance] w ∈ C implies v = zhw ∈ C
for every h ∈ Zn

, i.e., B is invariant w.r.t. the shifts
along the coordinate axes in Zn

.

As every nD code C can be viewed as an F[z, z−1]-
submodule of F[z, z−1]p, which is a Noetherian module
[6], C is finitely generated, i.e., there exists a finite set of
column vectors g1,g2, ...,gm in F[z, z−1]p such that

C ≡
{∑m

i=1 giui : ui ∈ F[z, z−1]
}

= {w = Gu : u ∈ F[z, z−1]m} =: ImG.
(1)

The L-polynomial matrix G := row{g1,g2, ...,gm} is
called encoder (or generator matrix) of C.

G1 ∈ F[z, z−1]p×m1 and G2 ∈ F[z, z−1]p×m2 are
encoders of the same code if and only if there exist
P1 ∈ F[z, z−1]m1×m2 and P2 ∈ F[z, z−1]m2×m1 such
that G1P1 = G2 and G2P2 = G1. Consequently, G1

and G2 have the same rank r over the field of ratio-
nal functions F(z). Being an invariant w.r.t. all en-
coders of C, r is called the rank of C. It somehow rep-
resents a complexity index of the cod, as r independent
codewords can be found in C, while r + 1 trajectories
(w1,w2, ...,wr+1) always satisfy an autoregressive equa-
tion w1p1 + w2p2 + ...+ wr+1pr+1 = 0, with at least one
nonzero pi ∈ F[z, z−1].

A code C of rank r is free if it admits a full column
rank encoder, that is an encoder G with r columns. This
amounts to saying that each trajectory w in C is uniquely
expressed as a linear combination w = g1u1+g2u2+· · ·+
grur, ui ∈ F[z, z−1], of the columns of G.

The main properties of a finite code C are connected
with certain elementary operations we can perform on
its trajectories. These operations essentially reduce to
“pasting” pieces of different codewords into legal code-
words, or to “cutting” a set of samples out of a given
trajectory, so as to obtain a new codeword.

One of the pillars of Willems behavior theory is the
notion of (external) controllability. For 1D controllable
behaviors the past has no lasting implications about the
future [10], which means that the restriction of a 1D tra-
jectory to (−∞, t] does not provide any information about
the values the trajectory takes on [t+δ,+∞), when δ > 0
is properly chosen. In a multidimensional context the
notions of “past” and “future” are quite elusive and, in
many cases, unsuitable for classifying and processing the
available data. What seems more reasonable, instead, is
to investigate to what extent the values a trajectory w
assumes on a subset S1 ⊂ Zn influence the values on a
subset S2, disjoint from S1, and to check if there exists a
lower bound on the distance

d(S1,S2) := min

{
n∑
i=1

|hi − ki| : h ∈ S1,k ∈ S2

}
, (2)

which guarantees that w|S2, the restriction to S2 of the
sequence w, is independent of w|S1. This point of view
led to the following definition [8].

(C1) [Controllability] A convolutional code C is con-
trollable if there exists an integer δ > 0 such that, for any
pair of nonempty subsets S1,S2 of Zn

, with d(S1,S2) ≥ δ,
and any pair of codewords w1 and w2 ∈ C, there exists
v ∈ C such that

v|S1 = w1|S1 and v|S2 = w2|S2. (3)

While definition (C1) requires pasting together differ-
ent signals into a new one, the following statement refers
to the possibility of finding a legal extension for every
portion w|S of a codeword w, by adjusting the sample
values in a small area surrounding S. More precisely, by
introducing for ε ≥ 0 the ε-extension of the set S

Sε := {h ∈ Zn : d(h,S) ≤ ε},



one can give the following definition.

(C2) [Zero-controllability] A convolutional code C is
zero-controllable if there exists an integer ε > 0 such that,
for any nonempty set S of Zn

and any w ∈ C, there exists
v ∈ C satisfying v|S = w|S and supp(v) ⊆ Sε.

Properties (C1) and (C2) make sense, and are equiva-
lent, both for finite and infinite support behaviors, and
the proof of (C1) ⇔ (C2) given below holds for both of
them. However, while for an infinite behavior controlla-
bility constitutes an additional constraint w.r.t. linearity
and shift invariance [8, 9], conditions (C1) and (C2) are
always met by a finite convolutional code C, as a conse-
quence of its module structure [2].

Given two disjoint sets S1 and S2 which are far enough
apart, controllability expresses the possibility of steering
any code sequence known in S1 into another element of
C assigned on S2, meanwhile producing a legal codeword.
Like controllability, also observability will be introduced
without reference to the concept of state, according to
some recent works of Forney et al. [5, 7]. Observability
formalizes the possibility of pasting into a codeword any
pair of trajectories that take the same values on a suffi-
ciently large subset of Zn. This is equivalent to saying
that, however a codeword w ∈ C and a subset S ⊂ Zn

are chosen, the possible extensions of w|S only depend
on the values of w on a boundary region of S.

Under this viewpoint, observability endows a convolu-
tional code with a “separation property” that allows to
take into account only a small amount of data in order
to extend a portion of codeword.

(O1) [Observability] A convolutional code C is ob-
servable if there exists an integer δ > 0 such that,
for any pair of nonempty subsets S1,S2 of Zn

, with
d(S1,S2) ≥ δ, and any pair of codewords w1, w2 ∈ C,
satisfying w1|C(S1 ∪ S2) = w2|C(S1 ∪ S2), the sequence

v(h) =

w1(h) h ∈ S1

w1(h) = w2(h) h ∈ C(S1 ∪ S2)
w2(h) h ∈ S2

(4)

is a codeword.

-
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Fig. 2.1

Observability can be equivalently restated as follows:
if the support of a codeword w can be partitioned into a

pair of disjoint subsets, which are far enough apart, the
restrictions of w to each subset represent codewords.

(O2) [Zero-observability] A convolutional code C is
zero-observable if there exists an integer ε > 0 such that
for any w ∈ C satisfying w|(Sε \ S) = 0, S a nonempty
set in Zn

, the sequence

v(h) =
{

w(h) h ∈ S
0 elsewhere

(5)

belongs to C.

-
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Proposition 2.2 Observability and zero observability
are equivalent.

Proof (O1) ⇒ (O2) Assume that C fulfills condition
(O1). Given S ⊂ Zn and w ∈ C such that w|(Sδ\S) = 0,
take in (O1) w1 = w, w2 = 0, S1 = S and S2 = CSδ.
The trajectory v ∈ C satisfying (4), satisfies also (5) with
ε = δ.

(O2) ⇒ (O1) Assume that C fulfills condition (O2).
Given S1,S2 ⊂ Zn

, with d(S1,S2) > ε, and w1, w2 ∈ C
satisfying w1|C(S1 ∪ S2) = w2|C(S1 ∪ S2), the sequence
w1 − w2 ∈ C satisfies (w1 − w2)|C(S1 ∪ S2) = 0. As a
consequence, the sequence w given by

w(h) =
{

w1(h)−w2(h) h ∈ S1

0 elsewhere

is in C, and v := w + w2 ∈ C fulfills (4). So, (O1) holds
for δ = ε+ 1.

3 Codeword recognition

Observability is related with the issue of recognizing
whether a given sequence v ∈ F[z, z−1]p is an element
of C. This problem can be managed by resorting to a
linear filter, a syndrome former, that produces an identi-
cally zero output signal when the input is a codeword of
C. From a mathematical point of view, this requires to
find a set of sequences (parity checks) endowed with the
property that their convolution with every element of C
is zero.

So, for a given code C ⊆ F[z, z−1]p, a (finite) parity
check is a column vector s ∈ F[z, z−1]p that satisfies
sTw = 0, for all w ∈ C. The set C⊥ of all finite parity
checks of C is the orthogonal code, and as a submodule of



F[z, z−1]p, it is generated by the columns of some matrix
H ∈ F[z, z−1]p×q, that is

C⊥ = {s ∈ F[z, z−1]p : s = Hx,x ∈ F[z, z−1]q} = ImH. (6)

Condition sTw = 0, ∀ s ∈ C⊥, however, need not imply
w ∈ C. In general

C⊥⊥ := {w ∈ F[z, z−1]p : sTw = 0,∀ s ∈ C⊥} (7)

properly includes C, and is the set of all L-polynomial
vectors obtained by combining the columns of G over the
field of rational functions F(z). It is clear that C can be
identified via a finite set of parity checks if and only if C
= C⊥⊥ or, equivalently,

C = kerHT := {w ∈ F[z, z−1]p : HTw = 0}. (8)

In this setting, observability finds a somewhat more sub-
stantial interpretation. Actually, if C = kerHT , the re-
striction of a code sequence to a set S still provides a
legal codeword every time the distance between S and
the remaining support of the sequence exceeds the range
of action of the parity check matrix H.

Proposition 3.1 below shows that kernel representa-
tions are possible, as it can be expected, only for observ-
able code, and makes it clear that observability induces
further constraints on the structure of B, in addition to
linearity and shift invariance.

Proposition 3.1 A convolutional code C ⊆ F[z, z−1]p is
observable if and only if there exist an integer h > 0 and
an L-polynomial matrix HT ∈ F[z, z−1]h×p such that B
= kerHT .

The proof of the proposition depends on the following
technical lemma.

Lemma 3.2 [2] Let m(z) be in F[z]. For any integer
ρ > 0 there is p(z) ∈ F[z] s.t. m(z)p(z) ∈ F[zρ] :=
F[zρ1 , ..., z

ρ
n].

Proof of Proposition 3.1 Assume that C = ImG,
G ∈ F[z, z−1]p×m, is an observable code, and let C⊥ =
Im H, H ∈ F[z, z−1]p×q, denote the orthogonal code in-
troduced in (6). We will show that C ≡ kerHT . Since
HTG = 0, it is clear that kerHT ⊇ C. To prove the con-
verse, express w ∈ kerHT as w = Gn/d(z), d ∈ F[z],n ∈
F[z, z−1]m×1. By Lemma 3.2, for every integer ρ > 0
there is a suitable polynomial p(z) such that p(z)d(z) ∈
F[zρ1 , . . . , , z

ρ
n]. If property (O2) holds for ε > 0, and r > 0

is an integer such that supp(w) ⊆ B(0, r), we choose
ρ > 2r + ε. So, the codeword p(z)d(z)w = Gnp(z) can
be written as

∑
i1,i2,...,in

ci1,i2,...,in z
ρi1
1 zρi22 · · · zρinn w, and

thus is the sum of disjoint shifted copies of w, and the
distance between two arbitrary copies exceeds ε. So, by
(O2), each copy of w, and hence w itself, is in C.
Conversely, let C = kerHT , and set ε = 2s, with s > 0 an
integer s.t. B(0, s) ⊇ supp(HT ). If S is a subset of Zn

and w ∈ C satisfies w|(Sε \ S) = 0, the sequence

v(h) =
{

w(h) h ∈ S
0 elsewhere

is in kerHT and hence in C. Consequently, C is zero-
observable.

The kernel description given in Proposition 3.1 leads to
new insights into the internal structure of an observable
code. Observability, indeed, expresses the “local nature”
of the code or, equivalently, the existence of a bound
on the size of all windows (in Zn) we have to look at
when deciding whether a signal belongs to C. Denoting
by C|S := {w|S : w ∈ C} the set of all restrictions to S
of code trajectories, the above localization property finds
a formal statement as follows:

(O3) [Local-detectability] A convolutional code C is
locally-detectable if there is an integer ν > 0 such that
every signal w satisfying w|S ∈ C|S for every S ⊂ Zn

with diam(S) ≤ ν, is in C.

Proposition 3.3 Local detectability and observability
are equivalent.

Proof Assume that C satisfies (O3) for a certain ν > 0.
Given S ⊂ Zn and w ∈ C such that w|(Sν \ S) = 0,
define v as follows

v(h) =
{

w(h) h ∈ Sν
0 elsewhere.

(9)

Consider any window W, with diam(W) ≤ ν. If W is
included in Sν , then v|W = w|W ∈ C|W, otherwise we
have W ∩S = ∅, and therefore v|W = 0|W ∈ C|W. So,
by (O3), v is a codeword, and (O2) holds for ε = ν.

Conversely, assume that C is observable. By Propo-
sition 3.1, there exists an L-polynomial matrix H ∈
F[z, z−1]p×q such that B = kerHT . Let ν > 0 be an
integer such that supp(HT ) ⊆ B(0, ν), and suppose that
v is any signal satisfying v|S ∈ C|S for every S ⊂ Zn

with diam(S) ≤ 2ν. If S̄ := −supp(HT ), the computa-
tion of the coefficient of zk in HTv involves only samples
of v indexed in

k + S̄ := {h ∈ Zn : h− k ∈ S̄} = −supp(zkHT ). (10)

On the other hand, since diam(k + S̄) ≤ 2ν, there exists
wk ∈ C which satisfies v|(k + S̄) = wk|(k + S̄), and
this result holds for every k ∈ Zn. So, the coefficient
of zk in HTv is the same as in HTwk ≡ 0, and hence
v ∈ kerHT = C.

The equivalent descriptions of observability given in
(O1) ÷ (O3) rely on the codewords’ supports, whereas
Proposition 3.1 involves parity checks and kernel repre-
sentations. A different approach to this notion consists of
regarding convolutional codes of length p as elements in
the lattice of submodules of F[z, z−1]p, and investigating
whether observable elements enjoy some special ordering
properties.

Keeping in with the same spirit, we may investigate
how an observable code is affected by certain “exten-
sion operations” that merge lattice elements into larger



ones. There are essentially two natural ways to perform
these extensions: one consists of embedding F[z, z−1]p,
and therefore each of its submodules, in the rational vec-
tor space F(z)p, the other of considering F[z, z−1]p as a
submodule of Fp∞, the set of nD codewords of length p,
whose supports possibly extend to the whole space Zn.

Once a convolutional code C of length p is given, in the
first case we have to consider the smallest vector subspace
of F(z)p including C

Crat :=
{ r∑
i=1

wiai : wi ∈ C, ai ∈ F(z), r ∈ N
}
, (11)

and restrict our attention to the submodule Crat ∩
F[z, z−1]p of finite support codewords. In general this
properly includes C, and hence is a larger element of the
lattice. In the other case, we merge C in

C∞ :=
{ r∑
i=1

wiai : wi ∈ C, ai ∈ F∞, r ∈ N
}
, (12)

the smallest F[z, z−1]-submodule of Fp∞ which includes
C. Again we have to confine ourselves to the set of its
finite elements C∞ ∩F[z, z−1]p, which clearly includes all
codewords of C.

Proposition 3.4 Let C ⊆ F[z, z−1]p be a convolutional
code of rank r. The following statements are equivalent:

(1) C is observable;
(2) C ≡ C∞ ∩ F[z, z−1]p;
(3) C ≡ Crat ∩ F[z, z−1]p;
(4) C is maximal in the set of all submodules of

F[z, z−1]p of rank r;
(5) sw ∈ C ⇒ w ∈ C, for every w ∈ F[z, z−1]p and

every nonzero s ∈ F[z, z−1];
(6) C = C⊥⊥.

Proof (1) ⇒ (2) As C is observable, there exists H ∈
F[z, z−1]p×q such that C = kerHT = {w ∈ F[z, z−1]p :
HTw = 0}. If w ∈ C∞ ∩ F[z, z−1]p, then w =

∑
i wiai,

ai ∈ F∞,wi ∈ C, and therefore HTw = HT
(∑

i wiai

)
=∑

i(H
Twi)ai = 0. Thus w ∈ kerHT = C, which implies

C ⊇ C∞ ∩ F[z, z−1]p. The reverse inclusion is obvious.
(2) ⇒ (3) Follows immediately from C ⊆ Crat ∩
F[z, z−1]p ⊆ C∞ ∩ F[z, z−1]p.
(3) ⇒ (4) If C′ ⊇ C and rankB′ = rankC, it is clear
that B and C′ generate the same F(z)-subspace of F(z)p

and, consequently, Crat ∩ F[z, z−1]p = C′rat ∩ F[z, z−1]p.
So, the inclusions chain Crat ∩ F[z, z−1]p ⊇ C′ ⊇ C and
assumption (3) together imply C′ = C, which means that
C is maximal.
(4) ⇒ (5) Suppose sw ∈ C, s ∈ F[z, z−1]. The code
C′ generated by C and w has the same rank of B , and
hence, by the maximality assumption, coincides with C.
(5)⇒ (6) As C and C⊥⊥ have the same rank r and C⊥⊥ ⊇
C, both codes generate the same F(z)-subspace of F(z)p.

In particular, w ∈ C⊥⊥ implies w ∈ (C⊥⊥)rat = Crat. So,
there exist pi, si ∈ F[z, z−1] and wi ∈ B , such that w =∑r
i=1 wi pi/si, which implies sw ∈ C, s = `.c.m.{si}. By

assumption (5), also w is in C.
(6) ⇒ (1) Since C⊥ is a submodule of F[z, z−1]p, there
exists a suitable L-polynomial matrix H such that C⊥ =
ImH. So

C⊥⊥ = {w ∈ F[z, z−1]p : vTw = 0,∀v ∈ ImH} = kerHT .

By assumption (6), C coincides with kerHT , and hence is
observable.

4 Codeword generation

The analysis we carried out in the previous sections fo-
cused on the properties of the codewords, without con-
cern for the way they are generated. Once a code C is
represented via a finite set of generators g1,g2, ...,gm,
however, it is natural to look at G := [g1 g2 ... gm] as
a transfer matrix, and hence to consider C as the im-
age of an input-output map acting on F[z, z−1]m. When
the input/output point of view is adopted, it is often
imperative to associate codewords of C and information
sequences bijectively. The meaning of this requirement
is that information messages need to be unambiguously
retrieved from the received codewords at the decoding
stage, which amounts to say that the encoder G induces
a 1-1 map.

Throughout this section we steadily assume that C has
a full column rank encoder G, and hence is a free mod-
ule. Under this assumption, G admits (possibly infinitely
many) rational left inverses G−1. Each of them, when
applied to a codeword w = Gu, uniquely retrieves the
(finite) information sequence u. This implies that every
estimate ŵ ∈ B of a codeword w produces a finite error
eu := u − G−1ŵ = G−1(w − ŵ) in reconstructing the
information sequence u. Consequently, no catastrophic
error can arise [1, 3]. However, if we apply the “decoder”
G−1 directly to the noisy sequence v = w+r, as r gener-
ally is not an element of C, the decoding algorithm possi-
bly gives an infinite support sequence, which differs from
the correct input in infinitely many points and clearly is
not even an admissible information sequence. This draw-
back can be avoided if and only if G−1 is an L-polynomial
matrix.

Proposition 4.1 below provides equivalent conditions
for the existence of an L-polynomial inverse, and in par-
ticular shows that such an inverse exists if and only if G
is left zero-prime (`ZP).

Definition Let G be in F[z, z−1]p×m and Ĝ = zhG =
zh1
1 · · · zhn

n G in F[z]p×m for some h ∈ Nn
. If K denotes

the algebraic closure of F, the L-variety VL(G) of the



maximal order minors of G is the algebraic set

VL(G) := V(Ĝ) \
{

(k1, ..., kn) : ki ∈K,
∏
i

ki = 0
}
,

(13)
where V(Ĝ) denotes the variety (in K) of the maximal
order minors of Ĝ.

The above definition is well-posed, as (13) does not de-
pend on the choice of Ĝ.

Proposition 4.1 [2] Let G be a p × m L-polynomial
matrix. The following statements are equivalent:
i) G is right zero-prime (rZP);
ii) there exists P ∈ F[z, z−1]m×p s.t. PG = Im;
iii) VL(G) is empty;
iv) Im GT = F[z, z−1]m.

When the encoder G has an L-polynomial inverse, a
uniform bound can be found on the support of the infor-
mation sequences which correspond to the code trajecto-
ries. Actually, if P is such an inverse, w ∈ C is generated
by the input signal u = Pw whose support cannot ex-
ceed “too much” that of w. This feature, we will refer
to as wrapping input property, is quite appealing, as the
mere recognition of the support of a codeword allows the
derivation of a uniformly tight bound on the support of
the corresponding information sequence and hence guar-
antees that small errors in the codeword estimate reflect
into small errors in the information sequence reconstruc-
tion.

-
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Fig. 4.1

(WI) [Wrapping input property] A convolutional
code C has the wrapping input property if there exist a
full column rank encoder G and a positive integer δ such
that w = Gu implies

supp(u) ⊆
(
supp(w)

)δ
. (14)

Interestingly enough, the zero primeness of G is not
only sufficient but also necessary for property (WI). So,
free codes satisfying property (WI) can be identified with
codes that are generated by `ZP matrices.

Proposition 4.2 A convolutional code C has the (WI)
property if and only if it admits a right zero-prime en-
coder.

Proof The “if” part has already been proved. To show
the converse, we need the following characterization of
right zero prime matrices.

Lemma 4.3 [2] Let G ∈ F[z, z−1]p×q be a Laurent poly-
nomial matrix and denote by F[[z, z−1]]q the space of
bilateral scalar formal power series in the indeterminates
z1, . . . , zn. Then G is right zero prime if and only if

Gs = 0 (15)

for some sequence s ∈ F[[z, z−1]]q implies s = 0.

Suppose, now, that C has the (WI) property w.r.t.
some positive integer δ and some full column rank en-
coder G. We aim to prove that G is rZP. If not, there
would be a sequence s ∈ F[[z, z−1]]q satisfying (15). Let
η be the radius of a ball, B(0, η), centered in the origin
and including supp(G). If k is an element of supp(s), the
finite support sequence

u(h) :=
{

s(h) h ∈ B(k, 2δ + η)
0 elsewhere

generates a codeword w := Gu that does not fulfill (14).

The (WI) property introduces very severe constraints
on the supports of the input sequences which produce
the code trajectories. So, it is not unexpected that it
reflects into the strongest primeness property an encoder
can be endowed with, namely zero-primeness. Obviously,
weaker requirements on the supports of the generating
sequences correspond to weaker primeness properties of
G. In particular, minor primeness guarantees that the
signal producing a codeword w exhibits a support which
slightly exceeds a parallelepipedal box including supp(w),
whereas variety primeness ensures that each projection
of u and w onto a coordinate hyperplane gives a pair of
signals with the (WI) property. The interested reader is
referred to [2].
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