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1. Introduction

Switched linear systems are dynamic systems consisting of a family of linear state-space models
and a switching law, specifying when and how the switching among the subsystems takes
place [14, 17, 20]. Reachability and controllability of these systems have been explored in
a number of papers [10, 22, 23]. Nonetheless, there are still several open problems. Indeed,
reachability has found a rather complete characterization for continuous-time switched systems
and for “reversible” discrete-time switched systems (whose subsystems have nonsingular state
transition matrices). In the general discrete-time case, necessary and sufficient conditions for
reachability have been provided under the assumption that all subsystems share the same
state transition matrix [8]. Finally, some interesting properties of the controllable sets for
(both reversible and non-reversible) discrete-time switched systems have been investigated in
the pioneering works of Conner and Stanford [5, 19].

Positive systems, on the other hand, are linear systems in which the variables only take
nonnegative values. They naturally arise in fields like bioengineering (compartmental mod-
els), economic modelling, behavioral science, and stochastic processes (Markov chains), where
the quantities involved are typically nonnegative. The theory of positive systems [9, 12] is
built upon classical positive matrix theory and graph theory, essential tools in the analysis of
controllability and reachability [3, 7, 21].

The interest in positive switched systems is motivated both by practical applications and
by theoretical reasons. Indeed, switching among different models naturally arises as a way to
formalize the fact that the system laws change under different operating conditions. If in each
operating condition the system has to be positive, we naturally obtain a positive switched
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system. Discrete-time positive switched systems (DPSS) have been adopted for describing
networks employing TCP and other congestion control applications [18], for modeling con-
sensus and synchronization problems [11], for investigating distributed coloring problems [13],
and wireless power control applications [1]. Reachability and controllability analysis of DPSS
[15, 16] is intrinsically challenging. In particular, there is no upper bound on the number of
steps required by the algorithms presently available for checking reachability.

In this paper we will focus on the reachability properties of a specific class of DPSS, namely
those commuting among p single-input positive subsystems, that share the same transition ma-
trix, and differ in the input-to-state matrix (see [8]). For these systems the internal dynamics
is governed by an invariant law, while the actuator action commutes among p possible config-
urations. These DPSS practically arise when trying to ensure reachability to a discrete-time
positive system, with state transition matrix A, under the constraint of resorting to a single
actuator at each time. Reachability in this context represents the possibility of achieving ar-
bitrary distributions of the various state components. In particular, it may be important to
freely act on certain entries, while leaving the others unaffected, a situation that corresponds
to the reachability of states belonging to the boundary of the positive orthant. On the other
hand, the constraint of using a single actuator may arise from economical/practical reasons (a
single actuator which may act on the system in different configurations) or from opportunity
reasons (in pharmacokinetic, for instance, it is often not appropriate to simultaneously apply
different therapies or inject different tracers). In the general case, even if the structure of A
does not ensure the existence of a single positive vector b such that the pair (A, b) is reachable,
reachability may be achieved by switching among a finite number of configurations bi, each of
them corresponding to a different action of the actuator on the state components.

The paper is organized as follows: in section 2 we introduce the class of DPSS under
investigation and define the reachability properties. Section 3 addresses monomial reachability,
and section 4 reachability along a single switching sequence. The last three sections are devoted
to the general reachability analysis. Specifically, in section 5 two technical lemmas provide
necessary conditions, which are exploited in section 6 and 7 to characterize reachability when
all input-to-state matrices are monomial or when some of them are nonmonomial, respectively.

Notation. Given two integers h and k, with h ≤ k, we set [h, k] := {h, h + 1, . . . , k}.
Given a positive integer n and a set V ! [1, n], we denote by V the complementary set of V ,
i.e., [1, n] \ V . The semiring of nonnegative real numbers is R+. A matrix M ∈ Rn×m

+ is a
nonnegative matrix. M is positive (M > 0) if nonnegative and nonzero, and strictly positive
(M # 0) if all its entries are positive. The (i, j)th entry of a matrix M is [M ]ij , the ith entry
of a vector v is [v]i, and ei is the ith vector of the canonical basis in Rn. The nonzero pattern
of v ∈ Rn

+, ZP(v) := {i : [v]i $= 0}, is the set of indices corresponding to its nonzero entries,
and |ZP(v)| is the number of nonzero entries of v. If v1, v2 ∈ Rn

+ have the same nonzero
pattern, we use the notation v1 ∼ v2. If M1, M2 ∈ Rn×k

+ , the symbol M1 ∼ M2 means that
M1ei ∼ M2ei for every index i. A vector v ∈ Rn

+ is an !th monomial vector if v ∼ e!. A
monomial (permutation) matrix is a nonsingular square positive matrix whose columns are
monomial (canonical) vectors. Any n × k submatrix of an n × n permutation matrix is a
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selection matrix. The matrices Cr ∈ Rr×r
+ and Sr ∈ Rr×(r−1)

+ , given by

Cr =





0 0 . . . 0 c1r

c21 0 . . . 0 0

0 c32
. . . 0 0

...
... . . . . . . ...

0 0 . . . cr,r−1 0




Sr =





0 0 . . . 0
c21 0 . . . 0

0 c32
. . . 0

...
... . . . ...

0 0 . . . cr,r−1




, cr,r−1 · · · c21c1r $= 0,

represent an r × r cyclic monomial matrix and the submatrix consisting of its first r − 1
columns, respectively.

Given an n-dimensional positive system with p inputs

x(k + 1) = Ax(k) + Bu(k), k ∈ Z+,(1.1)

where x(·) and u(·) denote the n-dimensional nonnegative state variable and the p-dimensional
nonnegative input variable, respectively, A ∈ Rn×n

+ and B ∈ Rn×p
+ , we may associate with it

[3, 4, 21] a digraph (directed graph) D(A, B), with n vertices, indexed by 1, 2, . . . , n, and p
sources s1, s2, . . . , sp. There is an arc (j, i) from j to i if and only if [A]ij > 0, and an arc (sj , i)
from sj to i if and only if [B]ij > 0.

A sequence i0 → i1 → . . . → ik, starting from the vertex i0, and passing through the
vertices i1, . . . , ik, is a path of length k from i0 to ik provided that (i0, i1), . . . , (ik−2, ik−1)
are all arcs of D(A, B). The matrix A is irreducible if, given any pair of vertices i and j in
[1, n], there is a path from i to j. When so, for each vertex i ∈ [1, n] there exists at least one
closed path (a circuit) including it. The greatest common divisor (g.c.d.) of the lengths of
all circuits appearing in D(A, B) represents the imprimitivity index of A (equivalently, of the
digraph). If A is irreducible with imprimitivity index D, then there exists k0 ∈ Z+ such that
(s.t.) Ak + Ak+1 + . . . + Ak+D−1 is strictly positive for every k ≥ k0. When the imprimitivity
index is unitary, A is said to be primitive and there exists k0 ∈ Z+ such that Ak is strictly
positive for every k ≥ k0. If D is the imprimitivity index of A, all vertices in D(A, B) can be
partitioned into D imprimitivity classes, Cp, p ∈ [1, D]. Two vertices belong to the same class
if and only if the length of any path connecting one vertex to the other is a multiple of D.

On the other hand, a sequence sj → i0 → i1 → . . . → ik−1, starting from the source sj ,
and passing through the vertices i0, . . . , ik−1, is an s-path of length k from sj to ik−1 provided
that (sj , i0), (i0, i1), . . . , (ik−2, ik−1) are all arcs of D(A, B). An s-path of length k from sj

deterministically reaches some vertex i, if no other vertex of the digraph can be reached in k
steps starting from sj . It is easily seen that there is an s-path of length k from sj to i if and
only if [Ak−1B]ij > 0. In general, leaving from sj , after k steps one can reach several distinct
vertices: this corresponds to saying that the jth column of Ak−1B can have more than one
nonzero entry. So, a vertex i can be deterministically reached from the source sj by means of
a path of length k if and only if the jth column of Ak−1B is an ith monomial vector.

Basic definitions and results about cones may be found in [2]. A set C ⊂ Rn is a cone if
αC ⊆ C for all α ≥ 0. A cone C is polyhedral if it can be expressed as the set of nonnegative
linear combinations of a finite set of generating vectors. This amounts to saying that a positive
integer k and an n×k matrix G can be found, such that C coincides with the set of nonnegative
combinations of the columns of G. In this case, we adopt the notation C := Cone(G).
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2. Reachability of a class of discrete-time positive switched systems

Generally speaking, by a (single-input) discrete-time positive switched system we mean a sys-
tem described, at each time t ∈ Z+, by the first-order difference equation:

x(t + 1) = Aσ(t)x(t) + bσ(t)u(t),(2.1)

where x(t) and u(t) denote the n-dimensional state variable and the scalar input, respectively,
at time t, while σ is a switching sequence, defined on Z+ and taking values in [1, p]. For
each i ∈ [1, p], the pair (Ai, bi) represents a discrete-time positive system, which means that
Ai ∈ Rn×n

+ and bi ∈ Rn
+. In this paper we focus on DPSSs described by

x(t + 1) = Ax(t) + bσ(t)u(t).(2.2)

This amounts to saying that the system switches among p subsystems (A, bi), sharing the same
positive transition matrix A, and differing only in the positive input-to-state matrices bi.

Definition 2.1. A state xf ∈ Rn
+ is reachable at time k ∈ N (in k steps) if there exist

a switching sequence σ : Z+ → [1, p] and an input sequence u : Z+ → R+ that lead the state
trajectory from x(0) = 0 to x(k) = xf . System (2.1) (in particular, (2.2)) is monomially
reachable if every monomial vector xf ∈ Rn

+ is reachable at some time k, and reachable if
every state xf ∈ Rn

+ is reachable at some time k.

Since reachability of a given vector always refers to a finite time interval, focusing on the
state at the final instant k, only the values of the switching sequence σ within [0, k − 1] are
relevant. So, we refer to the cardinality of the discrete time interval [0, k − 1] as to the length
of σ and denote it by |σ| = k. While for standard positive systems monomial reachability and
reachability are equivalent properties, this is not the case for DPSS (2.1) [16].

When (monomial) reachability is ensured, a natural goal is that of determining the mini-
mum number of steps required to reach every nonnegative (monomial) state.

Definition 2.2. Given a (monomially) reachable DPSS (2.1) (or (2.2)), we define its
monomial reachability index as IMR := maxi∈[1,n] min{k : ei is reachable at time k}, and its
reachability index as IR := supx∈Rn

+
min{k : x is reachable at time k}.

In [15, 16] necessary and sufficient conditions for the reachability of DPSS (2.1) have been
given. Such conditions, however, are not computationally efficient, as the algorithms for testing
them may require an arbitrarily large number of steps. This, however, seems to be an intrinsic
problem, since reachable DPSS can be found [16] endowed with an infinite IR. For DPSS
described as in (2.2) these situations cannot arise, and indeed we will derive canonical forms
to which reachable DPSS may be reduced, thus leading to finite checking conditions.

To explore reachability properties of system (2.2), we provide the expression of the state
at time k ∈ N, starting from x(0) = 0, under the action of a nonnegative input u(·) and of
a switching sequence σ(·). If we define the reachability matrix associated with the switching
sequence σ of length k as

Rk(σ) := [ Ak−1bσ(0) Ak−2bσ(1) . . . Abσ(k−2) bσ(k−1) ] ,
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it is easy to see that

x(k) = Ak−1bσ(0)u(0) + Ak−2bσ(1)u(1) + . . . + bσ(k−1)u(k − 1) = Rk(σ)




u(0)

...
u(k − 1)



 ,(2.3)

and hence x(k) ∈ Cone(Rk(σ)). Therefore, a positive state xf is reachable if and only if there
exists a switching sequence σ such that xf ∈ Cone(R|σ|(σ)), or, equivalently, there exist k ∈ N
and i0, . . . , ik−2, ik−1 ∈ [1, p] such that xf ∈ Cone ([Ak−1bi0 . . . Abik−2 bik−1 ]) .

3. Monomial reachability analysis

Monomial reachability of the DPSS (2.2) proves to be equivalent to the monomial reachability
(and hence the reachability) of the (non-switched) positive system with p inputs (1.1) having
the same state transition matrix A, and input-to-state matrix B obtained by juxtaposing the
p columns bi’s. As a consequence, monomial reachability of (2.2) can be easily checked by
resorting to either the algebraic or the graph-based algorithms available for positive systems
[3, 7, 21].

Proposition 3.1. The following facts are equivalent:

i) the DPSS (2.2) is monomially reachable;

ii) the (n-dimensional) positive system with p inputs (1.1), with B := [ b1 b2 . . . bp ],
is reachable, i.e. Rn(A, B) := [An−1B . . . AB B ] includes an n × n monomial
submatrix [6, 21].

So, if system (2.2) is monomially reachable, then IMR ≤ n.
Proof. The DPSS (2.2) is monomially reachable if and only if for every i ∈ [1, n] there

exists a switching sequence σi of length say ki such that ei ∈ Cone(Rki(σi)). This amounts to
saying that for every i ∈ [1, n] there exists hi ∈ Z+ and ji ∈ [1, p] such that Ahibji ∼ ei. As
proved in [6], if such an index hi exists, it can always be chosen not greater than n − 1. But
this ensures that all monomial vectors are reachable if and only if Rn(A, B) contains n linearly
independent monomial vectors. The final statement about IMR is an obvious consequence.

We remark that the assumption Ai = A, ∀i ∈ [1, p], ensures that the monomial reachability
index of (2.2) never exceeds n, while for general DPSS (2.1) IMR can even reach the value
2n − 1 (see [16], Proposition 3 and Example 3). However, as for system (2.1), the monomial
reachability of (2.2) is not equivalent to reachability. In fact, if all monomial vectors can be
reached by means of the same switching sequence σ, of length say k, the reachability matrix
Rk(σ) includes an n × n monomial submatrix, and hence all positive vectors can be reached
along σ. On the other hand, if monomial reachability cannot be achieved by means of a single
switching sequence1, different situations may arise, as illustrated by the following example.

1It is worthwhile to remark, however, that a discrete-time (non-positive) switched system is reachable if and
only if [10] there exists a switching sequence σ (of length say k) such that Im (Rk(σ)) = Rn.
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Example 1. Consider the DPSS Σ1 and Σ2, each of them described as in (2.2) with p = 2:

Σ1 : A =
[

0 0
0 0

]
, b1 =

[
1
0

]
, b2 =

[
0
1

]

Σ2 : A =
[

2 2
3 1

]
, b1 =

[
1
0

]
, b2 =

[
0
1

]
.

Both Σ1 and Σ2 are monomially reachable, but (for both of them) the canonical vectors cannot
be reached along a single switching sequence. For Σ1 this is obvious. For Σ2 this is due to the
fact that ∀ k > 0 and i ∈ [1, 2], |ZP(Akbi)| > 1. So, there is no switching sequence σ, of length
say k, such that the reachability matrix Rk(σ) of Σ2 includes a 2× 2 monomial submatrix.

Σ1 is not reachable, as no strictly positive vector can be reached. On the contrary, Σ2 is
reachable. In fact, if σ1 and σ2 are the switching sequences of length 2 taking only value 1
and 2 respectively, for Σ2 we get

Cone(R2(σ1)) ∪ Cone(R2(σ2)) = Cone([Ab1 b1 ]) ∪ Cone([ Ab2 b2 ])

= Cone
([

2 1
3 0

])
∪ Cone

([
2 0
1 1

])
= R2

+. ♦

The following lemma, which extends Lemma 2 in [21], shows how the increasingly stronger
assumptions of monomial reachability, reachability, and reachability along a single switching
sequence impose strong constraints on the patterns of the matrices A and bi, that will be very
useful in the sequel.

Lemma 3.2. Suppose that the DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p], is
monomially reachable. Then

i) the n× (n + p) matrix [A b1 b2 . . . bp ] includes an n× n monomial matrix, and
at least one of the vectors bi, i ∈ [1, p], is monomial;

ii) if, in addition, the system is reachable and n > 1, A is nonzero,

iii) furthermore, if the system is reachable along a single switching sequence σ, there exists
i ∈ [1, p] such that bi is monomial and [A bi ] includes an n× n monomial matrix.

Proof. i) If (2.2) is monomially reachable, then, by Proposition 3.1, the (non-switched)
positive system (1.1) is reachable. This implies [21] that [A b1 b2 . . . bp ] includes an
n× n monomial matrix. On the other hand, if none of the bi’s would be monomial, A should
be a monomial matrix, and |ZP(Akbi)| = |ZP(bi)| > 1, for any k ∈ Z+ and i ∈ [1, p]. So, none
of the columns of Rn(A, B) could be monomial, a contradiction.
ii) If system (2.2) is reachable and the dimension of the system is greater than 1, A cannot
be zero, otherwise only the vectors αbi, α ∈ R+, i ∈ [1, p], could be reached.
iii) Suppose that Rk(σ) = [Ak−1bi0 . . . Abik−2 bik−1 ] , with k > 0, and i0, . . . , ik−2, ik−1 ∈
[1, p], includes n linearly independent monomial vectors. If bik−1 is monomial, then n − 1
monomial vectors linearly independent of bik−1 must be obtained in the form Ahbi, for some
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h > 0 and i ∈ [1, p]. But this implies that each of these vectors is a column of A and hence
[A bik−1 ] includes an n× n monomial matrix. On the other hand, if bik−1 is not monomial,
then A is an n× n monomial matrix. In addition, by part i) there exists i ∈ [1, p] such that bi

is monomial. So, [A bi ] includes an n× n monomial matrix.

4. Reachability along a single switching sequence

In this section we investigate under which conditions a switching sequence σ (of suitable length
k) can be found, such that Rk(σ) includes an n × n monomial submatrix. This is clearly
equivalent to the possibility of reaching every positive state along the switching sequence σ.
To avoid redundancy, we assume that all p subsystems are necessary in order to find such a
switching sequence σ. We address, first, the case p = 2.

Theorem 4.1. Consider a DPSS (2.2), with p = 2, A ∈ Rn×n
+ , b1, b2 ∈ Rn

+, and suppose
that neither (A, b1) nor (A, b2) is reachable. A necessary and sufficient condition for the
existence of k > 0 and of a sequence σ such that Rk(σ) includes an n×n monomial submatrix
is that there exist r > 0, a permutation matrix Π such that (possibly exchanging b1 and b2)

Π$AΠ =

[
Sr v1 0r×(n−r)

0(n−r)×(r−1) v2 Cn−r

]
(4.1)

Π$B = Π$ [ b1 b2 ] ∼
[
e1 b(2)

1
0 e1

]
, b(2)

1 ∈ Rr
+,(4.2)

where v1 ∈ Rr
+ and v2 ∈ Rn−r

+ . Moreover, if b(2)
1 > 0, then v1 and v2 are zero vectors, while if

b(2)
1 = 0, then |ZP(v2)| = 1 implies v1 $= 0. If so, k can always be chosen equal to n.

Proof. [Sufficiency] Assume that (4.1) and (4.2) hold, and set k = n, σ(0) = σ(1) = . . . =
σ(n− r − 1) = 2 and σ(n− r) = σ(n− r + 1) = . . . = σ(n− 1) = 1. Then Rn(σ) satisfies

Π$Rn(σ) = Π$ [An−1b2 . . . Arb2 Ar−1b1 . . . b1 ] ∼
[

0r×(n−r) er . . . e1

Π̃ 0(n−r)×r

]
,

for some permutation matrix Π̃, and hence it is an n× n monomial matrix. This immediately
proves also the final statement of the theorem.

[Necessity] By Lemma 3.2, we can assume that b1 is monomial and [A b1 ] includes an
n× n monomial matrix. Consider the sequence {Akb1, k ∈ Z+}. Set

r := max{k ≥ 0 : b1, Ab1, . . . , A
k−1b1 are linearly independent monomial vectors},

and assume w.l.o.g. that Akb1 ∼ ek+1, k ∈ [0, r − 1]. This implies

A =
[

Sr v1 ∗
0(n−r)×(r−1) v2 ∗

]
,
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where
[

v1

v2

]
= Aer ∼ Arb1 $∼ e!, ! ∈ [r+1, n], (otherwise r could be increased) and ∗ represents

a block whose structure will be ascertained. As [A b1 ] includes an n× n monomial matrix,
the last n− r columns of A are independent !th monomial vectors, ! ∈ [r + 1, n]. Thus

A ∼
[

Sr v1 0r×(n−r)

0(n−r)×(r−1) v2 Π̃

]
,

where Π̃ is an (n − r) × (n − r) permutation matrix. Since
[

v1

v2

]
$∼ e!, ! ∈ [r + 1, n], the

following cases may occur: (1) v1 $= 0; (2) v1 = 0 and |ZP(v2)| > 1; (3) v1 = 0 and v2 = 0.
In all cases, for every k ≥ r, Akb1 $∼ e!, ! ∈ [r + 1, n]. Indeed, in case (1) ZP(Akb1) ∩ [1, r] $=
∅,∀ k ≥ r. In case (2) |ZP(Akb1)| ≥ 2,∀k ≥ r. In case (3) Akb1 = 0,∀ k ≥ r. So, by the
reachability assumption, for every ! ∈ [r + 1, n] there must be k ≥ 0 such that Akb2 ∼ e!.

To conclude the proof, we analyze what nonzero patterns of A and b2 make this possible.

• If |ZP(b2)| > 1, in cases (1) and (2) one finds Akb2 $∼ e!, ! ∈ [r + 1, n]. So, |ZP(b2)| > 1 is
compatible only with case (3), and it must be |ZP(b2) ∩ [r + 1, n]| = 1.

• If |ZP(b2)| = 1, it must be ZP(b2) ⊆ [r + 1, n].

In both situations, we may assume w.l.o.g. that ZP(b2)∩ [r +1, n] = {r +1}, and it is easy
to see that the only way to generate all !th monomial vectors, ! ∈ [r + 1, n], is by imposing to
Π̃ a cyclic structure, thus getting the matrix (4.1).

Remark 4.2. In order to reach all monomial vectors along a single switching sequence,
we need to find n distinct indices h1, h2, . . . , hn ∈ Z+ such that ZP(Ahibji) = {i} for suitable
ji ∈ [1, 2], i ∈ [1, n]. In graph theoretic terms, this amounts to saying that in D(A, B) all
vertices i ∈ [1, n] must be reached through deterministic s-paths of distinct lengths. Theorem
4.1 states that such paths can be found if and only if (1) the graph D(A, 0) can be partitioned
into an elementary circuit and a chain, whose last vertex can have an arbitrary number of
outgoing arcs; (2) one source, corresponding to b1, has a single outgoing arc to the first vertex
of the chain, while the other source, associated with b2, accesses one (and only one) of the
vertices of the elementary circuit. In addition, if the last vertex of the chain has no outgoing
arcs, then this second source may also have an arbitrary number of arcs connecting them to
the vertices of the chain (see Fig. 4.1 and Fig. 4.2).
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!"#

!$#

Fig. 4.1. Theorem 4.1, Case b(2)
1 = 0.

!"#

!$#

Fig. 4.2. Theorem 4.1, Case b(2)
1 $= 0 and v1 = 0, v2 = 0.

At the light of the previous graph interpretation, the extension of Theorem 4.1 to the case
p > 2 is rather intuitive, and therefore the proof is omitted.

Theorem 4.3. Consider a DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p], and suppose
that the system is not reachable along a switching sequence taking values in a proper subset of
[1, p]. A necessary and sufficient condition for the existence of k > 0 and a sequence σ, such
that Rk(σ) includes an n × n monomial submatrix, is that there exist r1, r2, . . . , rp > 0, with
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∑p
i=1 ri = n, a permutation matrix Π, and possibly a relabeling of the bi’s, such that2

Π$AΠ =





Sr1 v1

v2 Cr2

... . . .
vp−1 Crp−1

vp Crp





, vi ∈ Rri
+,

Π$B = Π$ [ b1 b2 . . . bp ] ∼





e1 b(2)
1 b(3)

1 . . . b(p)
1

e1

e1
. . .

e1




, b(j)

1 ∈ Rr1
+ .

If b(j)
1 > 0 for some j, then vi = 0 for all i, while if b(j)

1 = 0 for all j, then
∑p

i=2 |ZP(vi)| = 1
implies v1 $= 0. If the above equivalent conditions hold, k can always be chosen equal to n.

5. Reachability analysis: preliminary results

The case discussed in the previous section, when all positive vectors can be reached along
a single switching sequence, is very restrictive. So, we want to derive general conditions for
reachability of DPSS (2.2), without constraints on the number of switching sequences. In this
section we derive two technical lemmas which provide necessary conditions for reachability. By
Lemma 3.2, we know that reachability ensures that the matrix [A b1 b2 . . . bp ] includes
n linearly independent monomial vectors. So, if m of them can be found among the bi’s, the
remaining n−m are columns of A. Lemma 5.1 below shows that reachability constrains also
the nonzero patterns of the other m columns of A.

Lemma 5.1. Consider a DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p]. Let m be a
positive integer in [1, p], and suppose that the bi’s, i ∈ [1, m], are linearly independent monomial
vectors, while the bi’s, i ∈ [m + 1, p], are nonzero nonmonomial vectors. Set VB := {ZP(bi) :
i ∈ [1, m]} and V B = [1, n] \ VB. If the system (2.2) is reachable, then

i) for every ! ∈ V B, a column of A can be selected which is an !th monomial vector;

ii) the remaining m columns of A satisfy one of the following conditions3 (possibly up to
a reordering the bi’s, i ∈ [1, m]):

a) m − 1 columns have the same nonzero patterns as the monomial vectors bi, i ∈
[2, m];

2In the following we assume that the not specified off-diagonal blocks of the matrices are zero.
3If m = 2, only conditions a) and b) below are meaningful, while for m = 1 no constraints are imposed.

10



b) m − 2 columns have the same nonzero patterns as the monomial vectors bi, i ∈
[3, m], and one column has the same nonzero pattern as b1 + b2;

c) m − 3 columns have the same nonzero patterns as the monomial vectors bi, i ∈
[4, m], and three columns have the same nonzero patterns as b1 + b2, b1 + b3, and
b2 + b3.

Proof. i) From Lemma 3.2, it follows that under the reachability assumption, the matrix
[A b1 b2 . . . bp ], and hence [ A b1 b2 . . . bm ], includes an n× n monomial matrix.
So, we can select n −m columns of A which are linearly independent !th monomial vectors,
! ∈ V B, and denote by ΘA the set of indices of the remaining m columns of A.

ii) Let (j1, j2), with j1 < j2, be an arbitrary pair in VB × VB. By the reachability assumption,
all positive vectors x, with ZP(x) = {j1, j2}, must be reachable. However, not all of them can
be reached in a single step. This is obvious if m = p, namely all the bi’s are monomial. On
the other hand, if ZP(bi) = {j1, j2} for some i ∈ [m + 1, p], then only positive multiples of
bi can be reached in a single step. Consequently, there exist k > 0 and i ∈ [1, p] such that
∅ $= ZP(Akbi) ⊆ {j1, j2}. Since k > 0, this implies that there exists a nonzero column of A
with nonzero pattern included in {j1, j2}.

We first prove that, to meet this constraint for every (j1, j2) ∈ VB × VB, with j1 < j2, at
least m − 3 columns with indices in ΘA must be linearly independent !th monomial vectors,
! ∈ VB. Assume there are only m− q monomial columns of this kind, with q > 3. The set

M := {! ∈ VB : no column of A is an !th monomial vector } ⊆ VB

has cardinality q, and we want to prove that there exists at least one pair (j1, j2) ∈ M×M, j1 <
j2, such that no nonzero column of A can be found with nonzero pattern included in {j1, j2}.
This follows trivially from the fact that, for q > 3, the number q of the remaining columns with
indices in ΘA is less than

(q
2

)
= q(q−1)

2 , the number of pairs (j1, j2) ∈ M ×M , with j1 < j2.
If the linearly independent !th monomial columns of A, ! ∈ VB, are exactly m−3, it entails

no loss of generality assuming that their nonzero patterns coincide with those of bi, i ∈ [4, m].
In this case the only way to ensure that for every 1 ≤ i1 < i2 ≤ 3 there exists a nonzero
column of A with nonzero pattern included in ZP(bi1 + bi2) is to fulfill condition c).

If the linearly independent !th monomial columns of A, ! ∈ VB, are m− 2, and we assume
that their nonzero patterns coincide with those of bi, i ∈ [3, m], to ensure that there exists a
nonzero column of A with nonzero pattern included in ZP(b1 + b2) we have to fulfill condition
b). Finally, if A has (at least) m − 1 linearly independent !th monomial columns, ! ∈ VB,
(case a)), all the inclusions are satisfied.

The following lemma shows that if the DPSS (2.2) is reachable by resorting only to the
monomial columns bi’s, then in the digraph D(A, B) there exist non-intersecting chains, stem-
ming from the sources corresponding to these bi’s, and passing through all vertices. If reach-
ability requires also non-monomial bi’s, then the previous chains do not cover all vertices, one
chain ends without outgoing arcs and the final vertices of the others satisfy certain constraints
on the outgoing arcs.
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Lemma 5.2. Consider a reachable DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p] and
m ∈ [1, p] as in Lemma 5.1. Set

r1:=max{k ≥ 0 : b1, Ab1, . . . , A
k−1b1 are lin. independent monomial vectors},

r2:=max{k ≥ 0 : b1, Ab1, . . . , A
r1−1b1, b2, . . . , A

k−1b2 are lin. independent monomial vectors},
...

rm:=max{k ≥ 0 : b1, Ab1, . . . , A
r2−1b2, bm, . . . , Ak−1bm are lin. independent monomial vectors}.

Then

i) if the system (2.2) is reachable by switching only among the first m subsystems, endowed
with a monomial bi, then

∑m
i=1 ri = n;

ii) otherwise
∑m

i=1 ri < n, the m vectors Aribi, i ∈ [1, m], satisfy a) or b) of Lemma 5.1,
and one of them is zero.

Proof. It entails no loss of generality assuming that each ri is positive. If not, we simply
discard the corresponding bi. If we set r :=

∑m
i=1 ri, and define VB := {ZP(bi) : i ∈ [1, m]}

and V := {ZP(Akbi) : i ∈ [1, m], k ∈ [0, ri − 1]}, then
• the sets VB and V have cardinalities m and r, respectively;
• for every i ∈ [1, m] and k ∈ [0, ri − 1], Akbi ∼ e! for some ! ∈ V ;
• the vectors Akbi, i ∈ [1, m], k ∈ [1, ri], are (up to scalar multiples) distinct columns of A;
• the m vectors Aribi, i ∈ [1, m], cannot be !th monomial vectors for some ! ∈ V
(otherwise ri could be increased).
Basing on these remarks, we can claim that A has r−m columns that are !th monomials,

! ∈ V \ VB, and m columns (that correspond to Aribi, i ∈ [1, m], and whose set of indices we
denote by ΘA) which are not !th monomial vectors, ! ∈ V . So, if r < n, there are still n − r
columns of A whose nonzero patterns have to be determined. We want to show that if r < n,
then Akbi ∈ CV := Cone({ei, i ∈ V }) = Cone({Akbi : i ∈ [1, m], k ∈ [0, ri−1]}) for every choice
of k > 0 and i ∈ [1, m], and there exists q ∈ [1, m] such that Arqbq = 0.

So, assume r < n. By the reachability assumption and Lemma 3.2, part i), the remaining
n − r columns of A are linearly independent !th monomial vectors, ! ∈ V . Therefore, by
referring to Lemma 5.1, the m columns of A indexed on ΘA are just the m columns for which
one of the conditions a), b) or c) holds. Notice that at least m− 1 of them (m in case c)) have
nonzero patterns included in VB and hence in V . Reachability property ensures that for every
! ∈ V there exist k > 0 and i ∈ [1, p] such that Akbi ∼ e!. Set

K := min{k > 0 : ∃ i ∈ [1, p], ! ∈ V , such that Akbi ∼ e!}.

If AKbI = A(AK−1bI) ∼ eL, for some L ∈ V , the nonzero vector AK−1bI cannot be an !th
monomial for some ! ∈ V , otherwise the minimality of K would be contradicted, nor an !th
monomial for some ! ∈ V , otherwise AK−1bI ∼ Akbi for some i ∈ [1, m] and k ∈ [0, ri − 1],
thus preventing AKbI to be an Lth monomial vector. So, |ZP(AK−1bI)| ≥ 2 and its nonzero
entries must correspond to columns of A that are either Lth monomials or zero vectors. Since
A has only one Lth monomial column, one of the m columns indexed on ΘA must be zero,
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which amounts to saying that Arqbq = 0, for some index q ∈ [1, m]. If so, only cases a) and b)
are possible for those m columns and all of them have nonzero patterns included in V . Since
Aribi ∈ CV for every i ∈ [1, m], CV is an A-invariant cone, and hence Akbi ∈ CV for every
choice of the indices k and i ∈ [1, m]. So, AKbI ∼ eL implies I ∈ [m + 1, p].

As a consequence, if we assume that the DPSS (2.2) is reachable by switching only among
the first m subsystems, it must be V = [1, n] and r = n. Conversely, if the system is not
reachable by switching only among the first m subsystems, all !th monomial vectors, ! ∈ V ,
must be obtained in the form Akbi, for some k > 0 and some i ∈ [m + 1, p]. This implies that
V ! [1, n], r < n, the m columns of A corresponding to the vectors Aribi, i ∈ [1, m], satisfy a)
or b) of Lemma 5.1, and one of them is zero.

6. Reachability analysis: the case when all the bi’s are monomial

In this section, we consider the class of DPSS (2.2) switching among p subsystems whose bi’s
are linearly independent monomial (and hence w.l.o.g. canonical) vectors. Proposition 6.1
provides a necessary condition for the reachability of this class of systems, which proves to be
also sufficient in the cases p = 2 (Proposition 6.3) and p = 3 (Proposition 6.4). By making use
of these partial results, we finally show, in Theorem 6.7, that the necessary condition obtained
in Proposition 6.1 is also sufficient (for every p).

Proposition 6.1. Consider a DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p], and suppose
that all the bi’s are linearly independent canonical vectors. If the system (2.2) is reachable,
there exist a permutation matrix Π, an integer m ∈ [1, p], a selection matrix S ∈ Rp×m

+ and
positive integers r1, r2, . . . , rm,

∑m
i=1 ri = n, such that

Π!AΠ =





Sr1 v(1)
1 0r1×(r2−1) v(2)

1 0r1×(r3−1) v(3)
1

0r2×(r1−1) v(1)
2 Sr2 v(2)

2 0r2×(r3−1) v(3)
2

0r3×(r1−1) v(1)
3 0r3×(r2−1) v(2)

3 Sr3 v(3)
3

v(1)
4

...

v(1)
m

Cr4

. . .

Crm





(6.1)
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Π!BS =





e1

e1

e1

e1
. . .

e1





= [ e1 er1+1 er1+r2+1 . . . er1+r2+...+rm−1+1 ] ,

where v(i)
j ∈ Rrj

+ , and the vectors v(i) :=




v(i)
1

v(i)
2

v(i)
3



 , i ∈ [1, 3], and z(1) :=




v(1)
4
...

v(1)
m



 satisfy one of

the following conditions:

α)
[

v(1)

z(1)

]
$∼ ej ,∀ j ∈ {r1+1, r1+r2+1, . . . , r1+ . . .+rm−1+1}, v(2) ∼ er1+1 and v(3) ∼ er1+r2+1;

β)
[

v(1)

z(1)

]
$∼ ej ,∀ j ∈ {r1 +1, r1 +r2 +1, . . . , r1 + . . .+rm−1 +1}, v(2) ∼ e1 +er1+1 and v(3) ∼ er1+r2+1;

γ) {v(1), v(2), v(3)}∼{e1 + er1+1, e1 + er1+r2+1, er1+1 + er1+r2+1} and z(1) = 0.

Notice that if m = 3 then all blocks Cr4 , . . . , Crm and z(1) are empty, and if m = 2 only
conditions α) and β) are possible, and can be rewritten as:
α′) v(1) $∼ er1+1 and v(2) ∼ er1+1;
β′) v(1) $∼ er1+1 and v(2) ∼ e1 + er1+1.

Proof. Let r1, r2, . . . , rp be defined as in Lemma 5.2, and assume that each of them is
positive. If ri = 0, we simply remove the column bi. Set P := p. We recall that

i) the vectors Akbi, i ∈ [1, P ] and k ∈ [0, ri − 1], are n linearly independent monomial
vectors;

ii) the vectors Akbi, i ∈ [1, P ], k ∈ [1, ri], coincide (up to scaling factors) with the n
distinct columns of A;

iii) each vector Aribi, i ∈ [1, P ], is not a monomial vector linearly independent of the
vectors Akbj that precede it in the selection procedure.

If Aribi ∼ bj for some 1 ≤ j < i ≤ P , then the whole chain bj , Abj , . . . , Arj−1bj can be
appended to the chain stemming from bi. So, if we remove bj and repeat the procedure of
Lemma 5.2, to obtain the chains and the indices ri’s, we end up with P ≤ p−1 positive indices
and chains that still satisfy conditions i) ÷ iii). By proceeding in this way, in a finite number
of steps, we end up with P := m columns bi, i ∈M ⊆ [1, p], |M| = m, and m chains for which
conditions i) ÷ iii) hold and, in addition, no i, j ∈M, i < j, can be found such that Aribi ∼ bj .
Clearly, by Lemma 5.1, the m columns of A corresponding to the vectors Aribi, i ∈ M, must
satisfy one of the conditions a), b) or c), but this implies that every time Aribi is an !th
monomial vector, for some ! ∈ {ZP(bi) : i ∈M}, it must be Aribi ∼ bi. So, after the selection
of the bi’s (described by the matrix S), we can permute the entries (by means of the matrix
Π$) of the vectors Akbi of the m final chains, so that Π$AΠ and Π$BS take the form given
in the statement, and conditions a), b) and c) impose α), β) and γ), respectively.

14



Remark 6.2. The necessary conditions given in Proposition 6.1 can be enlightened in
graph theoretic terms. Figures 6.1 and 6.2, below, are the digraphs of two DPSS (2.2) that
satisfy such conditions. Indeed, (1) the graph D(A, 0) can be partitioned into three chains and
m− 3 elementary circuits, with m ≤ p; (2) the outgoing arcs of the last vertices of the chains
are constrained according to either condition β) or condition γ); (3) among the p sources
associated with the bi’s, one can select m− 3 so that each of them accesses one (and only one)
of the vertices of a distinct elementary circuit. Moreover, for each chain there exists a source
with a single outgoing arc to the first vertex of the chain.

b1

b2

b3

b4

bm

Fig. 6.1. Proposition 6.1, Case β.

b1

b2

b3

b4

bm

Fig. 6.2. Proposition 6.1, Case γ.

Proposition 6.3. Consider a DPSS (2.2), with A ∈ Rn×n
+ , p = 2, and b1 and b2 linearly

independent canonical vectors in Rn
+. A sufficient condition for the system to be reachable is

that there exist a positive integer r, and a permutation matrix Π, such that

Π$AΠ =

[
Sr v(1)

1 0r×(n−r−1) v(2)
1

0(n−r)×(r−1) v(1)
2 Sn−r v(2)

2

]
, Π$ [ b1 b2 ] = [ e1 er+1 ] ,(6.2)

where the two vectors v(i) :=
[

v(i)
1

v(i)
2

]
, i ∈ [1, 2], satisfy either one of the following conditions:
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α′) v(1) $∼ er+1 and v(2) ∼ er+1;
β′) v(1) $∼ er+1 and v(2) ∼ e1 + er+1.

If so, IR = n.
Proof. Suppose, for the sake of simplicity, that Π = In. Three cases possibly occur:

(1) v(1) and v(2) meet condition α′);
(2) v(1) and v(2) meet condition β′) and r ≤ n− r;
(3) v(1) and v(2) meet condition β′) and r > n− r.
Case (1): By Theorem 4.1, there exists a sequence σ of length n, such that the reachability
matrix Rn(σ) is an n× n monomial matrix. This ensures reachability.
Case (2): We preliminarily notice that Akb1, k ∈ [0, r − 1], and Akb2, k ∈ [0, n− 1], satisfy:

b1 ∼ e1, b2 ∼ er+1, An−rb2 ∼ e1 + er+1,
Ab1 ∼ e2, Ab2 ∼ er+2, An−r+1b2 ∼ e2 + er+2,

...
...

...
Ar−1b1 ∼ er, Ar−1b2 ∼ e2r, An−1b2 ∼ er + e2r

Arb2 ∼ e2r+1
...

An−r−1b2 ∼ en,

where we exploited the fact that r ≤ n − r. Every vector x > 0 can be expressed as x =∑r
p=1([x]pep +[x]p+rep+r)+

∑n
i=2r+1[x]iei. On the other hand, each vector [x]pep +[x]p+rep+r,

p ∈ [1, r], belongs either to Cone([Ap−1b1 An−r+p−1b2]) or to Cone([Ap−1b2 An−r+p−1b2]),
depending on the specific values of its nonzero entries. Consequently, x belongs to the cone of
a reachability matrix that, once reordered in the most convenient way, is thus composed:
[
bj1 An−rb2 Abj2 An−r+1b2 . . . Ar−1bjr An−1b2 ‖ Arb2 . . . An−r−1b2

]

where each index jp ∈ [1, 2] depends on the specific values of [x]p and [x]p+r.
Case (3): If r > s := n−r, the vectors of the two sequences {Aj−1b1, j ∈ [1, r]} and {Aj−1b2, j ∈
[1, n]} have the following nonzero patterns:

Ap−1+tsb1 ∼ ep+ts Ap−1+tsb2 ∼ ep+r +
t−1∑

h=0

ep+hs

where we exploited the fact that every j ∈ [1, n] can be expressed as j = p + ts, for some
t ∈ Z+ and p ∈ [1, s]. Let x[p], p ∈ [1, s], be a positive vector with ZP(x[p]) ⊆ {p, p + s, p +
2s, . . . , p + ks; p + r}, where k ≥ 0 and p + ks ≤ r. We want to prove for every k ≥ 0:

Claim 1 If ZP(x[p]) ! {p, p + s, p + 2s, . . . , p + ks; p + r}, then there exist indices j0, j1, . . . , jk ∈
[1, 2] such that x[p] belongs to the cone generated by a (reachability sub)matrix of the
following type: [Ap−1bj0 Ap−1+sbj1 . . . Ap−1+ksbjk ] ;

Claim 2 If ZP(x[p]) = {p, p+s, p+2s, . . . , p+ks; p+r}, then there exist indices j0, j1, . . . , jk+1 ∈
[1, 2] such that x[p] ∈ Cone ([Ap−1bj0 Ap−1+sbj1 . . . Ap−1+(k+1)sbjk+1 ]) .
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We proceed by induction on k ≥ 0. The case k = 0 corresponds to ZP(x[p]) ⊆ {p; p + r}. So,
if ZP(x[p]) ! {p; p + r}, then x[p] ∼ ep implies x[p] ∈ Cone

(
Ap−1b1

)
, while x[p] ∼ ep+r implies

x[p] ∈ Cone
(
Ap−1b2

)
. On the other hand, if ZP(x[p]) = {p; p + r}, then x[p] belongs either

to Cone ([ Ap−1b1 Ap−1+sb2 ]) or to Cone ([Ap−1b2 Ap−1+sb2 ]), depending on the specific
values of its two nonzero entries. So, the claims hold for k = 0.

Suppose, now, that the two claims are verified for every x[p] > 0 with ZP(x[p]) ⊆ {p, p +
s, p+2s, . . . , p+(k−1)s; p+r}. We want to prove that the results extend to all vectors x[p] > 0
with ZP(x[p]) ⊆ {p, p + s, p + 2s, . . . , p + ks; p + r}.

To this end, suppose, first, that ZP(x[p]) ! {p, p + s, p + 2s, . . . , p + ks; p + r}. If p + ks $∈
ZP(x[p]), then ZP(x[p]) ⊆ {p, p + s, p + 2s, . . . , p + (k− 1)s; p + r}, and hence by the inductive
assumption, x[p] belongs either to Cone([ Ap−1bj0 Ap−1+sbj1 . . . Ap−1+(k−1)sbjk−1 ]) or to
Cone([ Ap−1bj0 Ap−1+sbj1 . . . Ap−1+ksbjk ]). So, in both cases, we may claim that x[p] ∈
Cone ([Ap−1bj0 Ap−1+sbj1 . . . Ap−1+ksbjk ]) for suitable indices. On the other hand, if
p + ks ∈ ZP(x[p]), condition Ap−1+ksb1 ∼ ep+ks implies that there exists α > 0 such that

z[p] = x[p] − αAp−1+ksb1

satisfies ZP(z[p]) ! {p, p + s, . . . , p + (k − 1)s; p + r}, and hence, again by the inductive as-
sumption, x[p] ∈ Cone([ Ap−1bj0 Ap−1+sbj1 . . . Ap−1+(k−1)sbjk−1 Ap−1+ksb1 ]).

Assume, finally, ZP(x[p]) = {p, p + s, p + 2s, . . . , p + ks; p + r}. As ZP(Ap−1+(k+1)sb2)
= {p, p + s, p + 2s, . . . , p + ks; p + r}, there exists α > 0 such that

z[p] = x[p] − αAp−1+(k+1)sb2

satisfies ZP(z[p]) ! {p, p + s, p + 2s, . . . , p + ks; p + r}. So, by the previous part of the proof,
we can claim that z[p] belongs to the cone generated by some matrix

[Ap−1bj0 Ap−1+sbj1 . . . Ap−1+ksbjk ] ,

and this implies that x[p] ∈ Cone ([Ap−1bj0 Ap−1+sbj1 . . . Ap−1+ksbjk Ap−1+(k+1)sb2 ]) ,
thus completing the proof by induction of our Claims.

To conclude, now that we have shown that every x[p] > 0, p ∈ [1, s], with ZP(x[p]) ⊆
{p, p + s, p + 2s, . . . , p + ks; p + r}, k a suitable nonnegative number, belongs to some

Cone ([Ap−1bj0 Ap−1+sbj1 . . . Ap−1+(k+1)sbjk+1 ]) ,

(where p−1+(k+1)s ≤ n−1), we notice that every x ∈ Rn
+ can be expressed as x =

∑s
p=1 x[p],

and each x[p] is obtained by combining columns where different powers of A appear. So, indices
i0, i1, . . . , in−1 ∈ [1, 2] can be found so that x ∈ Cone ([An−1bi0 . . . A2bin−3 Abin−2 bin−1 ]) .

Clearly, in all previous cases, IR = n.

Proposition 6.4. Consider a DPSS (2.2), with A ∈ Rn×n
+ , p = 3, and b1, b2 and b3

linearly independent canonical vectors in Rn
+. A sufficient condition for the system (2.2) to be
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reachable is that there exist r1, r2, r3 > 0, with
∑3

i=1 ri = n, and a permutation matrix Π, s.t.

Π$AΠ =





Sr1 v(1)
1 0r1×(r2−1) v(2)

1 0r1×(r3−1) v(3)
1

0r2×(r1−1) v(1)
2 Sr2 v(2)

2 0r2×(r3−1) v(3)
2

0r3×(r1−1) v(1)
3 0r3×(r2−1) v(2)

3 Sr3 v(3)
3




,(6.3)

Π$ [ b1 b2 b3 ] = [ e1 er1+1 er1+r2+1 ] ,(6.4)

where the vectors v(i) :=




v(i)
1

v(i)
2

v(i)
3



 , i ∈ [1, 3], satisfy anyone of the following conditions:

α) v(1) $∼ ej ,∀ j ∈ {r1 + 1, r1 + r2 + 1}, v(2) ∼ er1+1 and v(3) ∼ er1+r2+1;

β) v(1) $∼ ej ,∀ j ∈ {r1 + 1, r1 + r2 + 1}, v(2) ∼ e1 + er1+1 and v(3) ∼ er1+r2+1;

γ) {v(1), v(2), v(3)}∼{e1 + er1+1, e1 + er1+r2+1, er1+1 + er1+r2+1}.

If α) or β) apply, then IR = n. If γ) applies, then IR ≤ min{ν ∈ Z+ : Aν + Aν+1 + . . . +
Aν+D−1 # 0}+ D, where D := g.c.d.{r1, r2, r3}.

Proof. Suppose, for the sake of simplicity, that in (6.3) and (6.4) Π = In. In case α)

A =





Sr1 v(1)
1 0r1×r2 0r1×r3

0r2×(r1−1) v(1)
2 Cr2 0r2×r3

0r3×(r1−1) v(1)
3 0r3×r2 Cr3




.

So, by Theorem 4.3, the system is reachable (along a single switching sequence) and IR = n.
If we are in case β), then

A =





Sr1 v(1)
1 0r1×(r2−1) v(2)

1 0r1×r3

0r2×(r1−1) v(1)
2 Sr2 v(2)

2 0r2×r3

0r3×(r1−1) v(1)
3 0r3×(r2−1) 0r3×1 Cr3




,

[
v(2)
1

v(2)
2

]
∼ e1 + er1+1.

If x is a positive vector with ZP(x) ⊆ [r1+r2+1, n], then x ∈ Cone [Ar1+r2b3 Ar1+r2+1b3 . . .
An−1b3 ] . So, reachability is proved if we show that every vector x, with ZP(x) ⊆ [1, r1 + r2],
is reachable (in at most r1 + r2 steps) by switching between subsystems (A, b1) and (A, b2).
But this is proved along the same lines we followed within the proof of Proposition 6.3, case
β′), since for reaching all such vectors we use only {Akb1, k ∈ [0, r1 − 1]} and {Akb2, k ∈
[0, r1 + r2− 1]}. This way, all vectors x ∈ Rn

+ can be reached in at most n steps, and IR = n.
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To prove reachability in case γ), we need a technical lemma.

Lemma 6.5. If the assumptions of Proposition 6.4 hold, with Π = In and {v(1), v(2),
v(3)} ∼ {e1 + er1+1, e1 + er1+r2+1, er1+1 + er1+r2+1} = {b1 + b2, b1 + b3, b2 + b3}, then

i) A is an irreducible matrix with imprimitivity index D := g.c.d.{r1, r2, r3}, and we can
denote its imprimitivity classes as

Cp := {p, p + D, p + 2D, . . . , p + LD}, p ∈ [1, D], L := (n/D)− 1.

If p is any number in [1, D], then

ii) ∀ k ∈ Z+ and j ∈ [1, 3], ZP(Ap−1+kDbj) ⊆ Cp;

iii) ∀ k ∈ Z+ and 1 ≤ j1 < j2 ≤ 3, there exists h > k and j3 ∈ [1, 3], such that

Ap−1+hDbj3 ∼ Ap−1+kDbj1 + Ap−1+kDbj2 .

If x[p] is any vector in Rn
+, with ZP(x[p]) ! Cp, and we define4

k̄ := max{k ∈ Z+ : ∃ j ∈ [1, 3], s.t. ZP(Ap−1+kDbj) ⊆ ZP(x[p])},

then

iv) Ap−1+k̄Dbj1 ∼ Ap−1+k̄Dbj2 implies j1 = j2, and k̄ ≥ |ZP(x[p])| − 1.

Proof of Lemma. i) The irreducibility of A follows from the fact that every pair of vertices
in D(A) belongs to a circuit. In addition, in all the situations compatible with the assumption
on the v(i)’s, the g.c.d. of the lengths of all circuits coincides with g.c.d.{r1, r2, r3}.
ii) For every p ∈ [1, D], clearly |ZP(Ap−1bj)| = 1 and ZP(Ap−1bj) ∈ Cp. On the other hand, as
A is irreducible with imprimitivity index D, ZP(AkDAp−1bj) ⊆ Cp for every k ∈ Z+.
iii) By assumption, if 1 ≤ j1 < j2 ≤ 3, there exists i ∈ [1, 3] such that v(i) ∼ bj1 + bj2 . Since
v(i) ∼ Aribi and ri = miD for some positive integer mi, it follows that

Ap−1+kD+miDbi ∼ Ap−1+kD[Aribi] ∼ Ap−1+kD[bj1 + bj2 ] ∼ Ap−1+kDbj1 + Ap−1+kDbj2 .

So, the result holds for h = mi + k and j3 = i.
iv) Suppose that Ap−1+k̄Dbj1 ∼ Ap−1+k̄Dbj2 and j1 $= j2. By part iii), ∃ h > k̄, ∃ j3 ∈ [1, 3],
such that Ap−1+hDbj3 ∼ Ap−1+k̄Dbj1 ∼ Ap−1+k̄Dbj2 , and therefore ZP(x[p]) ⊇ ZP(Ap−1+hDbj3).
But this contradicts the definition of k̄.

To prove that k̄ ≥ |ZP(x[p])| − 1, we proceed by induction on s := |ZP(x[p])|. If s = 1,
then x[p] is a monomial vector and clearly k̄ ≥ s− 1 = 0. Suppose, now, that the result holds
for every vector x̃[p], with ZP(x̃[p]) ⊆ Cp and |ZP(x̃[p])| ≤ s < n

D − 1. We want to prove that
the result extends to all vectors x[p], with ZP(x[p]) ⊆ Cp and |ZP(x[p])| = s + 1 < n

D . Set

4The index k̄ is well defined, since, when A is irreducible, ZP(Ap−1+kDbj) = Cp for sufficiently large k.
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S := ZP(x[p]) and denote by Si, i ∈ [1, s + 1], the distinct subsets of S obtained by removing
a single index. Set

ki := max{k ∈ Z+ : ∃ j ∈ [1, 3], s.t. ZP(Ap−1+kDbj) ⊆ Si}, i ∈ [1, s + 1].

By the inductive assumption, ki ≥ s− 1. If there exists ı̂ ∈ [1, s + 1] such that k̂ı ≥ s, then we
are set. If ki = s− 1 for all i ∈ [1, s + 1], condition Si ! S implies ZP(Ap−1+(s−1)Dbj) ! S for
at least one index j ∈ [1, 3]. On the other hand, there cannot be a single index j ∈ [1, 3] such
that ZP(Ap−1+(s−1)Dbj) ! S, otherwise it would be ZP(Ap−1+(s−1)Dbj) ⊆ ∩s+1

i=1Si = ∅. So,
there exist 1 ≤ j1 < j2 ≤ 3 such that ZP(Ap−1+(s−1)Dbj1) ! S and ZP(Ap−1+(s−1)Dbj2) ! S.
By part iii) of this lemma, there exist h > s−1 and j3 ∈ [1, 3] such that ZP(Ap−1+hDbj3) ⊆ S.
This ensures that k̄ ≥ h ≥ s. End of the Proof of Lemma.

By resorting to the previous lemma, we first show that every x[p] > 0, with ZP(x[p]) ⊆ Cp, is
reachable, and hence it can be expressed as the nonnegative combination of vectors Ap−1+hDbj ,
for h ∈ Z+ and j ∈ [1, 3]. If ZP(x[p]) ! Cp, set x[p]

1 := x[p] and

k1 := max{k ∈ Z+ : ∃ j ∈ [1, 3], s.t. ZP(Ap−1+kDbj) ⊆ ZP(x[p]
1 )}.

By Lemma 6.5, k1 ≥ |ZP(x[p]
1 )|−1 and there exists a unique j1 ∈ [1, 3] such that ZP(Ap−1+k1D

bj1) ⊆ ZP(x[p]
1 ). Choose α1 > 0 so that x[p]

2 := x[p]
1 − α1Ap−1+k1Dbj1 (is nonnegative and)

satisfies ZP(x[p]
2 ) ! ZP(x[p]

1 ) ! Cp. Define

k2 := max{k ∈ Z+ : ∃ j ∈ [1, 3], s.t. ZP(Ap−1+kDbj) ⊆ ZP(x[p]
2 )}.

Clearly, k2 < k1 (otherwise either the definition of k1 or the uniqueness of j1 would be contra-
dicted) and k2 ≥ |ZP(x[p]

2 )| − 1. We pick up α2 > 0 such that x[p]
3 := x[p]

2 − α2Ap−1+k2Dbj2 , j2

a suitable index in [1, 3], satisfies ZP(x[p]
3 ) ! ZP(x[p]

2 ) ! Cp. So, by further proceeding, after at
most |ZP(x[p])| steps, we obtain for x[p] the following expression:

x[p] =
∑

!

α!A
p−1+k!Dbj! , α! > 0, k1 > k2 > . . . .

On the other hand, if ZP(x[p]) = Cp, by the irreducibility of A, there exists k0 ∈ N such that
ZP(Ap−1+hDbj) = ZP(AhD · Ap−1bj) = Cp, for every h ≥ k0 and every j ∈ [1, 3]. Let α0 be a
positive integer such that x[p]

1 := x[p]−α0Ap−1+k0Db1 (is nonnegative and) has nonzero pattern
properly included in Cp. Then we may apply to x[p]

1 the same algorithm we have previously
described, and finally obtain x[p] as a finite positive combination of the following kind:

x[p] =
∑

!

α!A
p−1+k!Dbj! , α! > 0, k0 > k1 > k2 > . . . .

To conclude, it suffices to notice that every positive vector x can be expressed as x =
∑D

p=1 x[p]

and hence as the nonnegative combination of the columns of a suitable reachability matrix.
As far as the reachability index is concerned, it is clear from the previous algorithm that

IR ≤ maxp∈[1,D](p− 1+k0(p)D)+1, where k0(p) := min{k ∈ Z+ : ZP(Ap−1+kDbj) = Cp,∀ j ∈
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[1, 3]}. Set ν := min{h ≥ 0 : ∀i ∈ [1, n], ZP(Ahei) = Cp, for some p ∈ [1, D]}. Clearly,
∀ i ∈ [1, 3],∀ h ∈ [0, D − 1], we have ZP(AνAhbi) = Cp for some p ∈ [1, D]. This implies that
maxp∈[1,D](p − 1 + k0(p)D) ≤ ν + D − 1, and hence IR ≤ ν + D. Since the index ν coincides
with min{h ∈ Z+ : Ah +Ah+1 + . . .+Ah+D−1 # 0}, the final upper bound on IR is proved.

Remark 6.6. The algorithmic proof of reachability in case γ) provides a “reduction
procedure” which is uniquely determined and always brings to a positive result, meaning that
a reachability matrix such that x belongs to the cone generated by this matrix can be found.
This method, however, does not generally bring to the most convenient solution, as illustrated
in the following example.

Example 2. Consider the DPSS (2.2), with

A =





1 0 0 0 0 1
1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0




[ b1 b2 b3 ] = [ e1 e2 e4 ] .

In this case, r1 = 1, r2 = 2 and r3 = 3, so that D = g.c.d.{r1, r2, r3} = 1 and A is primitive.
The smallest index ν ∈ Z+ such that Aν # 0 is ν = 8, so that IR ≤ 9. The algorithm
illustrated within the previous proof allows to express the vector x = [2 4 0 1 3 3]$ in the form

x = b2 + Ab3 + 2A2b3 + A4b3 + A6b2,

thus ensuring the reachability of x in 7 steps. However, x could be reached also in 5 steps, as

x = 3b2 + 2Ab3 + 3A2b3 + A3b3 + A4b3. ♦

Theorem 6.7. A DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p], linearly independent
canonical vectors, is reachable if and only if there exist a permutation matrix Π, an integer
m ∈ [1, p], a selection matrix S ∈ Rp×m

+ and positive integers r1, r2, . . . , rm, with
∑m

i=1 ri =
n, such that the matrices Π$AΠ and Π$BS have the structures given in (6.1) and satisfy
conditions α) ÷ γ) of Proposition 6.1.

Proof. Necessity has been proved in Proposition 6.1. As far as the sufficiency is concerned,
it is easily seen that each positive vector x, with ZP(x) ⊆ [r1 + r2 + r3 + 1, n], belongs to the
cone generated by some matrix [AKbj0 AK+1bj1 . . . AK+M−1bjM−1 ] , where K ∈ Z+ is
arbitrarily large, M := (

∑p
i=4 ri), and the indices jh, h ∈ [0, M − 1], belong to [4, p]. So, to

prove reachability, it is sufficient to show that each vector x, with ZP(x) ⊆ [1, r1 + r2 + r3],
can be reached by making use of the subsystems with input-to-state matrices bi, i ∈ [1, 3]. But
the proof of this part follows just the same lines as that of Proposition 6.4.

7. Reachability analysis: the case when there exist nonmonomial bi’s

Suppose, now, that the system switches among p subsystems, and at least one bi is not mono-
mial. Notice, however, that the reachability assumption forces one bi to be monomial.
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Theorem 7.1. Consider a DPSS (2.2), with A ∈ Rn×n
+ , bi ∈ Rn

+, i ∈ [1, p]. Let m be
a positive integer in [1, p − 1] and suppose that the bi’s, i ∈ [1, m], are linearly independent
canonical vectors, while the bi’s, i ∈ [m + 1, p], are nonzero nonmonomial vectors. Assume
that the system is not reachable when switching only among subsystems with canonical bi’s.
Then system (2.2) is reachable if and only if there exist a permutation matrix Π, integers m̄
and p̄, with 1 ≤ m̄ ≤ m and 1 ≤ p̄ − m̄ ≤ p −m, a selection matrix S ∈ Rp×p̄

+ and positive
integers r1, r2, . . . , rp̄,

∑p̄
i=1 ri = n, such that

Π$AΠ =





Sr1 0r1×1 0r1×(r2−1) a1,r1+r2e1

0r2×r1 Cr2

Cr3

. . .
Crp̄





,(7.1)

Π$BS ∼





e1

e1
. . .

e1

e1




+





Ir1

0
...
0
0





[
0 . . . 0 b(m̄+1)

1 . . . b(p̄)
1

]
.(7.2)

where a1,r1+r2 = 0 if m̄ = 1, b(j)
1 ∈ Rr1

+ is a positive vector, and each vector e1 in Π$BS has
the same dimension as the corresponding block in Π$AΠ. Under these assumptions IR = n.

Proof. [Sufficiency] Consider, first, the case m̄ = 1. If so,

Π$AΠ =





Sr1 0r1×1

Cr2

Cr3

. . .
Crp̄




, Π$BS ∼





e1 b(2)
1 b(3)

1 . . . b(p̄)
1

e1

e1
. . .

e1




,

and, by Theorem 4.3, we can claim that there exists a single switching sequence (of length n)
along which all monomial vectors can be reached. So, the system is reachable with IR = n.

Consider, now, the case m̄ ≥ 2. If a1,r1+r2 = 0, then we fall in the same case we have
just examined. If a1,r1+r2 > 0, then, by Proposition 6.3, all positive vectors x with ZP(x) ⊆
[1, r1+r2], can be reached (in at most r1+r2 steps) by commuting between the two subsystems
(A, b1) and (A, b2). On the other hand, each positive vector x, with ZP(x) ⊆ [r1 + r2 + 1, n],
belongs to the cone generated by the matrix

[Ar1+r2b3 . . . Ar1+r2+r3−1b3 Ar1+r2+r3b4 . . . Ar1+r2+r3+r4−1b4 . . . An−rpbp . . . An−1bp ] .

So, all positive vectors are reachable in at most n steps (and IR = n).
[Necessity] Introduce the indices ri, i ∈ [1, m], as in Lemma 5.2. Since the DPSS (2.2) is not
reachable if we make use only of the canonical bi’s, one the vectors Aribi is zero. So, after a
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suitable reordering of the columns bi, i ∈ [1, m], we can assume w.l.o.g. that
• all the ri’s are positive (if not, we simply eliminate the corresponding bi);
• Ar1b1 = 0;
• Ahb1 ∼ eh+1, for h ∈ [0, r1 − 1], and Ahbi ∼ e(

Pi−1
!=1 r!)+h+1, for i ∈ [2, m], h ∈ [0, ri − 1].

In addition, by Lemma 5.2, r :=
∑m

i=1 ri < n and the m− 1 vectors Ar2b2, Ar3b3, . . . , Armbm,
which correspond to the columns of A of indices r1 + r2, r1 + r2 + r3, ..., r, respectively, satisfy
a) or b) of Lemma 5.1, and hence, in particular, have nonzero patterns included in [1, r]. By
the reachability assumption and Lemma 3.2, the last n− r columns of A must be distinct !th
monomial vectors ! ∈ [r + 1, n]. Consequently, after a suitable permutation, we can assume

A ∼





Sr1 0r1×1 . . . 0 v(m)
1

...
... . . . ...

...
0 0rm×1 . . . Srm v(m)

m

Π̃




, B ∼





e1
. . .

e1

B12

B22




,

Π̃ a permutation matrix. If we apply to the vectors Aribi, i ∈ [1, m], the same algorithm as in
the proof of Proposition 6.1, we can ensure that, for a suitable m̄ ∈ [1, m], a selection of the
monomial bi’s, a change of the ri’s, and a suitable relabeling, we get

Π$
1 AΠ1 ∼





Sr1 0r1×1 0r1×(r2−1) a1,r1+r2e1

0r2×r1 Cr2

Cr3

. . .
Crm̄

Π̃





Π$
1 BS1 ∼





e1
. . .

e1

B̃12

B22




.

Finally, since Π̃ is a permutation matrix, it entails no loss of generality assuming that

Π̃ =




Cq1

. . .
Cqd



 ,

for a suitable d, with Cqj a cyclic block of size qj . In order to ensure that, for every ! ∈ [r+1, n],
indices k > 0 and i ∈ [m + 1, p] can be found such that e! ∼ Π$

1 Akbi, it is necessary that
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|ZP(Π$
1 bi) ∩ [r + 1, n]| = 1 and ZP(Π$

1 bi) ∩ [1, r] ⊆ [1, r1]. If we preserve one single column
Π$

1 bi for each Cqj , a selection matrix S2 and a permutation matrix Π2 can be found so that

[
Ir

Π2

][
B̃12

B22

]
S2 =




b(m+1)
1 b(m+2)

1 . . . b(m+d)
1

0(r−r1)×1 0(r−r1)×1 . . . 0(r−r1)×1

e1 eq1+1 . . . eq1+...+qd−1+1



 , b(j)
1 ∈ Rr1

+ , b(j)
1 > 0,∀ j.
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