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Abstract

The dynamics of a 2D positive system depends on the pair of nonnegative
square matrices that provide the updating of its local states. In this paper,
several spectral properties, like finite memory, separability and property L,
which depend on the characteristic polynomial of the pair, are investigated
under the nonnegativity constraint and in connection with the combinatorial
structure of the matrices.
Some aspects of the Perron-Frobenius theory are extended to the 2D case;
in particular, conditions are provided guaranteeing the existence of a common
maximal eigenvector for two nonnegative matrices with irreducible sum. Finally,
some results on 2D positive realizations are presented.
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1 Introduction

A (1D) discrete time linear system

x(h+ 1) = Ax(h) + Cu(h)
y(h) = Hx(h) + u(h)

(1.1)

is positive if its state, input and output variables are always nonnegative in value.
Positive systems arise quite frequently [18] since the internal and the external vari-
ables of many real systems represent quantities (such as pressure, concentration,
population levels, etc.) that may not have meaning unless they are nonnegative.

A fairly complete description of their dynamical behavior relies on a family of re-
sults, such as the celebrated Perron-Frobenius and König-Frobenius theorems [3,21],
dealing with the spectral and combinatorial structure of nonnegative matrices.
Interestingly enough, several new problems arising in a system theoretic context
stimulate the research and open new vistas over the field of positive matrices. Just
to mention a few of them, we recall the reachability and observability analysis, and
the state space realization of one-dimensional (1D) positive systems [19,23].

Linear systems depending on two independent discrete variables (2D systems)
appeared in the literature nearly twenty years ago [1,6,25,17]. At the very beginning
they have been introduced to investigate recursive structures for processing two-
dimensional data. This processing has been performed for a long time using an input-
output description of the algorithms via ratio of polynomials in two indeterminates.
The new idea that originated research on 2D systems consisted in considering these
algorithms as external representations of dynamical systems and hence in introduc-
ing for such systems the concept of state and the updating equations, given by [7]

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k) + Cu(h, k + 1) +Du(h+ 1, k)
y(h, k) = Hx(h, k) + Ju(h, k).

(1.2)
It turns out that these models, which evolve according to a quarter plane causality
law, are suitable for providing state space descriptions of a large class of processes.
Typically they apply to two-dimensional data processing in various fields, as seis-
mology, X-ray image enhancement, image deblurring, digital picture processing, etc.

Quite recently some contributions dealing with river pollution modelling [5] and
the discretization of PDE’s that describe gas absorption and water stream heating
[20], naturally introduced the nonnegativity constraint in equation (1.2). The same
constraint appears in examples of discretized biological processes involving diffusion
and advection phaenomena, whose description relies on 2D compartmental models
(see, for instance, the dynamics of a tracer injected in a blood vessel [29]).

As in the 1D case, positivity is expected to endow a 2D system with very special
properties, that find no counterpart in the general case. As a consequence, it seems
both useful and appealing to look for a more general setting where all such properties
can be framed.
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A 2D positive (linear) system is a state model whose variables take positive (or
at least nonnegative) values. Here we restrict our investigation to unforced 2D state
motions, as given by the following updating equation

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k), (1.3)

where the doubly indexed local state sequence x(·, ·) takes values in the positive cone
Rn

+ := {x ∈ Rn : xi ≥ 0, i = 1, 2, ..., n}, A and B are n × n nonnegative matrices.
The initial conditions are assigned by specifying the (nonnegative) values of the local
states on the separation set C0 := {(i,−i) : i ∈ Z}. However, different choices for the
support of the set of initial conditions are possible [5], (for instance, by assuming
initial conditions on S = {(i, 0) : i > 0} ∪ {(0, j) : j > 0}) and they do not affect the
content of the paper.

The aim of this contribution is to explore some mathematical issues, coming
under the heading of nonnegative matrix theory, that entail important consequences
on the pattern of the state evolution and on the internal structure of 2D positive
systems.
The results we are going to present involve both the spectral and the combinatorial
description of some classes of nonnegative matrix pairs, which occur quite frequently
in the applications.
In section 2, we investigate in detail finite memory and separable pairs (A,B). The
main tools we resort to are the traces of the Hurwitz products and the (1D) char-
acteristic polynomial of A + B, which allow for a complete picture of the spectral
properties of (A,B). On the other hand, using row-column permutations, we obtain
canonical forms for finite memory and separable pairs, which provide good insights
in the combinatorial structure of the corresponding 2D positive systems and, con-
sequently, in the patterns of their evolutions. A more general class of matrix pairs,
i.e., nonnegative pairs (A,B) with property L, is considered in section 3. In gen-
eral this property does not introduce obvious constraints on the zero pattern of
the pair. However, if we require that property L is preserved for all pairs obtained
from (A,B) by modifying, or possibly zeroing, only its nonzero elements, we get a
complete combinatorial characterization of the pair. A similar, yet not completely
equivalent, point of view is that of giving an element of the pair, say A, and in-
vestigating what are the nonnegative matrices B such that (A,B) is endowed with
property L. A complete solution in the case when A is diagonal is provided.

A further relevant feature of nonnegative pairs with property L turns out to
be the coupling of the Perron-Frobenius eigenvalues of A and B when A + B is
irreducible. The related question of the existence of a common maximal eigenvector
for both A and B is addressed in section 4, and positively answered when A and B
constitute a quasi-commutative pair. In general, however, a nonnegative pair (A,B)
with property L does not admit a common maximal eigenvector, and the maximal
eigenvector of αA+ (1− α)B can only be expressed as a polynomial function of α.
On the other hand, a different approach, which gets rid of property L, allows to
completely characterize nonnegative pairs with a common maximal eigenvector in
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terms of row stochastic matrices.
In section 5 we present some results on the 2D inverse spectral problem, namely

on the construction of a nonnegative pair that exhibits a prescribed characteristic
polynomial. As a byproduct, we obtain a counterexample showing that property L
does not imply simultaneous triangularizability (the so-called “property P”) even
when nonnegative matrices are considered.

Some extensions to matrix pairs endowed with 1-linearity conclude the paper.

Before proceeding, we introduce some notation. If M = [mij ] is a matrix (in partic-
ular, a vector), we write

i) M � 0 (M strictly positive), if mij > 0 for all i, j;

ii) M > 0 (M positive), if mij ≥ 0 for all i, j, and mhk > 0 for at least one pair
(h, k);

iii) M ≥ 0 (M nonnegative), if mij ≥ 0 for all i, j.

The positive matrix whose (i, j)-th entry is 1, while all others are 0, is denoted by
Eij .
To every n × n nonnegative matrix M we associate [3] a digraph (directed graph)
D(M) of order n, with vertices indexed by 1, 2, ..., n. There is an arc α = (i, j) from
i to j if and only if mij > 0.
Two n×n nonnegative matrices M = [mij ] and N = [nij ] have the same zero pattern
if mij = 0 implies nij = 0 and vice versa. M and N have the same zero pattern if
and only if D(M) = D(N).

In some cases, it will be convenient to denote the (i, j)-th entry of a matrix M as
[M ]ij .

The symbol ∗ represents the Hadamard product: if A and B are n× n (nonneg-
ative) matrices, then A ∗B is the n× n matrix whose entries are given by

[A ∗B]ij = [A]ij [B]ij .

We shall use some terminology borrowed from semigroup theory [26]. Given the
alphabet Ξ = {ξ1, ξ2}, the free monoid Ξ∗ with base Ξ is the set of all words

w = ξi1ξi2 · · · ξim , m ∈ Z, ξih ∈ Ξ.

The integer m is called the length of the word w and denoted by |w|, while |w|i
represents the number of occurencies of ξi in w, i = 1, 2. If

v = ξj1ξj2 · · · ξjp

is another element of Ξ∗, the product is defined by concatenation

wv = ξi1ξi2 · · · ξimξj1ξj2 · · · ξjp .
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This produces a monoid with 1 = ∅, the empty word, as unit element. Clearly,
|wv| = |w| + |v| and |1| = 0. For each pair of matrices A,B ∈ Cn×n, the map ψ
defined on {1, ξ1, ξ2} by the assignements ψ(1) = In, ψ(ξ1) = A and ψ(ξ2) = B,
uniquely extends to a monoid morphism of Ξ∗ into Cn×n. The ψ-image of a word
w ∈ Ξ∗ is denoted by w(A,B).

The Hurwitz products of two square matrices A and B are inductively defined
[10] as

Ai 0B = Ai, i > 0 and A0 jB = Bj j > 0 (1.4)

and, when i and j are both greater than zero,

Ai jB = A(Ai−1 jB) +B(Ai j−1B). (1.5)

One easily sees that
Ai jB =

∑
|w|1=i, |w|2=j

w ∈ Ξ∗

w(A,B),

namely, the (i, j)-th Hurwitz product is the sum of all matrix products that include
the factors A and B, i and j times respectively. Assuming zero initial conditions on
C0, except at (0, 0), then x(h, k) can be expressed as

x(h, k) = Ah kB x(0, 0), ∀h, k ≥ 0.

2 Finite memory and separability

It is clear that the dynamics of a 2D system (1.3) is essentially determined by the
matrix pair (A,B). However, the algebraic tools we have at our disposal for studying
a pair of linear transformations are not as simple and effective as those available for
the investigation of a single linear transformation. Actually, no decomposition of the
state space into {A,B}-invariant subspaces can be given, allowing for an effective
representation of the system behavior as a superposition of elementary modes with
simple structure.
Consequently, the modal decomposition approach to the unforced dynamics does
not extend to 2D systems, and serious difficulties arise even when an approximate
analysis is attempted, basing on some generalized version of the Perron-Frobenius
theorem [8].

Interestingly enough, however, some natural assumptions on the structure of the
pair (A,B) allow to single out important classes of positive systems, whose spectral
and combinatorial properties are easily investigated. The characteristic polynomial

∆A,B(z1, z2) := det(I −Az1 −Bz2), (2.1)
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is probably the most useful tool we can resort to when analyzing and classifying the
matrix pairs. Like the characteristic polynomial of a single matrix, which in general
does not capture the underlying Jordan structure, in the same way ∆A,B does not
identify the similarity orbit of the pair (A,B). Nevertheless, several aspects of the
2D motion completely rely on it. There is, first of all, the internal stability of system
(1.3), which depends [2,7] only on the variety of the zeros of ∆A,B. Moreover, as an
immediate consequence of the 2D Cayley-Hamilton theorem [8], the state evolution
of (1.3) satisfies an autoregressive equation which involves the coefficients of ∆A,B.

Additional insights into the structure of 2D systems come from the factorization
of the characteristic polynomial. In this section we consider two special cases, namely
when the characteristic polynomial is a constant:

∆A,B(z1, z2) = 1 (2.2)

and when it factors into the product of two polynomials in one variable:

∆A,B(z1, z2) = r(z1)s(z2). (2.3)

Systems which satisfy condition (2.2) exhibit the so-called finite memory property,
i.e. the zeroing of the unforced state evolution in a finite number of steps [2]. They
constitute the natural framework for the state space synthesis of two-dimensional
digital filters with finite impulse response (F.I.R. filters, for short) [12], and of con-
volutional encoders, decoders and syndrome formers [11]. On the other hand, in
feedback control specifications commonly include a “dead-beat” performance of the
controller [2,14], which implies that the resulting closed loop system exhibits once
again the finite memory property.

Separable systems, which satisfy condition (2.3), are usually thought of as the
simplest class of state models for realizing infinite impulse response (I.I.R.) 2D filters
[9,10]. Indeed, just the knowledge that a 2D system is separable allows one to
make strong statements about its behaviour; in particular, internal stability can be
quickly deduced from the general theory of discrete time 1D systems, as the long
term performance of separable systems is determined by the eigenvalues of A and
B separately. The above properties motivate the widespread interest in these filters
for image processing applications, and the existence of approximation techniques for
reducing general I.I.R. filters to separable ones.

So far, finite memory and separable systems have been investigated in the lit-
erature without any constraint on the matrix pair. Introducing the nonnegativity
assumption allows to strenghthen their properties and to obtain more penetrating
characterizations of both classes of systems.

In the finite memory case, the spectral features of certain matrices associated with a
given pair (A,B), like the Hurwitz products and the elements of the multiplicative
monoid generated by A and B, are clarified by the following proposition.

Proposition 2.1 For a pair of n × n nonnegative matrices (A,B), the following
statements are equivalent
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i) ∆A,B(z1, z2) = 1;

ii) A+B is a nilpotent (and, a fortiori, a reducible) matrix;

iii) Ai jB is nilpotent, for all (i, j) 6= (0, 0);

iv) w(A,B) is nilpotent, for all w ∈ Ξ∗ \ {1}.

Proof i)⇒ ii) Letting z1 = z2 = z in ∆A,B(z1, z2) = 1, we get det(I−(A+B)z) =
1, which implies the nilpotency of A+B.

ii)⇒ iii) For all ν ≥ n we have 0 = (A+B)ν =
∑
i+j=ν A

i jB. The nonnegativity
assumption further implies that Ai jB is zero whenever i + j ≥ n. Consequently,
when (i, j) 6= (0, 0), one gets 0 ≤ (Ai jB)n ≤ Ain jnB = 0 which proves the
nilpotency of Ai jB.

iii) ⇒ iv) Let |w|1 = i, |w|2 = j. As [w(A,B)]n ≤ (Ai jB)n = 0, we see that
w(A,B) is nilpotent.

iv) ⇒ i) By a classical theorem of Levitzki [16], assumption iv) corresponds to
the existence of a similarity transformation that reduces both A and B to upper
triangular form. Clearly, the characteristic polynomial of a pair of nilpotent upper
triangular matrices is 1.

Remark In the general case, when the matrix entries assume both positive and
negative values, condition ii) is necessary, but not sufficient, for guaranteeing the
finite memory property, which depends [9] on the nilpotency of all linear combina-
tions αA+βB, α, β ∈ C. On the contrary, conditions iii) and iv) are sufficient, but
not necessary, for the finite memory property, as one easily checks with the pair

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0 0 0
−1 0 0
0 1 0

 . (2.4)

Moreover, while for a general finite memory pair (A,B) we can only guarantee that
the Hurwitz products Ai jB are zero when i+ j ≥ n, in the nonnegative case this
property extends to all matrix products w(A,B), w ∈ Ξ∗ and |w| ≥ n.

The above results make it clear that, for a 2D positive system, finite memory is
essentially a 1D property. In fact, the nilpotency of A+B can be restated by saying
that the 1D system

x̂(h+ 1) = (A+B) x̂(h) (2.5)

is finite memory, and therefore its state evolution x̂(·) dies off in a finite number of
steps for any initial condition x̂(0) ∈ Rn

+.
On the other hand, when initializing the 2D system (1.3) on C0 with a constant
sequence of local states

x(i,−i) = x0 ∈ Rn
+, ∀i ∈ Z,
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it is clear that all local states x(i+ `,−i) on the separation set C` = {(h, k) : h+k =
`}, ` ∈ Z+, have the same value (A + B)` x0, which is exactly the value of x̂(`)
when x̂(0) = x0.

If system (1.3) eventually reaches the zero sequence on some separation set, for
every choice of x0, the 1D system (2.5) is finite memory and the same holds true for
(1.3). This means that for nonnegative 2D systems the finite memory property can
be checked in a very easy way, by resorting only to constant sequences of nonnegative
local states.

We turn now our attention to a characterization of finite memory nonnegative
pairs, which is based on their zero pattern only.

Definition A pair of n×n matrices (A,B) is said to be cogredient to a pair (Ā, B̄)
if there exists a permutation matrix P such that Ā = P TAP and B̄ = P TBP .

The combinatorial structure of finite memory nonnegative pairs is completely
explained by the following proposition. We point out that the nonnegativity as-
sumption is an essential ingredient for proving the simultaneous triangularizability
of a finite memory pair. Actually, the matrix pair in (2.4) is finite memory; yet, no
similarity transformation exists which triangularizes both A and B.

Proposition 2.2 A pair of n × n nonnegative matrices (A,B) is finite memory
if and only if it is cogredient to a pair of upper triangular nonnegative nilpotent
matrices.

Proof Assume first that (A,B) is finite memory. By Proposition 2.1 ii), A+B is
a nilpotent and hence a reducible matrix. Consequently, there exists a permutation
matrix P1 such that

P T1 (A+B)P1 =
[
C11 C12

0 C22

]
.

As C11 and C22 are nilpotent, we can apply the above procedure to both diago-
nal blocks. By iterating this reasoning, we end up with one dimensional nilpotent
diagonal blocks and, therefore, with an upper triangular matrix:

P T (A+B)P = P TAP + P TBP =

 0 ∗ ∗
. . . ∗

0

 .
Since P TAP and P TBP are nonnegative, they are both upper triangular with zero
diagonal. The converse is obvious.

In analyzing nonnegative separable pairs we follow the same lines, and end up
with several results that strictly parallel those obtained so far in the finite memory
case. A fairly complete spectral characterization of separability is summarized in
the following proposition.

Proposition 2.3 For a pair of n × n positive matrices A and B, the following
statements are equivalent:
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i) ∆A,B(z1, z2) = r(z1)s(z2);

ii) det[I − (A+B)z] = det[I −Az] det[I −Bz];

iii) Ai jB is nilpotent for all (i, j) with i, j > 0;

iv) w(A,B) is nilpotent, for all w ∈ Ξ∗ such that |w|i > 0, i = 1, 2;

v) there exists a complex valued nonsingular matrix T such that Â = T−1AT and
B̂ = T−1BT are upper triangular matrices, and [Â]hh 6= 0 implies [B̂]hh = 0.

Proof i) ⇒ ii) Assuming either z1 = 0 or z2 = 0 in (2.3) we obtain s(z2) =
det[I−Bz2] or r(z1) = det[I−Az1], respectively. Consequently, letting z1 = z2 = z,
we get

det[I − (A+B)z] = det[I −Az] det[I −Bz].

ii)⇒ iii) Introduce the matrix

M =
[
A 0
0 B

]
.

Assumption ii) implies that M and A+B have the same characteristic polynomial

det[I −Mz] = det[I − (A+B)z]

and, consequently,
tr(Mh) = tr

(
(A+B)h

)
∀ h ≥ 1. (2.6)

As (A+B)h =
∑
i+j=hA

i jB, by the linearity of the trace operator we get

tr(Ah) + tr(Bh) =
∑
i+j=h

trAi jB,

which, in turn, implies ∑
i,j>0
i+j=h

trAi jB = 0, ∀ h ≥ 1. (2.7)

Since (A,B) is a nonnegative pair, (2.7) is equivalent to the assumption that all
Hurwitz products Ai jB have zero trace whenever i, j ≥ 1. Just recalling that a
matrix is nilpotent if and only if all its positive powers have zero traces, iii) is an
easy consequence of the inequality

tr
(
(Ai jB)ν

)
≤ trAiν jνB = 0, i, j ≥ 1, ν = 1, 2, . . .

iii) ⇒ iv) Let |w|1 = i ≥ 1, |w|2 = j ≥ 1. As w(A,B) ≤ Ai jB, we have
[w(A,B)]n ≤ (Ai jB)n = 0.
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iv) ⇒ v) We resort to the following extension of Levitzki theorem [16]: “Let
A,B ∈ Cn×n. All matrices of the multiplicative semigroup

S := {w(A,B), w ∈ Ξ∗, |w|1 ≥ 1, |w|2 ≥ 1}

are nilpotent if and only if the pair (A,B) is separable and simultaneously triangu-
larizable via a (complex) similarity transformation”.
Clearly, assumption iv) implies simultaneous triangularizability. Moreover, as the
trace is invariant under similarity, one gets

tr w(A,B) =
n∑
h=1

([Â]hh)i([B̂]hh)j = 0 ∀ i, j > 0. (2.8)

Thus (2.8) holds true if and only if [Â]hh 6= 0⇒ [B̂]hh = 0.

v)⇒ i) Obvious.

The combinatorial structure of separable matrix pairs is quite appealing, and easily
determined as a consequence of the following lemma.

Lemma 2.4 If A > 0 and B > 0 constitute a separable pair of n×n matrices, then
A+B is reducible.
Proof Consider any w = ξi1ξi2 · · · ξim ∈ Ξ∗, with |w|1 > 0 and |w|2 > 0. Because
of the characterization iii) of separability given in Proposition 2.3, each diagonal
element of w(A,B) is zero. Therefore, for any sequence of integers `1, `2, ..., `m ∈
{1, 2, ..., n},

[ψ(ξi1)]`1`2 [ψ(ξi2)]`2`3 · · · [ψ(ξim)]`m`1 = 0. (2.9)

As both A and B are nonzero, there exist entries [A]ij > 0 and [B]hk > 0. If A+B
were irreducible, there would be integers p and q such that [(A + B)p]jh > 0 and
[(A+B)q]ki > 0. Consequently, we would have

[ψ(ξt1)]j`1 [ψ(ξt2)]`1`2 · · · [ψ(ξtp)]`p−1h > 0

and
[ψ(ξs1)]kr1 [ψ(ξs2)]r1r2 · · · [ψ(ξsq)]rq−1i > 0

for appropriate choices of ξtν and ξsµ and of the indexes `ν and rµ.
This implies

[A]ij [ψ(ξt1)]j`1 · · · [ψ(ξtp)]`p−1h[B]hk[ψ(ξs1)]kr1 ...[ψ(ξsq)]rq−1i > 0,

which contradicts (2.9).

Proposition 2.5 A pair of n×n nonnegative matrices (A,B) is separable if and only
if there exists a permutation matrix P such that P TAP and P TBP are conformably
partitioned into block triangular matrices

P TAP =


A11 ∗ ∗ ∗

A22 ∗ ∗
. . . ∗

Att

 P TBP =


B11 ∗ ∗ ∗

B22 ∗ ∗
. . . ∗

Btt

 , (2.10)
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where Aii 6= 0 implies Bii = 0. It entails no loss of generality assuming that the
nonzero diagonal blocks in P TAP and P TBP are irreducible.

Proof Assume that A and B constitute a separable pair. If one of the matrices is
zero, the proposition is trivially true. So we confine ourselves to the case of A and
B both nonzero. By the previous lemma, there exists a permutation matrix P1 s.t.

P T1 AP1 + P T1 BP1 =
[
A11 A12

0 A22

]
+
[
B11 B12

0 B22

]
,

where Aii and Bii, i = 1, 2, are square submatrices. As the nonnegative matrix pairs
(Aii, Bii) are separable, we can apply the same procedure as before to both of them.
By iterating this method we end up with a pair of matrices with structure (2.10).
The converse is obvious.

In many cases the information available on the physical process we aim to model
allows us to assume that no interaction exists among certain variables, and, conse-
quently, that some entries of matrices A and B are exactly 0, whereas the others
can be assumed nonnegative, and known with some level of uncertainty.
This is always the case of compartmental models, where nonzero entries correspond
to the existence of flows between different compartments, and physical or biological
reasons guarantee that some pairs of compartments have no direct interaction at all.
The combinatorial characterizations given in the above propositions make it clear
that the situation when all uncertain values are positive represents the “worst case”
for the existence of finite memory and separability, and, therefore, if such properties
are verified in the worst case, they are preserved under all perturbations of the
nonnegative entries.

3 Pairs of matrices with property L

The examples in the previous section make it clear that there is a strong relation
between the characteristic polynomial factors of a matrix pair and the properties
the associated 2D state model may exhibit. The idea of connecting the factors of
∆A,B(z1, z2) with the geometric properties of the state evolution can be applied to
the more general situation, when the characteristic polynomial of the pair (A,B)
splits into linear factors. It turns out that such pairs are special enough to provide a
basis for a rich and interesting theory, but also general enough to include models of
practical importance, such as finite memory and separable systems, already discussed
in the previous section, and systems described by triangular or commutative matrix
pairs.

Definition A pair of n× n matrices (A,B) is said to have property L if its charac-
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teristic polynomial factors into linear factors

∆A,B(z1, z2) =
n∏
i=1

(1− λiz1 − µiz2), (3.1)

over the complex field.

An equivalent definition [22] of property L is that the eigenvalues of A and B can
be ordered into two n-tuples

Λ(A) = (λ1, λ2, ..., λn), Λ(B) = (µ1, µ2, ..., µn) (3.2)

such that, for all α, β in C, the spectrum of αA+ βB is given by

Λ(αA+ βB) = (αλ1 + βµ1, ..., αλn + βµn). (3.3)

In other words, property L means that the spectrum of any linear combination of A
and B is the linear combination of the spectra Λ(A) and Λ(B).

Propositions 2.2 and 2.5 show that, for a nonnegative matrix pair, finite memory
and separability properties depend on its zero pattern only. This is no more true
when property L is considered. To see that it cannot be deduced from the structure
of the directed graphs, D(A) and D(B), of the nonnegative matrices A and B, just
consider

(A1, B1) =
([

1 1
0 0

]
,

[
0 0
1 1

])
and

(A2, B2) =
([

1 2
0 0

]
,

[
0 0
1 1

])
.

The pairs (A1, B1) and (A2, B2), of course, have the same zero pattern, but only the
first one is endowed with property L.

So, it is quite natural to ask under which conditions a nonnegative pair has
property L, independently of the values of its nonzero entries. When so, property L
turns out to be a feature which depends only on the combinatorial structure of the
matrices, and therefore will be called structural linearity (property SL, for short).

Definition A pair of n × n nonnegative matrices (A,B) has property SL if (A ∗
M,B ∗N) has property L for all n× n nonnegative matrices M and N .

A matrix pair with property SL is cogredient to a particular block triangular
form. To obtain this form, we need the following lemma.

Lemma 3.1 Let (A,B) be a pair of n × n nonnegative matrices, with n > 1. If
(A,B) has property SL, then either A+B is reducible or one of the two matrices is
zero.

Proof As a preliminary step, we prove that if one of the matrices, say A, is
irreducible, the other is zero. Assume, by contradiction, that B has an element
bij > 0, and suppose first i 6= j. As A is irreducible, we can find in D(A) a minimal
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path γ, of length m−1, which connects vertex j to vertex i. Possibly after relabelling
the vertices, we can assume i = 1, j = m and

γ = {(m,m− 1), (m− 1,m− 2), ... , (2, 1)}. (3.4)

This implies the existence of nonnegative matrices M and N which reduce A and B
to the following form

Â := A ∗M =
m−1∑
i=1

Ei+1,i B̂ := B ∗N = E1,m.

By the SL property of (A,B), the pair (Â, B̂) should be endowed with property L,
which is impossible since

det



1 −z2

−z1 1
... −z1

. . .
...

. . . 1
0 0 . . . −z1 0

0

0 I


= 1− zm−1

1 z2

does not factor into linear factors, as m− 1 is positive.

On the other hand, if bii were nonzero for some i, by the irreducibility assumption
on A, there would be in D(A) a circuit γ, of length m− 1 > 1, connecting vertex i
to itself and, as before, we can assume i = 1 and

γ = {(1,m), (m,m− 1), ... , (2, 1)}. (3.5)

Hence, there exist nonnegative matrices M and N such that

Ā := A ∗M = E1,m +
m−1∑
i=1

Ei+1,i B̄ := B ∗N = E1,1. (3.6)

The characteristic polynomial of (Ā, B̄) is 1 − z2 − zm1 , which cannot factor into
linear terms as m > 1, thus contradicting the SL assumption on (A,B).

So, every pair of positive matrices with property SL consists of reducible ma-
trices. It remains to prove that also their sum, A + B, is reducible. Suppose, by
contradiction, that it is not. As the irreducibility of A+B only depends on its zero
pattern, when both aij and bij are nonzero we may replace one of them with zero
without destroying the irreducibility of A+B and the property SL.
Since both A and B are still nonzero (otherwise A + B would coincide either with
A or with B, and hence would be reducible), and A ∗ B = 0, there exist nonzero
entries aij and bhk with (i, j) 6= (h, k). By the irreducibility of A+B, two directed

13



paths can be found in D(A+B) connecting j with h and k with i, thus producing
a closed walk τ with distinct edges, including arcs of both D(A) and D(B).
Among the elementary circuits of τ , either there is a circuit γ including arcs of both
D(A) and D(B), or there are two circuits, γA in D(A) and γB in D(B), with a
common vertex.
In the first case, by resorting to reasonings of the same kind as in the first part of
the proof, we obtain a matrix pair (Ã, B̃) := (A ∗M,B ∗ N) whose characteristic
polynomial

∆Ã,B̃(z1, z2) = 1− zr1zs2 r, s ≥ 1

does not split into linear factors.
In the second case, by relabelling the vertices of the digraph D(A + B), we can
assume that the common vertex of γA and γB is 1 and

γA = {(1, 2), (2, 3), ..., (m−1,m)} γB = {(1,m+1), (m+1,m+2), ..., (m+n−1, 1)}.

By suitably choosing M and N , we obtain once more a pair (A′, B′), with

A′ := A∗M = Em,1+
m−1∑
i=1

Ei,i+1 B′ := B∗N = Em+n−1,1+E1,m+1+
n−2∑
i=1

Em+i,m+1+i,

whose characteristic polynomial

∆A′,B′(z1, z2) = 1− zm1 − zn2 , n+m > 2

does not factor into linear factors. Property SL, however, would imply that (A′, B′)
has property L, a contradiction.

Proposition 3.2 Let (A,B) be a pair of n×n nonnegative matrices with property
SL. Then there exists a permutation matrix P such that P TAP and P TBP are
conformably partitioned into block triangular matrices

P TAP =


A11 ∗ ∗ ∗

A22 ∗ ∗
. . . ∗

Att

 P TBP =


B11 ∗ ∗ ∗

B22 ∗ ∗
. . . ∗

Btt

 , (3.8)

where the diagonal pairs (Aii, Bii) of dimension greater than 1 consist of an irre-
ducible and a zero matrix.

Proof The case n = 1 is trivial.
If n > 1 and A + B is irreducible, either A or B is zero, and we can reduce the
other matrix to Frobenius normal form [3]. If A + B is reducible, we can reduce it
to Frobenius normal form by using a cogredience transformation, and apply to each
irreducible diagonal block the previous arguments.

As a consequence of Proposition 3.2, the zero pattern of a nonnegative matrix A
completely characterizes the class of nonnegative matrices B such that (A,B) has

14



property SL. A more difficult problem is that of obtaining, for a given (nonnegative)
matrix A, all nonnegative pairs (A,B) with property L. In the case of a diagonal
matrix A, however, a complete solution is available, which sheds ligth on some
interesting connections between properties L and SL.

Lemma 3.3 Let M = [mij ] be an n× n nonnegative matrix, n > 1, such that

[M r]ii = (mii)r, i = 1, 2, . . . , n, r = 0, 1, 2, . . . (3.9)

Then M is cogredient to a triangular matrix.

Proof We first prove that M is reducible. If not, for any pair (i, j) with i 6= j
there were integers h and k such that [Mh]ij > 0, [Mk]ji > 0. Consequently, we
would have

[Mh+k]ii ≥ [Mh]ij [Mk]ji + (mii)h+k > (mii)h+k,

which contradicts assumption (3.9).
Next we remark that, for any permutation matrix P and any positive integer r, we
have (P TMP )r = P TM rP . This implies that the diagonal elements in (P TMP )r

and in M r are connected by the same index permutation which connects the diagonal
elements in P TMP and in M . So, using (3.9), we get

[(P TMP )r]ii = [P TM rP ]ii = ([P TMP ]ii)r, (3.10)

for all nonnegative integers r and for i = 1, 2, . . . n. Now we apply a cogredience
transformation which reduces M to block triangular form

P TMP =
[
M11 M12

0 M22

]
and notice that, as a consequence of (3.10), both M11 and M22 have property (3.9).
So, we can iterate the above procedure until a triangular matrix is obtained.

Proposition 3.4 Let A = diag{a1, a2, . . . , an}, ai 6= aj if i 6= j, and B = [bij ] be
n× n nonnegative matrices. The following statements are equivalent:

i) (A,B) has property L;

ii) Λ(B) = (b11, b22, . . . , bnn);

iii) B is cogredient to a triangular matrix.

Proof i)⇒ ii) Property L implies [10] that there exists a suitable ordering of the
spectrum of B, Λ(B) = (µ1, µ2, . . . , µn), such that, for all h > 0,

trAh 1B =

(
h+ 1
h

)
n∑
i=1

ahi µi. (3.11)
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On the other hand we have

trAh 1B = (h+ 1)tr(AhB) = (h+ 1)
n∑
i=1

ahi bii. (3.12)

(3.11) and (3.12) together imply
∑
i a
h
i (µi− bii) = 0, h = 0, 1, . . . , n− 1, and, taking

into account that the Vandermonde matrix of the system
1 1 · · · 1
a1 a2 · · · an
...

. . .
...

an−1
1 an−1

2 · · · an−1
n



µ1 − b11

µ2 − b22
...

µn − bnn

 =


0
0
...
0


is nonsingular, we get µi = bii, i = 1, 2, . . . n.

ii)⇒ iii) The assumption on Λ(B) implies

n∑
i=1

(bii)r = tr(Br) =
n∑
i=1

[Br]ii, r = 0, 1, . . . (3.13)

On the other hand, since B is nonnegative, we have also

(bii)r ≤ [Br]ii ∀ i = 1, 2, ..., n. (3.14)

Using (3.13) and (3.14) we get (bii)r = [Br]ii, r = 0, 1, . . . , i = 1, 2, . . . , n, and
therefore, by Lemma 3.3, B is cogredient to a triangular matrix.

iii)⇒ i) Obvious.

As a corollary of the above proposition, when A is diagonal with distinct ele-
ments, a nonnegative pair (A,B) has property L if and only if it has property SL.
This is no more true, however, if two diagonal elements in A coincide. Actually, the
pair

A = I2 B =
[

1 2
3 4

]
is endowed with property L. Yet, when A is modified into Â = diag{1, 2}, the pair
(Â, B) loses property L, since B is not cogredient to a triangular matrix.

The analysis of the case when the ai’s in A = diag{a1, a2, ..., an} are not distinct
is based on a more refined version of Lemma 3.3, given below.

Lemma 3.5 Let n = ν1 + ν2 + . . . + νk, and suppose that the n × n nonnegative
matrix M is partitioned into blocks Mij of dimension νi × νj . If

a) tr
(
[M r]ii

)
= tr

(
(Mii)r

)
i = 1, 2, ..., k, r = 0, 1, 2, ...

b) Mii is irreducible, i = 1, 2, ..., k,
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then M is cogredient to a block-triangular matrix whose diagonal blocks coincide
(except, possibly, for the order) with the Mii’s.

Proof Let’s consider the digraph D(M) associated with the matrix M . The
block-partitioning of the matrix corresponds to a partitioning of the vertices of
D(M) into classes, J1, J2, ..., Jk, such that, by assumption b), each element of a class
communicates with all the others in the same class. We want to show that there
exists a suitable relabelling of the classes which makes M cogredient to a block-
triangular matrix, with diagonal blocks Mii. To this purpose, it is enough to prove
that for every pair of distinct classes Ji and Jh there is no path starting from a
vertex ki ∈ Ji, reaching a vertex kh ∈ Jh and going back to ki. If a closed path of
length ` could be found with the above property, we would have

[M `]kiki > [(MJiJi)
`]kiki ,

and hence tr [M `]JiJi > tr
(
(MJiJi)

`
)

and tr(M `) >
∑
i tr
(
Mii)`

)
, thus contradicting

assumption a).

Proposition 3.6 Let A = diag{a1Iν1 , a2Iν2 , . . . , akIνk} be a nonnegative (block)
diagonal matrix, with ai 6= aj if i 6= j, and let B ≥ 0 be partitioned conformably
with the partition of A, as follows

B =


B11 B12 . . . B1k

B21 B22 . . . B2k
...

. . .
...

Bk1 Bk2 . . . Bkk

 . (3.16)

The following statements are equivalent:

i) (A,B) has property L;
ii) det(zIn −B) =

∏k
i=1 det(zIνi −Bii);

iii) there exists a permutation matrix P such that

P TAP =


Â11

Â22
. . .

Âpp

 P TBP =


B̂11 B̂12 . . . B̂1p

B̂22 B̂2p

. . .
...

B̂pp

 ,
(3.17)

where the Âii’s are scalar matrices. Moreover, each of the B̂ii’s is a diagonal
block of the Frobenius normal form of Bjj , for some j.

Proof i)⇒ ii) If (A,B) has property L and A has the structure indicated above,
then, according to a result of O.Taussky and T.S. Motzkin [22], the characteristic
polynomial of matrix B has to meet condition ii).
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ii) ⇒ iii) For each diagonal block Bii in (3.16) consider a permutation matrix Qi
such that QTi BiiQi is in Frobenius normal form with irreducible diagonal blocks
B

(j)
ii , j = 1, 2, .., ri. Setting Q = diag{Q1, Q2, ..., Qk}, we obtain the matrix

B̃ := QTBQ =



B
(1)
11 ∗ ∗

. . . ∗ ∗ ∗ ∗
0 B

(r1)
11

B
(1)
22 ∗ ∗

∗ . . . ∗ ∗ ∗
0 B

(r2)
22

∗ ∗ . . . ∗

B
(1)
kk ∗ ∗

∗ ∗ . . . ∗
0 B

(rk)
kk


that has irreducible diagonal blocks. From the identity

det(zI − B̃) = det(zI −B) =
k∏
i=1

det(zI −Bii) =
k∏
i=1

ri∏
j=1

det(zI −B(j)
ii ),

we get

tr(B̃r) =
k∑
i=1

ri∑
j=1

tr
(
(B(j)

ii )r
)
.

As we know that

tr(B̃r) =
k∑
i=1

ri∑
j=1

tr
(
[Br](j)ii

)
,

and tr
(
(B(j)

ii )r
)
≤ tr

(
[Br](j)ii

)
, it immediately follows that

tr
(
(B(j)

ii )r
)

= tr
(
[Br](j)ii

)
, ∀i = 1, 2, ..., k, j = 1, 2, ..., ri,

and hence all the assumptions of the previous lemma are satisfied.
So, a block permutation matrix Q̂ can be found, so that Q̂T B̃Q̂ = (QQ̂)TB(QQ̂) =:
P TBP is block triangular with diagonal blocks B(j)

ii . The same permutation matrix,
when applied to A, sets a correspondence between irreducible diagonal blocks in
P TBP and scalar diagonal blocks in P TAP , as shown in (3.17).
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iii)⇒ i) From (3.17) it is easy to see that

det(I −A1z1 −A2z2) =
p∏
i=1

det(I − Âiiz1 − B̂iiz2).

Since the pairs (Âii, B̂ii) commute, and hence have property L, (A,B) has property
L, too.

The best known, and perhaps the most important result of the Perron-Frobenius
theory concerns the existence of a positive simple maximal eigenvalue and a strictly
positive maximal eigenvector for irreducible matrices. As property L induces a one
to one coupling of the eigenvalues of A and B, it seems quite natural to ask whether
an irreducibility assumption on the nonnegative matrices A and B, or on their sum,
allows for a precise statement concerning the coupling of the maximal eigenvalues.
The answer is affirmative and given in the following proposition.

Proposition 3.7 Let (A,B) be a pair of n × n nonnegative matrices, endowed
with property L w.r.t. the orderings (3.2), and assume A+B irreducible.
Then there exists a unique index i such that

λi, µi ∈ R+, λi ≥ |λj |, µi ≥ |µj |, j = 1, 2, ..., n, (3.17)

and αλi+βµi is the maximal positive eigenvalue of the irreducible matrix αA+βB,
for all α, β > 0.

Proof To prove the result it is sufficient to consider the convex combinations
αA+(1−α)B, for α ∈ (0, 1). Note that such matrices, having the same zero pattern
as A+B, are irreducible and hence have a simple maximal eigenvalue νmax(α).
Denote by ri(α), i = 1, 2, ..., n, the straight line in the complex plane C, passing
through λi and µi

ri(α) := {αλi + (1− α)µi, α ∈ R}. (3.18)

For each α in (0, 1), νmax(α) lies on the straight lines ri(α) and cannot belong to
any line intersection, as irreducible matrices have simple maximal eigenvalues. So,
as α varies from 0 to 1, νmax(α) continuously moves along the same line, say rk(α).
It remains to show that λk and µk are maximal eigenvalues of A and B, respectively.
Suppose, for instance, that A possesses a positive maximal eigenvalue λh distinct
from λk. As the eigenvalues of αA+(1−α)B are continuous functions of α, |αλh+(1−
α)µh| would be greater than νmax(α) for all values of α in a suitable neighbourhood
of 1, a contradiction.

It is worthwhile to underline that the irreducibility of A+B is an essential ingredient
of the proof. Once we drop this assumption, as, for instance, with the pair

A =
[

1 3
0 3

]
B =

[
2 0
0 1

]
, (3.19)
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the maximal eigenvalues of A and B are not necessarily coupled in the ordered
spectra, and hence do not appear in the same linear factor of the characteristic
polynomial ∆A,B(z1, z2).

4 Common maximal eigenvectors

When trying to extend the Perron-Frobenius theorem on positive maximal eigenvec-
tors to a matrix pair (A,B) with property L and irreducible sum, we are naturally
faced with the following question: “what is the structure of the maximal eigenvector
of αA+ βB when both α and β are positive?”
Based on the coupling of maximal eigenvalues, a first guess could be that A and
B have parallel maximal eigenvectors. Unfortunately this is not generally true, as
shown by the following counterexample.

Example Consider the matrix pair

A =
[

1 1
4 3

]
, B =

[
2 4
δ 1

]
(4.1)

and select for the parameter δ the nonnegative real values that make ∆A,B(z1, z2)
split into linear factors, or, equivalently, that annihilate the discriminant

det


−1 −9

2
− δ

2
−2

−9
2
− δ

2
2− 4δ −3

2
−2 −3

2
1


of the quadratic equation ∆A,B(z1, z2) = 0. Clearly the discriminant is zero when δ
is a solution of the equation

δ2 − 50 δ + 220 = 0. (4.2)

Both solutions δ1 = 25 +
√

405 and δ2 = 25 −
√

405 of (4.2) are positive. So, the
corresponding pairs (A,B1) and (A,B2), with

B1 =
[

2 4
δ1 1

]
and B2 =

[
2 4
δ2 1

]
,

are strictly positive (which obviously implies A+ B irreducible) and endowed with
property L. It is easy to check that A and B1 have a strictly positive common
eigenvector, which is the maximal eigenvector of both matrices, whereas the maximal
eigenvectors of A and B2 are nonparallel.
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The above example shows that property L and the irreducibility of A + B (or,
even more, the strict positiveness of A and B) do not allow to draw any conclusion
about the existence of a common maximal eigenvector. As a matter of fact, the same
can be said for pairs with property P, which is generally stronger than property L,
but coincides with it when 2× 2 matrices are considered [22].
This negative conclusion raises some interesting questions which we summarize as
follows: “assuming that A+B is an irreducible matrix,

a) how can we strenghthen property L so as to guarantee that A and B have a
common maximal eigenvector?

b) when no further assumptions, except property L, are introduced, what can be
said about the structure of the maximal eigenvector of αA + βB, as α and β
vary over the positive real numbers?

c) finally, what kind of necessary and sufficient conditions do guarantee that A
and B have a common maximal eigenvector?”

Given an arbitrary pair (A,B) of n×n matrices, we define the matrix sets C(k), k =
1, 2, . . ., as follows:

C(1) = {[A,B]},

and, for k > 1,
C(k) = {[A,C(k−1)]} ∪ {[B,C(k−1)]},

where C(k−1) runs over the elements of the set C(k−1), and [M,N ] denotes the com-
mutator MN −NM .
If C(k) = {0}, we shall say that the pair (A,B) has the property of (generalized)
quasi commutativity of the k-th order or, briefly, (A,B) is a k-commuting pair. For
all k ∈ N, k-commutativity implies [4] property P, and hence property L.

Proposition 4.1 Let A > 0 and B > 0 be k-commutative n × n matrices, whose
sum, A+B, is irreducible. Then A and B have a strictly positive common eigenvector
v

Av = rAv, Bv = rBv, (4.3)

and rA, rB are maximal eigenvalues of A and B, respectively.

Proof Denote by v � 0 a maximal eigenvector of the irreducible matrix A +
B, corresponding to its maximal eigenvalue rA+B. Since k-commutativity implies
property L, from Proposition 3.7 we get rA+B = rA + rB, and hence

(A+B)v = (rA + rB)v.

It is easy to show that when (A,B) is a k-commuting pair, (A+B,B) has the same
property. So, we can consider this new pair and get

k times︷ ︸︸ ︷
[A+B, [A+B, [. . . [A+B,B] . . .]]]v = 0. (4.4)
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On the other hand, we have also

[A+B, B]v =
(
A+B − (rA + rB)I

)
Bv

and, inductively, we see that

h−1 times︷ ︸︸ ︷
[A+B, [A+B, [. . . [A+B,B] . . .]]]v =

(
A+B − (rA + rB)I

)h−1
Bv

implies

h times︷ ︸︸ ︷
[A+B, [A+B, [. . . [A+B,B] . . .]]]v

= (A+B

h−1 times︷ ︸︸ ︷
[A+B, [A+B, [. . . [A+BB] . . .]]]−

h−1 times︷ ︸︸ ︷
[A+B, [A+B, [. . . [A+B,B] . . .]]]A+B)v

= (A+B)(A+B − (rA + rB)I)h−1Bv −
h−1 times︷ ︸︸ ︷

[A+B, [A+B, [. . . [A+B,B] . . .]]](rA + rB)v

=
(
A+B − (rA + rB)I

)h
Bv.

Thus (4.4) can be rewritten as

(A+B − (rA + rB)I)kBv = 0,

which shows that Bv is a generalized eigenvector of A + B, corresponding to the
maximal eigenvalue rA + rB. However, since the algebraic multiplicity of rA + rB is
1, we have also

(A+B − (rA + rB)I)Bv = 0,

and Bv > 0 has to be a maximal eigenvector of A+B. Since an irreducible matrix
has exactly one (maximal) eigenvector [21] in En := {x ∈ Rn

+ :
∑n
i=1 xi = 1}, and

both v and Bv are positive maximal eigenvectors of A+B, we get

Bv = µv, µ > 0. (4.5)

We claim that µ = rB. If not, we would have

Av = (A+B)v −Bv = (rA + rB)v − µv = (rA + rB − µ)v =: λv,

where λ := rA+rB−µ 6= rA. So, (rA, rB) and (λ, µ) would be pairs of corresponding
eigenvalues in the coupling determined by Property L and

λ+ µ = rA + rB = rA+B,

would imply that the maximal eigenvalue of A + B is not simple, a contradiction.
Therefore µ has to coincide with rB.

We consider now briefly the second problem, namely what is the structure of the
maximal eigenvector of αA+ βB, α, β ∈ R+, when A and B are positive matrices
with property L and A+B is irreducible.
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First of all, both matrices have a strictly positive maximal eigenvalue. Otherwise,
one of them would be nilpotent, which implies that (A,B) is separable and hence,
by Lemma 2.4, that A+B is reducible. Suppose, for the moment, that both A and
B have a unitary maximal eigenvalue, and consider any convex combination of A
and B

γA+ (1− γ)B, γ ∈ [0, 1]. (4.6)

This combination has a simple maximal eigenvalue rA+B = 1 for all γ ∈ (0, 1), and,
consequently, the rank of the polynomial matrix (B − I) + s(A − B) over the field
R(s) is n− 1.

Lemma 4.2 [13, vol.II, pp.30] Let

v(s) = v0 + v1s+ . . .+ vtst, vt 6= 0 (4.7)

be a minimum degree nonzero polynomial vector which satisfies the equation[
(B − I) + s(A−B)

]
v(s) = 0. (4.8)

Then vectors vi ∈ Rn, i = 0, 1, . . . , t, are linearly independent.

Clearly v(s) is uniquely determined, up to a multiplicative constant, which can be
chosen so as to guarantee that v(γ̄) is positive for some γ̄ ∈ (0, 1). As a consequence
of Lemma 4.2, the vector v(γ) is positive for all γ ∈ [0, 1], and provides the structure
of the maximal eigenvector.

The general case, when the maximal eigenvalues of A and B are not necessarily
1 and the combination αA + βB is not necessarily convex, easily reduces to the
previous one. Actually, once we set Ā := A/rA, B̄ := B/rB, rA and rB the
maximal eigenvalues of A and B respectively, we can consider the minimal degree
solution v(s) of

[
(B̄ − I) + s(Ā− B̄)

]
v(s) = 0. Clearly v(

αrA
αrA + βrB

) is a maximal

eigenvector of αA+ βB.

If we drop the assumption that A and B have property L and look for general
statements on nonnegative pairs with a (strictly) positive common eigenvector, we
get a characterization in terms of stochastic matrices.

Proposition 4.3 Assume that A and B are positive matrices, with A + B irre-
ducible. A and B have a positive common eigenvector if and only if their maximal
eigenvalues rA and rB are positive and there exists a nonsingular positive diagonal
matrix D such that r−1

A D−1AD and r−1
B D−1BD are row stochastic matrices.

Proof Assume that rA and rB are positive and, for some positive matrix

D = diag{d1, d2, . . . , dn}, di > 0,

r−1
A D−1AD and r−1

B D−1BD are row stochastic.
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Clearly [1 1 ... 1]T � 0 is a common eigenvector of D−1AD and D−1BD, relative
to rA and rB. Thus

d := [d1 d2 . . . dn]T � 0

is a common eigenvector of A and B, associated with their maximal eigenvalues.

Conversely, suppose that A and B have a common eigenvector d = [d1 d2 ... dn]T > 0.
As A + B is irreducible, (A + B)d = rA+Bd and d > 0 imply d � 0. Moreover
A,B 6= 0 together with rAd = Ad 6= 0 and rBd = Bd 6= 0 imply rA, rB > 0. Then
D := diag{d1, d2, . . . , dn} provides [3] the similarity transformation we are looking
for.

5 Inverse spectral problem

The inverse spectral problem for nonnegative matrix pairs can be stated in a very
simple way as follows: “what are the necessary and sufficient conditions for a poly-
nomial in two variables

p(z1, z2) = 1−
∑
i+j>0

pijz
i
1z
j
2

to be the characteristic polynomial of a nonnegative matrix pair (A,B) ?”
The above question can be appropriately framed into the more general setting of
realization theory of dynamical systems [6,15]. In the 2D case, the transfer function
of some filter is given as the ratio of two coprime polynomials

w(z1, z2) = m(z1, z2)/p(z1, z2),

and one looks for a 2D system in state space form whose input response is w(z1, z2).
For every state space model that solves the problem, the characteristic polynomial
∆A,B(z1, z2) of matrices A and B that provide the “free state updating” has to be
a multiple of p(z1, z2). Consequently, the inverse spectral problem reduces to verify
whether some positive system can be found whose transfer function has p(z1, z2) as
denominator.

Although the inverse spectral problem, as set above, is still unsolved, interesting
results can be obtained by introducing some restrictions on p(z1, z2) and/or (A,B).
In this section we aim to present a sufficient condition for solvability, which allows
to explicitely construct a matrix pair (A,B) satisfying ∆A,B(z1, z2) = p(z1, z2) and
the extra requirement that A+B is irreducible.
When we consider a polynomial which splits into linear factors

p(z1, z2) =
n∏
i=1

(1− λiz1 − µiz2),
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and hence we look for matrix pairs with property L, the aforementioned condition
specializes into a constraint on λi and µi, which is reminiscent of an important 1D
result of Suleimanova [27].

Lemma 5.1 Let

p(z1, z2) = 1−
∑
i+j>0

pijz
i
1z
j
2 ∈ R[z1, z2], (5.1)

and suppose that the integers r and s satisfy

degz1(p) ≤ r, degz2(p) ≤ s, deg(p) ≤ r + s− 1. (5.2)

Then there exists a pair (A,B) of (r + s− 1)× (r + s− 1) matrices which satisfies

∆A,B(z1, z2) = p(z1, z2). (5.3)

Moreover, when all coefficients pij are nonnegative, all entries of (A,B) can be chosen
nonnegative.

Proof There is no restriction in assuming r ≤ s. Thus p(z1, z2) can be rewritten
as

p(z1, z2) = 1− h0,0 − (z1h1,0 + z2h0,1)− (z2
1h2,0 + z1z2h1,1 + z2

2h0,2)− . . .
−(zr−1

1 zs−r2 hr−1,s−r + zr−2
1 zs−r+1

2 hr−2,s−r+1 + . . .+ zs−1
2 h0,s−1)

− . . .− zr−1
1 zs−1

2 hr−1,s−1,
(5.4)

where hi,j = αi,jz1 + βi,jz2 are suitable linear forms. In general, p(z1, z2) does not
uniquely determine the forms hi,j(z1, z2). In any case, when the pij ’s are nonnega-
tive, it is always possible to assume that all linear forms in (5.4) have nonnegative
coefficients.
Applying the Laplace theorem for the expansion of a determinant, one sees that the
(r + s− 1)× (r + s− 1) polynomial matrix

L(z1, z2) =



1 −hr−1,0 −hr−1,1 . . . . . . −hr−1,s−1

−z1 1 −hr−2,0 −hr−2,1 . . . . . . −hr−2,s−1

−z1 1 −hr−3,0 −hr−3,1 . . . . . . −hr−3,s−1

. . . . . .
...

... . . . . . .
...

−z1 1 −h1,0 −h1,1 . . . . . . −h1,s−1

−z1 1− h0,0 −h0,1 . . . . . . −h0,s−1

−z2 1

−z2
. . .
. . .

−z2 1


(5.5)

satisfies
detL(z1, z2) = p(z1, z2).
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Consequently, the following matrices, whose elements are the opposite of the coeffi-
cients of z1 and z2 in L(z1, z2)

A =



0 0 . . . 0 0 αr−1,0 αr−1,1 . . . . . . αr−1,s−1

1 0 αr−2,0 αr−2,1 . . . . . . αr−2,s−1

1 αr−3,0 αr−3,1 . . . . . . αr−3,s−1

. . . . . .
...

... . . . . . .
...

1 α1,0 α1,1 . . . . . . α1,s−1

1 α0,0 α0,1 . . . . . . α0,s−1

0 0


and

B =



βr−1,0 βr−1,1 . . . . . . βr−1,s−1

βr−2,0 βr−2,1 . . . . . . βr−2,s−1

βr−3,0 βr−3,1 . . . . . . βr−3,s−1

0
...

... . . . . . .
...

β1,0 β1,1 . . . . . . β1,s−1

β0,0 β0,1 . . . . . . β0,s−1

1 0
0 1 0

. . .
...

1 0


satisfy equation (5.3).

Proposition 5.2 If in (5.1) all coefficients pij of the polynomial p(z1, z2) are non-
negative, there exists a pair of nonnegative matrices (A,B), with A+B irreducible,
such that (5.3) is satisfied.

Proof Let r = degz1(p), s = degz2(p), and suppose first r + s > deg(p). The
previous lemma allows to construct two nonnegative matrices A and B, of dimension
(r + s − 1) × (r + s − 1), which satisfy equation (5.3). Moreover the assumption
on the degree implies that in M := A + B there exist at least a nonzero element
m1,κ, κ ≥ r, in the first row, and at least a nonzero element mρ,r+s−1, ρ ≤ r, in the
last column. As for every i = 1, 2, .., r+s−1, the elements mi+1,i are 1, we see that,
given two arbitrary positive integers i, j ≤ r + s − 1, the digraph D(M) includes a
directed path from vertex i to vertex j. This is trivial if i > j. If not, just consider
the sequence of arcs:

(i, i−1)(i−1, i−2) . . . (1, κ)(κ, κ−1) . . . (ρ+1, ρ)(ρ, r+s−1)(r+s−1, r+s−2) . . . (j+1, j).

Therefore M is an irreducible matrix.
If deg(p) = r + s, assume that p(z1, z2) has “formal” degree r + 1 in the variable
z1 (e.g. by introducing in the expression of p the monomial 0zr+1

1 ), and repeat the
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construction of Lemma 5.1. In this case we end up with two nonnegative matrices
A and B of dimension r+s, and M exhibits a nonzero element in position (1, r+s).
This again proves that M is irreducible.

An obvious necessary condition for the solvability of the inverse spectral problem is
that the 1D inverse spectral problems corresponding to the polynomials

p(z1, 0) = 1−
∑
i

pi0z
i
1 and p(0, z2) = 1−

∑
i

p0jz
j
2

have a solution, which amounts to say that nonnegative matrices A and B can be
found, such that

p(z1, 0) = det(I −Az1) and p(0, z2) = det(I −Bz2). (5.6)

In general it is not possible to reduce a 2D inverse spectral problem to a pair of
1D problems, as the solvability of (5.6) is far from implying that equation (5.3) is
solvable by resorting to a nonnegative matrix pair. Moreover, as no general solution
to the 1D spectral problem is available [21], this kind of approach seems to be even
more questionable.
A special case, however, deserves some attention, namely when

1. in p(z1, 0) =
∏n
i=1(1 − λiz1) and p(0, z2) =

∏n
i=1(1 − µiz2), λi and µi are

real, for every i, and satisfy the Suleimanova conditions for the solvability of
the 1D inverse spectral problem:

λ1 > 0 ≥ λi, ∀i ≥ 2 and
∑n
i=1 λi > 0

µ1 > 0 ≥ µi, ∀i ≥ 2 and
∑n
i=1 µi > 0;

(5.7)

2. p(z1, z2) factors into a product of linear factors, as follows

p(z1, z2) =
n∏
i=1

(1− λiz1 − µiz2). (5.8)

When (5.7) and (5.8) are fulfilled, the 2D inverse spectral problem is solvable and a
solution (A,B) can be found with A+B irreducible.
Taking into account Lemma 5.1 and Proposition 5.2, we are reduced to prove that
the coefficients pij of p(z1, z2) are nonnegative, which is the content of the next
proposition.

Proposition 5.3 Suppose that λi and µi, i = 1, 2 . . . , n, are real numbers satisfying
(5.7). Then in

p(z1, z2) =
n∏
i=1

(1− λiz1 − µiz2) = 1−
n∑

i+j=1

pijz
i
1z
j
2

all coefficients pij are nonnegative.
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Proof Let ν < n and assume that in
ν∏
i=1

(1− λiz1 − µiz2) = 1−
ν∑

h+k=1

p
(ν)
hk z

h
1 z

k
2 ,

∑ν
i=1 λi,

∑ν
i=1 µi and p

(ν)
hk , for every h, k, are nonnegative.

Keeping in mind (5.7), it is easy to check that in

ν+1∏
i=1

(1−λiz1−µiz2) =
(
1−

ν∑
i=1

λiz1−
ν∑
i=1

µiz2−
ν∑

h+k=2

p
(ν)
hk z

h
1 z

k
2

)
(1−λν+1z1−µν+1z2)

all coefficients of nonconstant monomials are also nonnegative. Thus the result
follows by induction on ν.

As a consequence of the above propositions we have an algorithm for producing
nontrivial examples of positive pairs with property L and arbitrarily high dimension.

Example Consider the polynomial

p(z1, z2) = (1− z1 − z2)
(

1 +
z1

2
+
z2

2

)(
1 +

z1

4

)
. (5.9)

We aim to obtain a pair of 4 × 4 positive matrices (A,B), with irreducible sum,
satisfying ∆A,B(z1, z2) = p(z1, z2).
First of all, note that the pair (A,B) has property L w.r.t. the following orderings
of the spectra

Λ(A) = (1,−1/2,−1/4, 0) and Λ(B) = (1,−1/2, 0, 0). (5.10)

Next rewrite p(z1, z2) as follows

p(z1, z2) = 1−(
1
4
z1+

1
2
z2)−

(
z1(

5
8
z1+

5
8
z2)+z2(

1
2
z1+

1
2
z2)
)
−
(
z2

1(
1
8
z1+

1
8
z2)+z1z2(

1
8
z1+

1
8
z2)
)
,

and use the coefficients of the linear forms to construct A and B, according to
Lemma 5.1.
We obtain

A =


0 0 1/8 0
1 0 5/8 1/8
0 1 1/4 1/2
0 0 0 0

 and B =


0 0 1/8 0
0 0 5/8 1/8
0 0 1/2 1/2
0 0 1 0

 ,
which fulfill all the requirements.

The above example is interesting from different points of view. First of all, the
traces of the matrix products A2B2 and ABAB do not coincide. This rules out the
possibility [10,24] that A and B have property P, which, therefore, is stronger than
property L even in the class of nonnegative matrices.
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Also, as the maximal eigenvectors of A and B, computed by numerical methods, are

[.0995 .5970 .7690 0]T and [.0778 .4671 .6228 .6228]T ,

we see once again that the maximal eigenvectors in a nonnegative pair with property
L may be nonparallel, even though the maximal eigenvalues are coupled in the
characteristic polynomial.

6 Extensions to 1-linearity

A weaker property, that nevertheless entails some interesting consequences on the
structure of the matrix pairs, especially nonnegative ones, is 1-linearity. A matrix
pair (A,B) is 1-linear [22] w.r.t. the pair of eigenvalues (λi, µi), λi ∈ Λ(A), µi ∈
Λ(B), if for every α, β ∈ C, αλi + βµi ∈ Λ(αA+ βB).
It is clear that property L can be viewed as a stronger version of 1-linearity, and, as
a matter of fact, some results on property L could be obtained by strengthening the
corresponding statements on the other property.

Here we confine ourselves to nonnegative pairs (A,B), where A is diagonal with
distinct elements. The result we are going to present depends on a preliminary
lemma, whose proof follows the same lines as the proof of Theorem 1 in [22].

Lemma 6.1 Let A = diag{a1, a2, . . . , an}, with ai 6= aj if i 6= j, and B = [bij ] be
n× n matrices. If (A,B) is 1-linear w.r.t. (ai, µi), then µi coincides with bii.

Prooof There is no loss of generality in assuming i = 1. To prove the result,
assume also a1 = 0, as 1-linearity is not affected by translations. Write then

A =


0 0 ... 0
0
0
...
0

A22

 and B =


b11 b12 ... b1n
b21

b31
...
bn1

B22

 ,

where A22 is an (n− 1)× (n− 1) nonsingular matrix (as all aj ’s are different from
a1 = 0). By 1-linearity, it follows that

det(zI − αA−B) = (z − µ1) p(z;α), ∀α ∈ C, (6.1)

p(z;α) a suitable polynomial in z and α. Equating the coefficients of the (n− 1)-th
power of α on the two sides of equation (6.1) gives

(z − b11) detA22 = (z − µ1) · coeff. αn−1in p(z;α).

Since A22 is not singular, it is clear that z−µ1 = z− b11, which proves the result.

29



Proposition 6.2 Let A = diag{a1, a2, . . . , an} be a non negative matrix with
ai 6= aj if i 6= j, and let B = [bij ] be an n × n positive matrix. Suppose that
µ̄ ∈ Λ(B) is a maximal eigenvalue of B. The following statements are equivalent:

i) (A,B) is 1-linear w.r.t. a pair of eigenvalues (ai, µ̄);

ii) µ̄ = bii for some i;

iii) there exists a permutation matrix P s.t. P TBP has the block-structure

P TBP =

B11 B12 B13

0 µ̄ B23

0 0 B33

 ; (6.2)

iv) (Ah, Bk) is 1-linear w.r.t. a pair (ahi , µ̄
k) for every h, k ≥ 1.

Proof i)⇒ ii) True by Lemma 6.1.

ii)⇒ iii) If µ̄ = bii, then B has to be reducible. If not, there would be an eigenvector
v := [v1 v2 ... vn]T � 0, corresponding to bii, such that Bv = biiv. If we consider
the i-th entry of the vectors on both sides, we get the equality

n∑
j=1

bijvj = biivi. (6.3)

As vj > 0 for every j, (6.3) implies bij = 0 for every j 6= i, and hence B would be
reducible, a contradiction. So, a permutation matrix P1 can be found, such that

P T1 BP1 =
[
B11 B12

0 B22

]
.

It is obvious now that property ii) is inherited either by B11 or by B22, so we can
apply to one of these submatrices the same reasoning as before, thus getting (6.2).

iii)⇒ iv) When the same permutation matrix P that brings B to the form shown
in (6.2) is applied to A, we get a matrix pair (P TAP,P TBP ) that is clearly 1-linear
w.r.t. some pair (ai, µ̄). This immediately implies iv).

iv)⇒ i) Obvious.

Remark Once we drop the assumption that µ̄ is a maximal eigenvalue of B, the
above proposition is no more true. Actually, while the implications iii) ⇒ iv) ⇒
i)⇒ ii) still hold, condition ii) no longer implies iii). This can be seen, for instance,
when considering the matrix pair

A =

 1 0 0
0 3 0
0 0 2

 B =

 3 2 1
1 2 1
1 1 1

 ,
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that is 1-linear w.r.t. (a3, µ̄) = (2, 1), µ̄ is not maximal, and satisfies ii) with
µ̄ = b33 = 1, but it clearly does not fulfill iii) and iv).
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