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Abstract— Continuous-time positive systems, switching
among p subsystems, are introduced, and a complete
characterization for the existence of a common linear
copositive Lyapunov function for all the subsystems is
provided. In particular, the existence of such a Lyapunov
function is related to the existence of common quadratic
copositive Lyapunov functions.

When the subsystems are obtained by applying different
feedback control laws to the same continuous-time single-input
positive system, the above characterization leads to a very easy
checking procedure.

I. INTRODUCTION

By a continuous-time positive switched system (CPSS) we
mean a dynamic system consisting of a family of positive
state-space models [9], [12] and a switching law, specifying
when and how the switching among the various subsystems
takes place. Switched positive systems deserve investigation
both for practical applications and for theoretical reasons.
Indeed, switching among different models naturally arises
as a way to formalize the fact that the behavior of a
system changes under different operating conditions, and is
therefore represented by different mathematical structures.
On the other hand, the positivity constraint is pervasive in
engineering practice as well as in chemical, biological and
economic modeling.

In the context of CPSSs, stability analysis captured wide
attention [10], [13], [14], [16], [17], [18], and mainly focused
on the search for conditions ensuring that the family of
positive subsystems a CPSS switches among shares either
a linear copositive or a quadratic Lyapunov function. In par-
ticular, the existence of a common linear copositive function
has been investigated in detail [13], [16], [17], thus leading
to deeper insights into the properties the subsystems family
must be endowed with. Linear copositive Lyapunov functions
have also been fruitfully used in [2]. Results related to the
existence of a common linear copositive function, derived in
a different setting, can be found in [19].

This note is centered around a certain geometric object -
the convex hull generated by the (columns) of the subsystems
matrices - and aims at exploiting its structure for analyzing
the existence of common linear copositive functions. In
detail, the paper is organized as follows: in section II,
CPSSs, switching among a finite family of subsystems,
are introduced, and preliminary conditions for the existence
of a common linear copositive Lyapunov function for all
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subsystems are provided. In section III, by resorting to two
technical lemmas, a more complete characterization is given.
Finally, in section IV, an elementary checking procedure is
derived, for the special class of CPSSs whose subsystems
are obtained by applying different feedback control laws to
a continuous-time single-input positive system.

Before proceeding, we introduce some notation. R+ is the
semiring of nonnegative real numbers and, for any positive
integer k, 〈k〉 is the set of integers {1, 2, . . . , k}. The (`, j)th
entry of a matrix A will be denoted by [A]`j , the `th entry
of a vector v by [v]`, and the jth column of a matrix A by
colj(A).

A matrix (in particular, a vector) A with entries in R+

is nonnegative (A ≥ 0); if A ≥ 0 and at least one entry
is positive, A is positive (A > 0), while if all its entries
are positive, it is strictly positive (A � 0). A Metzler
matrix is a real square matrix, whose off-diagonal entries
are nonnegative.

Given any real (not necessarily square) matrix A, with n
columns, we define its positive kernel, ker+(A), as the set of
nonnegative vectors which belong to the kernel of A, namely

ker+(A) := {v ≥ 0 : Av = 0} = ker(A) ∩ Rn+.

A set K ⊂ Rn is a cone if αK ⊆ K for all α ≥ 0.
Basic definitions and results about cones may be found, for
instance, in [3]. We recall here only those facts that will be
used within this paper. A cone is convex if it contains, with
any two points, the line segment between them. A convex
cone K is solid if it includes at least one interior point, and
it is pointed if K ∩ {−K} = {0}. A cone K is said to be
polyhedral if it can be expressed as the set of nonnegative
linear combinations of a finite set of generating vectors; if
the generating vectors are the columns of a matrix A, we
adopt the notation K = Cone(A). The dual cone of a cone
K ⊂ Rn is

K∗ := {v ∈ Rn : x>v ≥ 0, ∀ x ∈ K}.

A closed convex cone K is pointed (solid) [polyhedral] if
and only K∗ is solid (pointed) [polyhedral].

Given a family of vectors v1,v2, . . . ,vs in Rn, the convex
hull of v1,v2, . . . ,vs is the set of vectors{

s∑
i=1

αivi : αi ≥ 0,
s∑
i=1

αi = 1

}
.

The vectors v1,v2, . . . ,vs are affinely (in)dependent if
v2 − v1, . . . ,vs − v1 are linearly (in)dependent. A simplex
in Rn is the convex hull of a set of s ≤ (n + 1) affinely
independent vectors.
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II. GENERAL POSITIVE SWITCHED SYSTEMS:
PRELIMINARY RESULTS

A continuous-time positive switched system is described
by the following equation

ẋ(t) = Aσ(t)x(t), t ∈ R+, (1)

where x(t) denotes the value of the n-dimensional state
variable at time t, σ is a switching signal, taking values
in some set 〈p〉, and for each i ∈ 〈p〉, the matrix Ai is the
system matrix of a continuous-time positive system, which
means that Ai is an n×n Metzler matrix. We assume that the
switching signal is piece-wise continuous, and hence in every
time interval [0, t] there is a finite number of discontinuities,
which correspond to a finite number of switching instants.

Definition 1: Given the CPSS (1) and an n-dimensional
real vector v, the function V (x) = v>x is a linear copos-
itive Lyapunov function for the continuous-time positive ith
subsystem

ẋ(t) = Aix(t), t ∈ R+, (2)

if the function V (x(t)) and its time derivative along every
system trajectory, originated from an arbitrary positive initial
condition x(0) = x0, satisfy, at each time instant t ∈ R+,

V (x(t)) = v>x(t) > 0 and V̇ (x(t)) = v>Aix(t) < 0.

V (x) = v>x is a common linear copositive Lyapunov
function for the p subsystems (2) (or, equivalently, for the
family A := {A1, A2, . . . , Ap} of n × n Metzler matrices),
if it is a linear copositive Lyapunov function for each of
them.

As it is well known, V (x) is a linear copositive Lyapunov
function for the subsystem (2) if and only if v � 0 and
v>Ai � 0. Consequently, it is a common linear copositive
Lyapunov function (in the following, CLCLF) for the p
subsystems (2) if and only if

v� 0 and v>Ai � 0, ∀ i ∈ 〈p〉. (3)

When dealing with the single ith subsystem (2), the existence
of a linear copositive function is equivalent to its asymptotic
stability [3], [11], by this meaning that for every x(0) =
x0 ∈ Rn+, the state evolution x(t) asymptotically converges
to zero. Asymptotic stability, in turn, is equivalent to the fact
that the system matrix Ai is (Metzler) Hurwitz, i.e., all its
eigenvalues lie in the open left half-plane C− := {s ∈ C :
Re(s) < 0}. On the other hand, when dealing with a CPSS
(1), asymptotic stability amounts to the convergence to zero
of every state trajectory, independently of the nonnegative
initial condition and of the switching signal σ : R+ → 〈p〉.
This requires each single subsystem to be asymptotically
stable, namely each matrix in A to be (Metzler) Hurwitz.
However, this is only a necessary condition, and examples
have been given of CPSSs which are not asymptotically
stable, even though all their subsystems are [15]. On the
other hand, the existence of a CLCLF for the subsystems of
the positive switched system (1) is sufficient for asymptotic
stability, but it is not necessary.

Example 1: Consider the 2-dimensional CPSS (1), with
p = 2 and matrices

A1 =
[
−1 1
1/2 −1

]
, A2 =

[
−1 1/2
1 −1

]
.

By a result of Akar et al. [1], the CPSS is asymptotically
stable. However it is easily seen that no CLCLF for A1 and
A2 can be found. Indeed, if v = [ v1 v2 ]> � 0, then v>A1

implies v1 < v2, while v>A2 implies v2 < v1. So, a strictly
positive vector v satisfying (3) does not exist.

We start by providing a first characterization for the
existence of a CLCLF for a family A of Metzler matrices.

Proposition 1: Given a family A = {A1, A2, . . . , Ap} of
n× n Metzler matrices, the following are equivalent:

i) there exists a vector v ∈ Rn+ such that (3) holds;
ii) ker+ [ In −A1 −A2 . . . −Ap ] = {0};

iii) the convex hull of the vector family CA := {colj(Ai) :
j ∈ 〈n〉, i ∈ 〈p〉} does not intersect the positive orthant
Rn+.
Proof: i) ⇔ ii) Notice, first, that

{v� 0 : A>i v� 0, ∀ i ∈ 〈p〉} =

8>><>>:v ∈ Rn
+ :

2664
In

−A>1
...
−A>p

3775 v� 0

9>>=>>; .

On the other hand, the set on the right-hand side in the
previous identity is the interior of the closed convex cone

K∗ :=

v ∈ Rn+ :


In
−A>1

...
−A>p

v ≥ 0

 ,

which, in turn, is the dual cone of the polyhedral cone

K := Cone [ In −A1 . . . −Ap ] .

So, the set {v � 0 : A>i v � 0,∀ i ∈ 〈p〉} is nonempty
if and only if the dual cone K∗ is solid, and this happens
if and only if [8] the cone K is pointed (by this meaning
that if both v and −v belong to K, then v = 0). However,
as [ In −A1 . . . −Ap ] is devoid of zero columns, it
is easily seen that K is pointed if and only if the only
nonnegative vector in the kernel of [ In −A1 . . . −Ap ]
is the zero vector. So, we have proved that i) and ii) are
equivalent statements.
ii) ⇔ iii) There exists a positive vector in
ker [ In −A1 −A2 . . . −Ap ] if and only if there
exist nonnegative vectors y,x1, . . . ,xp, not all of them
equal to zero, such that

y =
p∑
i=1

Aixi =
p∑
i=1

n∑
j=1

colj(Ai)[xi]j .

Possibly rescaling y and the various nonnegative coefficients
[xi]j , we can assume

∑p
i=1

∑n
j=1[xi]j = 1, which amounts

to saying that the convex hull of the family of vectors CA
includes a nonnegative vector. Therefore, also ii) and iii) are
equivalent.

6226



When p = 1, the following corollary of Proposition 1
provides a set of equivalent conditions for the asymptotic
stability of a continuous-time positive linear system (as
previously remarked, the equivalence of the first two items
is well-known [3], [11]).

Corollary 1: For the continuous-time positive ith subsys-
tem (2), the following are equivalent:

i) the subsystem is asymptotically stable, namely Ai is a
(Metzler) Hurwitz matrix;

ii) there exists v � 0 such that v>Ai � 0 (namely
the subsystem admits a linear copositive Lyapunov
function);

iii) ker+ [ In −Ai ] = {0};
iv) the convex hull of the vector family CAi := {colj(Ai) :

j ∈ 〈n〉} does not intersect the positive orthant Rn+.

III. CLCLFS FOR POSITIVE SWITCHED SYSTEMS

In order to provide additional characterizations of CPSSs
admitting a CLCLF, we need a couple of technical lemmas.
Preliminarily to them, we remark that a Metzler Hurwitz
matrix A satisfies

[A]`j =
{
< 0, if ` = j,
≥ 0, if ` 6= j.

Indeed, A is a Metzler Hurwitz matrix if and only if −A is an
M-matrix, and the properties of the M-matrices can be found
in [11]. As a consequence, every column vector colj(A) has
the jth entry which is negative and the remaining ones which
are nonnegative. In the following, for the sake of simplicity,
we will denote the orthant of Rn including vectors with all
nonnegative entries except for the jth, which is negative, as
Oj−. Notice that this is not a closed set.

Lemma 1: Let {v1,v2, . . . ,vs} be a family of s ≤ n+ 1
vectors in Rn, each of them belonging to some orthant
Oj−, j ∈ 〈n〉. Suppose that there exists a convex combi-
nation

y =
s∑
j=1

vjcj , cj > 0,
s∑
j=1

cj = 1,

such that y is a nonnegative vector . If (at least) two vectors
of the family, say v1 and v2, belong to the same orthant
Oj−, then a nonnegative vector, possibly different from y,
can be obtained as a convex combination of a subfamily of
{v1,v2, . . . ,vs}, where either v1 or v2 has been removed.

Proof: Without loss of generality (w.l.o.g.) we assume
that v1,v2 ∈ O1−, i.e., that their negative entry is the first
one. We prove the result by induction on n.

The first elementary case is n = 2. If so, we necessarily
deal with s = 3 vectors and v3 must belong to O2− (as
the convex combination of vectors in O1− cannot belong to
R2

+). As the vectors v1 and v2 belong to the second orthant
in R2, while v3 belongs to the fourth orthant, if the convex
hull of {v1,v2,v3} intersects R2

+ in y, then either the line
segment of vertices v1 and v3, or the line segment of vertices
v2 and v3, intersects the positive orthant R2

+. This amounts

to saying that there exist α ∈]0, 1[ and i ∈ 〈2〉 such that
αvi + (1− α)v3 ≥ 0.

We assume now, inductively, that the result is true if we
deal with vectors of size smaller than n, and we want to
prove that it holds (when dealing with s ≤ n + 1 vectors,
with the aforementioned pattern properties) in Rn.

Suppose that y =
∑s
j=1 vjcj > 0, with cj >

0,
∑s
j=1 cj = 1, and that v1 and v2 belong to the same

orthant O1−. We distinguish three cases:
[Case 1] If s ≤ n, then (since v1 and v2 belong to the
same orthant) the number of distinct orthants the s vectors
belong to is at most s− 1. As a consequence, there exist (at
least) n − s + 1 indices corresponding to entries which are
nonnegative in all vectors v1,v2, . . . ,vs. We assume, for the
sake of simplicity, that these positions are the last ones. Let
v̂j , j ∈ 〈s〉, and ŷ ≥ 0 be the (s − 1)-dimensional vectors
obtained from vj , j ∈ 〈s〉, and y, respectively, by deleting
the last n− s+ 1 entries. Obviously,

ŷ =
s∑
j=1

v̂jcj , cj > 0,
s∑
j=1

cj = 1.

Since these vectors belong to a vector space of dimension
smaller than n, and v̂1 and v̂2 belong to the same orthant, by
the inductive assumption we can obtain a nonnegative vector
as a convex combination of a subset of the family of vectors
{v̂1, v̂2, . . . , v̂s}, where either v̂1 or v̂2 does not appear. In
other words, there exist i ∈ 〈2〉, αj ≥ 0, αi +

∑s
j=3 αj = 1,

such that

αiv̂i +
s∑
j=3

αjv̂j ≥ 0.

Consequently,

αivi +
s∑
j=3

αjvj ≥ 0.

[Case 2] Suppose, now, that s = n+ 1, and there exists (at
least) one index h ∈ 〈n〉 such that none of the vectors vj
belongs to Oh−. This implies that there is a pair of indices
(i1, i2) 6= (1, 2), i1, i2 ∈ 〈n + 1〉, such that vi1 and vi2
belong to the same orthant Ok−, k 6= h. In this case, we
may first replace ci1vi1 +ci2vi2 with (ci1 +ci2)vi1i2 , where
vi1i2 is a suitable vector belonging again to Ok−. In this
way, y is expressed as the convex combination of n vectors
in Rn+, and hence we may apply the same reasoning adopted
in Case 1, thus getting a nonnegative vector as the convex
combination of a proper subset of these n vectors, where
either v1 or v2 has been removed. If vi1i2 is weighted by a
zero coefficient, we are done, otherwise we can replace vi1i2
with its positive combination in terms of vi1 and vi2 , and,
after a suitable rescaling, find, in the nonnegative orthant, a
convex combination of at most n vectors.
[Case 3] Now, we consider the case when s = n + 1 and,
w.l.o.g., vj ∈ O(j−1)− for every j ∈ {3, 4, . . . , n + 1}. If
the n + 1 vectors are affinely dependent, then there exists
a (nontrivial) linear combination, with coefficients summing
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up to zero, which gives the zero vector:

0 =
n+1∑
j=1

vjγj ,
n+1∑
j=1

γj = 0.

Consider the set

T := {τ ∈ R : γjτ ≥ −cj ,∀ j ∈ 〈n+ 1〉}.

This set is not empty (as 0 ∈ T ), and it is the intersection
of a finite number of closed half-lines. Consequently, since
at least one of the γj’s is positive and at least one of them
is negative, T is a closed interval in R. By selecting one of
its extremal points, say τ̄ , we get

y =
n+1∑
j=1

vj(γj τ̄ + cj),

where now the coefficients γj τ̄+cj are nonnegative for every
j ∈ 〈n+ 1〉, and at least one of them is zero. If both v1 and
v2 are weighted by a positive coefficient, we get rid of one
of them as in Case 1. Otherwise, we have obtained y as a
convex combination of a subset of the original set of vectors,
each of them belonging to a distinct orthant.

Finally, if the n + 1 vectors vj , j ∈ 〈n + 1〉, are affinely
independent, they generate a simplex in Rn. So, if the
simplex intersects Rn+, at least one of its faces does, which
means that we can get rid of one of the vectors and still get
a convex combination which is a nonnegative vector. If both
v1 and v2 are weighted by a positive coefficient, we can
apply, again, Case 1, and get rid of one of them. Otherwise,
we have obtained y by combining a subset of the original
set of vectors, each of them belonging to a distinct orthant.

Lemma 2: Given a family A = {A1, A2, . . . , Ap} of n×n
Metzler Hurwitz matrices, the following are equivalent:

i) the convex hull of the vector family CA := {colj(Ai) :
j ∈ 〈n〉, i ∈ 〈p〉} does not intersect the positive orthant
Rn+;

ii) for every map π : 〈n〉 → 〈p〉, the convex hull of the
vector family Cπ := {colj(Aπ(j)) : j ∈ 〈n〉} does not
intersect the positive orthant Rn+.
Proof: We first notice that each vector in the aforemen-

tioned families, being a column of a Metzler Hurwitz matrix,
belongs to some orthant Oj−, for some j ∈ 〈n〉. The proof
of i) ⇒ ii) is obvious.
ii)⇒ i) We proceed by showing that i) implies ii). Consider
a nonnegative vector y ∈ Rn+ obtained as the convex
combination of the vectors of CA. By the Caratheodory’s
theorem [7], there exist s ≤ n+1 vectors, say v1,v2, . . . ,vs
in Rn, such that

y =
s∑
j=1

vjcj , cj > 0,
s∑
j=1

cj = 1.

Starting from the above combination and repeatedly applying
Lemma 1, we reduce ourselves to the situation when we have
vectors, say w1,w2, . . . ,wr, with r ≤ min{s, n}, endowed
with the following properties:

• each of them belongs to CA;
• for every pair of distinct indices i, j ∈ 〈r〉, wi and wj

belong to distinct orthants;
• there exists a convex combination of the vectors

w1,w2, . . . ,wr that gives a nonnegative vector in Rn+.
If r < n, we complete the r-tuple above by introducing
n − r vectors of CA, each of them belonging to one of
the orthants which are not represented by w1,w2, . . . ,wr.
So, in any case, we end up with an n-tuple of columns
{colj(Aπ(j)), j ∈ 〈n〉}, that corresponds to a suitable map π,
and produces, via convex combination, a nonnegative vector
in Rn+. This contradicts ii).

Theorem 1, below, completes the characterization of
CPSSs whose p subsystems admit a CLCLF. Condition v)
has been recently obtained by Knorn, Mason and Shorten
in [13], by means of different techniques, and it extends a
preliminary result by Mason and Shorten [16]. Condition vi)
relates the existence of a common linear copositive function
to the existence of another type of common Lyapunov
function, which we will now introduce.

Definition 2: Given an n×n symmetric real matrix P , the
function V (x) = x>Px is a quadratic copositive Lyapunov
function for the continuous-time positive ith subsystem (2)
if the function V (x(t)) and its time derivative along every
system trajectory, originated from any x(0) = x0 > 0,
satisfy, at each time instant t ∈ R+,

V (x(t)) = x(t)>Px(t) > 0,
V̇ (x(t)) = x(t)>[AiP + PAi]x(t) < 0.

V (x) = x>Px is a common quadratic copositive Lyapunov
function (CQCLF) for the p subsystems (2) (for the p
matrices in A), if it is a quadratic copositive Lyapunov
function for each of them.

Theorem 1: Given a family A = {A1, A2, . . . , Ap} of n×
n Metzler Hurwitz matrices, the following are equivalent:

i) there exists a vector v ∈ Rn+ such that (3) holds;
ii) ker+ [ In −A1 −A2 . . . −Ap ] = {0};

iii) the convex hull of the vector family CA = {colj(Ai) :
j ∈ 〈n〉, i ∈ 〈p〉} does not intersect the positive orthant
Rn+;

iv) for every map π : 〈n〉 → 〈p〉, the convex hull of the
vector family Cπ = {colj(Aπ(j)) : j ∈ 〈n〉} does not
intersect the positive orthant Rn+;

v) for every map π : 〈n〉 → 〈p〉, the square matrix

Aπ := [ col1(Aπ(1)) col2(Aπ(2)) . . . coln(Aπ(n)) ]

is a (Metzler) Hurwitz matrix;
vi) there exists P = P>, with rank P = 1, such that

V (x) = x>Px is a CQCLF for the p matrices in A;
vii) there exists P = P> such that V (x) = x>Px is a

CQCLF for the matrices {Aπ : π : 〈n〉 → 〈p〉};
viii) the convex hull K of the set of matrices {Aπ : π :

〈n〉 → 〈p〉} consists of (Metzler) Hurwitz matrices;
ix) for every nonzero vector x ∈ Rn there exists a sym-

metric positive definite matrix Qx such that

x>
[
A>πQx +QxAπ

]
x < 0, ∀ π : 〈n〉 → 〈p〉. (4)
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Proof: The equivalence of points i), ii) and iii) is
Proposition 1. The equivalence of iii) and iv) has been shown
in Lemma 2. Finally, the equivalence of iv) and v) follows
from Corollary 1. We first prove the equivalence of i) and
vi).

i) ⇒ vi) Set P = vv>. Clearly, P = P> has rank 1
and it is immediately seen that, being v � 0, V (x) =
(x>v)(v>x) = (v>x)2 > 0 for every x > 0. On the other
hand, as in

x>[A>i P + PAi]x = (x>A>i v)(v>x) + (x>v)(v>Aix)

(v>x) > 0 and x>A>i v < 0, for every x > 0 and every
i ∈ 〈p〉, it follows that V̇ (x(t)) < 0 along every positive
trajectory of each ith subsystem, and hence V (x) = x>Px
is a CQCLF for the p matrices in A.

vi)⇒ i) If rank P = 1 and P = P>, then P can be expressed
as

P = T diag{0, 0 . . . , 0, λ} T>,

for some orthonormal matrix T and some λ 6= 0. Let v
denote the nth column of P . Then P = λvv>. Condition
x>Px > 0 for every x > 0 ensures that λ > 0 and v
has entries which are all nonzero and of the same sign. So,
it entails no loss of generality assuming that they are all
positive. On the other hand, from

x>[A>i P+PAi]x = λ
h
(x>A>i v)(v>x) + (x>v)(v>Aix)

i
< 0

it follows that

(x>v)(v>Aix) < 0,

and since x>v > 0 for every x > 0, it must be v>Aix < 0
for every x > 0. This ensures that v>Ai � 0. As this is
true for every i ∈ 〈p〉, condition i) holds.

We now relate vii), viii) and ix) to the previous equivalent
conditions.

i)⇒ vii) Notice that if v� 0 is a vector satisfying v>Ai �
0 for every index i ∈ 〈p〉, then v>Aπ � 0 for every π :
〈n〉 → 〈p〉. By proceeding as in i) ⇒ vi), we can show that
V (x) = x>(vv>)x is a CQCLF (of rank 1) for the matrices
{Aπ : π : 〈n〉 → 〈p〉}.
vii) ⇒ viii) Clearly, V (x) is also a CQCLF for each matrix
in K, and hence all matrices in K are Hurwitz.

viii) ⇒ v) Obvious.

viii) ⇔ ix) Follows from Theorem 2 in [4], once we notice
that K is a compact convex set of matrices and the set {Aπ :
π : 〈n〉 → 〈p〉} includes all the extreme points of K.

Example 2: Consider the 2-dimensional CPSS of Exam-
ple 1. As we know, the system is asymptotically stable, but a
CLCLF for A1 and A2 does not exist. Indeed, by making use
of condition v) in Theorem 1, we easily see that the matrix

Aπ = [ col1(A2) col2(A1) ] =
[
−1 1
1 −1

]
is not Hurwitz. Also, by Theorem 1, we can claim that no
CQCLF of rank 1 can be found for A1 and A2. However,

the quadratic positive definite function

V̄ (x) = x>
[√

2 0
0 1

]
x

is a CQCLF of rank 2 for both matrices.

Example 3: Consider the 2-dimensional CPSS (1), with
p = 2 and matrices

A1 =
[
−1 1/2
1 −2

]
, A2 =

[
−2 1
0 −2

]
.

It is easily seen that all four matrices Aπ , as π varies within
the set of maps from 〈2〉 to 〈2〉, are Metzler Hurwitz, and
hence a CLCLF for A1 and A2 exists. Indeed, each vector
v = [ v1 v2 ]>, with 0 < 0.25 v1 < v2 < v1, defines a
CLCLF for A1 and A2.

Remark 1: When dealing with 2-dimensional matrices,
conditions iv) and v) of Theorem 1 can be tested on a single
matrix Aπ , instead of on p2 matrices. Indeed, by resorting
to a geometric reasoning, we may notice that first columns
col1(Ai), i ∈ 〈p〉, belong to the second orthant of R2, while
second columns col2(Ai), i ∈ 〈p〉, belong to the fourth
orthant. Moreover, if we denote by αi and by βi the angles
that col1(Ai) and col2(Ai), respectively, form with the half-
line {x1 ≥ 0}, then αi ∈]π/2, π], while βi ∈ [−π/2, 0[. So,
there exists π : 〈2〉 → 〈p〉, such that the convex hull of Cπ
intersects R2

+ if and only if the line segment connecting the
extremal vertices of col1(Ai∗) and col2(Aj∗) does, where

i∗ := arg mini αi, j∗ := arg maxi βi.

Equivalently, condition v) holds if and only if the Metzler
matrix Aπ = [ col1(Ai∗) col2(Aj∗) ] is Hurwitz.

IV. CLCLFS FOR POSITIVE SWITCHED SYSTEMS
OBTAINED BY STATE-FEEDBACK

In this section we consider the situation when the CPSS
(1) is obtained by applying, to the same continuous-time
positive system

ẋ(t) = Ax(t) + bu(t), t ∈ R+, (5)

a state-feedback law, switching among a finite number of
possible configurations, u(t) = Kσ(t)x(t), σ : R+ → 〈p〉.
Here x(t) and u(t) denote the values of the n-dimensional
state variable and of the scalar input, respectively, at time t,
A is an n×n Metzler matrix and b an n-dimensional positive
vector. Consequently, the ith subsystem (2) is characterized
by the Metzler matrix Ai = A+ bKi.

As it has been remarked in [6], we are not obliged to
resort to positive matrices Ki to ensure that A + bKi is
a Metzler matrix. In fact, the positivity constraint typically
pertains only the state evolution and not the input signal, so
we just need to ensure that for every positive initial condition
the state evolution of the resulting feedback system remains
in the positive orthant. So, in the sequel, we will only assume
that the feedback matrices Ki’s are real row vectors which
ensure that A+bKi is Metzler. Conditions for this to happen
have been provided in [5] (for the dual case of positive
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observers), and have been adapted to the feedback control
case, for instance, in [18].

The following proposition shows that, when dealing with a
positive switched system (1), obtained by means of different
feedback connections, the existence of a CLCLF for the
matrices A + bKi can be verified by checking the Hurwitz
property of a single matrix.

Proposition 2: Consider the n-dimensional CPSS (1),
switching among the p subsystems

ẋ(t) = (A+ bKi)x(t), i ∈ 〈p〉,

where A is an n × n Metzler matrix, b an n-dimensional
positive vector and each Ki an n-dimensional row vector
such that A+ bKi is a Metzler matrix. The p matrices A+
bKi, i ∈ 〈p〉, admit a CLCLF if and only if the matrix A+
bK∗ is Metzler Hurwitz, where

[K∗]j := max
i∈〈p〉

[Ki]j , j ∈ 〈n〉.

Proof: We first observe that since colj(A + bK∗) =
colj(A+ bKij ) for some ij ∈ 〈p〉, it follows that colj(A+
bK∗) ∈ Oj−. Since this holds for every index j ∈ 〈n〉, the
columns of A + bK∗ have a structure which ensures that
A+ bK∗ is a Metzler matrix.
[Only if] By Theorem 1, if the p matrices A+ bKi, i ∈ 〈p〉,
admit a CLCLF, then for every map π : 〈n〉 → 〈p〉, the
square matrix

Aπ := [ col1(A+ bKπ(1)) . . . coln(A+ bKπ(n)) ]
= A+ b [ [Kπ(1))]1 . . . [Kπ(n)]n ]

is a (Metzler) Hurwitz matrix. But then, in particular, A +
bK∗ is Metzler Hurwitz.
[If] Conversely, assume that A + bK∗ is Metzler Hurwitz.
Then a vector v� 0 can be found such that v>(A+bK∗)�
0. But then, for every i ∈ 〈p〉, being Ki ≤ K∗ and v>b > 0,
one finds

0 � v>(A+ bK∗) = v>(A+ bKi) + (v>b)(K∗ −Ki)
≥ v>(A+ bKi).

This proves that V (x) = v>x is a CLCLF for all matrices
A+ bKi, i ∈ 〈p〉.

Remark 2: It is worthwhile noticing that the previous
result holds true even if A is not Metzler.

Remark 3: As a special case, we may consider the sit-
uation when we have a stable positive system (5) and we
apply a single stabilizing feedback law u(t) = Kx(t),
which preserves the system positivity. The Metzler Hurwitz
matrices A and A+bK have a CLCLF if and only if A+bK∗

is Metzler Hurwitz, where [K∗]j = max(0, [K]j), j ∈ 〈n〉.
This ensures the asymptotic stability of the CPSS (1), ob-
tained by switching between the free state evolution induced
by A and the state-feedback evolution induced by A+ bK.

V. CONCLUSIONS

In this paper we derived a set of necessary and sufficient
conditions for a familyA of n×n Metzler matrices to admit a
common linear copositive function. They represent sufficient
conditions for the stability of the positive switched system
(1) associated with A, and they involve rather different math-
ematical entities, like positive kernels, the convex hulls of
certain families of matrix columns, and the matrices obtained
by ordinately juxtaposing columns of different elements of
A. In addition, it is shown that the existence of a common
linear copositive Lyapunov function is equivalent to that of
other types of common Lyapunov functions.

Section IV characterizes the existence of a common linear
copositive function for a special class of positive switched
systems obtained by feedback connection.
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