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1 Introduction

Convolutional coding has been a common research area for coding and system theorists.
This connection was first established by Massey and Sain, in the late 60’s, when they
described a convolutional encoder as a transfer function of a linear, time-invariant system,
over a finite field [7]. In the early 70’s, Forney reinforced this relation [4, 5] establishing the
basis of a general algebraic theory of convolutional codes, which was strongly influenced
by the algebraic theory of multivariable systems.

While systems theory studies the input/output relations of linear systems, coding theory
concentrates on the set of output sequences, i.e., the code. The behavioral approach to
systems theory, introduced by Willems [10], provided a common methodology framework
for dynamical systems and convolutional codes, since a convolutional code is a linear,
time-invariant behavior.

Convolutional codes over a finite field constituted by left compact sequences have been
studied since many years [4, 5, 3, 6, 8]. In our previous work, we have also studied these
codes. We have considered the behavioral approach to systems theory to present a new
definition of a convolutional code over a finite field constituted by left compact sequences.
In the analysis of the encoders of such codes, which are rational matrices, we used Matrix
Fraction Descriptions (MFD’s) and have characterized some properties of the encoders
and the structure of the code. In the study of the minimal encoders of a convolutional
code, we have constructed a simple parametrization of their MFD’s and have obtained all
minimal encoders of the code by application of static feedback and precompensation to a
realization of a canonical one. These results are collected in [9].

In this communication, we extend these analysis to convolutional codes over a finite field
constituted by bilateral sequences (bilateral convolutional codes). We give a definition of
a bilateral convolutional code using the behavioral approach to systems theory and, next,
we analyze the encoders of the code.



2 Bilateral convolutional codes

A dynamical system,
= (Ta w, B),

models a phenomenon that evolves over the time set 7 and is described by trajectories
that take values on W. The set of all trajectories w € W7 compatible with the laws of
the system is called the behavior B [10].

Let us restrict to discrete-time systems, i.e., 7 = Z, over W = IF?, where F is a finite field
and p € N. Any trajectory w : Z — F? : t +— w; can also be represented as a bilateral
formal power series with vector coefficients, w(d) := 3_,c; wid' € FP. We will use these
two representations of a trajectory, interchangeably, depending on the problem we are
dealing with.

The “universe” of all trajectories FZ, is endowed with an F-linear structure. Moreover,
the multiplication by d (d~!) of a series W(d) = 3 w;_1d", induces the one-step forward
(backward) shift:

W(d) > dw(d) =) wiad (W(d)—d™ W(d) =) wedh).

A behavior B € FZ, is time-invariant if it is closed under forward and backward shift. The
time-invariant F-subspaces of FE, are the F[d, d~!]-submodules of FE..

An important property of a behavior B is completeness, since it implies the existence of a
mathematical representation of B.

Definition 2.1 [10]: A behavior B is said to be complete if when w|y € B|y for all I C Z
then w € B.

The family of the complete, time-invariant F-subspaces of FZ will be represented by
B(F%)-

The concatenation w'') o w(?) of two trajectories w(!) and w(® at time @ is defined as
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A fundamental notion for the definition of bilateral convolutional codes that we refer
is controllability. Controllability of a behavior B is related with the “independence” of
restrictions of B to time intervals that are sufficiently “separated”.

Definition 2.2 [10]: A behavior B is N-controllable (for some N € N) if, given any two
trajectories w) and w'? in B and an arbitrary time instant 6, there exists a suitable

r € 3 such that
l)or fo) W(z) EB

8 8+N

wl

As it is well known, controllable behaviors in B(FZ%,) are the ones that admit an image
representation, as stated on the following Proposition.

Proposition 2.1 [10]: Let B € B(F%)). The following are equivalent:



i) B is N-controllable, for some N € N;

ii) there exists an integer m € N and a left prime matrix G(d,d™') € F[d,d~!]™*P such
that

B = Imy,G(d,d™!)
= {W(d) € F : W(d) = i(d) G(d,d7"), u(d) € F},

where [F[d, d~!] represents the ring of Laurent polynomials.

Let B € B(FZ) be N-controllable, for some N € N, and B := BN F[d,d"']?, ie.,
B js constituted by the finite support sequences of B. Bfi" is an F[d, d~!]-submodule
of Fld,d™'|P, and if G(d,d™ ) € F[d,d"}|™*P is a left prime matrix such that B =
Ime, G(d,d™1), then the rows of G(d,d™!) constitute a basis of Bi®. Therefore, B is
a free module, and therefore all basis of Bi" have the same cardinality [1]. Moreover, all
basis of Bi" also generate B, as stated in the following Proposition.

Proposition 2.2 [10, 2]: Let B € B(FZ)) be N-controllable, for some N € N, such that Bf®
is an F[d,d']-submodule of F[d,d~1|P of dimension m. Then if G(d,d™') € F[d,d~1]™*P
is a matrix whose rows constitute a basis of B, then B = Imy, G (didY):

Definition 2.3 Let p > m > 0, p,m € N. A [p,m|-convolutional code C is an N-
controllable element of B(FL), for some N € N, such that B™ is an m-dimensional
F|d,d~']-submodule of F[d,d1]P.

So, from Proposition 2.1, bilateral convolutional codes admit an equivalent characteri-
zation as the image of Laurent polynomial matrices. The time-invariance of such codes
implies the existence of polynomial (causal) matrices that generate the code, and conse-
quently, bilateral [p, m]|-convolutional codes correspond to the output spaces of m-input
p-output linear sequential circuits (linear finite dimensional systems over a finite field).
Moreover, as stated in the next Proposition, the N-controllability of a bilateral convolu-
tional code C is connected with the degree of a polynomial matrix that generates C (i.e.,
with the degree of a basis of Cfin).

Proposition 2.3: Let B € B(F%)). The following are equivalent:
i) B is N-controllable;
ii) there exists a polynomial matrix P(d) = Py+Pid+Pad?+- - -+Pyd" € F|d]™*P, with
Py #0, such that B = Im P(d) = {W(d) € FZ, : w(d) = a(d)P(d), u(d) € F7}.

3 Encoders of a bilateral convolutional code

A bilateral [p, m]-convolutional code is the image of a map

x: Fo — T
a(d) — a(d)Gd,d™)

where G(d,d™!) is an m x p full rank Laurent matrix.
To allow the inverse operation, in order to recover the sent information sequence, the map
x must be injective, and y is injective if and only if G(d,d™') is left prime.



Definition 3.1 An encoder of a [p, m]-convolutional code C C FP, is a left prime m x p
Laurent polynomial matrix G(d,d™!) such that € = Ime, G(d,d™1).

Equivalent encoders (i.e., encoders that generate the same code) differ by a Laurent uni-
modular left factor.

Restricting to causal encoders, we obtain the encoders over F[d]. Minimal encoders are
causal encoders which have a physical realization with minimum number of delay ele-
ments. Here we will show that all minimal encoders of a convolutional code are obtained
fixing a polynomial encoder which is left prime and row reduced. We will also derive a
parametrization similar to the one obtained for the case of codes formed by left compact
sequences.
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