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Linear copositive Lyapunov functions for
continuous-time positive switched systems

Ettore Fornasini Maria Elena Valcher

Index Terms—Switched system, positive linear system, asymp-
totic stability, linear (quadratic) copositive Lyapunov function.

Abstract—Continuous-time positive systems, switching among
p subsystems, are introduced, and a complete characterization for
the existence of a common linear copositive Lyapunov function
for all the subsystems is provided. When the subsystems are
obtained by applying different feedback control laws to the
same continuous-time single-input positive system, the above
characterization leads to a very easy checking procedure.

I. INTRODUCTION

By a continuous-time positive switched system (CPSS) we
mean a dynamic system consisting of a family of positive state-
space models [?], [?] and a switching law, specifying when
and how the switching among the various subsystems takes
place. Switched positive systems deserve investigation both
for practical applications and for theoretical reasons. Indeed,
switching among different models naturally arises as a way to
formalize the fact that the behavior of a system changes under
different operating conditions, and is therefore represented
by different mathematical structures. On the other hand, the
positivity constraint is pervasive in engineering practice as well
as in chemical, biological and economic modeling.

In the context of CPSSs, stability analysis captured wide
attention [?], [?], [?], [?], [?], [?], and mainly focused on
the search for conditions ensuring that the family of positive
subsystems a CPSS switches among shares either a linear
copositive or a quadratic Lyapunov function. In particular, the
existence of a common linear copositive function has been
investigated in detail [?], [?], [?], thus leading to deeper
insights into the properties the subsystems family must be
endowed with.

This note is centered around a certain geometric object -
the convex hull generated by the (columns) of the subsystems
matrices - and aims at exploiting its structure for analyzing the
existence of common linear copositive functions. In detail, the
paper is organized as follows: in section II, CPSSs, switching
among a finite family of subsystems, are introduced, and
preliminary conditions for the existence of a common linear
copositive Lyapunov function for all subsystems are provided.
In section III, by resorting to two technical lemmas, a more
complete characterization is given. Finally, in section IV, an
elementary checking procedure is derived, for the special
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class of CPSSs whose subsystems are obtained by applying
different feedback control laws to a continuous-time single-
input positive system.

Before proceeding, we introduce some notation. R+ is the
semiring of nonnegative real numbers and, for any positive
integer k, 〈k〉 is the set of integers {1, 2, . . . , k}. The (`, j)th
entry of a matrix A will be denoted by [A]`j , the `th entry
of a vector v by [v]`, and the jth column of a matrix A by
colj(A).

A matrix (in particular, a vector) A with entries in R+ is
called nonnegative, and if so we adopt the notation A ≥ 0.
If, in addition, A has at least one positive entry, the matrix
is positive (A > 0), while if all its entries are positive, it is
strictly positive (A � 0). A Metzler matrix is a real square
matrix, whose off-diagonal entries are nonnegative.

Given any real (not necessarily square) matrix A, with n
columns, we define its positive kernel, ker+(A), as the set of
nonnegative vectors which belong to the kernel of A, namely

ker+(A) := {v ≥ 0 : Av = 0} = ker(A) ∩ Rn+.

A set K ⊂ Rn is a cone if αK ⊆ K for all α ≥ 0. Basic
definitions and results about cones may be found, for instance,
in [?]. We recall here only those facts that will be used within
this paper. A cone is convex if it contains, with any two
points, the line segment between them. A convex cone K is
solid if it includes at least one interior point, and it is pointed
if K∩{−K} = {0}. A cone K is said to be polyhedral if it can
be expressed as the set of nonnegative linear combinations of a
finite set of vectors, called generating vectors; if the generating
vectors are the columns of a matrix A, we adopt the notation
K = Cone(A). The dual cone of a cone K ⊂ Rn is

K∗ := {v ∈ Rn : x>v ≥ 0, ∀ x ∈ K}.

A closed convex cone K is pointed (solid) [polyhedral] if and
only if K∗ is solid (pointed) [polyhedral].

Given a family of vectors v1,v2, . . . ,vs in Rn, the convex
hull of v1,v2, . . . ,vs is the set of vectors{

s∑
i=1

αivi : αi ≥ 0,
s∑
i=1

αi = 1

}
.

The vectors v1,v2, . . . ,vs are affinely (in)dependent if v2−
v1, . . . ,vs − v1 are linearly (in)dependent. A simplex in Rn
is the convex hull of a set of s ≤ (n+ 1) affinely independent
vectors.
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II. GENERAL POSITIVE SWITCHED SYSTEMS:
PRELIMINARY RESULTS

A continuous-time positive switched system is described by
the following equation

ẋ(t) = Aσ(t)x(t), t ∈ R+, (1)

where x(t) denotes the value of the n-dimensional state
variable at time t, σ is an arbitrary switching sequence, taking
values in some set 〈p〉, and for each i ∈ 〈p〉, the matrix Ai
is the system matrix of a continuous-time positive system,
which means that Ai is an n× n Metzler matrix. We assume
that the switching sequence is piece-wise continuous, and
hence in every time interval [0, t] there is a finite number
of discontinuities, which correspond to a finite number of
switching instants.

Definition 1: [?], [?] Given the CPSS (1) and an n-
dimensional real vector v, the function V (x) = v>x is a
linear copositive Lyapunov function for the continuous-time
positive ith subsystem

ẋ(t) = Aix(t), t ∈ R+, (2)

if for any positive vector x ∈ Rn+,

v>x > 0 and v>Aix < 0. (3)

V (x) = v>x is a common linear copositive Lyapunov function
for the p subsystems (2) (or, equivalently, for the family A :=
{A1, A2, . . . , Ap} of n× n Metzler matrices), if it is a linear
copositive Lyapunov function for each of them.

As it is well known [?] (and can be easily deduced from
the fact that (3) must hold for every positive vector), V (x)
is a linear copositive Lyapunov function for the subsystem
(2) if and only if v � 0 and v>Ai � 0. Consequently,
it is a common linear copositive Lyapunov function (in the
following, CLCLF) for the p subsystems (2) if and only if

v� 0 and v>Ai � 0, ∀ i ∈ 〈p〉. (4)

When dealing with the single ith subsystem (2), the existence
of a linear copositive function is equivalent to its asymptotic
stability [?], [?], by this meaning that for every x(0) = x0 ∈
Rn+, the state evolution x(t) asymptotically converges to zero.
Asymptotic stability, in turn, is equivalent to the fact that the
system matrix Ai is (Metzler) Hurwitz, i.e., all its eigenvalues
lie in the open left half-plane C− := {s ∈ C : Re(s) < 0}.
On the other hand, when dealing with a CPSS (1), asymptotic
stability amounts to the convergence to zero of every state
trajectory, independently of the nonnegative initial condition
and for every choice of the switching sequence σ : R+ → 〈p〉.
This requires each single subsystem to be asymptotically
stable, namely each matrix in A to be Hurwitz (and, of course,
Metzler, by the positivity assumption). However, this is only a
necessary condition, and examples have been given of CPSSs
which are not asymptotically stable, even though all their
subsystems are [?]. On the other hand, the existence of a
CLCLF for the subsystems of the positive switched system (1)
is sufficient for asymptotic stability, but it is not necessary.

Example 1: Consider the 2-dimensional CPSS (1), with
p = 2 and matrices

A1 =
[
−1 1
1/2 −1

]
, A2 =

[
−1 1/2
1 −1

]
.

By a result of Akar et al. [?], the CPSS is asymptotically
stable. However it is easily seen that no CLCLF for A1 and
A2 can be found. Indeed, if v = [ v1 v2 ]> � 0, then v>A1

implies v1 < v2, while v>A2 implies v2 < v1. So, a strictly
positive vector v satisfying (4) does not exist.

The interest in the existence of a CLCLF for the subsystems
of system (1) is motivated by its computational tractability.
In fact, checking whether there exists a vector v such that
(4) holds just amounts to solve a family of LMIs, and this
can be done by using standard numerical software. However,
since this is a stronger condition with respect to the asymptotic
stability of the positive switched system (1), we are interested
in characterizing, within the class of asymptotically stable
CPSS, those admitting a CLCLF.

A first characterization is provided by the following propo-
sition.

Proposition 1: Given a family A = {A1, A2, . . . , Ap} of
n× n Metzler matrices, the following are equivalent:

i) there exists a CLCLF for the family A, i.e. there exists
a vector v ∈ Rn+ such that (4) holds;

ii) ker+ [ In −A1 −A2 . . . −Ap ] = {0};
iii) the convex hull of the vector family CA := {colj(Ai) :

j ∈ 〈n〉, i ∈ 〈p〉} does not intersect the positive orthant
Rn+.

Proof: i) ⇔ ii) Notice, first, that

{v� 0 : A>i v� 0, ∀ i ∈ 〈p〉} =

8>><>>:v ∈ Rn
+ :

2664
In

−A>1
...
−A>p

3775 v� 0

9>>=>>; .

On the other hand, the set on the right-hand side in the
previous identity is the interior of the closed convex cone

K∗ :=

v ∈ Rn+ :


In
−A>1

...
−A>p

v ≥ 0

 ,

which, in turn, is the dual cone of the polyhedral cone

K := Cone [ In −A1 . . . −Ap ] .

So, the set {v � 0 : A>i v � 0,∀ i ∈ 〈p〉} is nonempty
if and only if the dual cone K∗ is solid, and this happens
if and only if [?] the cone K is pointed (by this meaning
that if both v and −v belong to K, then v = 0). However, as
[ In −A1 . . . −Ap ] is devoid of zero columns, it is easily
seen that K is pointed if and only if the only nonnegative
vector in the kernel of [ In −A1 . . . −Ap ] is the zero
vector. So, we have proved that i) and ii) are equivalent
statements.

ii) ⇔ iii) There exists a positive vector in
ker [ In −A1 −A2 . . . −Ap ] if and only if there
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exist nonnegative vectors y,x1, . . . ,xp, not all of them equal
to zero, such that

y =
p∑
i=1

Aixi =
p∑
i=1

n∑
j=1

colj(Ai)[xi]j .

Possibly rescaling y and the various nonnegative coefficients
[xi]j , we can assume

∑p
i=1

∑n
j=1[xi]j = 1, which amounts

to saying that the convex hull of the family of vectors CA
includes a nonnegative vector. Therefore, also ii) and iii) are
equivalent.

When p = 1, the following corollary of Proposition 1 pro-
vides a set of equivalent conditions for the asymptotic stability
of a continuous-time positive linear system (as previously
remarked, the equivalence of the first two items is well-known
[?], [?]).

Corollary 1: For a continuous-time positive system ẋ(t) =
Ax(t), the following are equivalent:

i) the system is asymptotically stable, namely A is a (Met-
zler) Hurwitz matrix;

ii) the system admits a linear copositive Lyapunov function,
i.e. there exists v� 0 such that v>A� 0;

iii) ker+ [ In −A ] = {0};
iv) the convex hull of the vector family CA := {colj(A) :

j ∈ 〈n〉} does not intersect the positive orthant Rn+.

III. CLCLFS FOR POSITIVE SWITCHED SYSTEMS

In order to provide additional characterizations of CPSSs
admitting a CLCLF, we need a technical lemma. Preliminarily,
we remark that a Metzler Hurwitz matrix A satisfies

[A]`j

{
< 0, if ` = j,
≥ 0, if ` 6= j.

Indeed, A is Metzler Hurwitz if and only if −A is an M-
matrix, and the properties of the M-matrices can be found
in [?]. As a consequence, every column vector colj(A) has
the jth entry which is negative and the remaining ones which
are nonnegative. In the following, for the sake of simplicity,
we will denote the orthant of Rn including vectors with all
nonnegative entries except for the jth, which is negative, as
Oj−. Notice that this is not a closed set.

Lemma 1: Let {v1,v2, . . . ,vs} be a family of s ≤ n + 1
vectors in Rn, each of them belonging to some orthant
Oj−, j ∈ 〈n〉. Suppose that there exists a positive convex
combination

y =
s∑
j=1

vjcj , cj > 0,
s∑
j=1

cj = 1,

such that y is a nonnegative vector . If (at least) two vectors
of the family, say v1 and v2, belong to the same orthant
Oj−, then a nonnegative vector, possibly different from y,
can be obtained as a convex combination of a subfamily of
{v1,v2, . . . ,vs}, where either v1 or v2 has been removed.

Proof: Without loss of generality (w.l.o.g.) we assume
that v1,v2 ∈ O1−, i.e., that their negative entry is the first
one. We prove the result by induction on n.

The first elementary case is n = 2. If so, we necessarily
deal with s = 3 vectors and v3 must belong to O2− (as the
convex combination of vectors in O1− cannot belong to R2

+).
As the vectors v1 and v2 belong to the second orthant in R2,
while v3 belongs to the fourth orthant, if the convex hull of
{v1,v2,v3} intersects R2

+ in y, then either the line segment of
vertices v1 and v3, or the line segment of vertices v2 and v3,
intersects the positive orthant R2

+. This amounts to saying that
there exist α ∈]0, 1[ and i ∈ 〈2〉 such that αvi+(1−α)v3 ≥ 0.

We assume now, inductively, that the result is true if we
deal with vectors of size smaller than n, and we want to prove
that it holds (when dealing with s ≤ n + 1 vectors, with the
aforementioned pattern properties) in Rn.

Suppose that y =
∑s
j=1 vjcj > 0, with cj > 0,

∑s
j=1 cj =

1, and that v1 and v2 belong to the same orthant O1−. We
distinguish three cases:
[Case 1] If s ≤ n, then (since v1 and v2 belong to the same
orthant) the number of distinct orthants the s vectors belong to
is at most s−1. As a consequence, there exist (at least) n−s+1
indices corresponding to entries which are nonnegative in all
vectors v1,v2, . . . ,vs. We assume, for the sake of simplicity,
that these positions are the last ones. Let v̂j , j ∈ 〈s〉, and
ŷ ≥ 0 be the (s − 1)-dimensional vectors obtained from vj ,
j ∈ 〈s〉, and y, respectively, by deleting the last n − s + 1
entries. Obviously,

ŷ =
s∑
j=1

v̂jcj , cj > 0,
s∑
j=1

cj = 1.

Since these vectors belong to a vector space of dimension
smaller than n, and v̂1 and v̂2 belong to the same orthant, by
the inductive assumption we can obtain a nonnegative vector
as a convex combination of a subset of the family of vectors
{v̂1, v̂2, . . . , v̂s}, where either v̂1 or v̂2 does not appear. In
other words, there exist i ∈ 〈2〉, αj ≥ 0, αi +

∑s
j=3 αj = 1,

such that

αiv̂i +
s∑
j=3

αjv̂j ≥ 0.

Consequently,

αivi +
s∑
j=3

αjvj ≥ 0.

[Case 2] Suppose, now, that s = n + 1, and there exists (at
least) one index h ∈ 〈n〉 such that none of the vectors vj
belongs to Oh−. This implies that there is a pair of indices
(i1, i2) 6= (1, 2), i1, i2 ∈ 〈n + 1〉, such that vi1 and vi2
belong to the same orthant Ok−, k 6= h. In this case, we
may first replace ci1vi1 + ci2vi2 with (ci1 + ci2)vi1i2 , where
vi1i2 is a suitable vector belonging again to Ok−. In this way,
y is expressed as the convex combination of n vectors in
Rn+, and hence we may apply the same reasoning adopted
in Case 1, thus getting a nonnegative vector as the convex
combination of a proper subset of these n vectors, where either
v1 or v2 has been removed. If vi1i2 is weighted by a zero
coefficient, we are done, otherwise we can replace vi1i2 with
its positive combination in terms of vi1 and vi2 , and, after a
suitable rescaling, find, in the nonnegative orthant, a convex
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combination of at most n vectors.
[Case 3] Now, we consider the case when s = n + 1 and,
w.l.o.g., vj ∈ O(j−1)− for every j ∈ {3, 4, . . . , n + 1}. If
the n + 1 vectors are affinely dependent, then there exists a
(nontrivial) linear combination, with coefficients summing up
to zero, which gives the zero vector:

0 =
n+1∑
j=1

vjγj ,
n+1∑
j=1

γj = 0.

Consider the set

T := {τ ∈ R : γjτ ≥ −cj ,∀ j ∈ 〈n+ 1〉}.

This set is not empty (as 0 ∈ T ), and it is the intersection of a
finite number of closed half-lines. Consequently, since at least
one of the γj’s is positive and at least one of them is negative,
T is a closed interval in R. By selecting one of its extremal
points, say τ̄ , we get

y =
n+1∑
j=1

vj(γj τ̄ + cj),

where now the coefficients γj τ̄ + cj are nonnegative for every
j ∈ 〈n+ 1〉, and at least one of them is zero. If both v1 and
v2 are weighted by a positive coefficient, we get rid of one of
them as in Case 1. Otherwise, we have obtained y as a convex
combination of a subset of the original set of vectors, each of
them belonging to a distinct orthant.

Finally, if the n + 1 vectors vj , j ∈ 〈n + 1〉, are affinely
independent, they generate a simplex in Rn. So, if the simplex
intersects Rn+, at least one of its faces does, which means that
we can get rid of one of the vectors and still get a convex
combination which is a nonnegative vector. If both v1 and v2

are weighted by a positive coefficient, we can apply, again,
Case 1, and get rid of one of them. Otherwise, we have
obtained y by combining a subset of the original set of vectors,
each of them belonging to a distinct orthant.

Condition iii) of Proposition 1 pertains the convex
hull generated by the columns of the n × pn matrix
[A1 A2 . . . Ap ]. Proposition 2, below, shows that the
same condition can be expressed in terms of the convex hulls
of a family of n × n matrices, namely those matrices one
obtains by selecting the 1st column among the 1st columns of
the matrices in A, the 2nd column among the 2nd columns
of the matrices in A, etc.. As a result, point ii) in Proposition
2 provides a further characterization for the existence of a
CLCLF for the matrices in A.

Proposition 2: Given a family A = {A1, A2, . . . , Ap} of
n×n Metzler Hurwitz matrices, the following are equivalent:

i) the convex hull of the vector family CA := {colj(Ai) :
j ∈ 〈n〉, i ∈ 〈p〉} does not intersect the positive orthant
Rn+;

ii) for every map π : 〈n〉 → 〈p〉, the convex hull of the
vector family Cπ := {colj(Aπ(j)) : j ∈ 〈n〉} does not
intersect the positive orthant Rn+.

Proof: We first notice that each vector in the aforemen-
tioned families, being a column of a Metzler Hurwitz matrix,

belongs to some orthant Oj−, for some j ∈ 〈n〉. The proof of
i) ⇒ ii) is obvious.
ii) ⇒ i) We proceed by showing that i) implies ii). Consider
a nonnegative vector y ∈ Rn+ obtained as the convex combi-
nation of the vectors of CA. By the Caratheodory’s theorem
[?], there exist s ≤ n + 1 vectors, say v1,v2, . . . ,vs in Rn,
such that

y =
s∑
j=1

vjcj , cj > 0,
s∑
j=1

cj = 1.

Starting from the above combination and repeatedly applying
Lemma 1, we reduce ourselves to the situation when we have
vectors, say w1,w2, . . . ,wr, with r ≤ min{s, n}, endowed
with the following properties:
• each of them belongs to CA;
• for every pair of distinct indices i, j ∈ 〈r〉, wi and wj

belong to distinct orthants;
• there exists a convex combination of the vectors

w1,w2, . . . ,wr that gives a nonnegative vector in Rn+.
If r < n, we complete the r-tuple above by introducing n− r
vectors of CA, each of them belonging to one of the orthants
which are not represented by w1,w2, . . . ,wr. So, in any case,
we end up with an n-tuple of columns {colj(Aπ(j)), j ∈ 〈n〉},
that corresponds to a suitable map π, and produces, via convex
combination, a nonnegative vector in Rn+. This contradicts ii).

Theorem 1, below, encompasses the four characterizations,
given in Propositions 1 and 2, of CPSSs whose p subsystems
admit a CLCLF, and provides additional two. Condition v)
has been recently obtained by Knorn, Mason and Shorten
in [?], by means of different techniques, and it extends a
preliminary result by Mason and Shorten [?]. Condition vi)
relates the existence of a common linear copositive function to
the existence of another type of common Lyapunov function,
which we now introduce.

Definition 2: Given an n×n symmetric real matrix P , the
function V (x) = x>Px is a common quadratic copositive
Lyapunov function (CQCLF) for the p subsystems (2) (for
the p matrices in A), if it is a quadratic copositive Lyapunov
function for each of them, by this meaning that, for each index
i ∈ 〈p〉 and for positive vector x ∈ Rn+, one has

x>Px > 0 and x>[AiP + PAi]x < 0.

Theorem 1: Given a family A = {A1, A2, . . . , Ap} of n×n
Metzler Hurwitz matrices, the following are equivalent:

i) there exists a CLCLF for the family A, i.e. there exists
a vector v ∈ Rn+ such that (4) holds;

ii) ker+ [ In −A1 −A2 . . . −Ap ] = {0};
iii) the convex hull of the vector family CA = {colj(Ai) :

j ∈ 〈n〉, i ∈ 〈p〉} does not intersect the positive orthant
Rn+;

iv) for every map π : 〈n〉 → 〈p〉, the convex hull of the
vector family Cπ = {colj(Aπ(j)) : j ∈ 〈n〉} does not
intersect the positive orthant Rn+;

v) for every map π : 〈n〉 → 〈p〉, the square matrix

Aπ := [ col1(Aπ(1)) col2(Aπ(2)) . . . coln(Aπ(n)) ]
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is a (Metzler) Hurwitz matrix;
vi) there exists P = P>, with rank P = 1, such that V (x) =

x>Px is a CQCLF for the p matrices in A.

Proof: The equivalence of points i), ii) and iii) is Propo-
sition 1. The equivalence of iii) and iv) has been shown in
Lemma 2. Finally, the equivalence of iv) and v) is just a
restatement of the equivalence of points i) and iv) in Corollary
1, upon replacing the Metzler matrix A with any Metzler
matrix Aπ . We now prove the equivalence of i) and vi).

i) ⇒ vi) Set P = vv>. Clearly, P = P> has rank 1 and it is
immediately seen that, being v� 0, V (x) = (x>v)(v>x) =
(v>x)2 > 0 for every x > 0. On the other hand, as in

x>[A>i P + PAi]x = (x>A>i v)(v>x) + (x>v)(v>Aix)

(v>x) > 0 and x>A>i v < 0, for every x > 0 and every
i ∈ 〈p〉, it follows that V̇ (x(t)) < 0 along every positive
trajectory of each ith subsystem, and hence V (x) = x>Px is
a CQCLF for the p matrices in A.

vi)⇒ i) If rank P = 1 and P = P>, then P can be expressed
as

P = T diag{0, 0 . . . , 0, λ} T>,

for some orthonormal matrix T and some λ 6= 0. Let v denote
the nth column of P . Then P = λvv>. Condition x>Px > 0
for every x > 0 ensures that λ > 0 and v has entries which
are all nonzero and of the same sign. So, it entails no loss
of generality assuming that they are all positive. On the other
hand, from

x>[A>i P + PAi]x = λ
h
(x>A>i v)(v>x) + (x>v)(v>Aix)

i
< 0

it follows that
(x>v)(v>Aix) < 0,

and since x>v > 0 for every x > 0, it must be v>Aix < 0
for every x > 0. This ensures that v>Ai � 0. As this is true
for every i ∈ 〈p〉, condition i) holds.

Example 2: Consider the 2-dimensional CPSS of Example
1. As we know, the system is asymptotically stable, but a
CLCLF for A1 and A2 does not exist. Indeed, by making use
of condition v) in Theorem 1, we easily see that the matrix

Aπ = [ col1(A2) col2(A1) ] =
[
−1 1
1 −1

]
is not Hurwitz. Also, by Theorem 1, we can claim that no
CQCLF of rank 1 can be found for A1 and A2. However, the
quadratic positive definite function

V̄ (x) = x>
[√

2 0
0 1

]
x

is a CQCLF of rank 2 for both matrices.

Example 3: Consider the 2-dimensional DPSS, with p = 2
and matrices

A1 =
[

0 1/4
1/2 1/2

]
, A2 =

[
0 1/2
1 1/4

]
.

It is easily seen that all four matrices Aπ , as π varies within the
set of maps from [1, 2] to [1, 2], are Schur, and hence a CLCLF
for A1 and A2 exists. Indeed, each vector v = [ v1 v2 ]>,

with 0 < 0.25 v1 < v2 < v1, defines a CLCLF for A1 and
A2.

Remark 2: When dealing with 2-dimensional matrices,
conditions iv) and v) of Theorem 1 can be tested on a single
matrix Aπ , instead of on p2 matrices. Indeed, by resorting
to a geometric reasoning, we may notice that first columns
col1(Ai), i ∈ 〈p〉, belong to the second orthant of R2, while
second columns col2(Ai), i ∈ 〈p〉, belong to the fourth orthant.
Moreover, if we denote by αi and by βi the angles that
col1(Ai) and col2(Ai), respectively, form with the half-line
{x1 ≥ 0}, then αi ∈]π/2, π], while βi ∈ [−π/2, 0[. So, there
exists π : 〈2〉 → 〈p〉, such that the convex hull of Cπ intersects
R2

+ if and only if the line segment connecting the extremal
vertices of col1(Ai∗) and col2(Aj∗) does, where

i∗ := arg mini αi, j∗ := arg maxi βi.

Equivalently, condition v) holds if and only if the Metzler
matrix Aπ = [ col1(Ai∗) col2(Aj∗) ] is Hurwitz.

IV. CLCLFS FOR POSITIVE SWITCHED SYSTEMS
OBTAINED BY STATE-FEEDBACK

In this section we consider the situation when the CPSS (1)
is obtained by applying, to the same continuous-time positive
system

ẋ(t) = Ax(t) + bu(t), t ∈ R+, (5)

a state-feedback law, switching among a finite number of
possible configurations, u(t) = Kσ(t)x(t), σ : R+ → 〈p〉.
Here x(t) and u(t) denote the values of the n-dimensional
state variable and of the scalar input, respectively, at time t,
A is an n×n Metzler matrix and b an n-dimensional positive
vector. Consequently, the ith subsystem (2) is characterized by
the Metzler matrix Ai = A+ bKi.

As it has been remarked in [?], we are not obliged to resort
to positive matrices Ki to ensure that A + bKi is a Metzler
matrix. In fact, the positivity constraint typically pertains only
the state evolution and not the input signal, so we just need
to ensure that for every positive initial condition the state
evolution of the resulting feedback system remains in the
positive orthant. So, in the sequel, we will only assume that the
feedback matrices Ki’s are real row vectors which ensure that
A+ bKi is Metzler. Conditions for this to happen have been
provided in [?] (for the dual case of positive observers), and
have been adapted to the feedback control case, for instance,
in [?].

The following proposition shows that, when dealing with a
positive switched system (1), obtained by means of different
feedback connections, the existence of a CLCLF for the
matrices A + bKi can be verified by checking the Hurwitz
property of a single matrix.

Proposition 3: Consider the n-dimensional CPSS (1), ob-
tained by switching among p controllers:

ẋ(t) = (A+ bKi)x(t), i ∈ 〈p〉,

where A is an n × n Metzler matrix, b an n-dimensional
positive vector and each Ki an n-dimensional row vector
such that A + bKi is a Metzler matrix. The p matrices
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A + bKi, i ∈ 〈p〉, admit a CLCLF if and only if the matrix
A+ bK∗ is Metzler Hurwitz, where

[K∗]j := max
i∈〈p〉

[Ki]j , j ∈ 〈n〉.

Proof: We first observe that since colj(A + bK∗) =
colj(A + bKij ) for some ij ∈ 〈p〉, it follows that colj(A +
bK∗) ∈ Oj−. Since this holds for every index j ∈ 〈n〉, the
columns of A + bK∗ have a structure which ensures that
A+ bK∗ is a Metzler matrix.
[Only if] By Theorem 1, if the p matrices A+ bKi, i ∈ 〈p〉,
admit a CLCLF, then for every map π : 〈n〉 → 〈p〉, the square
matrix

Aπ := [ col1(A+ bKπ(1)) . . . coln(A+ bKπ(n)) ]
= A+ b [ [Kπ(1))]1 . . . [Kπ(n)]n ]

is a (Metzler) Hurwitz matrix. But then, in particular, A+bK∗

is Metzler Hurwitz.
[If] Conversely, assume that A+bK∗ is Metzler Hurwitz. Then
a vector v � 0 can be found such that v>(A + bK∗) � 0.
But then, for every i ∈ 〈p〉, being Ki ≤ K∗ and v>b > 0,
one finds

0 � v>(A+ bK∗) = v>(A+ bKi) + (v>b)(K∗ −Ki)
≥ v>(A+ bKi).

This proves that V (x) = v>x is a CLCLF for all matrices
A+ bKi, i ∈ 〈p〉.


