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Abstract

In this paper the primitivity of a positive matrix pair (A,B) is introduced as a strict
positivity constraint on the asymptotic behavior of the associated two-dimensional
(2D) state model.
The state evolution is first considered under the assumption of periodic initial condi-
tions. In this case the system evolves according to a one-dimensional state updating
equation, described by a block circulant matrix. Strict positivity of the asymptotic
dynamics is equivalent to the primitivity of the circulant matrix, a property that can
be restated as a set of conditions on the spectra of A+ eiωB, for suitable real values
of ω.

The theory developed in this context provides a foundation whose analytical ideas
may be generalized to nonperiodic initial conditions. To this purpose the spectral
radius and the maximal modulus eigenvalues of the matrices eiθA+ eiωB, θ and ω ∈,
are related to the characteristic polynomial of the pair (A,B) as well as to the structure
of the graphs associated with A and B, and to the factorization properties of suitable
integer matrices.
A general description of primitive positive matrix pairs is finally derived, including
both spectral and combinatorial conditions on the pair.
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1 Introduction

The notion of primitive matrix grew out of the study of the spectra and the directed
graphs of positive irreducible matrices, in a purely algebraic context [2, 3, 15]. Indeed, an
irreducible matrix F ∈n×n+ is primitive if and only if its spectral radius is the only maximal
modulus eigenvalue of F , or, equivalently, if and only if in the associated directed graph
the g.c.d. of the lenghts of all circuits is unitary.

An alternative definition of primitivity arises in the asymptotic analysis of the homo-
geneous discrete time positive system

x(t+ 1) = Fx(t), t = 0, 1, . . . (1)

when x(0), the initial state, is a nonnegative vector. Positive systems appear quite fre-
quently in modelling real processes whose variables represent intrinsically nonnegative
quantities, such as pressures, concentrations, densities, population levels, etc..., and have
been the object of a long stream of research, aiming to explore basic issues of linear sys-
tem theory, like controllability, reachability [4, 6, 7, 17] and realizability [1, 14], under
positivity constraints.
In this context, the primitivity of F can be equivalently restated as the property that every
positive initial condition x(0) produces a state evolution which becomes strictly positive
within a finite number of steps.

When trying to introduce a notion of primitivity for a positive matrix pair (A,B), with
A and B in n×n

+ , an extension of the above algebraic characterizations is not immediately
apparent, whereas it is easy to figure out a reasonable extension of the dynamical behav-
ior we have just described. To this end, we associate with the pair (A,B) the discrete
homogeneous two-dimensional (2D) system [8]

x(h+ 1, k + 1) = Ax(h, k + 1) +Bx(h+ 1, k), h, k ∈, h+ k ≥ 0, (2)

where the doubly indexed local states x(h, k) are elements of the positive orthant n
+ and

initial conditions are given by assigning a sequence X0 := {x(`,−`) : ` ∈} of nonnegative
local states on the separation set C0 := {(`,−`) : ` ∈}. A 2D system satisfying these
constraints is called 2D positive system.

2D state models described in (1) allow to represent processes or devices whose evo-
lutions depend upon two independent variables, according to a quarter plane causality
law, and provide suitable descriptions of a large class of phaenomena. They have been
introduced in the early seventies, and most of their internal and external features have
been subsequently investigated. 2D positive systems, instead, have made their appearance
only recently, in some contributions dealing with the discretization of the set of PDE’s
describing a diffusion process [9, 12], but still their relevance for modelling certain classes
of physical processes has been immediately apparent.

By assuming the aforementioned dynamical viewpoint, and in analogy with the one-
dimensional case, we express the primitivity of the pair (A,B) as a strict positivity con-
straint on the asymptotic behavior of (1). It is easy to see, however, that the structure of
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the sequence X0 has to be somehow constrained. In fact, if X0 includes N + 1 consecutive
zero local states

x(h,−h) = x(h+ 1,−h− 1) = . . . = x(h+N,−h−N) = 0,

then zero local states occur also on the separation sets

Ct := {(t+ `,−`) : ` ∈}, t = 1, 2, . . . , N,

irrespective of the remaining initial conditions on C0. So, in order to guarantee that for
some finite t all local states on Ct are strictly positive, we must restrict our attention
to admissible sequences of initial conditions, namely to nonnegative sequences X0 which
satisfy the following assumption: there is an integer N > 0 such that

∑h+N
`=h x(`,−`) > 0

for all h ∈. We are now in a position to introduce the following definition of primitivity
for a nonnegative matrix pair.

Definition A pair of nonnegative matrices (A,B) is primitive if, for every admissible
sequence X0 of initial conditions, all local states x(h, k) become strictly positive when
h+ k is sufficiently large.

Notice that when a 2D system is described by a primitive matrix pair, eventually all its
variables appear “permanently excited”, independently of the particular set of admissible
initial conditions that originated its evolution. This seems to be particularly relevant when
the system describes, for instance, a diffusion process, and the two independent variables
represent a spatial and a temporal coordinate. In that case, primitivity guarantees that,
after a certain time instant, at every point all system variables represent strictly positive
quantities.

To investigate the spectral and combinatorial properties of a primitive matrix pair, we
consider first the dynamics of system (1) when the initial conditions sequence X0 has a
periodic pattern, of period T . Under this assumption, the 2D system exhibits a behavior
which is somewhat intermediate between those of (1) and (1), as its state evolution can
be equivalently described by a model (1) with an nT × nT block circulant system matrix
F = CT (A,B).
It is clear that x(h, k) eventually becomes strictly positive if and only if CT (A,B) is
primitive, a property that easily translates into the condition that the spectral radii of the
matrices A+ ei2π`/TB, ` = 1, . . . , T − 1, are smaller than the spectral radius of A+B.

So, the primitivity of all circulant matrices CT (A,B), T = 1, 2, . . . , which is a necessary
condition for the primitivity of (A,B), is equivalent to assume that A+eiωB, has spectral
radius smaller than that of A+B, whenever ω is a rational, but not an integer, multiple
of 2π.

This remark suggests a way for obtaining equivalent descriptions of the primitivity of
(A,B), based on the spectral properties of the matrix family {A+ eiωB : ω ∈}. Actually,
searching for a graph theoretic interpretation of the primitivity condition of all circulant
matrices CT (A,B), we can show that it corresponds to simple constraints on the structure
of a certain directed graph, D∗(A,B), associated with the pair (A,B), and on the integer
matrix LA,B which describes its cyclic structure.
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Tying together these combinatorial characterizations with a result [10] on the Hurwitz
products involved in the state updating of (1), we prove that the primitivity of all CT (A,B),
T = 1, 2, . . ., is also sufficient for that of the pair (A,B).

The paper is organized as follows: next section investigates the spectral and combina-
torial features of the pair (A,B) by means of the complex matrices eiθA+eiωB, θ, ω ∈, and
of the directed graph D∗(A,B), respectively. Section 3 analyses the periodic dynamics of
system (1) and the properties of the associated circulant matrices CT (A,B), T = 1, 2, . . . .
Finally, in section 4, the primitivity of (A,B) is shown to be equivalent to a set of conditions
involving the cyclic structure of D∗(A,B), the spectra of eiθA + eiωB, θ, ω ∈, and the
positivity of at least one Hurwitz product.

As we assume familiarity with the basic results of graph theory and positive matrix
theory, they will be only touched upon in this introduction, to explain the notation in
use throughout the paper. Although some elementary background on 2D systems will be
provided later in this section, a couple of algebraic facts will be stated without proof. The
interested reader is referred to [10], which includes further references on the subject.

Matrices and vectors will usually be represented by capital italic and lower case bold-
face letters, respectively, while their entries by the corresponding lower case italic letters.
Sometimes, however, when a matrix F is expressed as the product or the sum of other
matrices, it will be convenient to denote its (i, j)-th entry as [F ]ij .
If F = [fij ] is a matrix (in particular, a vector), we write F � 0 (F strictly positive), if
fij > 0 for all i, j; F > 0 (F positive), if fij ≥ 0 for all i, j, and fhk > 0 for some pair
(h, k); F ≥ 0 (F nonnegative), if fij ≥ 0 for all i, j.
The spectral radius of a matrix F , i.e. the modulus of its maximal eigenvalue, is denoted
by ρ(F ).
To every n× n nonnegative matrix F we make correspond [3] a digraph (directed graph)
D(F ) of order n, with vertices indexed by 1, 2, . . . , n. There is an arc (i, j) from i to j
if and only if fij > 0. Similarly, we associate with a pair of n × n nonnegative matrices
(A,B) a digraph of order n, D∗(A,B), with arcs of two different kinds, namely A-arcs and
B-arcs. There is an A-arc from vertex i to vertex j iff aij > 0, and a B-arc iff bij > 0.

Example 1 Consider the pair of positive matrices

A =

 0 0 2
1 4 0
0 0 0

 B =

 0 0 6
0 0 0
0 4 0

 .
The associated digraph D∗(A,B) is given in Fig. 1.1, where A-arcs and B-arcs have been
represented (as in the sequel) by thicklines and thinlines, respectively.
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Fig. 1.1

A sequence of arcs in D(F ) of the form (i0, i1), (i1, i2), . . . , (ik−1, ik) defines a path of length
k in D(F ), connecting i0 to ik. When assigning a path p in D∗(A,B), we have also to
specify, for each pair of consecutive vertices, which kind of arc they are connected by, so
that p will have a representation like (i0, i1)A, (i1, i2)B, . . . , (ik−1, ik)B. Thus, it is natural
to associate p with a couple of nonnegative integers, α(p) and β(p), representing the
number of A-arcs and B-arcs occurring in p, respectively. A path whose extreme vertices
coincide, i.e. i0 = ik, is called a cycle. In particular, if each vertex in a cycle appears
exactly once as the first vertex of an arc, the cycle is called a circuit.

Given a pair of square matrices (A,B), not necessarily nonnegative, the Hurwitz prod-
ucts of A and B are inductively defined [10] as

Ai 0B = Ai, i ≥ 0, and A0 jB = Bj , j ≥ 0, (3)

and, when i and j are both greater than zero,

Ai jB = A(Ai−1 jB) +B(Ai j−1B). (4)

One easily sees that Ai jB is the sum of all matrix products that include the factors A
and B, i and j times, respectively. For notational convenience sometimes we allow either
i or j to be negative integers, and in these cases we assume Ai jB = 0.
Hurwitz products allow to express any local state x(h, k) of system (1) in terms of the
sequence of initial conditions. Actually, if X0 = {x(`,−`) : ` ∈} is an arbitrary sequence
of initial conditions on C0, for all h, k ∈, h+ k ≥ 0, x(h, k) can be represented as

x(h, k) =
∑
`

(Ah−` k+`B) x(`,−`). (5)

In particular, if the initial conditions on the separation set C0 are all zero, except at (0, 0),
we have

x(h, k) = (Ah kB) x(0, 0), ∀ h, k ≥ 0.

The characteristic polynomial of a pair of n× n matrices (A,B) is defined as

∆A,B(z1, z2) := det(In −Az1 −Bz2),
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and plays for system (1) the same role as det(In−Fz) for system (1). In particular, there is
a bijective correspondence [10] between the characteristic polynomial of a pair (A,B) and
the family of traces tr(Ai jB), i, j ∈, a result which generalizes the well-known relation
[13] between the coefficients of det(In − Fz) and the traces of all powers of F .

2 Spectral properties of the matrices eiθA + eiωB

Perron-Frobenius theory estabilishes, for an n×n irreducible matrix F , very tight connec-
tions among its characteristic polynomial, the invariance under rotation of its spectrum
and the lengths of all cycles in the associated digraph D(F ). These connections can be
specialized to primitive matrices, thus leading to a set of characterizations of primitivity
which represent suitable strengthenings of those available for irreducibility.
Trying to determine necessary and sufficient conditions for the primitivity of a positive
matrix pair (A,B), it seems natural to ask to what extent the above results admit a
generalization, once the spectrum of F is replaced by the variety of ∆A,B(z1, z2) and the
digraph of F by D∗(A,B). To this purpose, in this section and throughout the paper,
we will steadily assume that the matrix pair (A,B) we are considering has the following
properties:

a) A and B are both positive;
b) A+B is irreducible;
c) A+B has a unitary maximal eigenvalue.

The set of n× n pairs endowed with these properties will be denoted by In.
Assumptions a) and b) easily prove to be necessary conditions for 2D primitivity, which
is our final goal. Actually, requiring that all states on Ct are strictly positive for large
values of t, implies that both A and B are nonzero, otherwise any sequence X0 including
a zero local state would produce on every Ct a state sequence with the same property.
Analogously, if A+ B were reducible, a positive, but not strictly positive, vector c could
be found such that the initial state sequence X0 = {x(`,−`) = c : ∀ ` ∈} produces a
constant sequence of nonstrictly positive local states on every separation set Ct.
Assumption c) entails no loss of generality. Actually, we can divide both A and B by
ρ(A + B) without affecting the properties we aim to investigate, which are independent
of the spectral radius of A + B. The case when A + B is nilpotent would constitute the
unique exception to this rescaling procedure, but then A+B would not be irreducible.

The answer to the previous question is given by the following proposition, which en-
lightens, under different points of view, which rotations of θ and ω radians in the z1- and
z2-planes, respectively, leave the variety of ∆A,B(z1, z2) invariant.
The proof is based on the following remarkable result due to Wielandt [15]:

Wielandt’s Theorem If an n × n complex matrix C = [cij ] is dominated
by an irreducible matrix F = [fij ] > 0, i.e. |cij | ≤ fij , for all i and j, then for
all eigenvalues λC of C

|λC | ≤ ρ(F ). (6)
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Equality holds in (2) if and only if

C = eiφDFD−1, (7)

where λC = eiφρ(F ) and D = diag{eiω1 , eiω2 , . . . , eiωn , }, ω1, ω2, . . . , ωn ∈.

Proposition 2.1 Let (A,B) ∈ In. For any θ and ω ∈ the following facts are equivalent:

i) 1 is an eigenvalue of eiθA+ eiωB;

ii) there exists a diagonal matrix D = diag{eiω1 , eiω2 , . . . , eiωn , }, ω1, ω2, . . . , ωn ∈, such
that

A = eiθDAD−1 and B = eiωDBD−1; (8)

iii) for every cycle γ in D∗(A,B), including α(γ) A-arcs and β(γ) B-arcs,

α(γ)θ + β(γ)ω ≡ 0 mod 2π; (9)

iv) the characteristic polynomial of the pair (A,B) satisfies

∆A,B(z1, z2) = ∆A,B(z1e
iθ, z2e

iω). (10)

Proof i)⇒ ii) As the matrix eiθA+eiωB is dominated by A+B and condition i) holds,
by Wielandt’s theorem we have ρ(eiθA+ eiωB) = ρ(A+B) = 1 and

A+B = D(eiθA+ eiωB)D−1, (11)

for some diagonal matrix D = diag{eiω1 , eiω2 , . . . , eiωn , }, ω1, ω2, . . . , ωn ∈.
If ahk 6= 0, from (2) one gets

eiωh(eiθahk + eiωbhk)e−iωk = ahk + bhk,

and consequently
(1− ei(θ+ωh−ωk))ahk = −(1− ei(ω+ωh−ωk))bhk. (12)

As the real parts on the left and right sides of (2) are nonnegative and nonpositive,
respectively, they must be zero, and hence ωk ≡ ωh + θ mod 2π. So, we have

[eiθDAD−1]hk = eiθeiωhahke
−iωk = ahk,

which proves the first equation in (2). The second one immediately follows from (2).
ii)⇒ iii) Let γ = (g1, g2), . . . , (g`−1, g`), (g`, g1) be a cycle of length ` in D∗(A,B), includ-
ing α(γ) A-arcs and β(γ) B-arcs. For every arc (gi, gj) in γ, let cgigj denote agigj if (gi, gj)
is an A-arc, and bgigj if it is a B-arc. By (2), we have, then,

0 < cg1g2cg2g3 . . . cg`g1 = ei[α(γ)θ+β(γ)ω]cg1g2cg2g3 . . . cg`g1 ,

which implies (2).
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iii)⇒ iv) Consider any Hurwitz product Ah kB, with h, k ∈, h+k > 0. If tr(Ah kB) 6= 0,
there is a circuit γ in D∗(A,B), including h A-arcs and k B-arcs, and, by assumption,
the congruence relation hθ + kω ≡ 0 mod 2π is satisfied. Consequently, the identity
tr(Ah kB)[1− ei(hθ+kω)] = 0 holds for all integers h and k, and we get

tr(Ah kB) = ei(hθ+kω)tr(Ah kB) = tr
(
(eiθA)h k(eiωB)

)
. (13)

As the traces of the Hurwitz products uniquely determine the coefficients of the charac-
teristic polynomial of a matrix pair [10], it follows that

∆A,B(z1, z2) = det(I −Az1 −Bz2) = det
(
I − (eiθA)z1 − (eiωB)z2

)
= ∆A,B(z1e

iθ, z2e
iω).

iv) ⇒ i) As the pair (A,B) is in In, 1 is an eigenvalue of A+B. Consequently,

0 = det(I −A−B) = ∆A,B(1, 1) = ∆A,B(eiθ, eiω) = det(I − eiθA− eiωB),

which implies 1 ∈ Λ(eiθA+ eiωB).

Remarks a) In order to check condition iii) of Proposition 2.1, it is not necessary to
consider all cycles but only the circuits in D∗(A,B). So, point iii) reduces to a finite
number, say t, of congruence relations which can be expressed in matrix form as

LA,B

[
θ
ω

]
=


α(γ1) β(γ1)
α(γ2) β(γ2)

...
...

α(γt) β(γt)


[
θ
ω

]
≡ 0 mod 2π. (14)

b) If in D∗(A,B) both an A-arc and a B-arc can be found, connecting a vertex h to
a vertex k, there are two cycles γ1 and γ2 with α(γ2) = α(γ1)− 1 and β(γ2) = β(γ1) + 1.
As the pairs (θ, ω) which satisfy (2) for all γ in D∗(A,B), must, in particular, satisfy

α(γ1)θ + β(γ1)ω ≡ 0 mod 2π(
α(γ1)− 1

)
+
(
β(γ1) + 1

)
ω ≡ 0 mod 2π

we have θ ≡ ω mod 2π for all solutions of (2).
c) Finally, notice that condition 1 ∈ Λ(eiθA + eiωB) for some real pair (θ, ω) is

equivalent to the fact that, for a suitable real pair (φ, ψ), eiφ is an eigenvalue of A+ eiψB.

If (A,B) is an element of In and A+B is primitive, the situation when only the trivial
rotations, i.e. θ ≡ ω ≡ 0 mod 2π, leave invariant the variety of ∆A,B(z1, z2), corresponds
to the special case when the congruence (2) is devoid of nonzero solutions. This happens
if and only if LA,B is a right prime integer matrix.

Proposition 2.2 Let (A,B) ∈ In and assume that A + B is primitive. The following
facts are equivalent:
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i) 1 ∈ Λ(eiθA+ eiωB) implies θ ≡ ω ≡ 0 mod 2π;

ii) the integer matrix LA,B is right prime;

iii) ∆A,B(z1, z2) = ∆A,B(eiθz1, e
iωz2) implies θ ≡ ω ≡ 0 mod 2π.

Proof i) ⇒ ii) We show, first, that LA,B has full column rank. Consider the integer
matrix

L̄A,B :=


α(γ1) α(γ1) + β(γ1)
α(γ2) α(γ2) + β(γ2)

...
...

α(γt) α(γt) + β(γt)

 = LA,B

[
1 1
0 1

]
,

whose second column consists of the lengths of all circuits in D∗(A,B). The primitivity
assumption on A + B implies that the g.c.d. of these lengths is 1, and hence integer
coefficients xh can be found such that

∑
h xh [α(γh) + β(γh)] = 1. If L̄A,B were not full

column rank, its first column, which is nonzero as (A,B) is in In, would be a scalar
multiple of the second one, namely

L̄A,B

[
1
−q

]
= 0,

for some rational number q, 0 < q < 1. Consequently, we would have 0 <
∑
h xhα(γh) < 1,

which is impossible, as all addenda xhα(γh) are integer numbers. So, L̄A,B, and hence
LA,B, have rank 2.
We prove, now, that LA,B is right prime. If not, it would factor over the ring as LA,B =
L∆, where L is a t × 2 right prime matrix and ∆ a square matrix with det ∆ 6= ±1 [16].
As ∆−1 is not an integer matrix, the pair[

θ
ω

]
:= ∆−1

[
2π
2π

]
6≡ 0 mod 2π

satisfies LA,B
[
θ
ω

]
≡ 0 mod 2π. By Proposition 2.1, this implies 1 ∈ Λ(eiθA+ eiωB).

ii)⇒ i) If LA,B is right prime, it admits a 2× t integer left inverse S, so that SLA,B = I2.

Consequently, LA,B
[
θ
ω

]
≡ 0 mod 2π implies

[
θ
ω

]
≡ 0 mod 2π. By Proposition 2.1, this

proves the result.
i) ⇔ iii) Obvious from Proposition 2.1.

The situation when in Proposition 2.1 θ is zero is particularly interesting for the sub-
sequent analysis of circulant matrices. Clearly, the problem of determining for which ω’s
the matrix A+ eiωB has eigenvalue 1 can be solved by resorting to the above propositions
and, in particular, by analysing the cyclic structure of D∗(A,B). It seems more conve-
nient, however, to associate with the pair (A,B) a simpler (strongly connected) digraph,
DA(B), obtained as follows: for all vertices h ∈ {1, 2, . . . , n} shrink into a single vertex [h]
all vertices of the communicating class of h in D(A + AT ), and then connect [h] and [k]
with the arc ([h], [k]) if there is an arc (`,m) in D(B) for some ` ∈ [h] and m ∈ [k].
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The structure of the shrinked digraph DA(B) of a pair (A,B) is better clarified by means
of an example.

Example 2 The positive matrices

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 B =


0 6 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 3
4 0 0 0 0


are associated with the following digraphs
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[4]

[2]

DA(B)

Proposition 2.3 Let (A,B) ∈ In. 1 is an eigenvalue of A + eiωB if and only if the
imprimitivity index hA(B) of the digraph DA(B) satisfies

hA(B) ω ≡ 0 mod 2π. (15)

Proof By Proposition 2.1, the statement 1 ∈ Λ(A + eiωB) can be replaced by the
equivalent condition β(γ) ω ≡ 0 mod 2π, where γ ranges over all cycles in D∗(A,B) and
β(γ) denotes the number of B-arcs in γ.
Assume, first, that hA(B) ω ≡ 0 mod 2π. Every cycle γ in D∗(A,B), including say β(γ)
B-arcs, obviously determines a cycle γ′ of length β(γ) in DA(B). As hA(B) is the g.c.d.
of the lengths of all cycles in DA(B), the length β(γ) of γ′ satisfies β(γ) ω ≡ 0 mod 2π.
To prove the converse, consider any cycle γ̂ in DA(B), of length say `. By definition of
DA(B), there is a cycle γ̄ in D∗(A + AT , B) such that γ̂ is obtained by identifying every
pair of consecutives vertices connected in γ̄ by an (A+AT )-arc. As A+B is irreducible,
every AT -arc (h, k) in γ̄ can be replaced in D∗(A,B) by a suitable path phk, from h to k,
thus producing a new cycle γ∗. Clearly, as akh > 0, phk can be completed into a cycle,
γhk, of D∗(A,B) by means of the A-arc corresponding to akh. Since all cycles γhk as well
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as γ∗ satisfy

β(γhk) ω ≡ 0 mod 2π

β(γ∗) ω ≡
(
`+

∑
β(γhk)

)
ω ≡ 0 mod 2π,

it follows that the length ` of any cycle in DA(B) satisfies `ω ≡ 0 mod 2π, and hence
hA(B)ω ≡ 0 mod 2π.

The results obtained in Proposition 2.2 for the linear combinations eiθA+ eiωB of the
matrices A and B particularize to the case θ = 0, by resorting once again to the shrinked
digraph DA(B).

Proposition 2.4 Let (A,B) ∈ In. The following facts are equivalent:

i) 1 ∈ Λ(A+ eiωB) for some real number ω implies ω ≡ 0 mod 2π;

ii) g.c.d.{β(γ) : γ a cycle in D∗(A,B)} = 1;

iii) the imprimitivity index hA(B) of DA(B) is 1.

Proof i) ⇒ ii) If b := g.c.d.{β(γ) : γ a cycle in D∗(A,B)} is greater than 1, then
ω̄ := 2π/b is not an integer multiple of 2π. However, condition β(γ) ω̄ ≡ 0 mod 2π
holds true for every cycle γ in D∗(A,B), thus implying, by Proposition 2.1, that 1 is an
eigenvalue of A+ eiω̄B. This contradicts i).
ii) ⇒ iii) Given any cycle γ in D∗(A,B), with say β(γ) B-arcs, we can identify pairs of
consecutive vertices which are connected by A-arcs, thus obtaining a cycle in DA(B) of
length β(γ). So, as g.c.d.{β(γ) : γ a cycle in D∗(A,B)} = 1, there is a family of cycles in
DA(B) whose lengths are coprime, and hence hA(B) is 1.
iii) ⇒ i) follows from Proposition 2.3.

Remark Analogous results can be obtained for the family of matrices eiθA + B, θ ∈,
by simply referring to the shrinked digraph DB(A) and to the occurrencies of the A-arcs
in the cycles of D∗(A,B). It is worthwhile to notice, however, that the digraphs DA(B)
and DB(A) can be endowed with different structural properties and, in particular, their
imprimitivity indices hA(B) and hB(A) need not coincide.

To conclude this section we investigate the set of solutions of the congruence relation
(2). As the pair (A,B) is in In, both columns of LA,B are nonzero, and therefore we can
distinguish two cases, depending on the rank of LA,B.

• LA,B has rank 1 if and only if there is a pair of positive coprime integers, m and `, such
that

LA,B

[
m
−`

]
= 0.

By the same reasoning adopted to prove Proposition 2.1, we see that the traces of the
Hurwitz products Ah kB are possibly nonzero only for (h, k) = (t`, tm), t ∈. This
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situation corresponds [10] to have a characteristic polynomial of the form ∆A,B(z1, z2) =
p(z`1z

m
2 ), i.e. with support included in a straight line through the origin.

In this case the set of all distinct solutions of (2), i.e. corresponding to different pairs
(eiθ, eiω), includes infinitely many elements.

Example 3 The pair of matrices (A,B) in I5, with

A =
1
4
√

2


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

 B =
1
4
√

2


0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0

 ,

has characteristic polynomial ∆A,B(z1, z2) = 1− z1z
3
2 ∈ [z1z

3
2 ] and the associated digraph

D∗(A,B) is

��
��

��
��

��
��

��
��

��
��

�

?

@
@
@
@R

6

--

@
@
@
@R

@
@
@
@R

4

1

5

3

2

Fig. 2.2

Clearly,

LA,B =
[

1 3
1 3

]
has rank 1.

•When the support of ∆A,B(z1, z2) is not included in a straight line, LA,B has rank 2 and
there is only a finite set of distinct solutions of (2). To study this set, it is convenient to
consider the Smith form of LA,B over , namely

SAB =


s1 0
0 s2

0 0
...

...
0 0

 = ULA,BV,

where U and V are unimodular integer matrices, and the positive integers s1 and s1s2

represent the g.c.d.’s of the elements and of the second order minors of LA,B, respectively.
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Equation (2) can be rewritten as
[
s1 0
0 s2

]
V −1

[
θ
ω

]
≡ 0 mod 2π, (15)and hence as[

s1 0
0 s2

] [
r1

r2

]
≡ 0 mod , (16)

where [ r1 r2 ]T := V −1 [ θ/2π ω/2π ]T . A set of distinct representatives of all solutions
of (2) is given by


n1

s1

n2

s2

 : n1 = 0, 1, . . . , s1 − 1; n2 = 0, 1, . . . , s2 − 1

 .
So, letting g1 := 2πV [ 1/s1 0 ]T and g2 := 2πV [ 0 1/s2 ]T , the set

{n1g1 + n2g2 : n1 = 0, 1, . . . , s1 − 1; n2 = 0, 1, . . . , s2 − 1}, (17)

is the abelian group of the solutions (mod 2π) of (2), represented as the direct sum of two
cyclic groups.
The case when both cyclic groups are nontrivial is quite special, because it occurs only
when all elements of LA,B have a nontrivial common divisor s1. In terms of Hurwitz
products, this amounts to require that tr (Ah kB) is possibly nonzero only when both h
and k are multiples of s1, or equivalently [10] ∆A,B(z1, z2) is in [zs11 , z

s1
2 ].

Example 4 The pair of positive matrices (A,B) ∈ I5, with

A =


0 1/2 0 0 1/2
0 0 0 0 0
0 0 0 0 0

1/2 0 0 0 0
1/2 0 0 0 0

 B =


0 0 0 0 0
0 0

√
3 0 0

0 0 0
√

3 0
0 0 0 0 0
0 0 0 0 0

 ,

has characteristic polynomial ∆A,B(z1, z2) = 1 − 1
4z

2
1 − 3

4z
2
1z

2
2 ∈ [z2

1 , z
2
2 ]. The associated

digraph D∗(A,B) is

��
��

��
��

��
��

��
��

��
��

�

?

--

66

� �
?

� �
?

� �6� �6

4

1

3

25

Fig. 2.3
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and all entries of the matrix
LA,B =

[
2 0
2 2

]
are multiples of 2.

In the remaining cases, and, in particular, when (A,B) ∈ In has primitive sum A+B,
the set of distinct solutions of (2) is a cyclic group generated by g2 and including s2

elements.
Finally, when LA,B is right prime, both cyclic groups collapse and we have only the trivial
solution θ ≡ ω ≡ 0 mod 2π.

As a final remark, if our interest is in the pairs (0, ω) which satisfy LA,B
[

0
ω

]
≡ 0 mod

2π, or, equivalently, in the values ω ∈ [0, 2π[ for which

1 ∈ Λ(A+ eiωB), (18)

it is more convenient to exploit condition hA(B) ω ≡ 0 mod 2π, given in Proposition 2.3.
This way it is immediately apparent that the solutions (mod 2π) constitute a cyclic group
of order hA(B) ≤ n.

3 Periodic initial conditions and circulant matrices

In this section we turn our attention to some conditions on the pair (A,B) which en-
sure a strictly positive asymptotic dynamics for the associated 2D system (1), under the
assumption that the initial conditions X0 have a periodic pattern.

Although this situation is admittedly restrictive, it deserves a thorough discussion for
at least two reasons. First, it develops intuitive insights into the combinatorial and spectral
properties of a positive matrix pair, meanwhile enlightening some interesting features of
block-circulant positive matrices. Second, this analysis leads the way to the solution of
the general problem, we shall afford in the subsequent section.

If X0 is nonzero and periodic with period T , i.e.

x(`,−`) = x(`+ T,−`− T ) ≥ 0, ∀ ` ∈ . (19)

it is clear that the local states x(t + `,−`) on each subsequent separation set Ct still
constitute a periodic sequence of period T . It is a matter of simple computation to check
that the nT -dimensional vector

pT (t) :=


x(t, 0)

x(t+ 1,−1)
...

x(t+ T − 1,−T + 1)

 , (20)

obtained by stacking T consecutive local states on Ct, updates according to the following
equation

pT (t+ 1) = CT (A,B) pT (t), (21)

14



where CT (A,B) denotes the nT × nT block circulant matrix

CT (A,B) =


A B

A B
. . . . . .

B
B A

 , (22)

if T > 1, and the n×n matrix A+B if T = 1, i.e. if all initial local states on C0 coincide.

It is worth noticing that pT (t) is completely determined by the initial condition, pT (0) > 0,
and by the structure of CT (A,B). In particular
• if CT (A,B) is irreducibile, no component of pT (t) remains permanently unexcited.

Vice versa, if CT (A,B) is reducibile, a positive vector pT (0) can be found such that for
some j ∈ {1, 2, . . . , nT}, the j-th entry of pT (t) is zero for all t ∈.
• If CT (A,B) is irreducibile, pT (t) eventually becomes strictly positive if and only

if the set of the indices corresponding to nonzero entries in pT (0) includes at least one
element of each communicating class in D(CT (A,B)).
• The matrix CT (A,B) is primitive if and only if for every pT (0) > 0 the vector pT (t)

eventually becomes strictly positive.

So, under the assumption of periodic initial conditions with period T , the asymptotic
strict positivity of every state evolution of (1) is equivalent to the primitivity of CT (A,B),
which describes the system dynamics according to (3). Consequently, our primary goal in
this section is to investigate how the properties of a positive pair (A,B) affect those of
CT (A,B), and, in particular, under what conditions CT (A,B) is irreducible or primitive.
The solution of this problem relies on the results obtained in the previous section and
on a couple of technical lemmas, available in the literature. The first lemma introduces
a general result on the spectra of block circulant matrices, which allows to express the
spectrum of CT (A,B) in terms of the spectra Λ(A + ei2π`/TB), ` = 0, 1, . . . , T − 1. The
second lemma provides a useful criterion for recognizing irreducible matrices.

Lemma on circulant matrices [5] The spectrum of the block circulant
matrix

C =


A1 A2 . . . AT
AT A1 AT−1

. . .
A2 A3 . . . A1

 , Ai ∈n×n,

is the nT -tuple given by

Λ(C) = Λ(A1 +A2 + . . .+AT ) ] Λ(A1 + eiωA2 + . . .+ eiω(T−1)AT )
] · · · ] Λ(A1 + eiω(T−1)A2 + . . .+ eiω(T−1)(T−1)AT )

where ω = 2π/T . In particular, the spectrum of (3) is

Λ(CT (A,B)) = Λ(A+B) ] Λ(A+ eiωB) ] · · · ] Λ(A+ eiω(T−1)B). (23)
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Irreducibility criterion [15] An n × n matrix F > 0 with a simple
maximal eigenvalue, λmax, is irreducible if and only if both F and F T have
strictly positive eigenvectors corresponding to λmax.

Lemma 3.1 Let (A,B) ∈ In and T ∈. The circulant matrix CT (A,B) is

i) irreducible if and only if 1 is not an eigenvalue of anyone of the following matrices

A+ eiωB,A+ e2iωB, . . . , A+ e(T−1)iωB, ω = 2π/T. (24)

ii) primitive if and only if A + B is primitive and none of the above matrices has an
eigenvalue of unitary modulus.

Proof i) By the above lemma on circulant matrices, if none of the matrices in (3) has
1 as an eigenvalue, 1 is the simple maximal eigenvalue of A + B and hence of CT (A,B).
On the other hand, if v and w denote two strictly positive eigenvectors of A + B and
(A+B)T , respectively, corresponding to the eigenvalue 1, we have

CT (A,B)

v
...
v

 =

v
...
v

 ,
and

CT (A,B)T

w
...
w

 =

w
...
w

 .
Consequently, both CT (A,B) and CT (A,B)T have a strictly positive eigenvector corre-
sponding to the eigenvalue 1, and hence are irreducible.
Conversely, if 1 is an eigenvalue of some matrix in (3), the multiplicity of 1 as maximal
eigenvalue of CT (A,B) is greater than one, and CT (A,B) is reducible.

ii) Assume that CT (A,B) is primitive. As its spectral radius ρ(CT (A,B)) = 1 is an
eigenvalue of A+B, none of the matrices A+ eiω`B, ` = 1, 2, . . . , T − 1, has an eigenvalue
of unitary modulus. In particular, the irreducible matrix A+ B, having no eigenvalue of
unitary modulus except for 1, is primitive.
Vice versa, if A + B is primitive and none of the matrices in (3) has an eigenvalue of
unitary modulus, by the first part of the proof CT (A,B) is an irreducible matrix with 1
as simple maximal eigenvalue. As any other eigenvalue of CT (A,B) has modulus strictly
less than 1, CT (A,B) must be primitive.

It is easy to obtain dual statements for the block circulant matrices CT (B,A), T =
1, 2, . . . , thus relating the irreducibility and primitivity of these matrices to the spectra
Λ(eiθ`A + B), θ = 2π/T , ` = 1, 2, . . . , T − 1. In general, however, the irreducibility
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of CT (B,A) needs not imply that of CT (A,B), as a consequence of the fact that the
imprimitivity indices hA(B) and hB(A) need not coincide.

Example 5 The pair of matrices (A,B), with

A =

 0 1 0
0 0 0
0 0 0

 B =

 0 0 0
0 0 1
1 0 0

 ,
is an element of I3. It is immediate to see from the digraphs DA(B) and DB(A) that the

block circulant matrix C2(A,B) =
[
A B
B A

]
is reducible, whereas C2(B,A) =

[
B A
A B

]
is

irreducible.

Notice that, differently from the case of irreducibility, A and B play a symmetric role
in determining the primitivity of CT (A,B). Actually, if CT (A,B) is primitive, none of
the matrices A + eiω`B, ω = 2π/T and ` = 1, 2, . . . , T − 1, has an eigenvalue of unitary
modulus, and this happens if and only if the same holds true for the family B + eiω`A,
` = 1, 2, . . . , T − 1. Thus, CT (B,A) is primitive, too.

Proposition 3.2 Let (A,B) ∈ In. The following facts are equivalent:

i) all circulant matrices CT (A,B), T = 1, 2, . . . , are irreducible;

ii) 1 ∈ Λ(A+ eiωB) for some real number ω implies ω ≡ 0 mod 2π.

Proof i) ⇒ ii) Assume, by contradiction, that 1 is an eigenvalue of A+ eiωB, for some
ω 6≡ 0 mod 2π. By Proposition 2.3, ω must be a rational multiple of 2π, i.e. ω = 2π(ν/T̄ ),
for some nonzero integers ν and T̄ , ν 6≡ 0 mod T̄ . But in this case, by Lemma 3.1,
CT̄ (A,B) is a reducible matrix, which contradicts assumption i).
ii) ⇒ i) follows from Lemma 3.1, too.

Proposition 3.3 Let (A,B) ∈ In, with A+B primitive. The following facts are equiv-
alent:

i) all circulant matrices CT (A,B), T = 1, 2, . . . , are primitive;

ii) 1 ∈ Λ(eiθA+ eiωB) implies θ ≡ ω ≡ 0 mod 2π.

Proof i) ⇒ ii) As remarked at the end of the previous section, LA,B has rank 2. So, all
solutions of

LA,B

[
θ
ω

]
≡ 0 mod 2π,

and, consequently, all the pairs (θ, ω) for which 1 belongs to Λ(eiθA + eiωB), must be
rational multiples of 2π, namely (θ, ω) = 2π(q1, q2), q1, q2 ∈. However, if 1 would be
in Λ(eiθA + eiωB), for certain θ and ω rational multiples of 2π, we would have e−iθ ∈
Λ(A+ ei(ω−θ)B), thus contradicting Lemma 3.1.
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ii) ⇒ i) Immediate from Lemma 3.1.

Tying together Propositions 2.2 and 2.4 with the above results, several alternative char-
acterizations of the irreducibility and the primitivity of all circulant matrices CT (A,B),
T ∈, can be obtained, based on the digraphs DA(B) and D∗(A,B), respectively. In partic-
ular, graph-theoretic criteria are available for checking the above properties and hence the
strict positivity of the asymptotic dynamics of (1), starting from periodic initial conditions.

4 Arbitrary initial conditions and 2D primitivity

In this section we drop the periodicity assumption, and turn our attention to general
(admissible) initial conditions. As every periodic X0 is admissible, it is clear that the
primitivity of all CT (A,B), T ∈, is necessary for 2D primitivity. We aim to prove that it
is also sufficient.

In fact, we will show that when all CT (A,B), T ∈, are primitive, and hence LA,B is
right prime, there exists a solid convex cone K in 2

+ such that for all (h, k) in K∩2 the
Hurwitz products Ah kB are strictly positive. Consequently, every nonzero local state
x(`,−`) > 0 produces a strictly positive state evolution inside the cone (`,−`) +K, as we
have

x(h+ `, k − `) ≥ (Ah kB)x(`,−`)� 0, ∀ (h+ `, k − `) ∈ (`,−`) +K.

The admissibility assumption on X0 guarantees that the union of all cones (`,−`) + K,
which correspond to positive initial states x(`,−`), includes all separation sets Ct, for t
greater than a suitable tmin. Consequently, for t > tmin all local states on the separation
set Ct are strictly positive.

The subsequent discussion is based on the following number theoretic result, which
extends a well-know lemma attributed to Schur [3].

Lemma 4.1 Let S be a nonempty subset of 2, closed under addition, such that the
-module generated by S is 2. Then there exists a solid convex cone K∗ in 2

+ such that all
elements in K∗∩2 are in S.

Proof Let (α1, β1), . . ., (αt, βt) be a set of elements of S which generate 2, and let
r :=

∑t
i=1(αi + βi). For every nonnegative pair (h, k) in T := {(h, k) : h, k ∈, h + k ≤ r}

we may determine integer coefficients ch,ki such that

(h, k) =
t∑
i=1

ch,ki (αi, βi).

Let M be the maximum of the integers |ch,ki |, (h, k) ∈ T and i = 1, 2, . . . , t, and define

(v, w) :=
t∑
i=1

M (αi, βi).
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As the -module generated by S is 2, the cone K generated in 2
+ by the positive pairs (α1, β1),

. . ., (αt, βt) is convex and solid. We aim to show that all integer pairs in K∗ := (v, w) +K
belong to S.
Every integer pair (c, d) in K can be expressed as

(c, d) =
t∑
i=1

qi (αi, βi), qi ∈+,

and therefore as

(c, d) =
t∑
i=1

bqic(αi, βi) +
t∑
i=1

(qi − bqic)(αi, βi),

where bqic denotes the integer part of qi. Since 0 ≤ qi − bqic < 1, the pair (c̄, d̄) :=∑t
i=1(qi − bqic)(αi, βi) is an element of T , and (c, d) decomposes into

(c, d) = (c̄, d̄) +
t∑
i=1

ni (αi, βi), ni ∈ . (25)

So, every integer pair (h, k) in K∗ can be written as (h, k) = (v, w) + (c, d), (c, d) ∈ K, and
hence as

(h, k) = (v, w) + (c̄, d̄) +
t∑
i=1

ni (αi, βi)

=
t∑
i=1

M (αi, βi) +
t∑
i=1

cc̄,d̄i (αi, βi) +
t∑
i=1

ni (αi, βi)

=
t∑
i=1

(M + ni + cc̄,d̄i )(αi, βi),

with ni and cc̄,d̄i in , i = 1, 2, . . . , t. Since M + cc̄,d̄i + ni is a nonnegative integer for every
i, and S is closed under addition, (h, k) belongs to S.

Proposition 4.2 Let (A,B) be in In. The following facts are equivalent

i) the integer matrix LA,B is right prime;

ii) there is a solid convex cone K in 2
+ such that for every pair of integers (h, k) in

K and every couple of vertices i and j, there is a path p in D∗(A,B), from i to j,
including h A-arcs and k B-arcs;

iii) there is a solid convex cone KH in 2
+ such that for every pair of integers (h, k) in

KH the Hurwitz product Ah kB is strictly positive;

iv) the pair (A,B) is primitive.
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Proof i) ⇒ ii) Let S` be the set of integer vectors [α(γ) β(γ)] corresponding to all
cycles γ in D∗(A,B) passing through vertex `. Clearly, S` is nonempty and closed under
addition. Moreover, the -module generated by S` coincides with the -module generated
by the rows of LA,B, namely with 2. Actually, consider a positive vector [α(γ) β(γ)],
γ a circuit in D∗(A,B), which is not included in S`, and let j be any vertex γ passes
through. As D∗(A,B) is strongly connected, it includes a cycle γ′ passing through ` and
j, and another cycle, γ”, obtained by connecting γ and γ′. So, both [α(γ′) β(γ′)] and
[α(γ”) β(γ”)] are in S`, and

[α(γ) β(γ)] = [α(γ”) β(γ”)]− [α(γ′) β(γ′)]

is in the -module generated by S`. By the above lemma, then, there exists a solid convex
cone K∗` in 2

+ such that all integer vectors in K∗` are in S`.
If i and j are arbitrary vertices in D∗(A,B) and pi` and p`j are two fixed paths

connecting i to ` and ` to j, respectively, all integer vectors in the cone

K∗ij := [α(pi`) + α(p`j) β(pi`) + β(p`j)] +K∗`
correspond to paths connecting i to j. Clearly, K := ∩ijK∗ij is a solid convex cone which
satisfies ii).
ii) ⇒ iii) Obvious, once assuming KH = K.
iii) ⇒ iv) Under assumption iii), it is easy to see that every admissible X0 eventually
produces a strictly positive state evolution, and hence the pair (A,B) is primitive, by
definition.
iv) ⇒ i) When (A,B) is primitive, all nonzero periodic initial conditions eventually
produce strictly positive dynamics. This implies that all CT (A,B), T ∈, are primitive
matrices and hence, by Propositions 2.2 and 3.3, LA,B is right prime.

To conclude, observe that the above proposition reduces the primitivity of the pair
(A,B) to the existence of a solid cone KH in 2

+, whose integer coordinates points correspond
to strictly positive Hurwitz products. Indeed, this condition can be considerably simplified,
as the existence of a primitive, and hence of a strictly positive, Hurwitz product ensures
that of a whole cone KH of strictly positive Hurwitz products. This property nicely extends
to matrix pairs the well-known fact that a positive matrix F is primitive if and only if it
has a strictly positive power.

Proposition 4.3 Let (A,B) be in In. The following facts are equivalent:

i) there is a solid convex cone KH in 2
+ such that for every pair of integers (h, k) in

KH the Hurwitz product Ah kB is strictly positive ;

ii) there exists a positive pair (`,m) ∈ × such that A` mB is primitive.

Proof i) ⇒ ii) Obvious.
ii)⇒ i) Assume that A` mB is primitive. Then there exists a positive integer r such that
Ar` rmB ≥ (A` mB)r � 0. So, it is not restrictive to assume that A` mB is strictly
positive.
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As A and B are both positive and D∗(A,B) is strongly connected, there exists a vertex j
with an outgoing A-arc, (j, u), and an ingoing B-arc (e, j). By the assumption on A` mB,
in D∗(A,B) one can find a cycle γ passing through j, a path puj from u to j and a path
pje from j to e, each of them including ` A-arcs and m B-arcs. So, the path pju can be
completed into a cycle with `+1 A-arcs and m B-arcs, and similarly pej can be completed
into a cycle including ` A-arcs and m+ 1 B-arcs.
Clearly, the -moduleM generated by the pairs (`,m), (`+ 1,m) and (`,m+ 1) is 2, as the
integer matrix  ` m

`+ 1 m
` m+ 1


is right prime. Moreover, as the -module generated by the rows of LA,B includesM, LA,B
is a right prime matrix, too, and the conclusion follows from the above proposition.
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