CHAPTER 1

Introduction
—

CoONSIDER sorting a set S of n numbers into ascending order. If we could find
a member y of S such that half the members of S are smaller than y, then we
could use the following scheme. We partition S \ {y} into two sets S; and S,,
where §; consists of those elements of S that are smaller than y, and S, has the
remaining elements. We recursively sort S; and S, then output the elements of
S; in ascending order, followed by y, and then the elements of S, in ascending
order. In particular, if we could find y in cn steps for some constant ¢, we could
partition S \ {y} into S; and S, in n — 1 additional steps by comparing each
element of S with y; thus, the total number of steps in our sorting procedure
would be given by the recurrence

T(n) <2T(n/2)+ (c +)n, (1.1)

where T'(k) represents the time taken by this method to sort k numbers on the
worst-case input. This recurrence has the solution T'(n) < ¢'nlog n for a constant
¢, as can be verified by direct substitution.

The difficulty with the above scheme in practice is in finding the element y
that splits S \ {y} into two sets S, and S, of the same size. Examining (1.1), we
notice that the running time of O(nlogn) can be obtained even if S; and S, are
approximately the same size — say, if y were to split S \ {y} such that neither S,
nor S, contained more than 3n/4 elements. This gives us hope, because we know
that every input S contains at least n/2 candidate splitters y with this property.
How do we quickly find one?

One simple answer is to choose an element of S at random. This does not
always ensure a splitter giving a roughly even split. However, it is reasonable to
hope that in the recursive algorithm we will be lucky fairly often. The result is
an algorithm we call RandQS, for Randomized Quicksort.

Algorithm RandQS is an example of a randomized algorithm — an algorithm
that makes random choices during execution (in this case, in Step 1). Let us
assume for the moment that this random choice can be made in unit time; we

3

INTRODUCTION

will say more about this in the Notes section. What can we prove about the
running time of RandQS?

Algorithm RandQS:

Input: A set of numbers S.

Output: The elements of S sorted in increasing order.

1. Choose an element y uniformly at random from S: every element in S has
equal probability of being chosen.

2. By comparing each element of S with y, determine the set S; of elements
smaller than y and the set S, of elements larger than y.

3. Recursively sort S; and S,. Output the sorted version of S;, followed by y,
and then the sorted version of S,.

As 1s usual for sorting algorithms, we measure the running time of RandQS
in terms of the number of comparisons it performs since this is the dominant
cost in any reasonable implementation. In particular, our goal is to analyze the
expected number of comparisons in an execution of RandQS. Note that all the
comparisons are performed in Step 2, in which we compare a randomly chosen
partitioning element to the remaining elements. For 1 < i < n, let S;; denote the
element of rank i (the ith smallest element) in the set S. Thus, S, denotes the
smallest element of S, and S, the largest. Define the random variable Xjj to
assume the value 1 if S; and §;) are compared in an execution, and the value 0
otherwise. Thus, X;; is a count of comparisons between S; and S, and so the
total number of comparisons is Y, >~ Xi;. We are interested in the expected
number of comparisons, which is clearly

ED)_ D Xyjl=) > EX;l. (12)
=1 j>i i=1 j>i
This equation uses an important property of expectations called linearity of
expectation; we will return to this in Section 1.3.
Let p;; denote the probability that S;;) and S; are compared in an execution.
Since X;; only assumes the values 0 and 1,

E[X;;] = pij x 1 + (1 — p;j) x O = p;;. (1.3)

To facilitate the determination of p;;, we view the execution of RandQS as a
binary tree T, each node of which is labeled with a distinct element of S. The
root of the tree is labeled with the element y chosen in Step 1, the left sub-tree
of y contains the elements in S; and the right sub-tree of y contains the elements
in S,. The structures of the two sub-trees are determined recursively by the
executions of RandQS on S; and S,. The root y is compared to the elements in
the two sub-trees, but no comparison is performed between an element of the
left sub-tree and an element of the right sub-tree. Thus, there is a comparison

4

INTRODUCTION

between S;) and S if and only if one of these elements is an ancestor of the
other.

The in-order traversal of T will visit the elements of S in a sorted order,
and this is precisely what the algorithm outputs; in fact, T is a (random)
binary search tree (we will encounter this again in Section 8.2). However, for
the analysis we are interested in the level-order traversal of the nodes. This
1s the permutation n obtained by visiting the nodes of T in increasing order
of the level numbers, and in a left-to-right order within each level; recall that
the ith level of the tree is the set of all nodes at distance exactly i from the
root.

To compute p;;, we make two observations. Both observations are deceptively
simple, and yet powerful enough to facilitate the analysis of a number of more
complicated algorithms in later chapters (for example, in Chapters 8 and 9).

1. There is a comparison between S(; and S if and only if S(;) or S; occurs ecrlier
in the permutation n than any element Sy, such that i </ < j. To see this, let
Sx) be the earliest in © from among all elements of rank between i and j. If
k ¢ {i,j}, then Sy will belong to the left sub-tree of Sy, while S;, will belong
to the right sub-tree of Sy, implying that there is no comparison between Sj;
and S;. Conversely, when k € {i, j}, there is an ancestor—descendant relationship
between S;) and S(j), implying that the two elements are compared by RandQS.

2. Any of the elements S, Sit1),...,5() 1s equally likely to be the first of these
elements to be chosen as a partitioning element, and hence to appear first in
n. Thus, the probability that this first element is either Sy or S is exactly
2/(j—i+1).

We have thus established that p;; = 2/(j —i+ 1). By (1.2) and (1.3), the
expected number of comparisons is given by

i=1 j>i i=1 j>i

IA

< 2

It follows that the expected number of comparisons is bounded above by 2nH,,
where H, is the nth Harmonic number, defined by H, = >_/_, 1 /k.

Theorem 1.1: The expected number of comparisons in an execution of RandQS is
at most 2nH,,.

From Proposition B.4 (Appendix B), we have that H, ~ Inn + ©(1), so that
the expected running time of RandQS is O(nlog n).

5

INTRODUCTION

Exercise 1.1: Consider the (random) permutation 7 of S induced by the level-order
traversal of the tree T corresponding to an execution of RandQS. Is 7 uniformly
distributed over the space of all permutations of the elements S, ..., S()?

It is worth examining carefully what we have just established about RandQS.
The expected running time holds for every input. It is an expectation that
depends only on the random choices made by the algorithm, and not on any
assumptions about the distribution of the input. The behavior of a randomized
algorithm can vary even on a single input, from one execution to another. The
running time becomes a random variable, and the running-time analysis involves
understanding the distribution of this random variable.

We will prove bounds on the performances of randomized algorithms that rely
solely on their random choices and not on any assumptions about the inputs.
It is important to distinguish this from the probabilistic analysis of an algorithm,
in which one assumes a distribution on the inputs and analyzes an algorithm
that may itself be deterministic. In this book we will generally not deal with
such probabilistic analysis, except occasionally when illustrating a technique for
analyzing randomized algorithms.

Note also that we have proved a bound on the expected running time of the
algorithm. In many cases (including RandQS, see Problem 4.14), we can prove
an even stronger statement: that with very high probability the running time of
the algorithm is not much more than its expectation. Thus, on almost every
execution, independent of the input, the algorithm is shown to be fast.

The randomization involved in our RandQS algorithm occurs only in Step
1, where a random element is chosen from a set. We define a randomized
algorithm as an algorithm that is allowed access to a source of independent,
unbiased, random bits; it is then permitted to use these random bits to influence
its computation. It is easy to sample a random element from a set S by choosing
O(long[) random bits and then using these bits to index an element in the
set. However, some distributions cannot be sampled using only random bits.
For example, consider an algorithm that picks a random real number from
some interval. This requires infinitely many random bits. While we will usually
not worry about the conversion of random bits to the desired distribution, the
reader should keep in mind that random bits are a resource whose use involves
a non-trivial cost. Moreover, there is sometimes a non-trivial computational
overhead associated with sampling from a seemingly well-behaved distribution.
For example, consider the problem of using a source of unbiased random bits
to sample uniformly from a set S whose cardinality is not a power of 2 (see
Problem 1.2).

There are two principal advantages to randomized algorithms. The first is
performance — for many problems, randomized algorithms run faster than the
best known deterministic algorithms. Second, many randomized algorithms are
simpler to describe and implement than deterministic algorithms of comparable

6

I.1 A MIN-CUT ALGORITHM

performance. The randomized sorting algorithm described above is an exam-
ple. This book presents many other randomized algorithms that enjoy these
advantages.

In the next few sections, we will illustrate some basic ideas from probability
theory using simple applications to randomized algcrithms. The reader wishing
to review some of the background material on the analysis of algorithms or on
elementary probability theory is referred to the Appendices.

1.1. A Min-Cut Algorithm

Two events £, and &£, are said to be independent if the probability that they
both occur is given by

Pr(&i N &) = Pr[€y] x Pr[&;] (1.4)

(see Appendix C). In the more general case where £; and £, are not necessarily
independent,

Pri€iNE] =Pr[€ | £2] x Pr[€2] =Pr[€;, | £1] x Pr[&4], (1.5)

where Pr[€, | £,] denotes the conditional probability of £, given £,. Sometimes,
when a collection of events is not independent, a convenient method for com-
puting the probability of their intersection is to use the following generalization
of (1.5).

Prin_ £ =Pr[&] x Pr[&; | £ x Pr[€3 | £10 &) Pr[€ | NTLE] (1.6)

Consider a graph-theoretic example. Let G be a connected, undirected multi-
graph with n vertices. A multigraph may contain multiple edges between any pair
of vertices. A cut in G is a set of edges whose removal results in G being broken
into two or more components. A min-cut is a cut of minimum cardinality. We
now study a simple algorithm for finding a min-cut of a graph.

We repeat the following step: pick an edge uniformly at random and merge
the two vertices at its end-points (Figure 1.1). If as a result there are several
edges between some pairs of (newly formed) vertices, retain them all. Edges
between vertices that are merged are removed, so that there are never any
self-loops. We refer to this process of merging the two end-points of an edge
into a single vertex as the contraction of that edge. With each contraction, the
number of vertices of G decreases by one. The crucial observation is that an
edge contraction does not reduce the min-cut size in G. This is because every
cut in the graph at any intermediate stage is a cut in the original graph. The
algorithm continues the contraction process until only two vertices remain; at
this point, the set of edges between these two vertices is a cut in G and is output
as a candidate min-cut.

Does this algorithm always find a min-cut? Let us analyze its behavior after
first reviewing some elementary definitions from graph theory.

7

INTRODUCTION

1,2

2 3

Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge ¢ = (1,2) is
shown.

» Definition 1.1: For any vertex v in a multigraph G, the neighborhood of v,
denoted I'(v), is the set of vertices of G that are adjacent to v. The degree of v,
denoted d(v), is the number of edges incident on v. For a set S of vertices of G,
the neighborhood of S, denoted I'(S), is the union of the neighborhoods of the
constituent vertices.

Note that d(v) is the same as the cardinality of I'(v) when there are no self-loops
or multiple edges between v and any of its neighbors.

Let k be the min-cut size. We fix our attention on a particular min-cut C with
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of
degree less than k, and its incident edges would be a min-cut of size less than k.
We will bound from below the probability that no edge of C is ever contracted
during an execution of the algorithm, so that the edges surviving till the end are
exactly the edges in C.

Let &; denote the event of not picking an edge of C at the ith step, for
1 <i < n—2. The probability that the edge randomly chosen in the first step is in
C is at most k/(nk/2) = 2/n, so that Pr[€;] > 1 —2/n. Assuming that £, occurs,
during the second step there are at least k(n — 1)/2 edges, so the probability of
picking an edge in C is at most 2/(n — 1), so that Pr[€, | ;] > 1 —2/(n— 1).
At the ith step, the number of remaining vertices is n — i + 1. The size of the
min-cut is still at least k, so the graph has at least k(n—i+1)/2 edges remaining
at this step. Thus, Pr[€; |NZ{€;] > 1 —2/(n— i+ 1). What is the probability
that no edge of C is ever picked in the process? We invoke (1.6) to obtain

n—2€ o 2 2
Prined= [\ - =1 = sy

The probability of discovering a particular min-cut (which may in fact be
the unique min-cut in G) is larger than 2/n?. Thus our algorithm may err
in declaring the cut it outputs to be a min-cut. Suppose we were to repeat
the above algorithm n?/2 times, making independent random choices each
time. By (1.4), the probability that a min-cut is not found in any of the n?/2

8

1.2 LAS VEGAS AND MONTE CARLO

attempts 1s al most

2 n/2

By this process of repetition, we have managed to reduce the probability of fail-
ure from 1 —2/n* to a more respectable 1/e. Further executions of the algorithm
will make the failure probability arbitrarily small — the only consideration being
that repetitions increase the running time.

Note the extreme simplicity of the randomized algorithm we have just stud-
ied. In contrast, most deterministic algorithms for this problem are based on
network flows and are considerably more complicated. In Section 10.2 we will
return to the min-cut problem and fill in some implementation details that
have been glossed over in the above presentation; in fact, it will be shown
that a variant of this algorithm has an expected running time that is signifi-
cantly smaller than that of the best known algorithms based on network flow.

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing
a random edge for contraction we choose two vertices at random and coalesce them
into a single vertex. Show that there are inputs on which the probability that this
modified algorithm finds a min-cut is exponentially small.

1.2. Las Vegas and Monte Carlo

The randomized sorting algorithm and the min-cut algorithm exemplify two
different types of randomized algorithms. The sorting algorithm always gives
the correct solution. The only variation from one run to another is its running
time, whose distribution we study. We call such an algorithm a Las Vegas
algorithm.

In contrast, the min-cut algorithm may sometimes produce a solution that is
incorrect. However, we are able to bound the probability of such an incorrect
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we
observed a useful property of a Monte Carlo algorithm: if the algorithm is run
repeatedly with independent random choices each time, the failure probability
can be made arbitrarily small, at the expense of running time. Later, we will see
examples of algorithms in which both the running time and the quality of the
solution are random variables; sometimes these are also referred to as Monte
Carlo algorithms. For decision problems (problems for which the answer to an
Instance is YES or NoO), there are two kinds of Monte Carlo algorithms: those
with one-sided error, and those with two-sided error. A Monte Carlo algorithm is
said to have two-sided error if there is a non-zero probability that it errs when it
outputs either YEs or No. It is said to have one-sided error if the probability that
it errs is zero for at least one of the possible outputs (YES/NO) that it produces.

9

INTRODUCTION

We will see examples of all three types of algorithms — Las Vegas, Monte Carlo
with one-sided error, and Monte Carlo with two-sided error — in this book.

Which is better, Monte Carlo or Las Vegas? The answer depends on the
application — in some applications an incorrect solution may be catastrophic.
A Las Vegas algorithm is by definition a Monte Carlo algorithm with error
probability 0. The following exercise gives us a way of deriving a Las Vegas
algorithm from a Monte Carlo algorithm. Note that the efficiency of the
derivation procedure depends on the time taken to verify the correctness of a
solution to the problem.

Exercise 1.3: Consider a Monte Carlo algorithm A for a problem 1 whose expected
running time is at most T(n) on any instance of size n and that produces a correct
solution with probability p(n). Suppose further that given a solution to N, we can verify
its correctness in time t(n). Show how to obtain a Las Vegas algorithm that always
gives a correct answer to I1 and runs in expected time at most (T(n) + t(n))/y(n).

In attempting Exercise 1.3 the reader will have to use a simple property of the
geometric random variable (Appendix C). Consider a biased coin that, on a toss,
has probability p of coming up HEADS and 1 — p of coming up TAILS. What is
the expected number of (independent) tosses up to and including the first head?
The number of such tosses is a random variable that is said to be geometrically
distributed. The expectation of this random variable is 1/p. This fact will prove
useful in numerous applications.

Exercise 1.4: Let 0 < €, < €; < 1. Consider a Monte Carlo algorithm that gives the
correct solution to a problem with probability at least 1 — €;, regardless of the input.
How many independent executions of this algorithm suffice to raise the probability
of obtaining a correct solution to at least 1 — €, regardless of the input?

We say that a Las Vegas algorithm is an efficient Las Vegas algorithm if on
any input its expected running time is bounded by a polynomial function of the
input size. Similarly, we say that a Monte Carlo algorithm is an efficient Monte
Carlo algorithm if on any input its worst-case running time is bounded by a

~ polynomial function of the input size.

1.3. Binary Planar Partitions

We now illustrate another very useful and basic tool from probability theory:
linearity of expectation. For random variables X, X»,...,

E[)_Xi1=) E[Xi. (17)

19

1.3 BINARY PLANAR PARTITIONS

(See Proposition C.5.) We have implicitly used this tool in our analysis of
RandQS. A point that cannot be overemphasized is that (1.7) holds regardless
of any dependencies between the X.

» Example 1.1: A ship arrives at a port, and the 40 sailors on board go ashore
for revelry. Later at night, the 40 sailors return to the ship and, in their state
of inebriation, each chooses a random cabin to sleep in. What is the expected
number of sailors sleeping in their own cabins?

The inefficient approach to this problem would be to consider all 40% ar-
rangements of sailors in cabins. The solution to this example will involve the
use of a simple and often useful device called an indicator variable, together with
linearity of expectation. Let X; be 1 if the ith sailor chooses her own cabin, and 0
otherwise. Thus X; indicates whether or not a certain event occurs, and is hence
called an indicator variable. We wish to determine the expected number of sailors
who get their own cabins, which is E[E?ﬁl X;]. By linearity of expectation, this
is 31, E[X;]. Since the cabins are chosen at random, the probability that the ith
sailor gets her own cabin is 1/40, so E[X;] = 1/40. Thus the expected number of
sailors who get their own cabins is 221 1/40 = 1.

Our next illustration is the construction of a binary planar partition of a set
of n disjoint line segments in the plane, a problem with applications to computer
graphics. A binary planar partition consists of a binary tree together with some
additional information, as described below. Every internal node of the tree
has two children. Associated with each node v of the tree is a region r(v) of
the plane. Associated with each internal node v of the tree is a line £(v) that
intersects r(v). The region corresponding to the root is the entire plane. The
region r(v) is partitioned by £(v) into two regions ri(v) and r,(v), which are
the regions associated wjith the two children of v. Thus, any region r of the
partition is bounded by the partition lines on the path from the root to the node
corresponding to r in the tree.

Given a set S = {s1,52,...,5,} of non-intersecting line segments in the plane,
we wish to find a binary planar partition such that every region in the partition
contains at most one line segment (or a portion of one line segment). Notice
that the definition allows us to divide an input line segment s; into several
segments s;1,Si,..., each of which lies in a different region. The example of
Figure 1.2 gives such a partition for a set of three line segments (dark lines).

Exercise 1.5: Show that there exists a set of line segments for which no binary
planar partition can avoid breaking up some of the segments into pieces, if each
segment is to lie in a different region of the partition.

Binary planar partitions have two applications in computer graphics. Here,
we describe one of them, the problem of hidden line elimination in computer

11

INTRODUCTION

Figure 1.2: An example of a binary planar partition for a set of segments (dark lines).
Each leaf is labeled by the line segment it contains. The labels r(v) are omitted for clarity.

graphics. The second application has to do with the constructive solid geometry
(or CSG) representation of a polyhedral object.

In rendering a scene on a graphics terminal, we are often faced with a
situation in which the scene remains fixed, but it is to be viewed from several
directions (for instance, in a flight simulator, where the simulated motion of the
plane causes the viewpoint to change). The hidden line elimination problem is
the following: having adopted a viewpoint and a direction of viewing, we want
to draw only the portion of the scene that is visible, eliminating those objects
that are obscured by other objects “in front” of them relative to the viewpoint.
In such a situation, we might be prepared to spend some computational effort
preprocessing the scene so that given a direction of, viewing, the scene can be
rendered quickly with hidden lines eliminated.

One approach to this problem uses a binary partition tree. In this chapter we
consider the simple case where the scene lies entirely in the plane, and we view it
from a point in the same plane. Thus, the output is a one-dimensional projected
“picture.” We can assume that the input scene consists of non-intersecting line
segments, since any line that is intersected by another can be broken up into
segments, each of which touches other lines only at its endpoints (if at all).
Once the scene has been thus decomposed into line segments, we construct a
binary planar partition tree for it. Now, given the direction of viewing, we use
an idea known as the painter’s algorithm to render the scene: first draw the
objects that are furthest “behind,” and then progressively draw the objects that
are in front. Given the binary planar partition tree, the painter’s algorithm
can be implemented by recursively traversing the tree as follows. At the root
of the tree, determine which side of the partitioning line L; is “behind” from
the viewpoint and render all the objects in that sub-tree (recursively). Having
completely rendered the portion of the tree corresponding to that sub-tree,
do the same for the portion in “front” of L;, “painting over” objects already
drawn.

The time it takes to render the scene depends on the size of the binary planar
partition tree. We therefore wish to construct a binary planar partition that is
as small as possible. Notice that since the tree must be traversed completely to

12

1.3 BINARY PLANAR PARTITIONS

render the scene, the depth of the tree is immaterial in this application. Because
the construction of the partition can break some of the input segments s; into
smaller pieces, the size of the partition need not be n; in fact, it is not clear that
a partition of size O(n) always exists.

In this chapter we consider only the planar case just described; in Chapter 9
we generalize the idea of a binary planar partition to handle the rendition of
a three-dimensional scene on a two-dimensional screen (a far more interesting
case for computer graphics).

For a line segment s, let [(s) denote the line obtained by extending (if necessary)
s on both sides to infinity. For the set S = {s1,s5,...5,} of line segments, a simple
and natural class of partitions is the set of autopartitions, which are formed by
only using lines from the set {I(s;),l(s2),...l(s,)} in constructing the partition.
We only consider autopartitions from here on.

Algorithm RandAuto: .

Input: A setS = {sy,5,...,5,} of non-intersecting line segments.

Output: A binary autopartition P, of S.

1. Pick a permutation m of {1,2,..., n} uniformly at random from the n! possible
permutations.

2. while a region contains more than one segment, cut it with /(s;) where i is
first in the ordering m such that s; cuts that region.

In the partition resulting from an execution of RandAuto, a segment may
lie on the boundary between two regions of the partition. We declare such a
segment to lie in one region or the other in any convenient way.

Theorem 1.2: The expected size of the autopartition produced by RandAuto is
O(nlogn).

PROOF: For line segments u and v, define index(u,v) to be i if I(u) intersects
i — 1 other segments before hitting v, and index(u,v) = oo if l(u) does not
hit v. Since a segment u can be extended in two directions, it is possible
that index(u,v) = index(u,w) for two different lines v and w (in Figure 1.3,
index(u,v,) = index(u,v,) = 2).

Let us denote by u 4 v the event that /(u) cuts v in the constructed partition.
Let index(u,v) = i, and let uy, u,, ... u;_; be the segments that [(u) intersects before
hitting v. The event u < v happens only if u occurs before any of {u;,us,...u;_y, v}
in the randomly chosen permutation n. The probability that this happens is
1/(i+ 1).

Let C,, be an indicator variable that is 1 if ¥ 4 v and O otherwise; clearly,
E[C.,] = Pr[u - v] < 1/(index(u,v)+ 1). The size of P, equals n plus the number
of intersections due to cuts. Thus, its expectation is n + E[Y_, >, C,,] and by

13

INTRODUCTION

AN\

Figure 1.3: An illustration of index(u,v).

linearity of expectation this equals

n+ZZPr[u—|v]<n+ZZmdex(u D+l (1.8)

u vstu

For any line segment u and any finite positive integer i, there are at most two
vertices v and w such that index(u,v) and index(u, w) equals i. This is because
the extension of the segment u along either of the two possible directions will
meet any other line segment at most once. Thus, in each of the two directions,
there is a total ordering on the points of intersection with other segments and
the index values increase monotonically. This implies that

Z lndex(u v)+1

Combining this with (1.8) implies that the expected size of P, is bounded above
by

n+2ZZ—<n+2nH,,,
u

which is O(nlogn). O

Note that in computing the expected number of intersections, we only made
use of linearity of expectation. We do not require any independence between
the events u 4 v and u - w, for segments u,v, and w. Indeed, these events need
not be independent in general.

One way of interpreting Theorem 1.2 is as follows: since the expected size
of the binary planar partition constructed by the algorithm is O(nlogn) on
any input, there must exist a binary autopartition of size O(nlogn) for every
input. This follows from the simple fact that any random variable assumes at
least one value that is no greater than its expectation (and, indeed, one that is
no less than its expectation). Thus we have used a probabilistic argument to
assert that a combinatorial object — in this case a binary autopartition of size
O(nlogn) — exists with absolute certainty rather than with some probability. This
is an example of the probabilistic method in combinatorics. We will study the
probabilistic method in greater detail in Chapter 5.

14

